treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 499
[linux-2.6-microblaze.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28 {
29         int feature_bit = 0;
30         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31
32         xstate_bv &= XFEATURE_MASK_EXTEND;
33         while (xstate_bv) {
34                 if (xstate_bv & 0x1) {
35                         u32 eax, ebx, ecx, edx, offset;
36                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37                         offset = compacted ? ret : ebx;
38                         ret = max(ret, offset + eax);
39                 }
40
41                 xstate_bv >>= 1;
42                 feature_bit++;
43         }
44
45         return ret;
46 }
47
48 bool kvm_mpx_supported(void)
49 {
50         return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51                  && kvm_x86_ops->mpx_supported());
52 }
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54
55 u64 kvm_supported_xcr0(void)
56 {
57         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58
59         if (!kvm_mpx_supported())
60                 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61
62         return xcr0;
63 }
64
65 #define F(x) bit(X86_FEATURE_##x)
66
67 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68 {
69         struct kvm_cpuid_entry2 *best;
70         struct kvm_lapic *apic = vcpu->arch.apic;
71
72         best = kvm_find_cpuid_entry(vcpu, 1, 0);
73         if (!best)
74                 return 0;
75
76         /* Update OSXSAVE bit */
77         if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
78                 best->ecx &= ~F(OSXSAVE);
79                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80                         best->ecx |= F(OSXSAVE);
81         }
82
83         best->edx &= ~F(APIC);
84         if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
85                 best->edx |= F(APIC);
86
87         if (apic) {
88                 if (best->ecx & F(TSC_DEADLINE_TIMER))
89                         apic->lapic_timer.timer_mode_mask = 3 << 17;
90                 else
91                         apic->lapic_timer.timer_mode_mask = 1 << 17;
92         }
93
94         best = kvm_find_cpuid_entry(vcpu, 7, 0);
95         if (best) {
96                 /* Update OSPKE bit */
97                 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
98                         best->ecx &= ~F(OSPKE);
99                         if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
100                                 best->ecx |= F(OSPKE);
101                 }
102         }
103
104         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
105         if (!best) {
106                 vcpu->arch.guest_supported_xcr0 = 0;
107                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
108         } else {
109                 vcpu->arch.guest_supported_xcr0 =
110                         (best->eax | ((u64)best->edx << 32)) &
111                         kvm_supported_xcr0();
112                 vcpu->arch.guest_xstate_size = best->ebx =
113                         xstate_required_size(vcpu->arch.xcr0, false);
114         }
115
116         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
117         if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
118                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
119
120         /*
121          * The existing code assumes virtual address is 48-bit or 57-bit in the
122          * canonical address checks; exit if it is ever changed.
123          */
124         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125         if (best) {
126                 int vaddr_bits = (best->eax & 0xff00) >> 8;
127
128                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
129                         return -EINVAL;
130         }
131
132         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
133         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
134                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
135                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
136
137         /* Update physical-address width */
138         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
139         kvm_mmu_reset_context(vcpu);
140
141         kvm_pmu_refresh(vcpu);
142         return 0;
143 }
144
145 static int is_efer_nx(void)
146 {
147         unsigned long long efer = 0;
148
149         rdmsrl_safe(MSR_EFER, &efer);
150         return efer & EFER_NX;
151 }
152
153 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
154 {
155         int i;
156         struct kvm_cpuid_entry2 *e, *entry;
157
158         entry = NULL;
159         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
160                 e = &vcpu->arch.cpuid_entries[i];
161                 if (e->function == 0x80000001) {
162                         entry = e;
163                         break;
164                 }
165         }
166         if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
167                 entry->edx &= ~F(NX);
168                 printk(KERN_INFO "kvm: guest NX capability removed\n");
169         }
170 }
171
172 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
173 {
174         struct kvm_cpuid_entry2 *best;
175
176         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
177         if (!best || best->eax < 0x80000008)
178                 goto not_found;
179         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
180         if (best)
181                 return best->eax & 0xff;
182 not_found:
183         return 36;
184 }
185 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
186
187 /* when an old userspace process fills a new kernel module */
188 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
189                              struct kvm_cpuid *cpuid,
190                              struct kvm_cpuid_entry __user *entries)
191 {
192         int r, i;
193         struct kvm_cpuid_entry *cpuid_entries = NULL;
194
195         r = -E2BIG;
196         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
197                 goto out;
198         r = -ENOMEM;
199         if (cpuid->nent) {
200                 cpuid_entries =
201                         vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
202                                            cpuid->nent));
203                 if (!cpuid_entries)
204                         goto out;
205                 r = -EFAULT;
206                 if (copy_from_user(cpuid_entries, entries,
207                                    cpuid->nent * sizeof(struct kvm_cpuid_entry)))
