Merge tag 'xfs-5.13-fixes-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / arch / x86 / kernel / machine_kexec_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * handle transition of Linux booting another kernel
4  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
5  */
6
7 #define pr_fmt(fmt)     "kexec: " fmt
8
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20
21 #include <asm/init.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/io_apic.h>
25 #include <asm/debugreg.h>
26 #include <asm/kexec-bzimage64.h>
27 #include <asm/setup.h>
28 #include <asm/set_memory.h>
29
30 #ifdef CONFIG_ACPI
31 /*
32  * Used while adding mapping for ACPI tables.
33  * Can be reused when other iomem regions need be mapped
34  */
35 struct init_pgtable_data {
36         struct x86_mapping_info *info;
37         pgd_t *level4p;
38 };
39
40 static int mem_region_callback(struct resource *res, void *arg)
41 {
42         struct init_pgtable_data *data = arg;
43         unsigned long mstart, mend;
44
45         mstart = res->start;
46         mend = mstart + resource_size(res) - 1;
47
48         return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
49 }
50
51 static int
52 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
53 {
54         struct init_pgtable_data data;
55         unsigned long flags;
56         int ret;
57
58         data.info = info;
59         data.level4p = level4p;
60         flags = IORESOURCE_MEM | IORESOURCE_BUSY;
61
62         ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
63                                   &data, mem_region_callback);
64         if (ret && ret != -EINVAL)
65                 return ret;
66
67         /* ACPI tables could be located in ACPI Non-volatile Storage region */
68         ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
69                                   &data, mem_region_callback);
70         if (ret && ret != -EINVAL)
71                 return ret;
72
73         return 0;
74 }
75 #else
76 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
77 #endif
78
79 #ifdef CONFIG_KEXEC_FILE
80 const struct kexec_file_ops * const kexec_file_loaders[] = {
81                 &kexec_bzImage64_ops,
82                 NULL
83 };
84 #endif
85
86 static int
87 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
88 {
89 #ifdef CONFIG_EFI
90         unsigned long mstart, mend;
91
92         if (!efi_enabled(EFI_BOOT))
93                 return 0;
94
95         mstart = (boot_params.efi_info.efi_systab |
96                         ((u64)boot_params.efi_info.efi_systab_hi<<32));
97
98         if (efi_enabled(EFI_64BIT))
99                 mend = mstart + sizeof(efi_system_table_64_t);
100         else
101                 mend = mstart + sizeof(efi_system_table_32_t);
102
103         if (!mstart)
104                 return 0;
105
106         return kernel_ident_mapping_init(info, level4p, mstart, mend);
107 #endif
108         return 0;
109 }
110
111 static void free_transition_pgtable(struct kimage *image)
112 {
113         free_page((unsigned long)image->arch.p4d);
114         image->arch.p4d = NULL;
115         free_page((unsigned long)image->arch.pud);
116         image->arch.pud = NULL;
117         free_page((unsigned long)image->arch.pmd);
118         image->arch.pmd = NULL;
119         free_page((unsigned long)image->arch.pte);
120         image->arch.pte = NULL;
121 }
122
123 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
124 {
125         pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
126         unsigned long vaddr, paddr;
127         int result = -ENOMEM;
128         p4d_t *p4d;
129         pud_t *pud;
130         pmd_t *pmd;
131         pte_t *pte;
132
133         vaddr = (unsigned long)relocate_kernel;
134         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
135         pgd += pgd_index(vaddr);
136         if (!pgd_present(*pgd)) {
137                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
138                 if (!p4d)
139                         goto err;
140                 image->arch.p4d = p4d;
141                 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
142         }
143         p4d = p4d_offset(pgd, vaddr);
144         if (!p4d_present(*p4d)) {
145                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
146                 if (!pud)
147                         goto err;
148                 image->arch.pud = pud;
149                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
150         }
151         pud = pud_offset(p4d, vaddr);
152         if (!pud_present(*pud)) {
153                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
154                 if (!pmd)
155                         goto err;
156                 image->arch.pmd = pmd;
157                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
158         }
159         pmd = pmd_offset(pud, vaddr);
160         if (!pmd_present(*pmd)) {
161                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
162                 if (!pte)
