Merge tag 'nfsd-5.8-2' of git://linux-nfs.org/~bfields/linux into master
[linux-2.6-microblaze.git] / arch / x86 / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/io_bitmap.h>
44 #include <asm/proto.h>
45
46 #include "process.h"
47
48 /*
49  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
50  * no more per-task TSS's. The TSS size is kept cacheline-aligned
51  * so they are allowed to end up in the .data..cacheline_aligned
52  * section. Since TSS's are completely CPU-local, we want them
53  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
54  */
55 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
56         .x86_tss = {
57                 /*
58                  * .sp0 is only used when entering ring 0 from a lower
59                  * privilege level.  Since the init task never runs anything
60                  * but ring 0 code, there is no need for a valid value here.
61                  * Poison it.
62                  */
63                 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
64
65                 /*
66                  * .sp1 is cpu_current_top_of_stack.  The init task never
67                  * runs user code, but cpu_current_top_of_stack should still
68                  * be well defined before the first context switch.
69                  */
70                 .sp1 = TOP_OF_INIT_STACK,
71
72 #ifdef CONFIG_X86_32
73                 .ss0 = __KERNEL_DS,
74                 .ss1 = __KERNEL_CS,
75 #endif
76                 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
77          },
78 };
79 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
80
81 DEFINE_PER_CPU(bool, __tss_limit_invalid);
82 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
83
84 /*
85  * this gets called so that we can store lazy state into memory and copy the
86  * current task into the new thread.
87  */
88 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
89 {
90         memcpy(dst, src, arch_task_struct_size);
91 #ifdef CONFIG_VM86
92         dst->thread.vm86 = NULL;
93 #endif
94
95         return fpu__copy(dst, src);
96 }
97
98 /*
99  * Free thread data structures etc..
100  */
101 void exit_thread(struct task_struct *tsk)
102 {
103         struct thread_struct *t = &tsk->thread;
104         struct fpu *fpu = &t->fpu;
105
106         if (test_thread_flag(TIF_IO_BITMAP))
107                 io_bitmap_exit(tsk);
108
109         free_vm86(t);
110
111         fpu__drop(fpu);
112 }
113
114 static int set_new_tls(struct task_struct *p, unsigned long tls)
115 {
116         struct user_desc __user *utls = (struct user_desc __user *)tls;
117
118         if (in_ia32_syscall())
119                 return do_set_thread_area(p, -1, utls, 0);
120         else
121                 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
122 }
123
124 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
125                     unsigned long arg, struct task_struct *p, unsigned long tls)
126 {
127         struct inactive_task_frame *frame;
128         struct fork_frame *fork_frame;
129         struct pt_regs *childregs;
130         int ret = 0;
131
132         childregs = task_pt_regs(p);
133         fork_frame = container_of(childregs, struct fork_frame, regs);
134         frame = &fork_frame->frame;
135
136         frame->bp = 0;
137         frame->ret_addr = (unsigned long) ret_from_fork;
138         p->thread.sp = (unsigned long) fork_frame;
139         p->thread.io_bitmap = NULL;
140         memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
141
142 #ifdef CONFIG_X86_64
143         savesegment(gs, p->thread.gsindex);
144         p->thread.gsbase = p->thread.gsindex ? 0 : current->thread.gsbase;
145         savesegment(fs, p->thread.fsindex);
146         p->thread.fsbase = p->thread.fsindex ? 0 : current->thread.fsbase;
147         savesegment(es, p->thread.es);
148         savesegment(ds, p->thread.ds);
149 #else
150         p->thread.sp0 = (unsigned long) (childregs + 1);
151         /*
152          * Clear all status flags including IF and set fixed bit. 64bit
153          * does not have this initialization as the frame does not contain
154          * flags. The flags consistency (especially vs. AC) is there
155          * ensured via objtool, which lacks 32bit support.
