Merge tag 'livepatching-for-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / kernel / smpboot.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *      x86 SMP booting functions
4  *
5  *      (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *      (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *      Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *      Much of the core SMP work is based on previous work by Thomas Radke, to
10  *      whom a great many thanks are extended.
11  *
12  *      Thanks to Intel for making available several different Pentium,
13  *      Pentium Pro and Pentium-II/Xeon MP machines.
14  *      Original development of Linux SMP code supported by Caldera.
15  *
16  *      Fixes
17  *              Felix Koop      :       NR_CPUS used properly
18  *              Jose Renau      :       Handle single CPU case.
19  *              Alan Cox        :       By repeated request 8) - Total BogoMIPS report.
20  *              Greg Wright     :       Fix for kernel stacks panic.
21  *              Erich Boleyn    :       MP v1.4 and additional changes.
22  *      Matthias Sattler        :       Changes for 2.1 kernel map.
23  *      Michel Lespinasse       :       Changes for 2.1 kernel map.
24  *      Michael Chastain        :       Change trampoline.S to gnu as.
25  *              Alan Cox        :       Dumb bug: 'B' step PPro's are fine
26  *              Ingo Molnar     :       Added APIC timers, based on code
27  *                                      from Jose Renau
28  *              Ingo Molnar     :       various cleanups and rewrites
29  *              Tigran Aivazian :       fixed "0.00 in /proc/uptime on SMP" bug.
30  *      Maciej W. Rozycki       :       Bits for genuine 82489DX APICs
31  *      Andi Kleen              :       Changed for SMP boot into long mode.
32  *              Martin J. Bligh :       Added support for multi-quad systems
33  *              Dave Jones      :       Report invalid combinations of Athlon CPUs.
34  *              Rusty Russell   :       Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *      Ashok Raj               :       CPU hotplug support
37  *      Glauber Costa           :       i386 and x86_64 integration
38  */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/api.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 #include <asm/stackprotector.h>
84 #include <asm/sev.h>
85
86 /* representing HT siblings of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89
90 /* representing HT and core siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93
94 /* representing HT, core, and die siblings of each logical CPU */
95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
96 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
97
98 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
99
100 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map);
101
102 /* Per CPU bogomips and other parameters */
103 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
104 EXPORT_PER_CPU_SYMBOL(cpu_info);
105
106 /* Logical package management. We might want to allocate that dynamically */
107 unsigned int __max_logical_packages __read_mostly;
108 EXPORT_SYMBOL(__max_logical_packages);
109 static unsigned int logical_packages __read_mostly;
110 static unsigned int logical_die __read_mostly;
111
112 /* Maximum number of SMT threads on any online core */
113 int __read_mostly __max_smt_threads = 1;
114
115 /* Flag to indicate if a complete sched domain rebuild is required */
116 bool x86_topology_update;
117
118 int arch_update_cpu_topology(void)
119 {
120         int retval = x86_topology_update;
121
122         x86_topology_update = false;
123         return retval;
124 }
125
126 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
127 {
128         unsigned long flags;
129
130         spin_lock_irqsave(&rtc_lock, flags);
131         CMOS_WRITE(0xa, 0xf);
132         spin_unlock_irqrestore(&rtc_lock, flags);
133         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
134                                                         start_eip >> 4;
135         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
136                                                         start_eip & 0xf;
137 }
138
139 static inline void smpboot_restore_warm_reset_vector(void)
140 {
141         unsigned long flags;
142
143         /*
144          * Paranoid:  Set warm reset code and vector here back
145          * to default values.
146          */
147         spin_lock_irqsave(&rtc_lock, flags);
148         CMOS_WRITE(0, 0xf);
149         spin_unlock_irqrestore(&rtc_lock, flags);
150
151         *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
152 }
153
154 /*
155  * Report back to the Boot Processor during boot time or to the caller processor
156  * during CPU online.
157  */
158 static void smp_callin(void)
159 {
160         int cpuid;
161
162         /*
163          * If waken up by an INIT in an 82489DX configuration
164          * cpu_callout_mask guarantees we don't get here before
165          * an INIT_deassert IPI reaches our local APIC, so it is
166          * now safe to touch our local APIC.
167          */
168         cpuid = smp_processor_id();
169
170         /*
171          * the boot CPU has finished the init stage and is spinning
172          * on callin_map until we finish. We are free to set up this
173          * CPU, first the APIC. (this is probably redundant on most
174          * boards)
175          */
176         apic_ap_setup();
177
178         /*
179          * Save our processor parameters. Note: this information
180          * is needed for clock calibration.
181          */
182         smp_store_cpu_info(cpuid);
183
184         /*
185          * The topology information must be up to date before
186          * calibrate_delay() and notify_cpu_starting().
187          */
188         set_cpu_sibling_map(raw_smp_processor_id());
189
190         ap_init_aperfmperf();
191
192         /*
193          * Get our bogomips.
194          * Update loops_per_jiffy in cpu_data. Previous call to
195          * smp_store_cpu_info() stored a value that is close but not as
196          * accurate as the value just calculated.
197          */
198         calibrate_delay();
199         cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
200         pr_debug("Stack at about %p\n", &cpuid);
201
202         wmb();
203
204         notify_cpu_starting(cpuid);
205
206         /*
207          * Allow the master to continue.
208          */
209         cpumask_set_cpu(cpuid, cpu_callin_mask);
210 }
211
212 static int cpu0_logical_apicid;
213 static int enable_start_cpu0;
214 /*
215  * Activate a secondary processor.
216  */
217 static void notrace start_secondary(void *unused)
218 {
219         /*
220          * Don't put *anything* except direct CPU state initialization
221          * before cpu_init(), SMP booting is too fragile that we want to
222          * limit the things done here to the most necessary things.
223          */
224         cr4_init();
225
226 #ifdef CONFIG_X86_32
227         /* switch away from the initial page table */
228         load_cr3(swapper_pg_dir);
229         __flush_tlb_all();
230 #endif
231         cpu_init_secondary();
232         rcu_cpu_starting(raw_smp_processor_id());
233         x86_cpuinit.early_percpu_clock_init();
234         smp_callin();
235
236         enable_start_cpu0 = 0;
237
238         /* otherwise gcc will move up smp_processor_id before the cpu_init */
239         barrier();
240         /*
241          * Check TSC synchronization with the boot CPU:
242          */
243         check_tsc_sync_target();
244
245         speculative_store_bypass_ht_init();
246
247         /*
248          * Lock vector_lock, set CPU online and bring the vector
249          * allocator online. Online must be set with vector_lock held
250          * to prevent a concurrent irq setup/teardown from seeing a
251          * half valid vector space.
