9ca32d96993887707d3b39c33da21df74394be38
[linux-2.6-microblaze.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 /*
28  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
29  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
30  */
31 u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
32 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
33
34 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
35 {
36         int feature_bit = 0;
37         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
38
39         xstate_bv &= XFEATURE_MASK_EXTEND;
40         while (xstate_bv) {
41                 if (xstate_bv & 0x1) {
42                         u32 eax, ebx, ecx, edx, offset;
43                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
44                         offset = compacted ? ret : ebx;
45                         ret = max(ret, offset + eax);
46                 }
47
48                 xstate_bv >>= 1;
49                 feature_bit++;
50         }
51
52         return ret;
53 }
54
55 #define F feature_bit
56
57 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
58 {
59         struct kvm_cpuid_entry2 *best;
60         struct kvm_lapic *apic = vcpu->arch.apic;
61
62         best = kvm_find_cpuid_entry(vcpu, 1, 0);
63         if (!best)
64                 return 0;
65
66         /* Update OSXSAVE bit */
67         if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1)
68                 cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
69                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
70
71         cpuid_entry_change(best, X86_FEATURE_APIC,
72                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
73
74         if (apic) {
75                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
76                         apic->lapic_timer.timer_mode_mask = 3 << 17;
77                 else
78                         apic->lapic_timer.timer_mode_mask = 1 << 17;
79         }
80
81         best = kvm_find_cpuid_entry(vcpu, 7, 0);
82         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
83                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
84                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
85
86         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
87         if (!best) {
88                 vcpu->arch.guest_supported_xcr0 = 0;
89         } else {
90                 vcpu->arch.guest_supported_xcr0 =
91                         (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
92                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
93         }
94
95         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
96         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
97                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
98                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
99
100         /*
101          * The existing code assumes virtual address is 48-bit or 57-bit in the
102          * canonical address checks; exit if it is ever changed.
103          */
104         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
105         if (best) {
106                 int vaddr_bits = (best->eax & 0xff00) >> 8;
107
108                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
109                         return -EINVAL;
110         }
111
112         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
113         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
114                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
115                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
116
117         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
118                 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
119                 if (best)
120                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
121                                            vcpu->arch.ia32_misc_enable_msr &
122                                            MSR_IA32_MISC_ENABLE_MWAIT);
123         }
124
125         /* Note, maxphyaddr must be updated before tdp_level. */
126         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
127         vcpu->arch.tdp_level = kvm_x86_ops.get_tdp_level(vcpu);
128         kvm_mmu_reset_context(vcpu);
129
130         kvm_pmu_refresh(vcpu);
131         return 0;
132 }
133
134 static int is_efer_nx(void)
135 {
136         return host_efer & EFER_NX;
137 }
138
139 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
140 {
141         int i;
142         struct kvm_cpuid_entry2 *e, *entry;
143
144         entry = NULL;
145         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
146                 e = &vcpu->arch.cpuid_entries[i];
147                 if (e->function == 0x80000001) {
148                         entry = e;
149                         break;
150                 }
151         }
152         if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
153                 cpuid_entry_clear(entry, X86_FEATURE_NX);
154                 printk(KERN_INFO "kvm: guest NX capability removed\n");
155         }
156 }
157
158 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
159 {
160         struct kvm_cpuid_entry2 *best;
161
162         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
163         if (!best || best->eax < 0x80000008)
164                 goto not_found;
165         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
166         if (best)
167                 return best->eax & 0xff;
168 not_found:
169         return 36;
170 }
171 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
172
173 /* when an old userspace process fills a new kernel module */
174 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
175                              struct kvm_cpuid *cpuid,
176                              struct kvm_cpuid_entry __user *entries)
177 {
178         int r, i;
179         struct kvm_cpuid_entry *cpuid_entries = NULL;
180
181         r = -E2BIG;
182         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
183                 goto out;
184         r = -ENOMEM;
185         if (cpuid->nent) {
186                 cpuid_entries =
187                         vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
188                                            cpuid->nent));
189                 if (!cpuid_entries)
190                         goto out;
191                 r = -EFAULT;
192                 if (copy_from_user(cpuid_entries, entries,
193                                    cpuid->nent * sizeof(struct kvm_cpuid_entry)))
194                         goto out;
195         }
196         for (i = 0; i < cpuid->nent; i++) {
197                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
198                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
199                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
200                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
201                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
202                 vcpu->arch.cpuid_entries[i].index = 0;
203                 vcpu->arch.cpuid_entries[i].flags = 0;
204                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
205                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
206                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
207         }
208         vcpu->arch.cpuid_nent = cpuid->nent;
209         cpuid_fix_nx_cap(vcpu);
210         kvm_apic_set_version(vcpu);
211         kvm_x86_ops.cpuid_update(vcpu);
212         r = kvm_update_cpuid(vcpu);
213
214 out:
215         vfree(cpuid_entries);
216         return r;
217 }
218
219 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