156          */
157         frame->flags = X86_EFLAGS_FIXED;
158 #endif
159
160         /* Kernel thread ? */
161         if (unlikely(p->flags & PF_KTHREAD)) {
162                 memset(childregs, 0, sizeof(struct pt_regs));
163                 kthread_frame_init(frame, sp, arg);
164                 return 0;
165         }
166
167         frame->bx = 0;
168         *childregs = *current_pt_regs();
169         childregs->ax = 0;
170         if (sp)
171                 childregs->sp = sp;
172
173 #ifdef CONFIG_X86_32
174         task_user_gs(p) = get_user_gs(current_pt_regs());
175 #endif
176
177         /* Set a new TLS for the child thread? */
178         if (clone_flags & CLONE_SETTLS)
179                 ret = set_new_tls(p, tls);
180
181         if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
182                 io_bitmap_share(p);
183
184         return ret;
185 }
186
187 void flush_thread(void)
188 {
189         struct task_struct *tsk = current;
190
191         flush_ptrace_hw_breakpoint(tsk);
192         memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
193
194         fpu__clear_all(&tsk->thread.fpu);
195 }
196
197 void disable_TSC(void)
198 {
199         preempt_disable();
200         if (!test_and_set_thread_flag(TIF_NOTSC))
201                 /*
202                  * Must flip the CPU state synchronously with
203                  * TIF_NOTSC in the current running context.
204                  */
205                 cr4_set_bits(X86_CR4_TSD);
206         preempt_enable();
207 }
208
209 static void enable_TSC(void)
210 {
211         preempt_disable();
212         if (test_and_clear_thread_flag(TIF_NOTSC))
213                 /*
214                  * Must flip the CPU state synchronously with
215                  * TIF_NOTSC in the current running context.
216                  */
217                 cr4_clear_bits(X86_CR4_TSD);
218         preempt_enable();
219 }
220
221 int get_tsc_mode(unsigned long adr)
222 {
223         unsigned int val;
224
225         if (test_thread_flag(TIF_NOTSC))
226                 val = PR_TSC_SIGSEGV;
227         else
228                 val = PR_TSC_ENABLE;
229
230         return put_user(val, (unsigned int __user *)adr);
231 }
232
233 int set_tsc_mode(unsigned int val)
234 {
235         if (val == PR_TSC_SIGSEGV)
236                 disable_TSC();
237         else if (val == PR_TSC_ENABLE)
238                 enable_TSC();
239         else
240                 return -EINVAL;
241
242         return 0;
243 }
244
245 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
246
247 static void set_cpuid_faulting(bool on)
248 {
249         u64 msrval;
250
251         msrval = this_cpu_read(msr_misc_features_shadow);
252         msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
253         msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
254         this_cpu_write(msr_misc_features_shadow, msrval);
255         wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
256 }
257
258 static void disable_cpuid(void)
259 {
260         preempt_disable();
261         if (!test_and_set_thread_flag(TIF_NOCPUID)) {
262                 /*
263                  * Must flip the CPU state synchronously with
264                  * TIF_NOCPUID in the current running context.
265                  */
266                 set_cpuid_faulting(true);
267         }
268         preempt_enable();
269 }
270
271 static void enable_cpuid(void)
272 {
273         preempt_disable();
274         if (test_and_clear_thread_flag(TIF_NOCPUID)) {
275                 /*
276                  * Must flip the CPU state synchronously with
277                  * TIF_NOCPUID in the current running context.
278                  */
279                 set_cpuid_faulting(false);
280         }
281         preempt_enable();
282 }
283
284 static int get_cpuid_mode(void)
285 {
286         return !test_thread_flag(TIF_NOCPUID);
287 }
288
289 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
290 {
291         if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
292                 return -ENODEV;
293
294         if (cpuid_enabled)
295                 enable_cpuid();
296         else
297                 disable_cpuid();
298
299         return 0;
300 }
301
302 /*
303  * Called immediately after a successful exec.
