Merge tag 'armsoc-arm64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[linux-2.6-microblaze.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/fpu/internal.h> /* For use_eager_fpu.  Ugh! */
20 #include <asm/user.h>
21 #include <asm/fpu/xstate.h>
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "mmu.h"
25 #include "trace.h"
26 #include "pmu.h"
27
28 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
29 {
30         int feature_bit = 0;
31         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
32
33         xstate_bv &= XFEATURE_MASK_EXTEND;
34         while (xstate_bv) {
35                 if (xstate_bv & 0x1) {
36                         u32 eax, ebx, ecx, edx, offset;
37                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
38                         offset = compacted ? ret : ebx;
39                         ret = max(ret, offset + eax);
40                 }
41
42                 xstate_bv >>= 1;
43                 feature_bit++;
44         }
45
46         return ret;
47 }
48
49 bool kvm_mpx_supported(void)
50 {
51         return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
52                  && kvm_x86_ops->mpx_supported());
53 }
54 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
55
56 u64 kvm_supported_xcr0(void)
57 {
58         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
59
60         if (!kvm_mpx_supported())
61                 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
62
63         return xcr0;
64 }
65
66 #define F(x) bit(X86_FEATURE_##x)
67
68 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
69 {
70         struct kvm_cpuid_entry2 *best;
71         struct kvm_lapic *apic = vcpu->arch.apic;
72
73         best = kvm_find_cpuid_entry(vcpu, 1, 0);
74         if (!best)
75                 return 0;
76
77         /* Update OSXSAVE bit */
78         if (cpu_has_xsave && best->function == 0x1) {
79                 best->ecx &= ~F(OSXSAVE);
80                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
81                         best->ecx |= F(OSXSAVE);
82         }
83
84         if (apic) {
85                 if (best->ecx & F(TSC_DEADLINE_TIMER))
86                         apic->lapic_timer.timer_mode_mask = 3 << 17;
87                 else
88                         apic->lapic_timer.timer_mode_mask = 1 << 17;
89         }
90
91         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
92         if (!best) {
93                 vcpu->arch.guest_supported_xcr0 = 0;
94                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
95         } else {
96                 vcpu->arch.guest_supported_xcr0 =
97                         (best->eax | ((u64)best->edx << 32)) &
98                         kvm_supported_xcr0();
99                 vcpu->arch.guest_xstate_size = best->ebx =
100                         xstate_required_size(vcpu->arch.xcr0, false);
101         }
102
103         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
104         if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
105                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
106
107         if (use_eager_fpu())
108                 kvm_x86_ops->fpu_activate(vcpu);
109
110         /*
111          * The existing code assumes virtual address is 48-bit in the canonical
112          * address checks; exit if it is ever changed.
113          */
114         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
115         if (best && ((best->eax & 0xff00) >> 8) != 48 &&
116                 ((best->eax & 0xff00) >> 8) != 0)
117                 return -EINVAL;
118
119         /* Update physical-address width */
120         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
121
122         kvm_pmu_refresh(vcpu);
123         return 0;
124 }
125
126 static int is_efer_nx(void)
127 {
128         unsigned long long efer = 0;
129
130         rdmsrl_safe(MSR_EFER, &efer);
131         return efer & EFER_NX;
132 }
133
134 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
135 {
136         int i;
137         struct kvm_cpuid_entry2 *e, *entry;
138
139         entry = NULL;
140         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
141                 e = &vcpu->arch.cpuid_entries[i];
142                 if (e->function == 0x80000001) {
143                         entry = e;
144                         break;
145                 }
146         }
147         if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
148                 entry->edx &= ~F(NX);
149                 printk(KERN_INFO "kvm: guest NX capability removed\n");
150         }
151 }
152
153 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
154 {
155         struct kvm_cpuid_entry2 *best;
156
157         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
158         if (!best || best->eax < 0x80000008)
159                 goto not_found;
160         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
161         if (best)
162                 return best->eax & 0xff;
163 not_found:
164         return 36;
165 }
166 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
167
168 /* when an old userspace process fills a new kernel module */
169 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
170                              struct kvm_cpuid *cpuid,
171                              struct kvm_cpuid_entry __user *entries)
172 {
173         int r, i;
174         struct kvm_cpuid_entry *cpuid_entries;
175
176         r = -E2BIG;
177         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
178                 goto out;
179         r = -ENOMEM;
180         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
181         if (!cpuid_entries)
182                 goto out;
183         r = -EFAULT;
184         if (copy_from_user(cpuid_entries, entries,