220                               struct kvm_cpuid2 *cpuid,
221                               struct kvm_cpuid_entry2 __user *entries)
222 {
223         int r;
224
225         r = -E2BIG;
226         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
227                 goto out;
228         r = -EFAULT;
229         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
230                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
231                 goto out;
232         vcpu->arch.cpuid_nent = cpuid->nent;
233         kvm_apic_set_version(vcpu);
234         kvm_x86_ops.cpuid_update(vcpu);
235         r = kvm_update_cpuid(vcpu);
236 out:
237         return r;
238 }
239
240 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
241                               struct kvm_cpuid2 *cpuid,
242                               struct kvm_cpuid_entry2 __user *entries)
243 {
244         int r;
245
246         r = -E2BIG;
247         if (cpuid->nent < vcpu->arch.cpuid_nent)
248                 goto out;
249         r = -EFAULT;
250         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
251                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
252                 goto out;
253         return 0;
254
255 out:
256         cpuid->nent = vcpu->arch.cpuid_nent;
257         return r;
258 }
259
260 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
261 {
262         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
263         struct kvm_cpuid_entry2 entry;
264
265         reverse_cpuid_check(leaf);
266         kvm_cpu_caps[leaf] &= mask;
267
268         cpuid_count(cpuid.function, cpuid.index,
269                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
270
271         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
272 }
273
274 void kvm_set_cpu_caps(void)
275 {
276         unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
277 #ifdef CONFIG_X86_64
278         unsigned int f_gbpages = F(GBPAGES);
279         unsigned int f_lm = F(LM);
280 #else
281         unsigned int f_gbpages = 0;
282         unsigned int f_lm = 0;
283 #endif
284
285         BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
286                      sizeof(boot_cpu_data.x86_capability));
287
288         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
289                sizeof(kvm_cpu_caps));
290
291         kvm_cpu_cap_mask(CPUID_1_ECX,
292                 /*
293                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
294                  * advertised to guests via CPUID!
295                  */
296                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
297                 0 /* DS-CPL, VMX, SMX, EST */ |
298                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
299                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
300                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
301                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
302                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
303                 F(F16C) | F(RDRAND)
304         );
305         /* KVM emulates x2apic in software irrespective of host support. */
306         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
307
308         kvm_cpu_cap_mask(CPUID_1_EDX,
309                 F(FPU) | F(VME) | F(DE) | F(PSE) |
310                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
311                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
312                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
313                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
314                 0 /* Reserved, DS, ACPI */ | F(MMX) |
315                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
316                 0 /* HTT, TM, Reserved, PBE */
317         );
318
319         kvm_cpu_cap_mask(CPUID_7_0_EBX,
320                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
321                 F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
322                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
323                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
324                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
325         );
326
327         kvm_cpu_cap_mask(CPUID_7_ECX,
328                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
329                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
330                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
331                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
332         );
333         /* Set LA57 based on hardware capability. */
334         if (cpuid_ecx(7) & F(LA57))
335                 kvm_cpu_cap_set(X86_FEATURE_LA57);
336
337         /*
338          * PKU not yet implemented for shadow paging and requires OSPKE
339          * to be set on the host. Clear it if that is not the case
340          */
341         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
342                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
343
344         kvm_cpu_cap_mask(CPUID_7_EDX,
345                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
346                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
347                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM)
348         );
349
350         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
351         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
352         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
353
354         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
355                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
356         if (boot_cpu_has(X86_FEATURE_STIBP))
357                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
358         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
359                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
360
361         kvm_cpu_cap_mask(CPUID_7_1_EAX,
362                 F(AVX512_BF16)
363         );
364
365         kvm_cpu_cap_mask(CPUID_D_1_EAX,
366                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
367         );
368
369         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
370                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
371                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
372                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
373                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
374                 F(TOPOEXT) | F(PERFCTR_CORE)
375         );
376
377         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
378                 F(FPU) | F(VME) | F(DE) | F(PSE) |
379                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
380                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
381                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
382                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
383                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
384                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
385                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
386         );
387
388         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
389                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
390
391         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
392                 F(CLZERO) | F(XSAVEERPTR) |
393                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
394                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
395         );
396
397         /*
398          * AMD has separate bits for each SPEC_CTRL bit.
