a9f1905896fb3c61db7bf12f821bdf72d61fb8e4
[linux-2.6-microblaze.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 /*
28  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
29  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
30  */
31 u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
32 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
33
34 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
35 {
36         int feature_bit = 0;
37         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
38
39         xstate_bv &= XFEATURE_MASK_EXTEND;
40         while (xstate_bv) {
41                 if (xstate_bv & 0x1) {
42                         u32 eax, ebx, ecx, edx, offset;
43                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
44                         offset = compacted ? ret : ebx;
45                         ret = max(ret, offset + eax);
46                 }
47
48                 xstate_bv >>= 1;
49                 feature_bit++;
50         }
51
52         return ret;
53 }
54
55 #define F feature_bit
56
57 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
58 {
59         struct kvm_cpuid_entry2 *best;
60         struct kvm_lapic *apic = vcpu->arch.apic;
61
62         best = kvm_find_cpuid_entry(vcpu, 1, 0);
63         if (!best)
64                 return 0;
65
66         /* Update OSXSAVE bit */
67         if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1)
68                 cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
69                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
70
71         cpuid_entry_change(best, X86_FEATURE_APIC,
72                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
73
74         if (apic) {
75                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
76                         apic->lapic_timer.timer_mode_mask = 3 << 17;
77                 else
78                         apic->lapic_timer.timer_mode_mask = 1 << 17;
79         }
80
81         best = kvm_find_cpuid_entry(vcpu, 7, 0);
82         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
83                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
84                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
85
86         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
87         if (!best) {
88                 vcpu->arch.guest_supported_xcr0 = 0;
89         } else {
90                 vcpu->arch.guest_supported_xcr0 =
91                         (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
92                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
93         }
94
95         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
96         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
97                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
98                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
99
100         /*
101          * The existing code assumes virtual address is 48-bit or 57-bit in the
102          * canonical address checks; exit if it is ever changed.
103          */
104         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
105         if (best) {
106                 int vaddr_bits = (best->eax & 0xff00) >> 8;
107
108                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
109                         return -EINVAL;
110         }
111
112         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
113         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
114                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
115                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
116
117         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
118                 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
119                 if (best)
120                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
121                                            vcpu->arch.ia32_misc_enable_msr &
122                                            MSR_IA32_MISC_ENABLE_MWAIT);
123         }
124
125         /* Note, maxphyaddr must be updated before tdp_level. */
126         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
127         vcpu->arch.tdp_level = kvm_x86_ops.get_tdp_level(vcpu);
128         kvm_mmu_reset_context(vcpu);
129
130         kvm_pmu_refresh(vcpu);
131         return 0;
132 }
133
134 static int is_efer_nx(void)
135 {
136         return host_efer & EFER_NX;
137 }
138
139 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
140 {
141         int i;
142         struct kvm_cpuid_entry2 *e, *entry;
143
144         entry = NULL;
145         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
146                 e = &vcpu->arch.cpuid_entries[i];
147                 if (e->function == 0x80000001) {
148                         entry = e;
149                         break;
150                 }
151         }
152         if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
153                 cpuid_entry_clear(entry, X86_FEATURE_NX);
154                 printk(KERN_INFO "kvm: guest NX capability removed\n");
155         }
156 }
157
158 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
159 {
160         struct kvm_cpuid_entry2 *best;
161
162         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
163         if (!best || best->eax < 0x80000008)
164                 goto not_found;
165         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
166         if (best)
167                 return best->eax & 0xff;
168 not_found:
169         return 36;
170 }
171 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
172
173 /* when an old userspace process fills a new kernel module */
174 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
175                              struct kvm_cpuid *cpuid,
176                              struct kvm_cpuid_entry __user *entries)
177 {
178         int r, i;
179         struct kvm_cpuid_entry *cpuid_entries = NULL;
180
181         r = -E2BIG;
182         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
183                 goto out;
184         r = -ENOMEM;
185         if (cpuid->nent) {
186                 cpuid_entries =
187                         vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
188                                            cpuid->nent));
189                 if (!cpuid_entries)
190                         goto out;
191                 r = -EFAULT;
192                 if (copy_from_user(cpuid_entries, entries,
193                                    cpuid->nent * sizeof(struct kvm_cpuid_entry)))
194                         goto out;
195         }
196         for (i = 0; i < cpuid->nent; i++) {
197                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
198                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
199                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
200                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
201                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
202                 vcpu->arch.cpuid_entries[i].index = 0;
203                 vcpu->arch.cpuid_entries[i].flags = 0;
204                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
205                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
206                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
207         }
208         vcpu->arch.cpuid_nent = cpuid->nent;
209         cpuid_fix_nx_cap(vcpu);
210         kvm_apic_set_version(vcpu);
211         kvm_x86_ops.cpuid_update(vcpu);
212         r = kvm_update_cpuid(vcpu);