208                         goto out;
209         }
210         for (i = 0; i < cpuid->nent; i++) {
211                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
212                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
213                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
214                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
215                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
216                 vcpu->arch.cpuid_entries[i].index = 0;
217                 vcpu->arch.cpuid_entries[i].flags = 0;
218                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
219                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
220                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
221         }
222         vcpu->arch.cpuid_nent = cpuid->nent;
223         cpuid_fix_nx_cap(vcpu);
224         kvm_apic_set_version(vcpu);
225         kvm_x86_ops->cpuid_update(vcpu);
226         r = kvm_update_cpuid(vcpu);
227
228 out:
229         vfree(cpuid_entries);
230         return r;
231 }
232
233 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
234                               struct kvm_cpuid2 *cpuid,
235                               struct kvm_cpuid_entry2 __user *entries)
236 {
237         int r;
238
239         r = -E2BIG;
240         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
241                 goto out;
242         r = -EFAULT;
243         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
244                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
245                 goto out;
246         vcpu->arch.cpuid_nent = cpuid->nent;
247         kvm_apic_set_version(vcpu);
248         kvm_x86_ops->cpuid_update(vcpu);
249         r = kvm_update_cpuid(vcpu);
250 out:
251         return r;
252 }
253
254 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
255                               struct kvm_cpuid2 *cpuid,
256                               struct kvm_cpuid_entry2 __user *entries)
257 {
258         int r;
259
260         r = -E2BIG;
261         if (cpuid->nent < vcpu->arch.cpuid_nent)
262                 goto out;
263         r = -EFAULT;
264         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
265                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
266                 goto out;
267         return 0;
268
269 out:
270         cpuid->nent = vcpu->arch.cpuid_nent;
271         return r;
272 }
273
274 static void cpuid_mask(u32 *word, int wordnum)
275 {
276         *word &= boot_cpu_data.x86_capability[wordnum];
277 }
278
279 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
280                            u32 index)
281 {
282         entry->function = function;
283         entry->index = index;
284         cpuid_count(entry->function, entry->index,
285                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
286         entry->flags = 0;
287 }
288
289 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
290                                    u32 func, u32 index, int *nent, int maxnent)
291 {
292         switch (func) {
293         case 0:
294                 entry->eax = 7;
295                 ++*nent;
296                 break;
297         case 1:
298                 entry->ecx = F(MOVBE);
299                 ++*nent;
300                 break;
301         case 7:
302                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
303                 if (index == 0)
304                         entry->ecx = F(RDPID);
305                 ++*nent;
306         default:
307                 break;
308         }
309
310         entry->function = func;
311         entry->index = index;
312
313         return 0;
314 }
315
316 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
317                                  u32 index, int *nent, int maxnent)
318 {
319         int r;
320         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
321 #ifdef CONFIG_X86_64
322         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
323                                 ? F(GBPAGES) : 0;
324         unsigned f_lm = F(LM);
325 #else
326         unsigned f_gbpages = 0;
327         unsigned f_lm = 0;
328 #endif
329         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
330         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
331         unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
332         unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
333         unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
334         unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
335         unsigned f_la57 = 0;
336
337         /* cpuid 1.edx */
338         const u32 kvm_cpuid_1_edx_x86_features =
339                 F(FPU) | F(VME) | F(DE) | F(PSE) |
340                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
341                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
342                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
343                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
344                 0 /* Reserved, DS, ACPI */ | F(MMX) |
345                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
346                 0 /* HTT, TM, Reserved, PBE */;
347         /* cpuid 0x80000001.edx */
348         const u32 kvm_cpuid_8000_0001_edx_x86_features =
349                 F(FPU) | F(VME) | F(DE) | F(PSE) |
350                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
351                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
352                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
353                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
354                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
355                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
356                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
357         /* cpuid 1.ecx */
358         const u32 kvm_cpuid_1_ecx_x86_features =
359                 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
360                  * but *not* advertised to guests via CPUID ! */
361                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
362                 0 /* DS-CPL, VMX, SMX, EST */ |
363                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
364                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
365                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
366                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
367                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