252          */
253         lock_vector_lock();
254         set_cpu_online(smp_processor_id(), true);
255         lapic_online();
256         unlock_vector_lock();
257         cpu_set_state_online(smp_processor_id());
258         x86_platform.nmi_init();
259
260         /* enable local interrupts */
261         local_irq_enable();
262
263         x86_cpuinit.setup_percpu_clockev();
264
265         wmb();
266         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
267 }
268
269 /**
270  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
271  * @cpu:        CPU to check
272  */
273 bool topology_is_primary_thread(unsigned int cpu)
274 {
275         return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
276 }
277
278 /**
279  * topology_smt_supported - Check whether SMT is supported by the CPUs
280  */
281 bool topology_smt_supported(void)
282 {
283         return smp_num_siblings > 1;
284 }
285
286 /**
287  * topology_phys_to_logical_pkg - Map a physical package id to a logical
288  *
289  * Returns logical package id or -1 if not found
290  */
291 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
292 {
293         int cpu;
294
295         for_each_possible_cpu(cpu) {
296                 struct cpuinfo_x86 *c = &cpu_data(cpu);
297
298                 if (c->initialized && c->phys_proc_id == phys_pkg)
299                         return c->logical_proc_id;
300         }
301         return -1;
302 }
303 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
304 /**
305  * topology_phys_to_logical_die - Map a physical die id to logical
306  *
307  * Returns logical die id or -1 if not found
308  */
309 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
310 {
311         int cpu;
312         int proc_id = cpu_data(cur_cpu).phys_proc_id;
313
314         for_each_possible_cpu(cpu) {
315                 struct cpuinfo_x86 *c = &cpu_data(cpu);
316
317                 if (c->initialized && c->cpu_die_id == die_id &&
318                     c->phys_proc_id == proc_id)
319                         return c->logical_die_id;
320         }
321         return -1;
322 }
323 EXPORT_SYMBOL(topology_phys_to_logical_die);
324
325 /**
326  * topology_update_package_map - Update the physical to logical package map
327  * @pkg:        The physical package id as retrieved via CPUID
328  * @cpu:        The cpu for which this is updated
329  */
330 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
331 {
332         int new;
333
334         /* Already available somewhere? */
335         new = topology_phys_to_logical_pkg(pkg);
336         if (new >= 0)
337                 goto found;
338
339         new = logical_packages++;
340         if (new != pkg) {
341                 pr_info("CPU %u Converting physical %u to logical package %u\n",
342                         cpu, pkg, new);
343         }
344 found:
345         cpu_data(cpu).logical_proc_id = new;
346         return 0;
347 }
348 /**
349  * topology_update_die_map - Update the physical to logical die map
350  * @die:        The die id as retrieved via CPUID
351  * @cpu:        The cpu for which this is updated
352  */
353 int topology_update_die_map(unsigned int die, unsigned int cpu)
354 {
355         int new;
356
357         /* Already available somewhere? */
358         new = topology_phys_to_logical_die(die, cpu);
359         if (new >= 0)
360                 goto found;
361
362         new = logical_die++;
363         if (new != die) {
364                 pr_info("CPU %u Converting physical %u to logical die %u\n",
365                         cpu, die, new);
366         }
367 found:
368         cpu_data(cpu).logical_die_id = new;
369         return 0;
370 }
371
372 void __init smp_store_boot_cpu_info(void)
373 {
374         int id = 0; /* CPU 0 */
375         struct cpuinfo_x86 *c = &cpu_data(id);
376
377         *c = boot_cpu_data;
378         c->cpu_index = id;
379         topology_update_package_map(c->phys_proc_id, id);
380         topology_update_die_map(c->cpu_die_id, id);
381         c->initialized = true;
382 }
383
384 /*
385  * The bootstrap kernel entry code has set these up. Save them for
386  * a given CPU
387  */
388 void smp_store_cpu_info(int id)
389 {
390         struct cpuinfo_x86 *c = &cpu_data(id);
391
392         /* Copy boot_cpu_data only on the first bringup */
393         if (!c->initialized)
394                 *c = boot_cpu_data;
395         c->cpu_index = id;
396         /*
397          * During boot time, CPU0 has this setup already. Save the info when
398          * bringing up AP or offlined CPU0.
399          */
400         identify_secondary_cpu(c);
401         c->initialized = true;
402 }
403
404 static bool
405 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
406 {
407         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
408
409         return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
410 }
411
412 static bool
413 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
414 {
415         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
416
417         return !WARN_ONCE(!topology_same_node(c, o),
418                 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
419                 "[node: %d != %d]. Ignoring dependency.\n",
420                 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
421 }
422
423 #define link_mask(mfunc, c1, c2)                                        \
424 do {                                                                    \
425         cpumask_set_cpu((c1), mfunc(c2));                               \
426         cpumask_set_cpu((c2), mfunc(c1));                               \
427 } while (0)
428
429 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
430 {
431         if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
432                 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
433
434                 if (c->phys_proc_id == o->phys_proc_id &&
435                     c->cpu_die_id == o->cpu_die_id &&
436                     per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
437                         if (c->cpu_core_id == o->cpu_core_id)
438                                 return topology_sane(c, o, "smt");
439
440                         if ((c->cu_id != 0xff) &&
441                             (o->cu_id != 0xff) &&
442                             (c->cu_id == o->cu_id))
443                                 return topology_sane(c, o, "smt");
444                 }
445
446         } else if (c->phys_proc_id == o->phys_proc_id &&
447                    c->cpu_die_id == o->cpu_die_id &&
448                    c->cpu_core_id == o->cpu_core_id) {
449                 return topology_sane(c, o, "smt");
450         }
451
452         return false;
453 }
454
455 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
456 {
457         if (c->phys_proc_id == o->phys_proc_id &&
458             c->cpu_die_id == o->cpu_die_id)
459                 return true;
460         return false;
461 }
462
463 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
464 {
465         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
466
467         /* If the arch didn't set up l2c_id, fall back to SMT */
468         if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID)
469                 return match_smt(c, o);
470
471         /* Do not match if L2 cache id does not match: */
472         if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2))
473                 return false;
474
475         return topology_sane(c, o, "l2c");
476 }
477
478 /*
479  * Unlike the other levels, we do not enforce keeping a
480  * multicore group inside a NUMA node.  If this happens, we will
481  * discard the MC level of the topology later.