213
214 out:
215         vfree(cpuid_entries);
216         return r;
217 }
218
219 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
220                               struct kvm_cpuid2 *cpuid,
221                               struct kvm_cpuid_entry2 __user *entries)
222 {
223         int r;
224
225         r = -E2BIG;
226         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
227                 goto out;
228         r = -EFAULT;
229         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
230                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
231                 goto out;
232         vcpu->arch.cpuid_nent = cpuid->nent;
233         kvm_apic_set_version(vcpu);
234         kvm_x86_ops.cpuid_update(vcpu);
235         r = kvm_update_cpuid(vcpu);
236 out:
237         return r;
238 }
239
240 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
241                               struct kvm_cpuid2 *cpuid,
242                               struct kvm_cpuid_entry2 __user *entries)
243 {
244         int r;
245
246         r = -E2BIG;
247         if (cpuid->nent < vcpu->arch.cpuid_nent)
248                 goto out;
249         r = -EFAULT;
250         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
251                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
252                 goto out;
253         return 0;
254
255 out:
256         cpuid->nent = vcpu->arch.cpuid_nent;
257         return r;
258 }
259
260 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
261 {
262         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
263         struct kvm_cpuid_entry2 entry;
264
265         reverse_cpuid_check(leaf);
266         kvm_cpu_caps[leaf] &= mask;
267
268         cpuid_count(cpuid.function, cpuid.index,
269                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
270
271         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
272 }
273
274 void kvm_set_cpu_caps(void)
275 {
276         unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
277 #ifdef CONFIG_X86_64
278         unsigned int f_gbpages = F(GBPAGES);
279         unsigned int f_lm = F(LM);
280 #else
281         unsigned int f_gbpages = 0;
282         unsigned int f_lm = 0;
283 #endif
284
285         BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
286                      sizeof(boot_cpu_data.x86_capability));
287
288         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
289                sizeof(kvm_cpu_caps));
290
291         kvm_cpu_cap_mask(CPUID_1_ECX,
292                 /*
293                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
294                  * advertised to guests via CPUID!
295                  */
296                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
297                 0 /* DS-CPL, VMX, SMX, EST */ |
298                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
299                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
300                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
301                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
302                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
303                 F(F16C) | F(RDRAND)
304         );
305         /* KVM emulates x2apic in software irrespective of host support. */
306         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
307
308         kvm_cpu_cap_mask(CPUID_1_EDX,
309                 F(FPU) | F(VME) | F(DE) | F(PSE) |
310                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
311                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
312                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
313                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
314                 0 /* Reserved, DS, ACPI */ | F(MMX) |
315                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
316                 0 /* HTT, TM, Reserved, PBE */
317         );
318
319         kvm_cpu_cap_mask(CPUID_7_0_EBX,
320                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
321                 F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
322                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
323                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
324                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
325         );
326
327         kvm_cpu_cap_mask(CPUID_7_ECX,
328                 F(AVX512VBMI) | F(LA57) | 0 /*PKU*/ | 0 /*OSPKE*/ | F(RDPID) |
329                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
330                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
331                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
332         );
333         /* Set LA57 based on hardware capability. */
334         if (cpuid_ecx(7) & F(LA57))
335                 kvm_cpu_cap_set(X86_FEATURE_LA57);
336
337         kvm_cpu_cap_mask(CPUID_7_EDX,
338                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
339                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
340                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM)
341         );
342
343         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
344         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
345         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
346
347         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
348                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
349         if (boot_cpu_has(X86_FEATURE_STIBP))
350                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
351         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
352                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
353
354         kvm_cpu_cap_mask(CPUID_7_1_EAX,
355                 F(AVX512_BF16)
356         );
357
358         kvm_cpu_cap_mask(CPUID_D_1_EAX,
359                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
360         );
361
362         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
363                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
364                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
365                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
366                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
367                 F(TOPOEXT) | F(PERFCTR_CORE)
368         );
369
370         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
371                 F(FPU) | F(VME) | F(DE) | F(PSE) |
372                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
373                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
374                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
375                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
376                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
377                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
378                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
379         );
380
381         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
382                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
383
384         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
385                 F(CLZERO) | F(XSAVEERPTR) |
386                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
387                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
388         );
389
390         /*
391          * AMD has separate bits for each SPEC_CTRL bit.