368                 F(F16C) | F(RDRAND);
369         /* cpuid 0x80000001.ecx */
370         const u32 kvm_cpuid_8000_0001_ecx_x86_features =
371                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
372                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
373                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
374                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
375                 F(TOPOEXT) | F(PERFCTR_CORE);
376
377         /* cpuid 0x80000008.ebx */
378         const u32 kvm_cpuid_8000_0008_ebx_x86_features =
379                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
380                 F(AMD_SSB_NO) | F(AMD_STIBP);
381
382         /* cpuid 0xC0000001.edx */
383         const u32 kvm_cpuid_C000_0001_edx_x86_features =
384                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
385                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
386                 F(PMM) | F(PMM_EN);
387
388         /* cpuid 7.0.ebx */
389         const u32 kvm_cpuid_7_0_ebx_x86_features =
390                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
391                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
392                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
393                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
394                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
395
396         /* cpuid 0xD.1.eax */
397         const u32 kvm_cpuid_D_1_eax_x86_features =
398                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
399
400         /* cpuid 7.0.ecx*/
401         const u32 kvm_cpuid_7_0_ecx_x86_features =
402                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
403                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
404                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
405                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B);
406
407         /* cpuid 7.0.edx*/
408         const u32 kvm_cpuid_7_0_edx_x86_features =
409                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
410                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
411                 F(MD_CLEAR);
412
413         /* all calls to cpuid_count() should be made on the same cpu */
414         get_cpu();
415
416         r = -E2BIG;
417
418         if (*nent >= maxnent)
419                 goto out;
420
421         do_cpuid_1_ent(entry, function, index);
422         ++*nent;
423
424         switch (function) {
425         case 0:
426                 entry->eax = min(entry->eax, (u32)(f_intel_pt ? 0x14 : 0xd));
427                 break;
428         case 1:
429                 entry->edx &= kvm_cpuid_1_edx_x86_features;
430                 cpuid_mask(&entry->edx, CPUID_1_EDX);
431                 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
432                 cpuid_mask(&entry->ecx, CPUID_1_ECX);
433                 /* we support x2apic emulation even if host does not support
434                  * it since we emulate x2apic in software */
435                 entry->ecx |= F(X2APIC);
436                 break;
437         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
438          * may return different values. This forces us to get_cpu() before
439          * issuing the first command, and also to emulate this annoying behavior
440          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
441         case 2: {
442                 int t, times = entry->eax & 0xff;
443
444                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
445                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
446                 for (t = 1; t < times; ++t) {
447                         if (*nent >= maxnent)
448                                 goto out;
449
450                         do_cpuid_1_ent(&entry[t], function, 0);
451                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
452                         ++*nent;
453                 }
454                 break;
455         }
456         /* functions 4 and 0x8000001d have additional index. */
457         case 4:
458         case 0x8000001d: {
459                 int i, cache_type;
460
461                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
462                 /* read more entries until cache_type is zero */
463                 for (i = 1; ; ++i) {
464                         if (*nent >= maxnent)
465                                 goto out;
466
467                         cache_type = entry[i - 1].eax & 0x1f;
468                         if (!cache_type)
469                                 break;
470                         do_cpuid_1_ent(&entry[i], function, i);
471                         entry[i].flags |=
472                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
473                         ++*nent;
474                 }
475                 break;
476         }
477         case 6: /* Thermal management */
478                 entry->eax = 0x4; /* allow ARAT */
479                 entry->ebx = 0;
480                 entry->ecx = 0;
481                 entry->edx = 0;
482                 break;
483         case 7: {
484                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
485                 /* Mask ebx against host capability word 9 */
486                 if (index == 0) {
487                         entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
488                         cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
489                         // TSC_ADJUST is emulated
490                         entry->ebx |= F(TSC_ADJUST);
491                         entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
492                         f_la57 = entry->ecx & F(LA57);
493                         cpuid_mask(&entry->ecx, CPUID_7_ECX);
494                         /* Set LA57 based on hardware capability. */
495                         entry->ecx |= f_la57;
496                         entry->ecx |= f_umip;
497                         /* PKU is not yet implemented for shadow paging. */
498                         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
499                                 entry->ecx &= ~F(PKU);
500                         entry->edx &= kvm_cpuid_7_0_edx_x86_features;
501                         cpuid_mask(&entry->edx, CPUID_7_EDX);
502                         /*
503                          * We emulate ARCH_CAPABILITIES in software even
504                          * if the host doesn't support it.