399          * arch/x86/kernel/cpu/bugs.c is kind enough to
400          * record that in cpufeatures so use them.
401          */
402         if (boot_cpu_has(X86_FEATURE_IBPB))
403                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
404         if (boot_cpu_has(X86_FEATURE_IBRS))
405                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
406         if (boot_cpu_has(X86_FEATURE_STIBP))
407                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
408         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
409                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
410         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
411                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
412         /*
413          * The preference is to use SPEC CTRL MSR instead of the
414          * VIRT_SPEC MSR.
415          */
416         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
417             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
418                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
419
420         /*
421          * Hide all SVM features by default, SVM will set the cap bits for
422          * features it emulates and/or exposes for L1.
423          */
424         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
425
426         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
427                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
428                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
429                 F(PMM) | F(PMM_EN)
430         );
431 }
432 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
433
434 struct kvm_cpuid_array {
435         struct kvm_cpuid_entry2 *entries;
436         int maxnent;
437         int nent;
438 };
439
440 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
441                                               u32 function, u32 index)
442 {
443         struct kvm_cpuid_entry2 *entry;
444
445         if (array->nent >= array->maxnent)
446                 return NULL;
447
448         entry = &array->entries[array->nent++];
449
450         entry->function = function;
451         entry->index = index;
452         entry->flags = 0;
453
454         cpuid_count(entry->function, entry->index,
455                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
456
457         switch (function) {
458         case 4:
459         case 7:
460         case 0xb:
461         case 0xd:
462         case 0xf:
463         case 0x10:
464         case 0x12:
465         case 0x14:
466         case 0x17:
467         case 0x18:
468         case 0x1f:
469         case 0x8000001d:
470                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
471                 break;
472         }
473
474         return entry;
475 }
476
477 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
478 {
479         struct kvm_cpuid_entry2 *entry;
480
481         if (array->nent >= array->maxnent)
482                 return -E2BIG;
483
484         entry = &array->entries[array->nent];
485         entry->function = func;
486         entry->index = 0;
487         entry->flags = 0;
488
489         switch (func) {
490         case 0:
491                 entry->eax = 7;
492                 ++array->nent;
493                 break;
494         case 1:
495                 entry->ecx = F(MOVBE);
496                 ++array->nent;
497                 break;
498         case 7:
499                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
500                 entry->eax = 0;
501                 entry->ecx = F(RDPID);
502                 ++array->nent;
503         default:
504                 break;
505         }
506
507         return 0;
508 }
509
510 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
511 {
512         struct kvm_cpuid_entry2 *entry;
513         int r, i, max_idx;
514
515         /* all calls to cpuid_count() should be made on the same cpu */
516         get_cpu();
517
518         r = -E2BIG;
519
520         entry = do_host_cpuid(array, function, 0);
521         if (!entry)
522                 goto out;
523
524         switch (function) {
525         case 0:
526                 /* Limited to the highest leaf implemented in KVM. */
527                 entry->eax = min(entry->eax, 0x1fU);
528                 break;
529         case 1:
530                 cpuid_entry_override(entry, CPUID_1_EDX);
531                 cpuid_entry_override(entry, CPUID_1_ECX);
532                 break;
533         case 2:
534                 /*
535                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
536                  * CPUID(function=2, index=0) may return different results each
537                  * time, with the least-significant byte in EAX enumerating the
538                  * number of times software should do CPUID(2, 0).