163                         goto err;
164                 image->arch.pte = pte;
165                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
166         }
167         pte = pte_offset_kernel(pmd, vaddr);
168
169         if (sev_active())
170                 prot = PAGE_KERNEL_EXEC;
171
172         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
173         return 0;
174 err:
175         return result;
176 }
177
178 static void *alloc_pgt_page(void *data)
179 {
180         struct kimage *image = (struct kimage *)data;
181         struct page *page;
182         void *p = NULL;
183
184         page = kimage_alloc_control_pages(image, 0);
185         if (page) {
186                 p = page_address(page);
187                 clear_page(p);
188         }
189
190         return p;
191 }
192
193 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
194 {
195         struct x86_mapping_info info = {
196                 .alloc_pgt_page = alloc_pgt_page,
197                 .context        = image,
198                 .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
199                 .kernpg_flag    = _KERNPG_TABLE_NOENC,
200         };
201         unsigned long mstart, mend;
202         pgd_t *level4p;
203         int result;
204         int i;
205
206         level4p = (pgd_t *)__va(start_pgtable);
207         clear_page(level4p);
208
209         if (sev_active()) {
210                 info.page_flag   |= _PAGE_ENC;
211                 info.kernpg_flag |= _PAGE_ENC;
212         }
213
214         if (direct_gbpages)
215                 info.direct_gbpages = true;
216
217         for (i = 0; i < nr_pfn_mapped; i++) {
218                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
219                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
220
221                 result = kernel_ident_mapping_init(&info,
222                                                  level4p, mstart, mend);
223                 if (result)
224                         return result;
225         }
226
227         /*
228          * segments's mem ranges could be outside 0 ~ max_pfn,
229          * for example when jump back to original kernel from kexeced kernel.
230          * or first kernel is booted with user mem map, and second kernel
231          * could be loaded out of that range.
232          */
233         for (i = 0; i < image->nr_segments; i++) {
234                 mstart = image->segment[i].mem;
235                 mend   = mstart + image->segment[i].memsz;
236
237                 result = kernel_ident_mapping_init(&info,
238                                                  level4p, mstart, mend);
239
240                 if (result)
241                         return result;
242         }
243
244         /*
245          * Prepare EFI systab and ACPI tables for kexec kernel since they are
246          * not covered by pfn_mapped.
247          */
248         result = map_efi_systab(&info, level4p);
249         if (result)
250                 return result;
251
252         result = map_acpi_tables(&info, level4p);
253         if (result)
254                 return result;
255
256         return init_transition_pgtable(image, level4p);
257 }
258
259 static void set_idt(void *newidt, u16 limit)
260 {
261         struct desc_ptr curidt;
262
263         /* x86-64 supports unaligned loads & stores */
264         curidt.size    = limit;
265         curidt.address = (unsigned long)newidt;
266
267         __asm__ __volatile__ (
268                 "lidtq %0\n"
269                 : : "m" (curidt)
270                 );
271 };
272
273
274 static void set_gdt(void *newgdt, u16 limit)
275 {
276         struct desc_ptr curgdt;
277
278         /* x86-64 supports unaligned loads & stores */
279         curgdt.size    = limit;
280         curgdt.address = (unsigned long)newgdt;
281
282         __asm__ __volatile__ (
283                 "lgdtq %0\n"
284                 : : "m" (curgdt)
285                 );
286 };
287
288 static void load_segments(void)
289 {
290         __asm__ __volatile__ (
291                 "\tmovl %0,%%ds\n"
292                 "\tmovl %0,%%es\n"
293                 "\tmovl %0,%%ss\n"
294                 "\tmovl %0,%%fs\n"
295                 "\tmovl %0,%%gs\n"
296                 : : "a" (__KERNEL_DS) : "memory"
297                 );
298 }
299
300 int machine_kexec_prepare(struct kimage *image)
301 {
302         unsigned long start_pgtable;
303         int result;
304
305         /* Calculate the offsets */
306         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
307
308         /* Setup the identity mapped 64bit page table */
309         result = init_pgtable(image, start_pgtable);
310         if (result)
311                 return result;
312
313         return 0;
314 }
315
316 void machine_kexec_cleanup(struct kimage *image)
317 {
318         free_transition_pgtable(image);
319 }
320
321 /*
322  * Do not allocate memory (or fail in any way) in machine_kexec().
323  * We are past the point of no return, committed to rebooting now.