505                          */
506                         entry->edx |= F(ARCH_CAPABILITIES);
507                 } else {
508                         entry->ebx = 0;
509                         entry->ecx = 0;
510                         entry->edx = 0;
511                 }
512                 entry->eax = 0;
513                 break;
514         }
515         case 9:
516                 break;
517         case 0xa: { /* Architectural Performance Monitoring */
518                 struct x86_pmu_capability cap;
519                 union cpuid10_eax eax;
520                 union cpuid10_edx edx;
521
522                 perf_get_x86_pmu_capability(&cap);
523
524                 /*
525                  * Only support guest architectural pmu on a host
526                  * with architectural pmu.
527                  */
528                 if (!cap.version)
529                         memset(&cap, 0, sizeof(cap));
530
531                 eax.split.version_id = min(cap.version, 2);
532                 eax.split.num_counters = cap.num_counters_gp;
533                 eax.split.bit_width = cap.bit_width_gp;
534                 eax.split.mask_length = cap.events_mask_len;
535
536                 edx.split.num_counters_fixed = cap.num_counters_fixed;
537                 edx.split.bit_width_fixed = cap.bit_width_fixed;
538                 edx.split.reserved = 0;
539
540                 entry->eax = eax.full;
541                 entry->ebx = cap.events_mask;
542                 entry->ecx = 0;
543                 entry->edx = edx.full;
544                 break;
545         }
546         /* function 0xb has additional index. */
547         case 0xb: {
548                 int i, level_type;
549
550                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
551                 /* read more entries until level_type is zero */
552                 for (i = 1; ; ++i) {
553                         if (*nent >= maxnent)
554                                 goto out;
555
556                         level_type = entry[i - 1].ecx & 0xff00;
557                         if (!level_type)
558                                 break;
559                         do_cpuid_1_ent(&entry[i], function, i);
560                         entry[i].flags |=
561                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
562                         ++*nent;
563                 }
564                 break;
565         }
566         case 0xd: {
567                 int idx, i;
568                 u64 supported = kvm_supported_xcr0();
569
570                 entry->eax &= supported;
571                 entry->ebx = xstate_required_size(supported, false);
572                 entry->ecx = entry->ebx;
573                 entry->edx &= supported >> 32;
574                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
575                 if (!supported)
576                         break;
577
578                 for (idx = 1, i = 1; idx < 64; ++idx) {
579                         u64 mask = ((u64)1 << idx);
580                         if (*nent >= maxnent)
581                                 goto out;
582
583                         do_cpuid_1_ent(&entry[i], function, idx);
584                         if (idx == 1) {
585                                 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
586                                 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
587                                 entry[i].ebx = 0;
588                                 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
589                                         entry[i].ebx =
590                                                 xstate_required_size(supported,
591                                                                      true);
592                         } else {
593                                 if (entry[i].eax == 0 || !(supported & mask))
594                                         continue;
595                                 if (WARN_ON_ONCE(entry[i].ecx & 1))
596                                         continue;
597                         }
598                         entry[i].ecx = 0;
599                         entry[i].edx = 0;
600                         entry[i].flags |=
601                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
602                         ++*nent;
603                         ++i;
604                 }
605                 break;
606         }
607         /* Intel PT */
608         case 0x14: {
609                 int t, times = entry->eax;
610
611                 if (!f_intel_pt)
612                         break;
613
614                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
615                 for (t = 1; t <= times; ++t) {
616                         if (*nent >= maxnent)
617                                 goto out;
618                         do_cpuid_1_ent(&entry[t], function, t);
619                         entry[t].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
620                         ++*nent;
621                 }
622                 break;
623         }
624         case KVM_CPUID_SIGNATURE: {
625                 static const char signature[12] = "KVMKVMKVM\0\0";
626                 const u32 *sigptr = (const u32 *)signature;
627                 entry->eax = KVM_CPUID_FEATURES;
628                 entry->ebx = sigptr[0];
629                 entry->ecx = sigptr[1];
630                 entry->edx = sigptr[2];
631                 break;
632         }
633         case KVM_CPUID_FEATURES:
634                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