304  */
305 void arch_setup_new_exec(void)
306 {
307         /* If cpuid was previously disabled for this task, re-enable it. */
308         if (test_thread_flag(TIF_NOCPUID))
309                 enable_cpuid();
310
311         /*
312          * Don't inherit TIF_SSBD across exec boundary when
313          * PR_SPEC_DISABLE_NOEXEC is used.
314          */
315         if (test_thread_flag(TIF_SSBD) &&
316             task_spec_ssb_noexec(current)) {
317                 clear_thread_flag(TIF_SSBD);
318                 task_clear_spec_ssb_disable(current);
319                 task_clear_spec_ssb_noexec(current);
320                 speculation_ctrl_update(task_thread_info(current)->flags);
321         }
322 }
323
324 #ifdef CONFIG_X86_IOPL_IOPERM
325 static inline void switch_to_bitmap(unsigned long tifp)
326 {
327         /*
328          * Invalidate I/O bitmap if the previous task used it. This prevents
329          * any possible leakage of an active I/O bitmap.
330          *
331          * If the next task has an I/O bitmap it will handle it on exit to
332          * user mode.
333          */
334         if (tifp & _TIF_IO_BITMAP)
335                 tss_invalidate_io_bitmap();
336 }
337
338 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
339 {
340         /*
341          * Copy at least the byte range of the incoming tasks bitmap which
342          * covers the permitted I/O ports.
343          *
344          * If the previous task which used an I/O bitmap had more bits
345          * permitted, then the copy needs to cover those as well so they
346          * get turned off.
347          */
348         memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
349                max(tss->io_bitmap.prev_max, iobm->max));
350
351         /*
352          * Store the new max and the sequence number of this bitmap
353          * and a pointer to the bitmap itself.
354          */
355         tss->io_bitmap.prev_max = iobm->max;
356         tss->io_bitmap.prev_sequence = iobm->sequence;
357 }
358
359 /**
360  * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
361  */
362 void native_tss_update_io_bitmap(void)
363 {
364         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
365         struct thread_struct *t = &current->thread;
366         u16 *base = &tss->x86_tss.io_bitmap_base;
367
368         if (!test_thread_flag(TIF_IO_BITMAP)) {
369                 native_tss_invalidate_io_bitmap();
370                 return;
371         }
372
373         if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
374                 *base = IO_BITMAP_OFFSET_VALID_ALL;
375         } else {
376                 struct io_bitmap *iobm = t->io_bitmap;
377
378                 /*
379                  * Only copy bitmap data when the sequence number differs. The
380                  * update time is accounted to the incoming task.
381                  */
382                 if (tss->io_bitmap.prev_sequence != iobm->sequence)
383                         tss_copy_io_bitmap(tss, iobm);
384
385                 /* Enable the bitmap */
386                 *base = IO_BITMAP_OFFSET_VALID_MAP;
387         }
388
389         /*
390          * Make sure that the TSS limit is covering the IO bitmap. It might have
391          * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
392          * access from user space to trigger a #GP because tbe bitmap is outside
393          * the TSS limit.
394          */
395         refresh_tss_limit();
396 }
397 #else /* CONFIG_X86_IOPL_IOPERM */
398 static inline void switch_to_bitmap(unsigned long tifp) { }
399 #endif
400
401 #ifdef CONFIG_SMP
402
403 struct ssb_state {
404         struct ssb_state        *shared_state;
405         raw_spinlock_t          lock;
406         unsigned int            disable_state;
407         unsigned long           local_state;
408 };
409
410 #define LSTATE_SSB      0
411
412 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
413
414 void speculative_store_bypass_ht_init(void)
415 {
416         struct ssb_state *st = this_cpu_ptr(&ssb_state);
417         unsigned int this_cpu = smp_processor_id();
418         unsigned int cpu;
419
420         st->local_state = 0;
421
422         /*
423          * Shared state setup happens once on the first bringup
424          * of the CPU. It's not destroyed on CPU hotunplug.