482  */
483 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
484 {
485         if (c->phys_proc_id == o->phys_proc_id)
486                 return true;
487         return false;
488 }
489
490 /*
491  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
492  *
493  * Any Intel CPU that has multiple nodes per package and does not
494  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
495  *
496  * When in SNC mode, these CPUs enumerate an LLC that is shared
497  * by multiple NUMA nodes. The LLC is shared for off-package data
498  * access but private to the NUMA node (half of the package) for
499  * on-package access. CPUID (the source of the information about
500  * the LLC) can only enumerate the cache as shared or unshared,
501  * but not this particular configuration.
502  */
503
504 static const struct x86_cpu_id intel_cod_cpu[] = {
505         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),       /* COD */
506         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),     /* COD */
507         X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),             /* SNC */
508         {}
509 };
510
511 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
512 {
513         const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
514         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
515         bool intel_snc = id && id->driver_data;
516
517         /* Do not match if we do not have a valid APICID for cpu: */
518         if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
519                 return false;
520
521         /* Do not match if LLC id does not match: */
522         if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
523                 return false;
524
525         /*
526          * Allow the SNC topology without warning. Return of false
527          * means 'c' does not share the LLC of 'o'. This will be
528          * reflected to userspace.
529          */
530         if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
531                 return false;
532
533         return topology_sane(c, o, "llc");
534 }
535
536
537 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_CLUSTER) || defined(CONFIG_SCHED_MC)
538 static inline int x86_sched_itmt_flags(void)
539 {
540         return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
541 }
542
543 #ifdef CONFIG_SCHED_MC
544 static int x86_core_flags(void)
545 {
546         return cpu_core_flags() | x86_sched_itmt_flags();
547 }
548 #endif
549 #ifdef CONFIG_SCHED_SMT
550 static int x86_smt_flags(void)
551 {
552         return cpu_smt_flags() | x86_sched_itmt_flags();
553 }
554 #endif
555 #ifdef CONFIG_SCHED_CLUSTER
556 static int x86_cluster_flags(void)
557 {
558         return cpu_cluster_flags() | x86_sched_itmt_flags();
559 }
560 #endif
561 #endif
562
563 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
564 #ifdef CONFIG_SCHED_SMT
565         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
566 #endif
567 #ifdef CONFIG_SCHED_CLUSTER
568         { cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) },
569 #endif
570 #ifdef CONFIG_SCHED_MC
571         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
572 #endif
573         { NULL, },
574 };
575
576 static struct sched_domain_topology_level x86_hybrid_topology[] = {
577 #ifdef CONFIG_SCHED_SMT
578         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
579 #endif
580 #ifdef CONFIG_SCHED_MC
581         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
582 #endif
583         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
584         { NULL, },
585 };
586
587 static struct sched_domain_topology_level x86_topology[] = {
588 #ifdef CONFIG_SCHED_SMT
589         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
590 #endif
591 #ifdef CONFIG_SCHED_CLUSTER
592         { cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) },
593 #endif
594 #ifdef CONFIG_SCHED_MC
595         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
596 #endif
597         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
598         { NULL, },
599 };
600
601 /*
602  * Set if a package/die has multiple NUMA nodes inside.
603  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
604  * Sub-NUMA Clustering have this.
605  */
606 static bool x86_has_numa_in_package;
607
608 void set_cpu_sibling_map(int cpu)
609 {
610         bool has_smt = smp_num_siblings > 1;
611         bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
612         struct cpuinfo_x86 *c = &cpu_data(cpu);
613         struct cpuinfo_x86 *o;
614         int i, threads;
615
616         cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
617
618         if (!has_mp) {
619                 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
620                 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
621                 cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
622                 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
623                 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
624                 c->booted_cores = 1;
625                 return;
626         }
627
628         for_each_cpu(i, cpu_sibling_setup_mask) {
629                 o = &cpu_data(i);
630
631                 if (match_pkg(c, o) && !topology_same_node(c, o))
632                         x86_has_numa_in_package = true;
633
634                 if ((i == cpu) || (has_smt && match_smt(c, o)))
635                         link_mask(topology_sibling_cpumask, cpu, i);
636
637                 if ((i == cpu) || (has_mp && match_llc(c, o)))
638                         link_mask(cpu_llc_shared_mask, cpu, i);
639
640                 if ((i == cpu) || (has_mp && match_l2c(c, o)))
641                         link_mask(cpu_l2c_shared_mask, cpu, i);
642
643                 if ((i == cpu) || (has_mp && match_die(c, o)))
644                         link_mask(topology_die_cpumask, cpu, i);
645         }
646
647         threads = cpumask_weight(topology_sibling_cpumask(cpu));
648         if (threads > __max_smt_threads)
649                 __max_smt_threads = threads;
650
651         for_each_cpu(i, topology_sibling_cpumask(cpu))
652                 cpu_data(i).smt_active = threads > 1;
653
654         /*
655          * This needs a separate iteration over the cpus because we rely on all
656          * topology_sibling_cpumask links to be set-up.
657          */
658         for_each_cpu(i, cpu_sibling_setup_mask) {
659                 o = &cpu_data(i);
660
661                 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
662                         link_mask(topology_core_cpumask, cpu, i);
663
664                         /*
665                          *  Does this new cpu bringup a new core?
666                          */
667                         if (threads == 1) {
668                                 /*
669                                  * for each core in package, increment
670                                  * the booted_cores for this new cpu
671                                  */
672                                 if (cpumask_first(
673                                     topology_sibling_cpumask(i)) == i)
674                                         c->booted_cores++;
675                                 /*
676                                  * increment the core count for all
677                                  * the other cpus in this package
678                                  */
679                                 if (i != cpu)
680                                         cpu_data(i).booted_cores++;
681                         } else if (i != cpu && !c->booted_cores)
682                                 c->booted_cores = cpu_data(i).booted_cores;
683                 }
684         }
685 }
686
687 /* maps the cpu to the sched domain representing multi-core */
688 const struct cpumask *cpu_coregroup_mask(int cpu)
689 {
690         return cpu_llc_shared_mask(cpu);
691 }
692
693 const struct cpumask *cpu_clustergroup_mask(int cpu)
694 {
695         return cpu_l2c_shared_mask(cpu);
696 }
697
698 static void impress_friends(void)
699 {
700         int cpu;
701         unsigned long bogosum = 0;
702         /*
703          * Allow the user to impress friends.