185                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
186                 goto out_free;
187         for (i = 0; i < cpuid->nent; i++) {
188                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
189                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
190                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
191                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
192                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
193                 vcpu->arch.cpuid_entries[i].index = 0;
194                 vcpu->arch.cpuid_entries[i].flags = 0;
195                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
196                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
197                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
198         }
199         vcpu->arch.cpuid_nent = cpuid->nent;
200         cpuid_fix_nx_cap(vcpu);
201         kvm_apic_set_version(vcpu);
202         kvm_x86_ops->cpuid_update(vcpu);
203         r = kvm_update_cpuid(vcpu);
204
205 out_free:
206         vfree(cpuid_entries);
207 out:
208         return r;
209 }
210
211 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
212                               struct kvm_cpuid2 *cpuid,
213                               struct kvm_cpuid_entry2 __user *entries)
214 {
215         int r;
216
217         r = -E2BIG;
218         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
219                 goto out;
220         r = -EFAULT;
221         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
222                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
223                 goto out;
224         vcpu->arch.cpuid_nent = cpuid->nent;
225         kvm_apic_set_version(vcpu);
226         kvm_x86_ops->cpuid_update(vcpu);
227         r = kvm_update_cpuid(vcpu);
228 out:
229         return r;
230 }
231
232 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
233                               struct kvm_cpuid2 *cpuid,
234                               struct kvm_cpuid_entry2 __user *entries)
235 {
236         int r;
237
238         r = -E2BIG;
239         if (cpuid->nent < vcpu->arch.cpuid_nent)
240                 goto out;
241         r = -EFAULT;
242         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
243                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
244                 goto out;
245         return 0;
246
247 out:
248         cpuid->nent = vcpu->arch.cpuid_nent;
249         return r;
250 }
251
252 static void cpuid_mask(u32 *word, int wordnum)
253 {
254         *word &= boot_cpu_data.x86_capability[wordnum];
255 }
256
257 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
258                            u32 index)
259 {
260         entry->function = function;
261         entry->index = index;
262         cpuid_count(entry->function, entry->index,
263                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
264         entry->flags = 0;
265 }
266
267 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
268                                    u32 func, u32 index, int *nent, int maxnent)
269 {
270         switch (func) {
271         case 0:
272                 entry->eax = 1;         /* only one leaf currently */
273                 ++*nent;
274                 break;
275         case 1:
276                 entry->ecx = F(MOVBE);
277                 ++*nent;
278                 break;
279         default:
280                 break;
281         }
282
283         entry->function = func;
284         entry->index = index;
285
286         return 0;
287 }
288
289 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
290                                  u32 index, int *nent, int maxnent)
291 {
292         int r;
293         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
294 #ifdef CONFIG_X86_64
295         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
296                                 ? F(GBPAGES) : 0;
297         unsigned f_lm = F(LM);
298 #else
299         unsigned f_gbpages = 0;
300         unsigned f_lm = 0;
301 #endif
302         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
303         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
304         unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
305         unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
306
307         /* cpuid 1.edx */
308         const u32 kvm_supported_word0_x86_features =
309                 F(FPU) | F(VME) | F(DE) | F(PSE) |
310                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
311                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
312                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
313                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
314                 0 /* Reserved, DS, ACPI */ | F(MMX) |
315                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
316                 0 /* HTT, TM, Reserved, PBE */;
317         /* cpuid 0x80000001.edx */
318         const u32 kvm_supported_word1_x86_features =
319                 F(FPU) | F(VME) | F(DE) | F(PSE) |
320                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
321                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
322                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
323                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
324                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
325                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
326                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
327         /* cpuid 1.ecx */
328         const u32 kvm_supported_word4_x86_features =
329                 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