425          */
426         if (st->shared_state)
427                 return;
428
429         raw_spin_lock_init(&st->lock);
430
431         /*
432          * Go over HT siblings and check whether one of them has set up the
433          * shared state pointer already.
434          */
435         for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
436                 if (cpu == this_cpu)
437                         continue;
438
439                 if (!per_cpu(ssb_state, cpu).shared_state)
440                         continue;
441
442                 /* Link it to the state of the sibling: */
443                 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
444                 return;
445         }
446
447         /*
448          * First HT sibling to come up on the core.  Link shared state of
449          * the first HT sibling to itself. The siblings on the same core
450          * which come up later will see the shared state pointer and link
451          * themself to the state of this CPU.
452          */
453         st->shared_state = st;
454 }
455
456 /*
457  * Logic is: First HT sibling enables SSBD for both siblings in the core
458  * and last sibling to disable it, disables it for the whole core. This how
459  * MSR_SPEC_CTRL works in "hardware":
460  *
461  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
462  */
463 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
464 {
465         struct ssb_state *st = this_cpu_ptr(&ssb_state);
466         u64 msr = x86_amd_ls_cfg_base;
467
468         if (!static_cpu_has(X86_FEATURE_ZEN)) {
469                 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
470                 wrmsrl(MSR_AMD64_LS_CFG, msr);
471                 return;
472         }
473
474         if (tifn & _TIF_SSBD) {
475                 /*
476                  * Since this can race with prctl(), block reentry on the
477                  * same CPU.
478                  */
479                 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
480                         return;
481
482                 msr |= x86_amd_ls_cfg_ssbd_mask;
483
484                 raw_spin_lock(&st->shared_state->lock);
485                 /* First sibling enables SSBD: */
486                 if (!st->shared_state->disable_state)
487                         wrmsrl(MSR_AMD64_LS_CFG, msr);
488                 st->shared_state->disable_state++;
489                 raw_spin_unlock(&st->shared_state->lock);
490         } else {
491                 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
492                         return;
493
494                 raw_spin_lock(&st->shared_state->lock);
495                 st->shared_state->disable_state--;
496                 if (!st->shared_state->disable_state)
497                         wrmsrl(MSR_AMD64_LS_CFG, msr);
498                 raw_spin_unlock(&st->shared_state->lock);
499         }
500 }
501 #else
502 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
503 {
504         u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
505
506         wrmsrl(MSR_AMD64_LS_CFG, msr);
507 }
508 #endif
509
510 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
511 {
512         /*
513          * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
514          * so ssbd_tif_to_spec_ctrl() just works.
515          */
516         wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
517 }
518
519 /*
520  * Update the MSRs managing speculation control, during context switch.
521  *
522  * tifp: Previous task's thread flags
523  * tifn: Next task's thread flags
524  */
525 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
526                                                       unsigned long tifn)
527 {
528         unsigned long tif_diff = tifp ^ tifn;
529         u64 msr = x86_spec_ctrl_base;
530         bool updmsr = false;
531
532         lockdep_assert_irqs_disabled();
533
534         /* Handle change of TIF_SSBD depending on the mitigation method. */
535         if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
536                 if (tif_diff & _TIF_SSBD)
537                         amd_set_ssb_virt_state(tifn);
538         } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
539                 if (tif_diff & _TIF_SSBD)
540                         amd_set_core_ssb_state(tifn);
541         } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
542                    static_cpu_has(X86_FEATURE_AMD_SSBD)) {