635                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
636                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
637                              (1 << KVM_FEATURE_ASYNC_PF) |
638                              (1 << KVM_FEATURE_PV_EOI) |
639                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
640                              (1 << KVM_FEATURE_PV_UNHALT) |
641                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
642                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
643                              (1 << KVM_FEATURE_PV_SEND_IPI);
644
645                 if (sched_info_on())
646                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
647
648                 entry->ebx = 0;
649                 entry->ecx = 0;
650                 entry->edx = 0;
651                 break;
652         case 0x80000000:
653                 entry->eax = min(entry->eax, 0x8000001f);
654                 break;
655         case 0x80000001:
656                 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
657                 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
658                 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
659                 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
660                 break;
661         case 0x80000007: /* Advanced power management */
662                 /* invariant TSC is CPUID.80000007H:EDX[8] */
663                 entry->edx &= (1 << 8);
664                 /* mask against host */
665                 entry->edx &= boot_cpu_data.x86_power;
666                 entry->eax = entry->ebx = entry->ecx = 0;
667                 break;
668         case 0x80000008: {
669                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
670                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
671                 unsigned phys_as = entry->eax & 0xff;
672
673                 if (!g_phys_as)
674                         g_phys_as = phys_as;
675                 entry->eax = g_phys_as | (virt_as << 8);
676                 entry->edx = 0;
677                 /*
678                  * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
679                  * hardware cpuid
680                  */
681                 if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
682                         entry->ebx |= F(AMD_IBPB);
683                 if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
684                         entry->ebx |= F(AMD_IBRS);
685                 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
686                         entry->ebx |= F(VIRT_SSBD);
687                 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
688                 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
689                 /*
690                  * The preference is to use SPEC CTRL MSR instead of the
691                  * VIRT_SPEC MSR.
692                  */
693                 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
694                     !boot_cpu_has(X86_FEATURE_AMD_SSBD))
695                         entry->ebx |= F(VIRT_SSBD);
696                 break;
697         }
698         case 0x80000019:
699                 entry->ecx = entry->edx = 0;
700                 break;
701         case 0x8000001a:
702         case 0x8000001e:
703                 break;
704         /*Add support for Centaur's CPUID instruction*/
705         case 0xC0000000:
706                 /*Just support up to 0xC0000004 now*/
707                 entry->eax = min(entry->eax, 0xC0000004);
708                 break;
709         case 0xC0000001:
710                 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
711                 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
712                 break;
713         case 3: /* Processor serial number */
714         case 5: /* MONITOR/MWAIT */
715         case 0xC0000002:
716         case 0xC0000003:
717         case 0xC0000004:
718         default:
719                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
720                 break;
721         }
722
723         kvm_x86_ops->set_supported_cpuid(function, entry);
724
725         r = 0;
726
727 out:
728         put_cpu();
729
730         return r;
731 }
732
733 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
734                         u32 idx, int *nent, int maxnent, unsigned int type)
735 {
736         if (type == KVM_GET_EMULATED_CPUID)
737                 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
738
739         return __do_cpuid_ent(entry, func, idx, nent, maxnent);
740 }
741
742 #undef F
743
744 struct kvm_cpuid_param {
745         u32 func;
746         u32 idx;
747         bool has_leaf_count;
748         bool (*qualifier)(const struct kvm_cpuid_param *param);
749 };
750
751 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
752 {
753         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
754 }
755
756 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
757                                  __u32 num_entries, unsigned int ioctl_type)
758 {
759         int i;
760         __u32 pad[3];
761
762         if (ioctl_type != KVM_GET_EMULATED_CPUID)
763                 return false;
764
765         /*
766          * We want to make sure that ->padding is being passed clean from
767          * userspace in case we want to use it for something in the future.
768          *
769          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
770          * have to give ourselves satisfied only with the emulated side. /me
771          * sheds a tear.