330                  * but *not* advertised to guests via CPUID ! */
331                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
332                 0 /* DS-CPL, VMX, SMX, EST */ |
333                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
334                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
335                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
336                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
337                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
338                 F(F16C) | F(RDRAND);
339         /* cpuid 0x80000001.ecx */
340         const u32 kvm_supported_word6_x86_features =
341                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
342                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
343                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
344                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
345
346         /* cpuid 0xC0000001.edx */
347         const u32 kvm_supported_word5_x86_features =
348                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
349                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
350                 F(PMM) | F(PMM_EN);
351
352         /* cpuid 7.0.ebx */
353         const u32 kvm_supported_word9_x86_features =
354                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
355                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
356                 F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
357                 F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(PCOMMIT);
358
359         /* cpuid 0xD.1.eax */
360         const u32 kvm_supported_word10_x86_features =
361                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
362
363         /* all calls to cpuid_count() should be made on the same cpu */
364         get_cpu();
365
366         r = -E2BIG;
367
368         if (*nent >= maxnent)
369                 goto out;
370
371         do_cpuid_1_ent(entry, function, index);
372         ++*nent;
373
374         switch (function) {
375         case 0:
376                 entry->eax = min(entry->eax, (u32)0xd);
377                 break;
378         case 1:
379                 entry->edx &= kvm_supported_word0_x86_features;
380                 cpuid_mask(&entry->edx, 0);
381                 entry->ecx &= kvm_supported_word4_x86_features;
382                 cpuid_mask(&entry->ecx, 4);
383                 /* we support x2apic emulation even if host does not support
384                  * it since we emulate x2apic in software */
385                 entry->ecx |= F(X2APIC);
386                 break;
387         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
388          * may return different values. This forces us to get_cpu() before
389          * issuing the first command, and also to emulate this annoying behavior
390          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
391         case 2: {
392                 int t, times = entry->eax & 0xff;
393
394                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
395                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
396                 for (t = 1; t < times; ++t) {
397                         if (*nent >= maxnent)
398                                 goto out;
399
400                         do_cpuid_1_ent(&entry[t], function, 0);
401                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
402                         ++*nent;
403                 }
404                 break;
405         }
406         /* function 4 has additional index. */
407         case 4: {
408                 int i, cache_type;
409
410                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
411                 /* read more entries until cache_type is zero */
412                 for (i = 1; ; ++i) {
413                         if (*nent >= maxnent)
414                                 goto out;
415
416                         cache_type = entry[i - 1].eax & 0x1f;
417                         if (!cache_type)
418                                 break;
419                         do_cpuid_1_ent(&entry[i], function, i);
420                         entry[i].flags |=
421                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
422                         ++*nent;
423                 }
424                 break;
425         }
426         case 6: /* Thermal management */
427                 entry->eax = 0x4; /* allow ARAT */
428                 entry->ebx = 0;
429                 entry->ecx = 0;
430                 entry->edx = 0;
431                 break;
432         case 7: {
433                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
434                 /* Mask ebx against host capability word 9 */
435                 if (index == 0) {
436                         entry->ebx &= kvm_supported_word9_x86_features;
437                         cpuid_mask(&entry->ebx, 9);
438                         // TSC_ADJUST is emulated
439                         entry->ebx |= F(TSC_ADJUST);
440                 } else
441                         entry->ebx = 0;
442                 entry->eax = 0;
443                 entry->ecx = 0;
444                 entry->edx = 0;
445                 break;
446         }
447         case 9:
448                 break;
449         case 0xa: { /* Architectural Performance Monitoring */
450                 struct x86_pmu_capability cap;
451                 union cpuid10_eax eax;
452                 union cpuid10_edx edx;
453
454                 perf_get_x86_pmu_capability(&cap);
455
456                 /*
457                  * Only support guest architectural pmu on a host
458                  * with architectural pmu.