543                 updmsr |= !!(tif_diff & _TIF_SSBD);
544                 msr |= ssbd_tif_to_spec_ctrl(tifn);
545         }
546
547         /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
548         if (IS_ENABLED(CONFIG_SMP) &&
549             static_branch_unlikely(&switch_to_cond_stibp)) {
550                 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
551                 msr |= stibp_tif_to_spec_ctrl(tifn);
552         }
553
554         if (updmsr)
555                 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
556 }
557
558 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
559 {
560         if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
561                 if (task_spec_ssb_disable(tsk))
562                         set_tsk_thread_flag(tsk, TIF_SSBD);
563                 else
564                         clear_tsk_thread_flag(tsk, TIF_SSBD);
565
566                 if (task_spec_ib_disable(tsk))
567                         set_tsk_thread_flag(tsk, TIF_SPEC_IB);
568                 else
569                         clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
570         }
571         /* Return the updated threadinfo flags*/
572         return task_thread_info(tsk)->flags;
573 }
574
575 void speculation_ctrl_update(unsigned long tif)
576 {
577         unsigned long flags;
578
579         /* Forced update. Make sure all relevant TIF flags are different */
580         local_irq_save(flags);
581         __speculation_ctrl_update(~tif, tif);
582         local_irq_restore(flags);
583 }
584
585 /* Called from seccomp/prctl update */
586 void speculation_ctrl_update_current(void)
587 {
588         preempt_disable();
589         speculation_ctrl_update(speculation_ctrl_update_tif(current));
590         preempt_enable();
591 }
592
593 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
594 {
595         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
596
597         newval = cr4 ^ mask;
598         if (newval != cr4) {
599                 this_cpu_write(cpu_tlbstate.cr4, newval);
600                 __write_cr4(newval);
601         }
602 }
603
604 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
605 {
606         unsigned long tifp, tifn;
607
608         tifn = READ_ONCE(task_thread_info(next_p)->flags);
609         tifp = READ_ONCE(task_thread_info(prev_p)->flags);
610
611         switch_to_bitmap(tifp);
612
613         propagate_user_return_notify(prev_p, next_p);
614
615         if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
616             arch_has_block_step()) {
617                 unsigned long debugctl, msk;
618
619                 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
620                 debugctl &= ~DEBUGCTLMSR_BTF;
621                 msk = tifn & _TIF_BLOCKSTEP;
622                 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
623                 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
624         }
625
626         if ((tifp ^ tifn) & _TIF_NOTSC)
627                 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
628
629         if ((tifp ^ tifn) & _TIF_NOCPUID)
630                 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
631
632         if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
633                 __speculation_ctrl_update(tifp, tifn);
634         } else {
635                 speculation_ctrl_update_tif(prev_p);
636                 tifn = speculation_ctrl_update_tif(next_p);
637
638                 /* Enforce MSR update to ensure consistent state */
639                 __speculation_ctrl_update(~tifn, tifn);
640         }
641
642         if ((tifp ^ tifn) & _TIF_SLD)
643                 switch_to_sld(tifn);
644 }
645
646 /*
647  * Idle related variables and functions
648  */
649 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
650 EXPORT_SYMBOL(boot_option_idle_override);
651
652 static void (*x86_idle)(void);
653
654 #ifndef CONFIG_SMP
655 static inline void play_dead(void)
656 {
657         BUG();
658 }
659 #endif
660
661 void arch_cpu_idle_enter(void)
662 {
663         tsc_verify_tsc_adjust(false);
664         local_touch_nmi();
665 }
666
667 void arch_cpu_idle_dead(void)
668 {
669         play_dead();
670 }
671
672 /*
673  * Called from the generic idle code.
674  */
675 void arch_cpu_idle(void)
676 {
677         x86_idle();
678 }
679
680 /*
681  * We use this if we don't have any better idle routine..