324  */
325 void machine_kexec(struct kimage *image)
326 {
327         unsigned long page_list[PAGES_NR];
328         void *control_page;
329         int save_ftrace_enabled;
330
331 #ifdef CONFIG_KEXEC_JUMP
332         if (image->preserve_context)
333                 save_processor_state();
334 #endif
335
336         save_ftrace_enabled = __ftrace_enabled_save();
337
338         /* Interrupts aren't acceptable while we reboot */
339         local_irq_disable();
340         hw_breakpoint_disable();
341
342         if (image->preserve_context) {
343 #ifdef CONFIG_X86_IO_APIC
344                 /*
345                  * We need to put APICs in legacy mode so that we can
346                  * get timer interrupts in second kernel. kexec/kdump
347                  * paths already have calls to restore_boot_irq_mode()
348                  * in one form or other. kexec jump path also need one.
349                  */
350                 clear_IO_APIC();
351                 restore_boot_irq_mode();
352 #endif
353         }
354
355         control_page = page_address(image->control_code_page) + PAGE_SIZE;
356         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
357
358         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
359         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
360         page_list[PA_TABLE_PAGE] =
361           (unsigned long)__pa(page_address(image->control_code_page));
362
363         if (image->type == KEXEC_TYPE_DEFAULT)
364                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
365                                                 << PAGE_SHIFT);
366
367         /*
368          * The segment registers are funny things, they have both a
369          * visible and an invisible part.  Whenever the visible part is
370          * set to a specific selector, the invisible part is loaded
371          * with from a table in memory.  At no other time is the
372          * descriptor table in memory accessed.
373          *
374          * I take advantage of this here by force loading the
375          * segments, before I zap the gdt with an invalid value.
376          */
377         load_segments();
378         /*
379          * The gdt & idt are now invalid.
380          * If you want to load them you must set up your own idt & gdt.
381          */
382         set_gdt(phys_to_virt(0), 0);
383         set_idt(phys_to_virt(0), 0);
384
385         /* now call it */
386         image->start = relocate_kernel((unsigned long)image->head,
387                                        (unsigned long)page_list,
388                                        image->start,
389                                        image->preserve_context,
390                                        sme_active());
391
392 #ifdef CONFIG_KEXEC_JUMP
393         if (image->preserve_context)
394                 restore_processor_state();
395 #endif
396
397         __ftrace_enabled_restore(save_ftrace_enabled);
398 }
399
400 /* arch-dependent functionality related to kexec file-based syscall */
401
402 #ifdef CONFIG_KEXEC_FILE
403 void *arch_kexec_kernel_image_load(struct kimage *image)
404 {
405         vfree(image->elf_headers);
406         image->elf_headers = NULL;
407
408         if (!image->fops || !image->fops->load)
409                 return ERR_PTR(-ENOEXEC);
410
411         return image->fops->load(image, image->kernel_buf,
412                                  image->kernel_buf_len, image->initrd_buf,
413                                  image->initrd_buf_len, image->cmdline_buf,
414                                  image->cmdline_buf_len);
415 }
416
417 /*
418  * Apply purgatory relocations.
419  *
420  * @pi:         Purgatory to be relocated.
421  * @section:    Section relocations applying to.
422  * @relsec:     Section containing RELAs.
423  * @symtabsec:  Corresponding symtab.
424  *
425  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
426  */
427 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
428                                      Elf_Shdr *section, const Elf_Shdr *relsec,
429                                      const Elf_Shdr *symtabsec)
430 {
431         unsigned int i;
432         Elf64_Rela *rel;
433         Elf64_Sym *sym;
434         void *location;
435         unsigned long address, sec_base, value;
436         const char *strtab, *name, *shstrtab;
437         const Elf_Shdr *sechdrs;
438
439         /* String & section header string table */
440         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
441         strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
442         shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
443
444         rel = (void *)pi->ehdr + relsec->sh_offset;
445
446         pr_debug("Applying relocate section %s to %u\n",
447                  shstrtab + relsec->sh_name, relsec->sh_info);
448
449         for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
450
451                 /*
452                  * rel[i].r_offset contains byte offset from beginning
453                  * of section to the storage unit affected.
454                  *
455                  * This is location to update. This is temporary buffer
456                  * where section is currently loaded. This will finally be
457                  * loaded to a different address later, pointed to by
458                  * ->sh_addr. kexec takes care of moving it
459                  *  (kexec_load_segment()).
460                  */
461                 location = pi->purgatory_buf;
462                 location += section->sh_offset;
463                 location += rel[i].r_offset;
464
465                 /* Final address of the location */
466                 address = section->sh_addr + rel[i].r_offset;
467
468                 /*
469                  * rel[i].r_info contains information about symbol table index
470                  * w.r.t which relocation must be made and type of relocation
471                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
472                  * these respectively.