459                  */
460                 if (!cap.version)
461                         memset(&cap, 0, sizeof(cap));
462
463                 eax.split.version_id = min(cap.version, 2);
464                 eax.split.num_counters = cap.num_counters_gp;
465                 eax.split.bit_width = cap.bit_width_gp;
466                 eax.split.mask_length = cap.events_mask_len;
467
468                 edx.split.num_counters_fixed = cap.num_counters_fixed;
469                 edx.split.bit_width_fixed = cap.bit_width_fixed;
470                 edx.split.reserved = 0;
471
472                 entry->eax = eax.full;
473                 entry->ebx = cap.events_mask;
474                 entry->ecx = 0;
475                 entry->edx = edx.full;
476                 break;
477         }
478         /* function 0xb has additional index. */
479         case 0xb: {
480                 int i, level_type;
481
482                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
483                 /* read more entries until level_type is zero */
484                 for (i = 1; ; ++i) {
485                         if (*nent >= maxnent)
486                                 goto out;
487
488                         level_type = entry[i - 1].ecx & 0xff00;
489                         if (!level_type)
490                                 break;
491                         do_cpuid_1_ent(&entry[i], function, i);
492                         entry[i].flags |=
493                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
494                         ++*nent;
495                 }
496                 break;
497         }
498         case 0xd: {
499                 int idx, i;
500                 u64 supported = kvm_supported_xcr0();
501
502                 entry->eax &= supported;
503                 entry->ebx = xstate_required_size(supported, false);
504                 entry->ecx = entry->ebx;
505                 entry->edx &= supported >> 32;
506                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
507                 if (!supported)
508                         break;
509
510                 for (idx = 1, i = 1; idx < 64; ++idx) {
511                         u64 mask = ((u64)1 << idx);
512                         if (*nent >= maxnent)
513                                 goto out;
514
515                         do_cpuid_1_ent(&entry[i], function, idx);
516                         if (idx == 1) {
517                                 entry[i].eax &= kvm_supported_word10_x86_features;
518                                 entry[i].ebx = 0;
519                                 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
520                                         entry[i].ebx =
521                                                 xstate_required_size(supported,
522                                                                      true);
523                         } else {
524                                 if (entry[i].eax == 0 || !(supported & mask))
525                                         continue;
526                                 if (WARN_ON_ONCE(entry[i].ecx & 1))
527                                         continue;
528                         }
529                         entry[i].ecx = 0;
530                         entry[i].edx = 0;
531                         entry[i].flags |=
532                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
533                         ++*nent;
534                         ++i;
535                 }
536                 break;
537         }
538         case KVM_CPUID_SIGNATURE: {
539                 static const char signature[12] = "KVMKVMKVM\0\0";
540                 const u32 *sigptr = (const u32 *)signature;
541                 entry->eax = KVM_CPUID_FEATURES;
542                 entry->ebx = sigptr[0];
543                 entry->ecx = sigptr[1];
544                 entry->edx = sigptr[2];
545                 break;
546         }
547         case KVM_CPUID_FEATURES:
548                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
549                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
550                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