682  */
683 void __cpuidle default_idle(void)
684 {
685         trace_cpu_idle_rcuidle(1, smp_processor_id());
686         safe_halt();
687         trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
688 }
689 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
690 EXPORT_SYMBOL(default_idle);
691 #endif
692
693 #ifdef CONFIG_XEN
694 bool xen_set_default_idle(void)
695 {
696         bool ret = !!x86_idle;
697
698         x86_idle = default_idle;
699
700         return ret;
701 }
702 #endif
703
704 void stop_this_cpu(void *dummy)
705 {
706         local_irq_disable();
707         /*
708          * Remove this CPU:
709          */
710         set_cpu_online(smp_processor_id(), false);
711         disable_local_APIC();
712         mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
713
714         /*
715          * Use wbinvd on processors that support SME. This provides support
716          * for performing a successful kexec when going from SME inactive
717          * to SME active (or vice-versa). The cache must be cleared so that
718          * if there are entries with the same physical address, both with and
719          * without the encryption bit, they don't race each other when flushed
720          * and potentially end up with the wrong entry being committed to
721          * memory.
722          */
723         if (boot_cpu_has(X86_FEATURE_SME))
724                 native_wbinvd();
725         for (;;) {
726                 /*
727                  * Use native_halt() so that memory contents don't change
728                  * (stack usage and variables) after possibly issuing the
729                  * native_wbinvd() above.
730                  */
731                 native_halt();
732         }
733 }
734
735 /*
736  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
737  * states (local apic timer and TSC stop).
738  */
739 static void amd_e400_idle(void)
740 {
741         /*
742          * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
743          * gets set after static_cpu_has() places have been converted via
744          * alternatives.
745          */
746         if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
747                 default_idle();
748                 return;
749         }
750
751         tick_broadcast_enter();
752
753         default_idle();
754
755         /*
756          * The switch back from broadcast mode needs to be called with
757          * interrupts disabled.
758          */
759         local_irq_disable();
760         tick_broadcast_exit();
761         local_irq_enable();
762 }
763
764 /*
765  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
766  * We can't rely on cpuidle installing MWAIT, because it will not load
767  * on systems that support only C1 -- so the boot default must be MWAIT.
768  *
769  * Some AMD machines are the opposite, they depend on using HALT.
770  *
771  * So for default C1, which is used during boot until cpuidle loads,
772  * use MWAIT-C1 on Intel HW that has it, else use HALT.
773  */
774 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
775 {
776         if (c->x86_vendor != X86_VENDOR_INTEL)
777                 return 0;
778
779         if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
780                 return 0;
781
782         return 1;
783 }
784
785 /*
786  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
787  * with interrupts enabled and no flags, which is backwards compatible with the
788  * original MWAIT implementation.
789  */
790 static __cpuidle void mwait_idle(void)
791 {
792         if (!current_set_polling_and_test()) {
793                 trace_cpu_idle_rcuidle(1, smp_processor_id());
794                 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
795                         mb(); /* quirk */
796                         clflush((void *)&current_thread_info()->flags);
797                         mb(); /* quirk */
798                 }
799
800                 __monitor((void *)&current_thread_info()->flags, 0, 0);
801                 if (!need_resched())
802                         __sti_mwait(0, 0);
803                 else
804                         local_irq_enable();
805                 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
806         } else {
807                 local_irq_enable();
808         }
809         __current_clr_polling();
810 }
811
812 void select_idle_routine(const struct cpuinfo_x86 *c)
813 {
814 #ifdef CONFIG_SMP
815         if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
816                 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
817 #endif
818         if (x86_idle || boot_option_idle_override == IDLE_POLL)
819                 return;
820
821         if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
822                 pr_info("using AMD E400 aware idle routine\n");
823                 x86_idle = amd_e400_idle;
824         } else if (prefer_mwait_c1_over_halt(c)) {
825                 pr_info("using mwait in idle threads\n");
826                 x86_idle = mwait_idle;
827         } else
828                 x86_idle = default_idle;
829 }
830
831 void amd_e400_c1e_apic_setup(void)
832 {
833         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
834                 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
835                 local_irq_disable();
836                 tick_broadcast_force();
837                 local_irq_enable();
838         }
839 }
840
841 void __init arch_post_acpi_subsys_init(void)
842 {
843         u32 lo, hi;
844
845         if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
846                 return;
847
848         /*
849          * AMD E400 detection needs to happen after ACPI has been enabled. If
850          * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
851          * MSR_K8_INT_PENDING_MSG.