772          */
773         for (i = 0; i < num_entries; i++) {
774                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
775                         return true;
776
777                 if (pad[0] || pad[1] || pad[2])
778                         return true;
779         }
780         return false;
781 }
782
783 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
784                             struct kvm_cpuid_entry2 __user *entries,
785                             unsigned int type)
786 {
787         struct kvm_cpuid_entry2 *cpuid_entries;
788         int limit, nent = 0, r = -E2BIG, i;
789         u32 func;
790         static const struct kvm_cpuid_param param[] = {
791                 { .func = 0, .has_leaf_count = true },
792                 { .func = 0x80000000, .has_leaf_count = true },
793                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
794                 { .func = KVM_CPUID_SIGNATURE },
795                 { .func = KVM_CPUID_FEATURES },
796         };
797
798         if (cpuid->nent < 1)
799                 goto out;
800         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
801                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
802
803         if (sanity_check_entries(entries, cpuid->nent, type))
804                 return -EINVAL;
805
806         r = -ENOMEM;
807         cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
808                                            cpuid->nent));
809         if (!cpuid_entries)
810                 goto out;
811
812         r = 0;
813         for (i = 0; i < ARRAY_SIZE(param); i++) {
814                 const struct kvm_cpuid_param *ent = &param[i];
815
816                 if (ent->qualifier && !ent->qualifier(ent))
817                         continue;
818
819                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
820                                 &nent, cpuid->nent, type);
821
822                 if (r)
823                         goto out_free;
824
825                 if (!ent->has_leaf_count)
826                         continue;
827
828                 limit = cpuid_entries[nent - 1].eax;
829                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
830                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
831                                      &nent, cpuid->nent, type);
832
833                 if (r)
834                         goto out_free;
835         }
836
837         r = -EFAULT;
838         if (copy_to_user(entries, cpuid_entries,
839                          nent * sizeof(struct kvm_cpuid_entry2)))
840                 goto out_free;
841         cpuid->nent = nent;
842         r = 0;
843
844 out_free:
845         vfree(cpuid_entries);
846 out:
847         return r;
848 }
849
850 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
851 {
852         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
853         struct kvm_cpuid_entry2 *ej;
854         int j = i;
855         int nent = vcpu->arch.cpuid_nent;
856
857         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
858         /* when no next entry is found, the current entry[i] is reselected */
859         do {
860                 j = (j + 1) % nent;
861                 ej = &vcpu->arch.cpuid_entries[j];
862         } while (ej->function != e->function);
863
864         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
865
866         return j;
867 }
868
869 /* find an entry with matching function, matching index (if needed), and that
870  * should be read next (if it's stateful) */
871 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
872         u32 function, u32 index)
873 {
874         if (e->function != function)
875                 return 0;
876         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
877                 return 0;
878         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
879             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
880                 return 0;
881         return 1;
882 }
883
884 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
885                                               u32 function, u32 index)
886 {
887         int i;
888         struct kvm_cpuid_entry2 *best = NULL;
889
890         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
891                 struct kvm_cpuid_entry2 *e;
892
893                 e = &vcpu->arch.cpuid_entries[i];
894                 if (is_matching_cpuid_entry(e, function, index)) {
895                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
896                                 move_to_next_stateful_cpuid_entry(vcpu, i);
897                         best = e;
898                         break;
899                 }
900         }
901         return best;
902 }
903 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
904
905 /*
906  * If no match is found, check whether we exceed the vCPU's limit
907  * and return the content of the highest valid _standard_ leaf instead.
908  * This is to satisfy the CPUID specification.
909  */
910 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
911                                                   u32 function, u32 index)
912 {
913         struct kvm_cpuid_entry2 *maxlevel;
914
915         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
916         if (!maxlevel || maxlevel->eax >= function)
917                 return NULL;
918         if (function & 0x80000000) {
919                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
920                 if (!maxlevel)
921                         return NULL;
922         }
923         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
924 }
925
926 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
927                u32 *ecx, u32 *edx, bool check_limit)
928 {
929         u32 function = *eax, index = *ecx;
930         struct kvm_cpuid_entry2 *best;
931         bool entry_found = true;
932
933         best = kvm_find_cpuid_entry(vcpu, function, index);
934
935         if (!best) {
936                 entry_found = false;
937                 if (!check_limit)
938                         goto out;
939
940                 best = check_cpuid_limit(vcpu, function, index);
941         }
942
943 out:
944         if (best) {
945                 *eax = best->eax;
946                 *ebx = best->ebx;
947                 *ecx = best->ecx;
948                 *edx = best->edx;
949         } else
950                 *eax = *ebx = *ecx = *edx = 0;
951         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
952         return entry_found;
953 }
954 EXPORT_SYMBOL_GPL(kvm_cpuid);
955
956 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
957 {
958         u32 eax, ebx, ecx, edx;
959
960         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
961                 return 1;
962
963         eax = kvm_rax_read(vcpu);
964         ecx = kvm_rcx_read(vcpu);
965         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
966         kvm_rax_write(vcpu, eax);
967         kvm_rbx_write(vcpu, ebx);
968         kvm_rcx_write(vcpu, ecx);
969         kvm_rdx_write(vcpu, edx);
970         return kvm_skip_emulated_instruction(vcpu);
971 }
972 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);