704          */
705         pr_debug("Before bogomips\n");
706         for_each_possible_cpu(cpu)
707                 if (cpumask_test_cpu(cpu, cpu_callout_mask))
708                         bogosum += cpu_data(cpu).loops_per_jiffy;
709         pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
710                 num_online_cpus(),
711                 bogosum/(500000/HZ),
712                 (bogosum/(5000/HZ))%100);
713
714         pr_debug("Before bogocount - setting activated=1\n");
715 }
716
717 void __inquire_remote_apic(int apicid)
718 {
719         unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
720         const char * const names[] = { "ID", "VERSION", "SPIV" };
721         int timeout;
722         u32 status;
723
724         pr_info("Inquiring remote APIC 0x%x...\n", apicid);
725
726         for (i = 0; i < ARRAY_SIZE(regs); i++) {
727                 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
728
729                 /*
730                  * Wait for idle.
731                  */
732                 status = safe_apic_wait_icr_idle();
733                 if (status)
734                         pr_cont("a previous APIC delivery may have failed\n");
735
736                 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
737
738                 timeout = 0;
739                 do {
740                         udelay(100);
741                         status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
742                 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
743
744                 switch (status) {
745                 case APIC_ICR_RR_VALID:
746                         status = apic_read(APIC_RRR);
747                         pr_cont("%08x\n", status);
748                         break;
749                 default:
750                         pr_cont("failed\n");
751                 }
752         }
753 }
754
755 /*
756  * The Multiprocessor Specification 1.4 (1997) example code suggests
757  * that there should be a 10ms delay between the BSP asserting INIT
758  * and de-asserting INIT, when starting a remote processor.
759  * But that slows boot and resume on modern processors, which include
760  * many cores and don't require that delay.
761  *
762  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
763  * Modern processor families are quirked to remove the delay entirely.
764  */
765 #define UDELAY_10MS_DEFAULT 10000
766
767 static unsigned int init_udelay = UINT_MAX;
768
769 static int __init cpu_init_udelay(char *str)
770 {
771         get_option(&str, &init_udelay);
772
773         return 0;
774 }
775 early_param("cpu_init_udelay", cpu_init_udelay);
776
777 static void __init smp_quirk_init_udelay(void)
778 {
779         /* if cmdline changed it from default, leave it alone */
780         if (init_udelay != UINT_MAX)
781                 return;
782
783         /* if modern processor, use no delay */
784         if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
785             ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
786             ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
787                 init_udelay = 0;
788                 return;
789         }
790         /* else, use legacy delay */
791         init_udelay = UDELAY_10MS_DEFAULT;
792 }
793
794 /*
795  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
796  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
797  * won't ... remember to clear down the APIC, etc later.
798  */
799 int
800 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
801 {
802         u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
803         unsigned long send_status, accept_status = 0;
804         int maxlvt;
805
806         /* Target chip */
807         /* Boot on the stack */
808         /* Kick the second */
809         apic_icr_write(APIC_DM_NMI | dm, apicid);
810
811         pr_debug("Waiting for send to finish...\n");
812         send_status = safe_apic_wait_icr_idle();
813
814         /*
815          * Give the other CPU some time to accept the IPI.
816          */
817         udelay(200);
818         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
819                 maxlvt = lapic_get_maxlvt();
820                 if (maxlvt > 3)                 /* Due to the Pentium erratum 3AP.  */
821                         apic_write(APIC_ESR, 0);
822                 accept_status = (apic_read(APIC_ESR) & 0xEF);
823         }
824         pr_debug("NMI sent\n");
825
826         if (send_status)
827                 pr_err("APIC never delivered???\n");
828         if (accept_status)
829                 pr_err("APIC delivery error (%lx)\n", accept_status);
830
831         return (send_status | accept_status);
832 }
833
834 static int
835 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
836 {
837         unsigned long send_status = 0, accept_status = 0;
838         int maxlvt, num_starts, j;
839
840         maxlvt = lapic_get_maxlvt();
841
842         /*
843          * Be paranoid about clearing APIC errors.
844          */
845         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
846                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
847                         apic_write(APIC_ESR, 0);
848                 apic_read(APIC_ESR);
849         }
850
851         pr_debug("Asserting INIT\n");
852
853         /*
854          * Turn INIT on target chip
855          */
856         /*
857          * Send IPI
858          */
859         apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
860                        phys_apicid);
861
862         pr_debug("Waiting for send to finish...\n");
863         send_status = safe_apic_wait_icr_idle();
864
865         udelay(init_udelay);
866
867         pr_debug("Deasserting INIT\n");
868
869         /* Target chip */
870         /* Send IPI */
871         apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
872
873         pr_debug("Waiting for send to finish...\n");
874         send_status = safe_apic_wait_icr_idle();
875
876         mb();
877
878         /*
879          * Should we send STARTUP IPIs ?
880          *
881          * Determine this based on the APIC version.
882          * If we don't have an integrated APIC, don't send the STARTUP IPIs.
883          */
884         if (APIC_INTEGRATED(boot_cpu_apic_version))
885                 num_starts = 2;
886         else
887                 num_starts = 0;
888
889         /*
890          * Run STARTUP IPI loop.
891          */
892         pr_debug("#startup loops: %d\n", num_starts);
893
894         for (j = 1; j <= num_starts; j++) {
895                 pr_debug("Sending STARTUP #%d\n", j);
896                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
897                         apic_write(APIC_ESR, 0);
898                 apic_read(APIC_ESR);
899                 pr_debug("After apic_write\n");
900
901                 /*
902                  * STARTUP IPI
903                  */
904
905                 /* Target chip */
906                 /* Boot on the stack */
907                 /* Kick the second */
908                 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
909                                phys_apicid);
910
911                 /*
912                  * Give the other CPU some time to accept the IPI.
913                  */
914                 if (init_udelay == 0)
915                         udelay(10);
916                 else
917                         udelay(300);
918
919                 pr_debug("Startup point 1\n");
920
921                 pr_debug("Waiting for send to finish...\n");
922                 send_status = safe_apic_wait_icr_idle();
923
924                 /*
925                  * Give the other CPU some time to accept the IPI.