392          * arch/x86/kernel/cpu/bugs.c is kind enough to
393          * record that in cpufeatures so use them.
394          */
395         if (boot_cpu_has(X86_FEATURE_IBPB))
396                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
397         if (boot_cpu_has(X86_FEATURE_IBRS))
398                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
399         if (boot_cpu_has(X86_FEATURE_STIBP))
400                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
401         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
402                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
403         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
404                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
405         /*
406          * The preference is to use SPEC CTRL MSR instead of the
407          * VIRT_SPEC MSR.
408          */
409         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
410             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
411                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
412
413         /*
414          * Hide all SVM features by default, SVM will set the cap bits for
415          * features it emulates and/or exposes for L1.
416          */
417         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
418
419         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
420                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
421                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
422                 F(PMM) | F(PMM_EN)
423         );
424 }
425 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
426
427 struct kvm_cpuid_array {
428         struct kvm_cpuid_entry2 *entries;
429         const int maxnent;
430         int nent;
431 };
432
433 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
434                                               u32 function, u32 index)
435 {
436         struct kvm_cpuid_entry2 *entry;
437
438         if (array->nent >= array->maxnent)
439                 return NULL;
440
441         entry = &array->entries[array->nent++];
442
443         entry->function = function;
444         entry->index = index;
445         entry->flags = 0;
446
447         cpuid_count(entry->function, entry->index,
448                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
449
450         switch (function) {
451         case 4:
452         case 7:
453         case 0xb:
454         case 0xd:
455         case 0xf:
456         case 0x10:
457         case 0x12:
458         case 0x14:
459         case 0x17:
460         case 0x18:
461         case 0x1f:
462         case 0x8000001d:
463                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
464                 break;
465         }
466
467         return entry;
468 }
469
470 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
471 {
472         struct kvm_cpuid_entry2 *entry;
473
474         if (array->nent >= array->maxnent)
475                 return -E2BIG;
476
477         entry = &array->entries[array->nent];
478         entry->function = func;
479         entry->index = 0;
480         entry->flags = 0;
481
482         switch (func) {
483         case 0:
484                 entry->eax = 7;
485                 ++array->nent;
486                 break;
487         case 1:
488                 entry->ecx = F(MOVBE);
489                 ++array->nent;
490                 break;
491         case 7:
492                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
493                 entry->eax = 0;
494                 entry->ecx = F(RDPID);
495                 ++array->nent;
496         default:
497                 break;
498         }
499
500         return 0;
501 }
502
503 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
504 {
505         struct kvm_cpuid_entry2 *entry;
506         int r, i, max_idx;
507
508         /* all calls to cpuid_count() should be made on the same cpu */
509         get_cpu();
510
511         r = -E2BIG;
512
513         entry = do_host_cpuid(array, function, 0);
514         if (!entry)
515                 goto out;
516
517         switch (function) {
518         case 0:
519                 /* Limited to the highest leaf implemented in KVM. */
520                 entry->eax = min(entry->eax, 0x1fU);
521                 break;
522         case 1:
523                 cpuid_entry_override(entry, CPUID_1_EDX);
524                 cpuid_entry_override(entry, CPUID_1_ECX);
525                 break;
526         case 2:
527                 /*
528                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
529                  * CPUID(function=2, index=0) may return different results each
530                  * time, with the least-significant byte in EAX enumerating the
531                  * number of times software should do CPUID(2, 0).