551                              (1 << KVM_FEATURE_ASYNC_PF) |
552                              (1 << KVM_FEATURE_PV_EOI) |
553                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
554                              (1 << KVM_FEATURE_PV_UNHALT);
555
556                 if (sched_info_on())
557                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
558
559                 entry->ebx = 0;
560                 entry->ecx = 0;
561                 entry->edx = 0;
562                 break;
563         case 0x80000000:
564                 entry->eax = min(entry->eax, 0x8000001a);
565                 break;
566         case 0x80000001:
567                 entry->edx &= kvm_supported_word1_x86_features;
568                 cpuid_mask(&entry->edx, 1);
569                 entry->ecx &= kvm_supported_word6_x86_features;
570                 cpuid_mask(&entry->ecx, 6);
571                 break;
572         case 0x80000007: /* Advanced power management */
573                 /* invariant TSC is CPUID.80000007H:EDX[8] */
574                 entry->edx &= (1 << 8);
575                 /* mask against host */
576                 entry->edx &= boot_cpu_data.x86_power;
577                 entry->eax = entry->ebx = entry->ecx = 0;
578                 break;
579         case 0x80000008: {
580                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
581                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
582                 unsigned phys_as = entry->eax & 0xff;
583
584                 if (!g_phys_as)
585                         g_phys_as = phys_as;
586                 entry->eax = g_phys_as | (virt_as << 8);
587                 entry->ebx = entry->edx = 0;
588                 break;
589         }
590         case 0x80000019:
591                 entry->ecx = entry->edx = 0;
592                 break;
593         case 0x8000001a:
594                 break;
595         case 0x8000001d:
596                 break;
597         /*Add support for Centaur's CPUID instruction*/
598         case 0xC0000000:
599                 /*Just support up to 0xC0000004 now*/
600                 entry->eax = min(entry->eax, 0xC0000004);
601                 break;
602         case 0xC0000001:
603                 entry->edx &= kvm_supported_word5_x86_features;
604                 cpuid_mask(&entry->edx, 5);
605                 break;
606         case 3: /* Processor serial number */
607         case 5: /* MONITOR/MWAIT */
608         case 0xC0000002:
609         case 0xC0000003:
610         case 0xC0000004:
611         default:
612                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
613                 break;
614         }
615
616         kvm_x86_ops->set_supported_cpuid(function, entry);
617
618         r = 0;
619
620 out:
621         put_cpu();
622
623         return r;
624 }
625
626 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
627                         u32 idx, int *nent, int maxnent, unsigned int type)
628 {
629         if (type == KVM_GET_EMULATED_CPUID)
630                 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
631
632         return __do_cpuid_ent(entry, func, idx, nent, maxnent);
633 }
634
635 #undef F
636
637 struct kvm_cpuid_param {
638         u32 func;
639         u32 idx;
640         bool has_leaf_count;
641         bool (*qualifier)(const struct kvm_cpuid_param *param);
642 };
643
644 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
645 {
646         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
647 }
648
649 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
650                                  __u32 num_entries, unsigned int ioctl_type)
651 {
652         int i;
653         __u32 pad[3];
654
655         if (ioctl_type != KVM_GET_EMULATED_CPUID)
656                 return false;
657
658         /*
659          * We want to make sure that ->padding is being passed clean from
660          * userspace in case we want to use it for something in the future.
661          *
662          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
663          * have to give ourselves satisfied only with the emulated side. /me
664          * sheds a tear.