926                  */
927                 if (init_udelay == 0)
928                         udelay(10);
929                 else
930                         udelay(200);
931
932                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
933                         apic_write(APIC_ESR, 0);
934                 accept_status = (apic_read(APIC_ESR) & 0xEF);
935                 if (send_status || accept_status)
936                         break;
937         }
938         pr_debug("After Startup\n");
939
940         if (send_status)
941                 pr_err("APIC never delivered???\n");
942         if (accept_status)
943                 pr_err("APIC delivery error (%lx)\n", accept_status);
944
945         return (send_status | accept_status);
946 }
947
948 /* reduce the number of lines printed when booting a large cpu count system */
949 static void announce_cpu(int cpu, int apicid)
950 {
951         static int current_node = NUMA_NO_NODE;
952         int node = early_cpu_to_node(cpu);
953         static int width, node_width;
954
955         if (!width)
956                 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
957
958         if (!node_width)
959                 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
960
961         if (cpu == 1)
962                 printk(KERN_INFO "x86: Booting SMP configuration:\n");
963
964         if (system_state < SYSTEM_RUNNING) {
965                 if (node != current_node) {
966                         if (current_node > (-1))
967                                 pr_cont("\n");
968                         current_node = node;
969
970                         printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
971                                node_width - num_digits(node), " ", node);
972                 }
973
974                 /* Add padding for the BSP */
975                 if (cpu == 1)
976                         pr_cont("%*s", width + 1, " ");
977
978                 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
979
980         } else
981                 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
982                         node, cpu, apicid);
983 }
984
985 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
986 {
987         int cpu;
988
989         cpu = smp_processor_id();
990         if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
991                 return NMI_HANDLED;
992
993         return NMI_DONE;
994 }
995
996 /*
997  * Wake up AP by INIT, INIT, STARTUP sequence.
998  *
999  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
1000  * boot-strap code which is not a desired behavior for waking up BSP. To
1001  * void the boot-strap code, wake up CPU0 by NMI instead.
1002  *
1003  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
1004  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
1005  * We'll change this code in the future to wake up hard offlined CPU0 if
1006  * real platform and request are available.
1007  */
1008 static int
1009 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
1010                int *cpu0_nmi_registered)
1011 {
1012         int id;
1013         int boot_error;
1014
1015         preempt_disable();
1016
1017         /*
1018          * Wake up AP by INIT, INIT, STARTUP sequence.
1019          */
1020         if (cpu) {
1021                 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
1022                 goto out;
1023         }
1024
1025         /*
1026          * Wake up BSP by nmi.
1027          *
1028          * Register a NMI handler to help wake up CPU0.
1029          */
1030         boot_error = register_nmi_handler(NMI_LOCAL,
1031                                           wakeup_cpu0_nmi, 0, "wake_cpu0");
1032
1033         if (!boot_error) {
1034                 enable_start_cpu0 = 1;
1035                 *cpu0_nmi_registered = 1;
1036                 id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
1037                 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
1038         }
1039
1040 out:
1041         preempt_enable();
1042
1043         return boot_error;
1044 }
1045
1046 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1047 {
1048         int ret;
1049
1050         /* Just in case we booted with a single CPU. */
1051         alternatives_enable_smp();
1052
1053         per_cpu(current_task, cpu) = idle;
1054         cpu_init_stack_canary(cpu, idle);
1055
1056         /* Initialize the interrupt stack(s) */
1057         ret = irq_init_percpu_irqstack(cpu);
1058         if (ret)
1059                 return ret;
1060
1061 #ifdef CONFIG_X86_32
1062         /* Stack for startup_32 can be just as for start_secondary onwards */
1063         per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1064 #else
1065         initial_gs = per_cpu_offset(cpu);
1066 #endif
1067         return 0;
1068 }
1069
1070 /*
1071  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1072  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1073  * Returns zero if CPU booted OK, else error code from
1074  * ->wakeup_secondary_cpu.
1075  */
1076 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1077                        int *cpu0_nmi_registered)
1078 {
1079         /* start_ip had better be page-aligned! */
1080         unsigned long start_ip = real_mode_header->trampoline_start;
1081
1082         unsigned long boot_error = 0;
1083         unsigned long timeout;
1084
1085 #ifdef CONFIG_X86_64
1086         /* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
1087         if (apic->wakeup_secondary_cpu_64)
1088                 start_ip = real_mode_header->trampoline_start64;
1089 #endif
1090         idle->thread.sp = (unsigned long)task_pt_regs(idle);
1091         early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1092         initial_code = (unsigned long)start_secondary;
1093         initial_stack  = idle->thread.sp;
1094
1095         /* Enable the espfix hack for this CPU */
1096         init_espfix_ap(cpu);
1097
1098         /* So we see what's up */
1099         announce_cpu(cpu, apicid);
1100
1101         /*
1102          * This grunge runs the startup process for
1103          * the targeted processor.
1104          */
1105
1106         if (x86_platform.legacy.warm_reset) {
1107
1108                 pr_debug("Setting warm reset code and vector.\n");
1109
1110                 smpboot_setup_warm_reset_vector(start_ip);
1111                 /*
1112                  * Be paranoid about clearing APIC errors.
1113                 */
1114                 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1115                         apic_write(APIC_ESR, 0);
1116                         apic_read(APIC_ESR);
1117                 }
1118         }
1119
1120         /*
1121          * AP might wait on cpu_callout_mask in cpu_init() with
1122          * cpu_initialized_mask set if previous attempt to online
1123          * it timed-out. Clear cpu_initialized_mask so that after
1124          * INIT/SIPI it could start with a clean state.
1125          */
1126         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1127         smp_mb();
1128
1129         /*
1130          * Wake up a CPU in difference cases:
1131          * - Use a method from the APIC driver if one defined, with wakeup
1132          *   straight to 64-bit mode preferred over wakeup to RM.
1133          * Otherwise,
1134          * - Use an INIT boot APIC message for APs or NMI for BSP.
1135          */
1136         if (apic->wakeup_secondary_cpu_64)
1137                 boot_error = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1138         else if (apic->wakeup_secondary_cpu)
1139                 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1140         else
1141                 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1142                                                      cpu0_nmi_registered);
1143
1144         if (!boot_error) {
1145                 /*
1146                  * Wait 10s total for first sign of life from AP
1147                  */
1148                 boot_error = -1;
1149                 timeout = jiffies + 10*HZ;
1150                 while (time_before(jiffies, timeout)) {
1151                         if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1152                                 /*
1153                                  * Tell AP to proceed with initialization
1154                                  */
1155                                 cpumask_set_cpu(cpu, cpu_callout_mask);
1156                                 boot_error = 0;
1157                                 break;
1158                         }
1159                         schedule();
1160                 }
1161         }
1162
1163         if (!boot_error) {
1164                 /*
1165                  * Wait till AP completes initial initialization
1166                  */
1167                 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1168                         /*
1169                          * Allow other tasks to run while we wait for the
1170                          * AP to come online. This also gives a chance
1171                          * for the MTRR work(triggered by the AP coming online)
1172                          * to be completed in the stop machine context.
1173                          */
1174                         schedule();
1175                 }
1176         }
1177
1178         if (x86_platform.legacy.warm_reset) {
1179                 /*
1180                  * Cleanup possible dangling ends...