532                  *
533                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
534                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
535                  * return 01H. Software should ignore this value and not
536                  * interpret it as an informational descriptor", while AMD's
537                  * APM states that CPUID(2) is reserved.
538                  *
539                  * WARN if a frankenstein CPU that supports virtualization and
540                  * a stateful CPUID.0x2 is encountered.
541                  */
542                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
543                 break;
544         /* functions 4 and 0x8000001d have additional index. */
545         case 4:
546         case 0x8000001d:
547                 /*
548                  * Read entries until the cache type in the previous entry is
549                  * zero, i.e. indicates an invalid entry.
550                  */
551                 for (i = 1; entry->eax & 0x1f; ++i) {
552                         entry = do_host_cpuid(array, function, i);
553                         if (!entry)
554                                 goto out;
555                 }
556                 break;
557         case 6: /* Thermal management */
558                 entry->eax = 0x4; /* allow ARAT */
559                 entry->ebx = 0;
560                 entry->ecx = 0;
561                 entry->edx = 0;
562                 break;
563         /* function 7 has additional index. */
564         case 7:
565                 entry->eax = min(entry->eax, 1u);
566                 cpuid_entry_override(entry, CPUID_7_0_EBX);
567                 cpuid_entry_override(entry, CPUID_7_ECX);
568                 cpuid_entry_override(entry, CPUID_7_EDX);
569
570                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
571                 if (entry->eax == 1) {
572                         entry = do_host_cpuid(array, function, 1);
573                         if (!entry)
574                                 goto out;
575
576                         cpuid_entry_override(entry, CPUID_7_1_EAX);
577                         entry->ebx = 0;
578                         entry->ecx = 0;
579                         entry->edx = 0;
580                 }
581                 break;
582         case 9:
583                 break;
584         case 0xa: { /* Architectural Performance Monitoring */
585                 struct x86_pmu_capability cap;
586                 union cpuid10_eax eax;
587                 union cpuid10_edx edx;
588
589                 perf_get_x86_pmu_capability(&cap);
590
591                 /*
592                  * Only support guest architectural pmu on a host
593                  * with architectural pmu.
594                  */
595                 if (!cap.version)
596                         memset(&cap, 0, sizeof(cap));
597
598                 eax.split.version_id = min(cap.version, 2);
599                 eax.split.num_counters = cap.num_counters_gp;
600                 eax.split.bit_width = cap.bit_width_gp;
601                 eax.split.mask_length = cap.events_mask_len;
602
603                 edx.split.num_counters_fixed = cap.num_counters_fixed;
604                 edx.split.bit_width_fixed = cap.bit_width_fixed;
605                 edx.split.reserved = 0;
606
607                 entry->eax = eax.full;
608                 entry->ebx = cap.events_mask;
609                 entry->ecx = 0;
610                 entry->edx = edx.full;
611                 break;
612         }
613         /*
614          * Per Intel's SDM, the 0x1f is a superset of 0xb,
615          * thus they can be handled by common code.
616          */
617         case 0x1f:
618         case 0xb:
619                 /*
620                  * Populate entries until the level type (ECX[15:8]) of the
621                  * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
622                  * the starting entry, filled by the primary do_host_cpuid().