665          */
666         for (i = 0; i < num_entries; i++) {
667                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
668                         return true;
669
670                 if (pad[0] || pad[1] || pad[2])
671                         return true;
672         }
673         return false;
674 }
675
676 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
677                             struct kvm_cpuid_entry2 __user *entries,
678                             unsigned int type)
679 {
680         struct kvm_cpuid_entry2 *cpuid_entries;
681         int limit, nent = 0, r = -E2BIG, i;
682         u32 func;
683         static const struct kvm_cpuid_param param[] = {
684                 { .func = 0, .has_leaf_count = true },
685                 { .func = 0x80000000, .has_leaf_count = true },
686                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
687                 { .func = KVM_CPUID_SIGNATURE },
688                 { .func = KVM_CPUID_FEATURES },
689         };
690
691         if (cpuid->nent < 1)
692                 goto out;
693         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
694                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
695
696         if (sanity_check_entries(entries, cpuid->nent, type))
697                 return -EINVAL;
698
699         r = -ENOMEM;
700         cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
701         if (!cpuid_entries)
702                 goto out;
703
704         r = 0;
705         for (i = 0; i < ARRAY_SIZE(param); i++) {
706                 const struct kvm_cpuid_param *ent = &param[i];
707
708                 if (ent->qualifier && !ent->qualifier(ent))
709                         continue;
710
711                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
712                                 &nent, cpuid->nent, type);
713
714                 if (r)
715                         goto out_free;
716
717                 if (!ent->has_leaf_count)
718                         continue;
719
720                 limit = cpuid_entries[nent - 1].eax;
721                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
722                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
723                                      &nent, cpuid->nent, type);
724
725                 if (r)
726                         goto out_free;
727         }
728
729         r = -EFAULT;
730         if (copy_to_user(entries, cpuid_entries,
731                          nent * sizeof(struct kvm_cpuid_entry2)))
732                 goto out_free;
733         cpuid->nent = nent;
734         r = 0;
735
736 out_free:
737         vfree(cpuid_entries);
738 out:
739         return r;
740 }
741
742 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
743 {
744         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
745         int j, nent = vcpu->arch.cpuid_nent;
746
747         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
748         /* when no next entry is found, the current entry[i] is reselected */
749         for (j = i + 1; ; j = (j + 1) % nent) {
750                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
751                 if (ej->function == e->function) {
752                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
753                         return j;
754                 }
755         }
756         return 0; /* silence gcc, even though control never reaches here */
757 }
758
759 /* find an entry with matching function, matching index (if needed), and that
760  * should be read next (if it's stateful) */
761 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
762         u32 function, u32 index)
763 {
764         if (e->function != function)
765                 return 0;
766         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
767                 return 0;
768         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
769             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
770                 return 0;
771         return 1;
772 }
773
774 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
775                                               u32 function, u32 index)
776 {
777         int i;
778         struct kvm_cpuid_entry2 *best = NULL;
779
780         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
781                 struct kvm_cpuid_entry2 *e;
782
783                 e = &vcpu->arch.cpuid_entries[i];
784                 if (is_matching_cpuid_entry(e, function, index)) {
785                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
786                                 move_to_next_stateful_cpuid_entry(vcpu, i);
787                         best = e;
788                         break;
789                 }
790         }
791         return best;
792 }
793 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
794
795 /*
796  * If no match is found, check whether we exceed the vCPU's limit
797  * and return the content of the highest valid _standard_ leaf instead.
798  * This is to satisfy the CPUID specification.
799  */
800 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
801                                                   u32 function, u32 index)
802 {
803         struct kvm_cpuid_entry2 *maxlevel;
804
805         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
806         if (!maxlevel || maxlevel->eax >= function)
807                 return NULL;
808         if (function & 0x80000000) {
809                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
810                 if (!maxlevel)
811                         return NULL;
812         }
813         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
814 }
815
816 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
817 {
818         u32 function = *eax, index = *ecx;
819         struct kvm_cpuid_entry2 *best;
820
821         best = kvm_find_cpuid_entry(vcpu, function, index);
822
823         if (!best)
824                 best = check_cpuid_limit(vcpu, function, index);
825
826         /*
827          * Perfmon not yet supported for L2 guest.
828          */
829         if (is_guest_mode(vcpu) && function == 0xa)
830                 best = NULL;
831
832         if (best) {
833                 *eax = best->eax;
834                 *ebx = best->ebx;
835                 *ecx = best->ecx;
836                 *edx = best->edx;
837         } else
838                 *eax = *ebx = *ecx = *edx = 0;
839         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
840 }
841 EXPORT_SYMBOL_GPL(kvm_cpuid);
842
843 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
844 {
845         u32 function, eax, ebx, ecx, edx;
846
847         function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
848         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
849         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
850         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
851         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
852         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
853         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
854         kvm_x86_ops->skip_emulated_instruction(vcpu);
855 }
856 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);