1181                  */
1182                 smpboot_restore_warm_reset_vector();
1183         }
1184
1185         return boot_error;
1186 }
1187
1188 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1189 {
1190         int apicid = apic->cpu_present_to_apicid(cpu);
1191         int cpu0_nmi_registered = 0;
1192         unsigned long flags;
1193         int err, ret = 0;
1194
1195         lockdep_assert_irqs_enabled();
1196
1197         pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1198
1199         if (apicid == BAD_APICID ||
1200             !physid_isset(apicid, phys_cpu_present_map) ||
1201             !apic->apic_id_valid(apicid)) {
1202                 pr_err("%s: bad cpu %d\n", __func__, cpu);
1203                 return -EINVAL;
1204         }
1205
1206         /*
1207          * Already booted CPU?
1208          */
1209         if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1210                 pr_debug("do_boot_cpu %d Already started\n", cpu);
1211                 return -ENOSYS;
1212         }
1213
1214         /*
1215          * Save current MTRR state in case it was changed since early boot
1216          * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1217          */
1218         mtrr_save_state();
1219
1220         /* x86 CPUs take themselves offline, so delayed offline is OK. */
1221         err = cpu_check_up_prepare(cpu);
1222         if (err && err != -EBUSY)
1223                 return err;
1224
1225         /* the FPU context is blank, nobody can own it */
1226         per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1227
1228         err = common_cpu_up(cpu, tidle);
1229         if (err)
1230                 return err;
1231
1232         err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1233         if (err) {
1234                 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1235                 ret = -EIO;
1236                 goto unreg_nmi;
1237         }
1238
1239         /*
1240          * Check TSC synchronization with the AP (keep irqs disabled
1241          * while doing so):
1242          */
1243         local_irq_save(flags);
1244         check_tsc_sync_source(cpu);
1245         local_irq_restore(flags);
1246
1247         while (!cpu_online(cpu)) {
1248                 cpu_relax();
1249                 touch_nmi_watchdog();
1250         }
1251
1252 unreg_nmi:
1253         /*
1254          * Clean up the nmi handler. Do this after the callin and callout sync
1255          * to avoid impact of possible long unregister time.
1256          */
1257         if (cpu0_nmi_registered)
1258                 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1259
1260         return ret;
1261 }
1262
1263 /**
1264  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1265  */
1266 void arch_disable_smp_support(void)
1267 {
1268         disable_ioapic_support();
1269 }
1270
1271 /*
1272  * Fall back to non SMP mode after errors.
1273  *
1274  * RED-PEN audit/test this more. I bet there is more state messed up here.
1275  */
1276 static __init void disable_smp(void)
1277 {
1278         pr_info("SMP disabled\n");
1279
1280         disable_ioapic_support();
1281
1282         init_cpu_present(cpumask_of(0));
1283         init_cpu_possible(cpumask_of(0));
1284
1285         if (smp_found_config)
1286                 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1287         else
1288                 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1289         cpumask_set_cpu(0, topology_sibling_cpumask(0));
1290         cpumask_set_cpu(0, topology_core_cpumask(0));
1291         cpumask_set_cpu(0, topology_die_cpumask(0));
1292 }
1293
1294 /*
1295  * Various sanity checks.
1296  */
1297 static void __init smp_sanity_check(void)
1298 {
1299         preempt_disable();
1300
1301 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1302         if (def_to_bigsmp && nr_cpu_ids > 8) {
1303                 unsigned int cpu;
1304                 unsigned nr;
1305
1306                 pr_warn("More than 8 CPUs detected - skipping them\n"
1307                         "Use CONFIG_X86_BIGSMP\n");
1308
1309                 nr = 0;
1310                 for_each_present_cpu(cpu) {
1311                         if (nr >= 8)
1312                                 set_cpu_present(cpu, false);
1313                         nr++;
1314                 }
1315
1316                 nr = 0;
1317                 for_each_possible_cpu(cpu) {
1318                         if (nr >= 8)
1319                                 set_cpu_possible(cpu, false);
1320                         nr++;
1321                 }
1322
1323                 nr_cpu_ids = 8;
1324         }
1325 #endif
1326
1327         if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1328                 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1329                         hard_smp_processor_id());
1330
1331                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1332         }
1333
1334         /*
1335          * Should not be necessary because the MP table should list the boot
1336          * CPU too, but we do it for the sake of robustness anyway.
1337          */
1338         if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1339                 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1340                           boot_cpu_physical_apicid);
1341                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1342         }
1343         preempt_enable();
1344 }
1345
1346 static void __init smp_cpu_index_default(void)
1347 {
1348         int i;
1349         struct cpuinfo_x86 *c;
1350
1351         for_each_possible_cpu(i) {
1352                 c = &cpu_data(i);
1353                 /* mark all to hotplug */
1354                 c->cpu_index = nr_cpu_ids;
1355         }
1356 }
1357
1358 static void __init smp_get_logical_apicid(void)
1359 {
1360         if (x2apic_mode)
1361                 cpu0_logical_apicid = apic_read(APIC_LDR);
1362         else
1363                 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1364 }
1365
1366 void __init smp_prepare_cpus_common(void)
1367 {
1368         unsigned int i;
1369
1370         smp_cpu_index_default();
1371
1372         /*
1373          * Setup boot CPU information
1374          */
1375         smp_store_boot_cpu_info(); /* Final full version of the data */
1376         cpumask_copy(cpu_callin_mask, cpumask_of(0));
1377         mb();
1378
1379         for_each_possible_cpu(i) {
1380                 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1381                 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1382                 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1383                 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1384                 zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1385         }
1386
1387         /*
1388          * Set 'default' x86 topology, this matches default_topology() in that
1389          * it has NUMA nodes as a topology level. See also
1390          * native_smp_cpus_done().
1391          *
1392          * Must be done before set_cpus_sibling_map() is ran.
1393          */
1394         set_sched_topology(x86_topology);
1395
1396         set_cpu_sibling_map(0);
1397 }
1398
1399 /*
1400  * Prepare for SMP bootup.
1401  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1402  *            for common interface support.