539                  *
540                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
541                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
542                  * return 01H. Software should ignore this value and not
543                  * interpret it as an informational descriptor", while AMD's
544                  * APM states that CPUID(2) is reserved.
545                  *
546                  * WARN if a frankenstein CPU that supports virtualization and
547                  * a stateful CPUID.0x2 is encountered.
548                  */
549                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
550                 break;
551         /* functions 4 and 0x8000001d have additional index. */
552         case 4:
553         case 0x8000001d:
554                 /*
555                  * Read entries until the cache type in the previous entry is
556                  * zero, i.e. indicates an invalid entry.
557                  */
558                 for (i = 1; entry->eax & 0x1f; ++i) {
559                         entry = do_host_cpuid(array, function, i);
560                         if (!entry)
561                                 goto out;
562                 }
563                 break;
564         case 6: /* Thermal management */
565                 entry->eax = 0x4; /* allow ARAT */
566                 entry->ebx = 0;
567                 entry->ecx = 0;
568                 entry->edx = 0;
569                 break;
570         /* function 7 has additional index. */
571         case 7:
572                 entry->eax = min(entry->eax, 1u);
573                 cpuid_entry_override(entry, CPUID_7_0_EBX);
574                 cpuid_entry_override(entry, CPUID_7_ECX);
575                 cpuid_entry_override(entry, CPUID_7_EDX);
576
577                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
578                 if (entry->eax == 1) {
579                         entry = do_host_cpuid(array, function, 1);
580                         if (!entry)
581                                 goto out;
582
583                         cpuid_entry_override(entry, CPUID_7_1_EAX);
584                         entry->ebx = 0;
585                         entry->ecx = 0;
586                         entry->edx = 0;
587                 }
588                 break;
589         case 9:
590                 break;
591         case 0xa: { /* Architectural Performance Monitoring */
592                 struct x86_pmu_capability cap;
593                 union cpuid10_eax eax;
594                 union cpuid10_edx edx;
595
596                 perf_get_x86_pmu_capability(&cap);
597
598                 /*
599                  * Only support guest architectural pmu on a host
600                  * with architectural pmu.
601                  */
602                 if (!cap.version)
603                         memset(&cap, 0, sizeof(cap));
604
605                 eax.split.version_id = min(cap.version, 2);
606                 eax.split.num_counters = cap.num_counters_gp;
607                 eax.split.bit_width = cap.bit_width_gp;
608                 eax.split.mask_length = cap.events_mask_len;
609
610                 edx.split.num_counters_fixed = cap.num_counters_fixed;
611                 edx.split.bit_width_fixed = cap.bit_width_fixed;
612                 edx.split.reserved = 0;
613
614                 entry->eax = eax.full;
615                 entry->ebx = cap.events_mask;
616                 entry->ecx = 0;
617                 entry->edx = edx.full;
618                 break;
619         }
620         /*
621          * Per Intel's SDM, the 0x1f is a superset of 0xb,
622          * thus they can be handled by common code.
623          */
624         case 0x1f:
625         case 0xb:
626                 /*
627                  * Populate entries until the level type (ECX[15:8]) of the
628                  * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
629                  * the starting entry, filled by the primary do_host_cpuid().