623                  */
624                 for (i = 1; entry->ecx & 0xff00; ++i) {
625                         entry = do_host_cpuid(array, function, i);
626                         if (!entry)
627                                 goto out;
628                 }
629                 break;
630         case 0xd:
631                 entry->eax &= supported_xcr0;
632                 entry->ebx = xstate_required_size(supported_xcr0, false);
633                 entry->ecx = entry->ebx;
634                 entry->edx &= supported_xcr0 >> 32;
635                 if (!supported_xcr0)
636                         break;
637
638                 entry = do_host_cpuid(array, function, 1);
639                 if (!entry)
640                         goto out;
641
642                 cpuid_entry_override(entry, CPUID_D_1_EAX);
643                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
644                         entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
645                                                           true);
646                 else {
647                         WARN_ON_ONCE(supported_xss != 0);
648                         entry->ebx = 0;
649                 }
650                 entry->ecx &= supported_xss;
651                 entry->edx &= supported_xss >> 32;
652
653                 for (i = 2; i < 64; ++i) {
654                         bool s_state;
655                         if (supported_xcr0 & BIT_ULL(i))
656                                 s_state = false;
657                         else if (supported_xss & BIT_ULL(i))
658                                 s_state = true;
659                         else
660                                 continue;
661
662                         entry = do_host_cpuid(array, function, i);
663                         if (!entry)
664                                 goto out;
665
666                         /*
667                          * The supported check above should have filtered out
668                          * invalid sub-leafs.  Only valid sub-leafs should
669                          * reach this point, and they should have a non-zero
670                          * save state size.  Furthermore, check whether the
671                          * processor agrees with supported_xcr0/supported_xss
672                          * on whether this is an XCR0- or IA32_XSS-managed area.
673                          */
674                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
675                                 --array->nent;
676                                 continue;
677                         }
678                         entry->edx = 0;
679                 }
680                 break;
681         /* Intel PT */
682         case 0x14:
683                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
684                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
685                         break;
686                 }
687
688                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
689                         if (!do_host_cpuid(array, function, i))
690                                 goto out;
691                 }
692                 break;
693         case KVM_CPUID_SIGNATURE: {
694                 static const char signature[12] = "KVMKVMKVM\0\0";
695                 const u32 *sigptr = (const u32 *)signature;
696                 entry->eax = KVM_CPUID_FEATURES;
697                 entry->ebx = sigptr[0];
698                 entry->ecx = sigptr[1];
699                 entry->edx = sigptr[2];
700                 break;
701         }
702         case KVM_CPUID_FEATURES:
703                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
704                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
705                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
706                              (1 << KVM_FEATURE_ASYNC_PF) |
707                              (1 << KVM_FEATURE_PV_EOI) |
708                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
709                              (1 << KVM_FEATURE_PV_UNHALT) |
710                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
711                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
712                              (1 << KVM_FEATURE_PV_SEND_IPI) |
713                              (1 << KVM_FEATURE_POLL_CONTROL) |
714                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
715                              (1 << KVM_FEATURE_ASYNC_PF_INT);
716
717                 if (sched_info_on())
718                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
719
720                 entry->ebx = 0;
721                 entry->ecx = 0;
722                 entry->edx = 0;
723                 break;
724         case 0x80000000:
725                 entry->eax = min(entry->eax, 0x8000001f);
726                 break;
727         case 0x80000001:
728                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
729                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
730                 break;
731         case 0x80000006:
732                 /* L2 cache and TLB: pass through host info. */
733                 break;
734         case 0x80000007: /* Advanced power management */
735                 /* invariant TSC is CPUID.80000007H:EDX[8] */
736                 entry->edx &= (1 << 8);
737                 /* mask against host */
738                 entry->edx &= boot_cpu_data.x86_power;
739                 entry->eax = entry->ebx = entry->ecx = 0;
740                 break;
741         case 0x80000008: {
742                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
743                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
744                 unsigned phys_as = entry->eax & 0xff;
745
746                 if (!g_phys_as)
747                         g_phys_as = phys_as;
748                 entry->eax = g_phys_as | (virt_as << 8);
749                 entry->edx = 0;
750                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
751                 break;
752         }
753         case 0x8000000A:
754                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