1403  */
1404 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1405 {
1406         smp_prepare_cpus_common();
1407
1408         smp_sanity_check();
1409
1410         switch (apic_intr_mode) {
1411         case APIC_PIC:
1412         case APIC_VIRTUAL_WIRE_NO_CONFIG:
1413                 disable_smp();
1414                 return;
1415         case APIC_SYMMETRIC_IO_NO_ROUTING:
1416                 disable_smp();
1417                 /* Setup local timer */
1418                 x86_init.timers.setup_percpu_clockev();
1419                 return;
1420         case APIC_VIRTUAL_WIRE:
1421         case APIC_SYMMETRIC_IO:
1422                 break;
1423         }
1424
1425         /* Setup local timer */
1426         x86_init.timers.setup_percpu_clockev();
1427
1428         smp_get_logical_apicid();
1429
1430         pr_info("CPU0: ");
1431         print_cpu_info(&cpu_data(0));
1432
1433         uv_system_init();
1434
1435         set_mtrr_aps_delayed_init();
1436
1437         smp_quirk_init_udelay();
1438
1439         speculative_store_bypass_ht_init();
1440
1441         snp_set_wakeup_secondary_cpu();
1442 }
1443
1444 void arch_thaw_secondary_cpus_begin(void)
1445 {
1446         set_mtrr_aps_delayed_init();
1447 }
1448
1449 void arch_thaw_secondary_cpus_end(void)
1450 {
1451         mtrr_aps_init();
1452 }
1453
1454 /*
1455  * Early setup to make printk work.
1456  */
1457 void __init native_smp_prepare_boot_cpu(void)
1458 {
1459         int me = smp_processor_id();
1460         switch_to_new_gdt(me);
1461         /* already set me in cpu_online_mask in boot_cpu_init() */
1462         cpumask_set_cpu(me, cpu_callout_mask);
1463         cpu_set_state_online(me);
1464         native_pv_lock_init();
1465 }
1466
1467 void __init calculate_max_logical_packages(void)
1468 {
1469         int ncpus;
1470
1471         /*
1472          * Today neither Intel nor AMD support heterogeneous systems so
1473          * extrapolate the boot cpu's data to all packages.
1474          */
1475         ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1476         __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1477         pr_info("Max logical packages: %u\n", __max_logical_packages);
1478 }
1479
1480 void __init native_smp_cpus_done(unsigned int max_cpus)
1481 {
1482         pr_debug("Boot done\n");
1483
1484         calculate_max_logical_packages();
1485
1486         /* XXX for now assume numa-in-package and hybrid don't overlap */
1487         if (x86_has_numa_in_package)
1488                 set_sched_topology(x86_numa_in_package_topology);
1489         if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1490                 set_sched_topology(x86_hybrid_topology);
1491
1492         nmi_selftest();
1493         impress_friends();
1494         mtrr_aps_init();
1495 }
1496
1497 static int __initdata setup_possible_cpus = -1;
1498 static int __init _setup_possible_cpus(char *str)
1499 {
1500         get_option(&str, &setup_possible_cpus);
1501         return 0;
1502 }
1503 early_param("possible_cpus", _setup_possible_cpus);
1504
1505
1506 /*
1507  * cpu_possible_mask should be static, it cannot change as cpu's
1508  * are onlined, or offlined. The reason is per-cpu data-structures
1509  * are allocated by some modules at init time, and don't expect to
1510  * do this dynamically on cpu arrival/departure.
1511  * cpu_present_mask on the other hand can change dynamically.
1512  * In case when cpu_hotplug is not compiled, then we resort to current
1513  * behaviour, which is cpu_possible == cpu_present.
1514  * - Ashok Raj
1515  *
1516  * Three ways to find out the number of additional hotplug CPUs:
1517  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1518  * - The user can overwrite it with possible_cpus=NUM
1519  * - Otherwise don't reserve additional CPUs.
1520  * We do this because additional CPUs waste a lot of memory.
1521  * -AK
1522  */
1523 __init void prefill_possible_map(void)
1524 {
1525         int i, possible;
1526
1527         /* No boot processor was found in mptable or ACPI MADT */
1528         if (!num_processors) {
1529                 if (boot_cpu_has(X86_FEATURE_APIC)) {
1530                         int apicid = boot_cpu_physical_apicid;
1531                         int cpu = hard_smp_processor_id();
1532
1533                         pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1534
1535                         /* Make sure boot cpu is enumerated */
1536                         if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1537                             apic->apic_id_valid(apicid))
1538                                 generic_processor_info(apicid, boot_cpu_apic_version);
1539                 }
1540
1541                 if (!num_processors)
1542                         num_processors = 1;
1543         }
1544
1545         i = setup_max_cpus ?: 1;
1546         if (setup_possible_cpus == -1) {
1547                 possible = num_processors;
1548 #ifdef CONFIG_HOTPLUG_CPU
1549                 if (setup_max_cpus)
1550                         possible += disabled_cpus;
1551 #else
1552                 if (possible > i)
1553                         possible = i;
1554 #endif
1555         } else
1556                 possible = setup_possible_cpus;
1557
1558         total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1559
1560         /* nr_cpu_ids could be reduced via nr_cpus= */
1561         if (possible > nr_cpu_ids) {
1562                 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1563                         possible, nr_cpu_ids);
1564                 possible = nr_cpu_ids;
1565         }
1566
1567 #ifdef CONFIG_HOTPLUG_CPU
1568         if (!setup_max_cpus)
1569 #endif
1570         if (possible > i) {
1571                 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1572                         possible, setup_max_cpus);
1573                 possible = i;
1574         }
1575
1576         nr_cpu_ids = possible;
1577
1578         pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1579                 possible, max_t(int, possible - num_processors, 0));
1580
1581         reset_cpu_possible_mask();
1582
1583         for (i = 0; i < possible; i++)
1584                 set_cpu_possible(i, true);
1585 }
1586
1587 #ifdef CONFIG_HOTPLUG_CPU
1588
1589 /* Recompute SMT state for all CPUs on offline */
1590 static void recompute_smt_state(void)
1591 {
1592         int max_threads, cpu;
1593
1594         max_threads = 0;
1595         for_each_online_cpu (cpu) {
1596                 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1597
1598                 if (threads > max_threads)
1599                         max_threads = threads;
1600         }
1601         __max_smt_threads = max_threads;
1602 }
1603
1604 static void remove_siblinginfo(int cpu)
1605 {
1606         int sibling;
1607         struct cpuinfo_x86 *c = &cpu_data(cpu);
1608
1609         for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1610                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1611                 /*/
1612                  * last thread sibling in this cpu core going down
1613                  */
1614                 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1615                         cpu_data(sibling).booted_cores--;
1616         }
1617
1618         for_each_cpu(sibling, topology_die_cpumask(cpu))
1619                 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1620
1621         for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1622                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1623                 if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1624                         cpu_data(sibling).smt_active = false;
1625         }
1626
1627         for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1628                 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1629         for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1630                 cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1631         cpumask_clear(cpu_llc_shared_mask(cpu));
1632         cpumask_clear(cpu_l2c_shared_mask(cpu));
1633         cpumask_clear(topology_sibling_cpumask(cpu));
1634         cpumask_clear(topology_core_cpumask(cpu));
1635         cpumask_clear(topology_die_cpumask(cpu));
1636         c->cpu_core_id = 0;
1637         c->booted_cores = 0;
1638         cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1639         recompute_smt_state();
1640 }
1641
1642 static void remove_cpu_from_maps(int cpu)
1643 {
1644         set_cpu_online(cpu, false);
1645         cpumask_clear_cpu(cpu, cpu_callout_mask);
1646         cpumask_clear_cpu(cpu, cpu_callin_mask);
1647         /* was set by cpu_init() */
1648         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1649         numa_remove_cpu(cpu);
1650 }
1651
1652 void cpu_disable_common(void)
1653 {
1654         int cpu = smp_processor_id();
1655
1656         remove_siblinginfo(cpu);
1657
1658         /* It's now safe to remove this processor from the online map */
1659         lock_vector_lock();
1660         remove_cpu_from_maps(cpu);
1661         unlock_vector_lock();
1662         fixup_irqs();
1663         lapic_offline();
1664 }
1665
1666 int native_cpu_disable(void)
1667 {
1668         int ret;
1669
1670         ret = lapic_can_unplug_cpu();
1671         if (ret)
1672                 return ret;
1673
1674         cpu_disable_common();
1675
1676         /*
1677          * Disable the local APIC. Otherwise IPI broadcasts will reach
1678          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1679          * messages.