852          */
853         rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
854         if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
855                 return;
856
857         boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
858
859         if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
860                 mark_tsc_unstable("TSC halt in AMD C1E");
861         pr_info("System has AMD C1E enabled\n");
862 }
863
864 static int __init idle_setup(char *str)
865 {
866         if (!str)
867                 return -EINVAL;
868
869         if (!strcmp(str, "poll")) {
870                 pr_info("using polling idle threads\n");
871                 boot_option_idle_override = IDLE_POLL;
872                 cpu_idle_poll_ctrl(true);
873         } else if (!strcmp(str, "halt")) {
874                 /*
875                  * When the boot option of idle=halt is added, halt is
876                  * forced to be used for CPU idle. In such case CPU C2/C3
877                  * won't be used again.
878                  * To continue to load the CPU idle driver, don't touch
879                  * the boot_option_idle_override.
880                  */
881                 x86_idle = default_idle;
882                 boot_option_idle_override = IDLE_HALT;
883         } else if (!strcmp(str, "nomwait")) {
884                 /*
885                  * If the boot option of "idle=nomwait" is added,
886                  * it means that mwait will be disabled for CPU C2/C3
887                  * states. In such case it won't touch the variable
888                  * of boot_option_idle_override.
889                  */
890                 boot_option_idle_override = IDLE_NOMWAIT;
891         } else
892                 return -1;
893
894         return 0;
895 }
896 early_param("idle", idle_setup);
897
898 unsigned long arch_align_stack(unsigned long sp)
899 {
900         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
901                 sp -= get_random_int() % 8192;
902         return sp & ~0xf;
903 }
904
905 unsigned long arch_randomize_brk(struct mm_struct *mm)
906 {
907         return randomize_page(mm->brk, 0x02000000);
908 }
909
910 /*
911  * Called from fs/proc with a reference on @p to find the function
912  * which called into schedule(). This needs to be done carefully
913  * because the task might wake up and we might look at a stack
914  * changing under us.
915  */
916 unsigned long get_wchan(struct task_struct *p)
917 {
918         unsigned long start, bottom, top, sp, fp, ip, ret = 0;
919         int count = 0;
920
921         if (p == current || p->state == TASK_RUNNING)
922                 return 0;
923
924         if (!try_get_task_stack(p))
925                 return 0;
926
927         start = (unsigned long)task_stack_page(p);
928         if (!start)
929                 goto out;
930
931         /*
932          * Layout of the stack page:
933          *
934          * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
935          * PADDING
936          * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
937          * stack
938          * ----------- bottom = start
939          *
940          * The tasks stack pointer points at the location where the
941          * framepointer is stored. The data on the stack is:
942          * ... IP FP ... IP FP
943          *
944          * We need to read FP and IP, so we need to adjust the upper
945          * bound by another unsigned long.
946          */
947         top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
948         top -= 2 * sizeof(unsigned long);
949         bottom = start;
950
951         sp = READ_ONCE(p->thread.sp);
952         if (sp < bottom || sp > top)
953                 goto out;
954
955         fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
956         do {
957                 if (fp < bottom || fp > top)
958                         goto out;
959                 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
960                 if (!in_sched_functions(ip)) {
961                         ret = ip;
962                         goto out;
963                 }
964                 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
965         } while (count++ < 16 && p->state != TASK_RUNNING);
966
967 out:
968         put_task_stack(p);
969         return ret;
970 }
971
972 long do_arch_prctl_common(struct task_struct *task, int option,
973                           unsigned long cpuid_enabled)
974 {
975         switch (option) {
976         case ARCH_GET_CPUID:
977                 return get_cpuid_mode();
978         case ARCH_SET_CPUID:
979                 return set_cpuid_mode(task, cpuid_enabled);
980         }
981
982         return -EINVAL;
983 }