755                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
756                         break;
757                 }
758                 entry->eax = 1; /* SVM revision 1 */
759                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
760                                    ASID emulation to nested SVM */
761                 entry->ecx = 0; /* Reserved */
762                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
763                 break;
764         case 0x80000019:
765                 entry->ecx = entry->edx = 0;
766                 break;
767         case 0x8000001a:
768         case 0x8000001e:
769                 break;
770         /* Support memory encryption cpuid if host supports it */
771         case 0x8000001F:
772                 if (!boot_cpu_has(X86_FEATURE_SEV))
773                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
774                 break;
775         /*Add support for Centaur's CPUID instruction*/
776         case 0xC0000000:
777                 /*Just support up to 0xC0000004 now*/
778                 entry->eax = min(entry->eax, 0xC0000004);
779                 break;
780         case 0xC0000001:
781                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
782                 break;
783         case 3: /* Processor serial number */
784         case 5: /* MONITOR/MWAIT */
785         case 0xC0000002:
786         case 0xC0000003:
787         case 0xC0000004:
788         default:
789                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
790                 break;
791         }
792
793         r = 0;
794
795 out:
796         put_cpu();
797
798         return r;
799 }
800
801 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
802                          unsigned int type)
803 {
804         if (type == KVM_GET_EMULATED_CPUID)
805                 return __do_cpuid_func_emulated(array, func);
806
807         return __do_cpuid_func(array, func);
808 }
809
810 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
811
812 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
813                           unsigned int type)
814 {
815         u32 limit;
816         int r;
817
818         if (func == CENTAUR_CPUID_SIGNATURE &&
819             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
820                 return 0;
821
822         r = do_cpuid_func(array, func, type);
823         if (r)
824                 return r;
825
826         limit = array->entries[array->nent - 1].eax;
827         for (func = func + 1; func <= limit; ++func) {
828                 r = do_cpuid_func(array, func, type);
829                 if (r)
830                         break;
831         }
832
833         return r;
834 }
835
836 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
837                                  __u32 num_entries, unsigned int ioctl_type)
838 {
839         int i;
840         __u32 pad[3];
841
842         if (ioctl_type != KVM_GET_EMULATED_CPUID)
843                 return false;
844
845         /*
846          * We want to make sure that ->padding is being passed clean from
847          * userspace in case we want to use it for something in the future.
848          *
849          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
850          * have to give ourselves satisfied only with the emulated side. /me
851          * sheds a tear.
852          */
853         for (i = 0; i < num_entries; i++) {
854                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
855                         return true;
856
857                 if (pad[0] || pad[1] || pad[2])
858                         return true;
859         }
860         return false;
861 }
862
863 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
864                             struct kvm_cpuid_entry2 __user *entries,
865                             unsigned int type)
866 {
867         static const u32 funcs[] = {
868                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
869         };
870
871         struct kvm_cpuid_array array = {
872                 .nent = 0,
873                 .maxnent = cpuid->nent,
874         };
875         int r, i;
876
877         if (cpuid->nent < 1)
878                 return -E2BIG;
879         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
880                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
881
882         if (sanity_check_entries(entries, cpuid->nent, type))
883                 return -EINVAL;
884
885         array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
886                                            cpuid->nent));
887         if (!array.entries)
888                 return -ENOMEM;
889
890         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
891                 r = get_cpuid_func(&array, funcs[i], type);
892                 if (r)
893                         goto out_free;
894         }
895         cpuid->nent = array.nent;
896
897         if (copy_to_user(entries, array.entries,
898                          array.nent * sizeof(struct kvm_cpuid_entry2)))
899                 r = -EFAULT;
900
901 out_free:
902         vfree(array.entries);
903         return r;
904 }
905
906 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
907                                               u32 function, u32 index)
908 {
909         struct kvm_cpuid_entry2 *e;
910         int i;
911
912         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
913                 e = &vcpu->arch.cpuid_entries[i];
914
915                 if (e->function == function && (e->index == index ||
916                     !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
917                         return e;
918         }
919         return NULL;
920 }
921 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
922
923 /*
924  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
925  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
926  * returns all zeroes for any undefined leaf, whether or not the leaf is in
927  * range.  Centaur/VIA follows Intel semantics.
928  *
929  * A leaf is considered out-of-range if its function is higher than the maximum
930  * supported leaf of its associated class or if its associated class does not
931  * exist.