1680          *
1681          * Disabling the APIC must happen after cpu_disable_common()
1682          * which invokes fixup_irqs().
1683          *
1684          * Disabling the APIC preserves already set bits in IRR, but
1685          * an interrupt arriving after disabling the local APIC does not
1686          * set the corresponding IRR bit.
1687          *
1688          * fixup_irqs() scans IRR for set bits so it can raise a not
1689          * yet handled interrupt on the new destination CPU via an IPI
1690          * but obviously it can't do so for IRR bits which are not set.
1691          * IOW, interrupts arriving after disabling the local APIC will
1692          * be lost.
1693          */
1694         apic_soft_disable();
1695
1696         return 0;
1697 }
1698
1699 int common_cpu_die(unsigned int cpu)
1700 {
1701         int ret = 0;
1702
1703         /* We don't do anything here: idle task is faking death itself. */
1704
1705         /* They ack this in play_dead() by setting CPU_DEAD */
1706         if (cpu_wait_death(cpu, 5)) {
1707                 if (system_state == SYSTEM_RUNNING)
1708                         pr_info("CPU %u is now offline\n", cpu);
1709         } else {
1710                 pr_err("CPU %u didn't die...\n", cpu);
1711                 ret = -1;
1712         }
1713
1714         return ret;
1715 }
1716
1717 void native_cpu_die(unsigned int cpu)
1718 {
1719         common_cpu_die(cpu);
1720 }
1721
1722 void play_dead_common(void)
1723 {
1724         idle_task_exit();
1725
1726         /* Ack it */
1727         (void)cpu_report_death();
1728
1729         /*
1730          * With physical CPU hotplug, we should halt the cpu
1731          */
1732         local_irq_disable();
1733 }
1734
1735 /**
1736  * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1737  *
1738  * If NMI wants to wake up CPU0, start CPU0.
1739  */
1740 void cond_wakeup_cpu0(void)
1741 {
1742         if (smp_processor_id() == 0 && enable_start_cpu0)
1743                 start_cpu0();
1744 }
1745 EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1746
1747 /*
1748  * We need to flush the caches before going to sleep, lest we have
1749  * dirty data in our caches when we come back up.
1750  */
1751 static inline void mwait_play_dead(void)
1752 {
1753         unsigned int eax, ebx, ecx, edx;
1754         unsigned int highest_cstate = 0;
1755         unsigned int highest_subcstate = 0;
1756         void *mwait_ptr;
1757         int i;
1758
1759         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1760             boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1761                 return;
1762         if (!this_cpu_has(X86_FEATURE_MWAIT))
1763                 return;
1764         if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1765                 return;
1766         if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1767                 return;
1768
1769         eax = CPUID_MWAIT_LEAF;
1770         ecx = 0;
1771         native_cpuid(&eax, &ebx, &ecx, &edx);
1772
1773         /*
1774          * eax will be 0 if EDX enumeration is not valid.
1775          * Initialized below to cstate, sub_cstate value when EDX is valid.
1776          */
1777         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1778                 eax = 0;
1779         } else {
1780                 edx >>= MWAIT_SUBSTATE_SIZE;
1781                 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1782                         if (edx & MWAIT_SUBSTATE_MASK) {
1783                                 highest_cstate = i;
1784                                 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1785                         }
1786                 }
1787                 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1788                         (highest_subcstate - 1);
1789         }
1790
1791         /*
1792          * This should be a memory location in a cache line which is
1793          * unlikely to be touched by other processors.  The actual
1794          * content is immaterial as it is not actually modified in any way.
1795          */
1796         mwait_ptr = &current_thread_info()->flags;
1797
1798         wbinvd();
1799
1800         while (1) {
1801                 /*
1802                  * The CLFLUSH is a workaround for erratum AAI65 for
1803                  * the Xeon 7400 series.  It's not clear it is actually
1804                  * needed, but it should be harmless in either case.
1805                  * The WBINVD is insufficient due to the spurious-wakeup
1806                  * case where we return around the loop.
1807                  */
1808                 mb();
1809                 clflush(mwait_ptr);
1810                 mb();
1811                 __monitor(mwait_ptr, 0, 0);
1812                 mb();
1813                 __mwait(eax, 0);
1814
1815                 cond_wakeup_cpu0();
1816         }
1817 }
1818
1819 void hlt_play_dead(void)
1820 {
1821         if (__this_cpu_read(cpu_info.x86) >= 4)
1822                 wbinvd();
1823
1824         while (1) {
1825                 native_halt();
1826
1827                 cond_wakeup_cpu0();
1828         }
1829 }
1830
1831 void native_play_dead(void)
1832 {
1833         play_dead_common();
1834         tboot_shutdown(TB_SHUTDOWN_WFS);
1835
1836         mwait_play_dead();      /* Only returns on failure */
1837         if (cpuidle_play_dead())
1838                 hlt_play_dead();
1839 }
1840
1841 #else /* ... !CONFIG_HOTPLUG_CPU */
1842 int native_cpu_disable(void)
1843 {
1844         return -ENOSYS;
1845 }
1846
1847 void native_cpu_die(unsigned int cpu)
1848 {
1849         /* We said "no" in __cpu_disable */
1850         BUG();
1851 }
1852
1853 void native_play_dead(void)
1854 {
1855         BUG();
1856 }
1857
1858 #endif