630                  */
631                 for (i = 1; entry->ecx & 0xff00; ++i) {
632                         entry = do_host_cpuid(array, function, i);
633                         if (!entry)
634                                 goto out;
635                 }
636                 break;
637         case 0xd:
638                 entry->eax &= supported_xcr0;
639                 entry->ebx = xstate_required_size(supported_xcr0, false);
640                 entry->ecx = entry->ebx;
641                 entry->edx &= supported_xcr0 >> 32;
642                 if (!supported_xcr0)
643                         break;
644
645                 entry = do_host_cpuid(array, function, 1);
646                 if (!entry)
647                         goto out;
648
649                 cpuid_entry_override(entry, CPUID_D_1_EAX);
650                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
651                         entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
652                                                           true);
653                 else {
654                         WARN_ON_ONCE(supported_xss != 0);
655                         entry->ebx = 0;
656                 }
657                 entry->ecx &= supported_xss;
658                 entry->edx &= supported_xss >> 32;
659
660                 for (i = 2; i < 64; ++i) {
661                         bool s_state;
662                         if (supported_xcr0 & BIT_ULL(i))
663                                 s_state = false;
664                         else if (supported_xss & BIT_ULL(i))
665                                 s_state = true;
666                         else
667                                 continue;
668
669                         entry = do_host_cpuid(array, function, i);
670                         if (!entry)
671                                 goto out;
672
673                         /*
674                          * The supported check above should have filtered out
675                          * invalid sub-leafs.  Only valid sub-leafs should
676                          * reach this point, and they should have a non-zero
677                          * save state size.  Furthermore, check whether the
678                          * processor agrees with supported_xcr0/supported_xss
679                          * on whether this is an XCR0- or IA32_XSS-managed area.
680                          */
681                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
682                                 --array->nent;
683                                 continue;
684                         }
685                         entry->edx = 0;
686                 }
687                 break;
688         /* Intel PT */
689         case 0x14:
690                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
691                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
692                         break;
693                 }
694
695                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
696                         if (!do_host_cpuid(array, function, i))
697                                 goto out;
698                 }
699                 break;
700         case KVM_CPUID_SIGNATURE: {
701                 static const char signature[12] = "KVMKVMKVM\0\0";
702                 const u32 *sigptr = (const u32 *)signature;
703                 entry->eax = KVM_CPUID_FEATURES;
704                 entry->ebx = sigptr[0];
705                 entry->ecx = sigptr[1];
706                 entry->edx = sigptr[2];
707                 break;
708         }
709         case KVM_CPUID_FEATURES:
710                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
711                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
712                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
713                              (1 << KVM_FEATURE_ASYNC_PF) |
714                              (1 << KVM_FEATURE_PV_EOI) |
715                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
716                              (1 << KVM_FEATURE_PV_UNHALT) |
717                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
718                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
719                              (1 << KVM_FEATURE_PV_SEND_IPI) |
720                              (1 << KVM_FEATURE_POLL_CONTROL) |
721                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
722                              (1 << KVM_FEATURE_ASYNC_PF_INT);
723
724                 if (sched_info_on())
725                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
726
727                 entry->ebx = 0;
728                 entry->ecx = 0;
729                 entry->edx = 0;
730                 break;
731         case 0x80000000:
732                 entry->eax = min(entry->eax, 0x8000001f);
733                 break;
734         case 0x80000001:
735                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
736                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
737                 break;
738         case 0x80000006:
739                 /* L2 cache and TLB: pass through host info. */
740                 break;
741         case 0x80000007: /* Advanced power management */
742                 /* invariant TSC is CPUID.80000007H:EDX[8] */
743                 entry->edx &= (1 << 8);
744                 /* mask against host */
745                 entry->edx &= boot_cpu_data.x86_power;
746                 entry->eax = entry->ebx = entry->ecx = 0;
747                 break;
748         case 0x80000008: {
749                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
750                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
751                 unsigned phys_as = entry->eax & 0xff;
752
753                 if (!g_phys_as)
754                         g_phys_as = phys_as;
755                 entry->eax = g_phys_as | (virt_as << 8);
756                 entry->edx = 0;
757                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
758                 break;
759         }
760         case 0x8000000A:
761                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