932  *
933  * There are three primary classes to be considered, with their respective
934  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
935  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
936  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
937  *
938  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
939  *  - Hypervisor: 0x40000000 - 0x4fffffff
940  *  - Extended:   0x80000000 - 0xbfffffff
941  *  - Centaur:    0xc0000000 - 0xcfffffff
942  *
943  * The Hypervisor class is further subdivided into sub-classes that each act as
944  * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
945  * is advertising support for both HyperV and KVM, the resulting Hypervisor
946  * CPUID sub-classes are:
947  *
948  *  - HyperV:     0x40000000 - 0x400000ff
949  *  - KVM:        0x40000100 - 0x400001ff
950  */
951 static struct kvm_cpuid_entry2 *
952 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
953 {
954         struct kvm_cpuid_entry2 *basic, *class;
955         u32 function = *fn_ptr;
956
957         basic = kvm_find_cpuid_entry(vcpu, 0, 0);
958         if (!basic)
959                 return NULL;
960
961         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
962             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
963                 return NULL;
964
965         if (function >= 0x40000000 && function <= 0x4fffffff)
966                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
967         else if (function >= 0xc0000000)
968                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
969         else
970                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
971
972         if (class && function <= class->eax)
973                 return NULL;
974
975         /*
976          * Leaf specific adjustments are also applied when redirecting to the
977          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
978          * entry for CPUID.0xb.index (see below), then the output value for EDX
979          * needs to be pulled from CPUID.0xb.1.
980          */
981         *fn_ptr = basic->eax;
982
983         /*
984          * The class does not exist or the requested function is out of range;
985          * the effective CPUID entry is the max basic leaf.  Note, the index of
986          * the original requested leaf is observed!
987          */
988         return kvm_find_cpuid_entry(vcpu, basic->eax, index);
989 }
990
991 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
992                u32 *ecx, u32 *edx, bool exact_only)
993 {
994         u32 orig_function = *eax, function = *eax, index = *ecx;
995         struct kvm_cpuid_entry2 *entry;
996         bool exact, used_max_basic = false;
997
998         entry = kvm_find_cpuid_entry(vcpu, function, index);
999         exact = !!entry;
1000
1001         if (!entry && !exact_only) {
1002                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1003                 used_max_basic = !!entry;
1004         }
1005
1006         if (entry) {
1007                 *eax = entry->eax;
1008                 *ebx = entry->ebx;
1009                 *ecx = entry->ecx;
1010                 *edx = entry->edx;
1011                 if (function == 7 && index == 0) {
1012                         u64 data;
1013                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1014                             (data & TSX_CTRL_CPUID_CLEAR))
1015                                 *ebx &= ~(F(RTM) | F(HLE));
1016                 }
1017         } else {
1018                 *eax = *ebx = *ecx = *edx = 0;
1019                 /*
1020                  * When leaf 0BH or 1FH is defined, CL is pass-through
1021                  * and EDX is always the x2APIC ID, even for undefined
1022                  * subleaves. Index 1 will exist iff the leaf is
1023                  * implemented, so we pass through CL iff leaf 1
1024                  * exists. EDX can be copied from any existing index.
1025                  */
1026                 if (function == 0xb || function == 0x1f) {
1027                         entry = kvm_find_cpuid_entry(vcpu, function, 1);
1028                         if (entry) {
1029                                 *ecx = index & 0xff;
1030                                 *edx = entry->edx;
1031                         }
1032                 }
1033         }
1034         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1035                         used_max_basic);
1036         return exact;
1037 }
1038 EXPORT_SYMBOL_GPL(kvm_cpuid);
1039
1040 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1041 {
1042         u32 eax, ebx, ecx, edx;
1043
1044         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1045                 return 1;
1046
1047         eax = kvm_rax_read(vcpu);
1048         ecx = kvm_rcx_read(vcpu);
1049         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1050         kvm_rax_write(vcpu, eax);
1051         kvm_rbx_write(vcpu, ebx);
1052         kvm_rcx_write(vcpu, ecx);
1053         kvm_rdx_write(vcpu, edx);
1054         return kvm_skip_emulated_instruction(vcpu);
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);