473                  */
474                 sym = (void *)pi->ehdr + symtabsec->sh_offset;
475                 sym += ELF64_R_SYM(rel[i].r_info);
476
477                 if (sym->st_name)
478                         name = strtab + sym->st_name;
479                 else
480                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
481
482                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
483                          name, sym->st_info, sym->st_shndx, sym->st_value,
484                          sym->st_size);
485
486                 if (sym->st_shndx == SHN_UNDEF) {
487                         pr_err("Undefined symbol: %s\n", name);
488                         return -ENOEXEC;
489                 }
490
491                 if (sym->st_shndx == SHN_COMMON) {
492                         pr_err("symbol '%s' in common section\n", name);
493                         return -ENOEXEC;
494                 }
495
496                 if (sym->st_shndx == SHN_ABS)
497                         sec_base = 0;
498                 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
499                         pr_err("Invalid section %d for symbol %s\n",
500                                sym->st_shndx, name);
501                         return -ENOEXEC;
502                 } else
503                         sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
504
505                 value = sym->st_value;
506                 value += sec_base;
507                 value += rel[i].r_addend;
508
509                 switch (ELF64_R_TYPE(rel[i].r_info)) {
510                 case R_X86_64_NONE:
511                         break;
512                 case R_X86_64_64:
513                         *(u64 *)location = value;
514                         break;
515                 case R_X86_64_32:
516                         *(u32 *)location = value;
517                         if (value != *(u32 *)location)
518                                 goto overflow;
519                         break;
520                 case R_X86_64_32S:
521                         *(s32 *)location = value;
522                         if ((s64)value != *(s32 *)location)
523                                 goto overflow;
524                         break;
525                 case R_X86_64_PC32:
526                 case R_X86_64_PLT32:
527                         value -= (u64)address;
528                         *(u32 *)location = value;
529                         break;
530                 default:
531                         pr_err("Unknown rela relocation: %llu\n",
532                                ELF64_R_TYPE(rel[i].r_info));
533                         return -ENOEXEC;
534                 }
535         }
536         return 0;
537
538 overflow:
539         pr_err("Overflow in relocation type %d value 0x%lx\n",
540                (int)ELF64_R_TYPE(rel[i].r_info), value);
541         return -ENOEXEC;
542 }
543 #endif /* CONFIG_KEXEC_FILE */
544
545 static int
546 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
547 {
548         struct page *page;
549         unsigned int nr_pages;
550
551         /*
552          * For physical range: [start, end]. We must skip the unassigned
553          * crashk resource with zero-valued "end" member.
554          */
555         if (!end || start > end)
556                 return 0;
557
558         page = pfn_to_page(start >> PAGE_SHIFT);
559         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
560         if (protect)
561                 return set_pages_ro(page, nr_pages);
562         else
563                 return set_pages_rw(page, nr_pages);
564 }
565
566 static void kexec_mark_crashkres(bool protect)
567 {
568         unsigned long control;
569
570         kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
571
572         /* Don't touch the control code page used in crash_kexec().*/
573         control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
574         /* Control code page is located in the 2nd page. */
575         kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
576         control += KEXEC_CONTROL_PAGE_SIZE;
577         kexec_mark_range(control, crashk_res.end, protect);
578 }
579
580 void arch_kexec_protect_crashkres(void)
581 {
582         kexec_mark_crashkres(true);
583 }
584
585 void arch_kexec_unprotect_crashkres(void)
586 {
587         kexec_mark_crashkres(false);
588 }
589
590 /*
591  * During a traditional boot under SME, SME will encrypt the kernel,
592  * so the SME kexec kernel also needs to be un-encrypted in order to
593  * replicate a normal SME boot.
594  *
595  * During a traditional boot under SEV, the kernel has already been
596  * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
597  * order to replicate a normal SEV boot.
598  */
599 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
600 {
601         if (sev_active())
602                 return 0;
603
604         /*
605          * If SME is active we need to be sure that kexec pages are
606          * not encrypted because when we boot to the new kernel the
607          * pages won't be accessed encrypted (initially).
608          */
609         return set_memory_decrypted((unsigned long)vaddr, pages);
610 }
611
612 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
613 {
614         if (sev_active())
615                 return;
616
617         /*
618          * If SME is active we need to reset the pages back to being
619          * an encrypted mapping before freeing them.
620          */
621         set_memory_encrypted((unsigned long)vaddr, pages);
622 }