762                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
763                         break;
764                 }
765                 entry->eax = 1; /* SVM revision 1 */
766                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
767                                    ASID emulation to nested SVM */
768                 entry->ecx = 0; /* Reserved */
769                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
770                 break;
771         case 0x80000019:
772                 entry->ecx = entry->edx = 0;
773                 break;
774         case 0x8000001a:
775         case 0x8000001e:
776                 break;
777         /* Support memory encryption cpuid if host supports it */
778         case 0x8000001F:
779                 if (!boot_cpu_has(X86_FEATURE_SEV))
780                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
781                 break;
782         /*Add support for Centaur's CPUID instruction*/
783         case 0xC0000000:
784                 /*Just support up to 0xC0000004 now*/
785                 entry->eax = min(entry->eax, 0xC0000004);
786                 break;
787         case 0xC0000001:
788                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
789                 break;
790         case 3: /* Processor serial number */
791         case 5: /* MONITOR/MWAIT */
792         case 0xC0000002:
793         case 0xC0000003:
794         case 0xC0000004:
795         default:
796                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
797                 break;
798         }
799
800         r = 0;
801
802 out:
803         put_cpu();
804
805         return r;
806 }
807
808 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
809                          unsigned int type)
810 {
811         if (type == KVM_GET_EMULATED_CPUID)
812                 return __do_cpuid_func_emulated(array, func);
813
814         return __do_cpuid_func(array, func);
815 }
816
817 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
818
819 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
820                           unsigned int type)
821 {
822         u32 limit;
823         int r;
824
825         if (func == CENTAUR_CPUID_SIGNATURE &&
826             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
827                 return 0;
828
829         r = do_cpuid_func(array, func, type);
830         if (r)
831                 return r;
832
833         limit = array->entries[array->nent - 1].eax;
834         for (func = func + 1; func <= limit; ++func) {
835                 r = do_cpuid_func(array, func, type);
836                 if (r)
837                         break;
838         }
839
840         return r;
841 }
842
843 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
844                                  __u32 num_entries, unsigned int ioctl_type)
845 {
846         int i;
847         __u32 pad[3];
848
849         if (ioctl_type != KVM_GET_EMULATED_CPUID)
850                 return false;
851
852         /*
853          * We want to make sure that ->padding is being passed clean from
854          * userspace in case we want to use it for something in the future.
855          *
856          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
857          * have to give ourselves satisfied only with the emulated side. /me
858          * sheds a tear.
859          */
860         for (i = 0; i < num_entries; i++) {
861                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
862                         return true;
863
864                 if (pad[0] || pad[1] || pad[2])
865                         return true;
866         }
867         return false;
868 }
869
870 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
871                             struct kvm_cpuid_entry2 __user *entries,
872                             unsigned int type)
873 {
874         static const u32 funcs[] = {
875                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
876         };
877
878         struct kvm_cpuid_array array = {
879                 .nent = 0,
880         };
881         int r, i;
882
883         if (cpuid->nent < 1)
884                 return -E2BIG;
885         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
886                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
887
888         if (sanity_check_entries(entries, cpuid->nent, type))
889                 return -EINVAL;
890
891         array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
892                                            cpuid->nent));
893         if (!array.entries)
894                 return -ENOMEM;
895
896         array.maxnent = cpuid->nent;
897
898         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
899                 r = get_cpuid_func(&array, funcs[i], type);
900                 if (r)
901                         goto out_free;
902         }
903         cpuid->nent = array.nent;
904
905         if (copy_to_user(entries, array.entries,
906                          array.nent * sizeof(struct kvm_cpuid_entry2)))
907                 r = -EFAULT;
908
909 out_free:
910         vfree(array.entries);
911         return r;
912 }
913
914 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
915                                               u32 function, u32 index)
916 {
917         struct kvm_cpuid_entry2 *e;
918         int i;
919
920         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
921                 e = &vcpu->arch.cpuid_entries[i];
922
923                 if (e->function == function && (e->index == index ||
924                     !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
925                         return e;
926         }
927         return NULL;
928 }
929 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
930
931 /*
932  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
933  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
934  * returns all zeroes for any undefined leaf, whether or not the leaf is in
935  * range.  Centaur/VIA follows Intel semantics.
936  *
937  * A leaf is considered out-of-range if its function is higher than the maximum
938  * supported leaf of its associated class or if its associated class does not
939  * exist.
940  *
941  * There are three primary classes to be considered, with their respective
942  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
943  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
944  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
945  *
946  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
947  *  - Hypervisor: 0x40000000 - 0x4fffffff
948  *  - Extended:   0x80000000 - 0xbfffffff
949  *  - Centaur:    0xc0000000 - 0xcfffffff
950  *
951  * The Hypervisor class is further subdivided into sub-classes that each act as
952  * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
953  * is advertising support for both HyperV and KVM, the resulting Hypervisor
954  * CPUID sub-classes are:
955  *
956  *  - HyperV:     0x40000000 - 0x400000ff
957  *  - KVM:        0x40000100 - 0x400001ff
958  */
959 static struct kvm_cpuid_entry2 *
960 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
961 {
962         struct kvm_cpuid_entry2 *basic, *class;
963         u32 function = *fn_ptr;
964
965         basic = kvm_find_cpuid_entry(vcpu, 0, 0);
966         if (!basic)
967                 return NULL;
968
969         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
970             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
971                 return NULL;
972
973         if (function >= 0x40000000 && function <= 0x4fffffff)
974                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
975         else if (function >= 0xc0000000)
976                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
977         else
978                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
979
980         if (class && function <= class->eax)
981                 return NULL;
982
983         /*
984          * Leaf specific adjustments are also applied when redirecting to the
985          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
986          * entry for CPUID.0xb.index (see below), then the output value for EDX
987          * needs to be pulled from CPUID.0xb.1.
988          */
989         *fn_ptr = basic->eax;
990
991         /*
992          * The class does not exist or the requested function is out of range;
993          * the effective CPUID entry is the max basic leaf.  Note, the index of
994          * the original requested leaf is observed!
995          */
996         return kvm_find_cpuid_entry(vcpu, basic->eax, index);
997 }
998
999 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1000                u32 *ecx, u32 *edx, bool exact_only)
1001 {
1002         u32 orig_function = *eax, function = *eax, index = *ecx;
1003         struct kvm_cpuid_entry2 *entry;
1004         bool exact, used_max_basic = false;
1005
1006         entry = kvm_find_cpuid_entry(vcpu, function, index);
1007         exact = !!entry;
1008
1009         if (!entry && !exact_only) {
1010                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1011                 used_max_basic = !!entry;
1012         }
1013
1014         if (entry) {
1015                 *eax = entry->eax;
1016                 *ebx = entry->ebx;
1017                 *ecx = entry->ecx;
1018                 *edx = entry->edx;
1019                 if (function == 7 && index == 0) {
1020                         u64 data;
1021                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1022                             (data & TSX_CTRL_CPUID_CLEAR))
1023                                 *ebx &= ~(F(RTM) | F(HLE));
1024                 }
1025         } else {
1026                 *eax = *ebx = *ecx = *edx = 0;
1027                 /*
1028                  * When leaf 0BH or 1FH is defined, CL is pass-through
1029                  * and EDX is always the x2APIC ID, even for undefined
1030                  * subleaves. Index 1 will exist iff the leaf is
1031                  * implemented, so we pass through CL iff leaf 1
1032                  * exists. EDX can be copied from any existing index.
1033                  */
1034                 if (function == 0xb || function == 0x1f) {
1035                         entry = kvm_find_cpuid_entry(vcpu, function, 1);
1036                         if (entry) {
1037                                 *ecx = index & 0xff;
1038                                 *edx = entry->edx;
1039                         }
1040                 }
1041         }
1042         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1043                         used_max_basic);
1044         return exact;
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_cpuid);
1047
1048 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1049 {
1050         u32 eax, ebx, ecx, edx;
1051
1052         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1053                 return 1;
1054
1055         eax = kvm_rax_read(vcpu);
1056         ecx = kvm_rcx_read(vcpu);
1057         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1058         kvm_rax_write(vcpu, eax);
1059         kvm_rbx_write(vcpu, ebx);
1060         kvm_rcx_write(vcpu, ecx);
1061         kvm_rdx_write(vcpu, edx);
1062         return kvm_skip_emulated_instruction(vcpu);
1063 }
1064 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);