Merge tag 'nfs-for-4.20-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[linux-2.6-microblaze.git] / arch / x86 / kernel / machine_kexec_64.c
1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/init.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <asm/io_apic.h>
27 #include <asm/debugreg.h>
28 #include <asm/kexec-bzimage64.h>
29 #include <asm/setup.h>
30 #include <asm/set_memory.h>
31
32 #ifdef CONFIG_KEXEC_FILE
33 const struct kexec_file_ops * const kexec_file_loaders[] = {
34                 &kexec_bzImage64_ops,
35                 NULL
36 };
37 #endif
38
39 static void free_transition_pgtable(struct kimage *image)
40 {
41         free_page((unsigned long)image->arch.p4d);
42         image->arch.p4d = NULL;
43         free_page((unsigned long)image->arch.pud);
44         image->arch.pud = NULL;
45         free_page((unsigned long)image->arch.pmd);
46         image->arch.pmd = NULL;
47         free_page((unsigned long)image->arch.pte);
48         image->arch.pte = NULL;
49 }
50
51 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
52 {
53         p4d_t *p4d;
54         pud_t *pud;
55         pmd_t *pmd;
56         pte_t *pte;
57         unsigned long vaddr, paddr;
58         int result = -ENOMEM;
59
60         vaddr = (unsigned long)relocate_kernel;
61         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
62         pgd += pgd_index(vaddr);
63         if (!pgd_present(*pgd)) {
64                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
65                 if (!p4d)
66                         goto err;
67                 image->arch.p4d = p4d;
68                 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
69         }
70         p4d = p4d_offset(pgd, vaddr);
71         if (!p4d_present(*p4d)) {
72                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
73                 if (!pud)
74                         goto err;
75                 image->arch.pud = pud;
76                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
77         }
78         pud = pud_offset(p4d, vaddr);
79         if (!pud_present(*pud)) {
80                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
81                 if (!pmd)
82                         goto err;
83                 image->arch.pmd = pmd;
84                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
85         }
86         pmd = pmd_offset(pud, vaddr);
87         if (!pmd_present(*pmd)) {
88                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
89                 if (!pte)
90                         goto err;
91                 image->arch.pte = pte;
92                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
93         }
94         pte = pte_offset_kernel(pmd, vaddr);
95         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC));
96         return 0;
97 err:
98         return result;
99 }
100
101 static void *alloc_pgt_page(void *data)
102 {
103         struct kimage *image = (struct kimage *)data;
104         struct page *page;
105         void *p = NULL;
106
107         page = kimage_alloc_control_pages(image, 0);
108         if (page) {
109                 p = page_address(page);
110                 clear_page(p);
111         }
112
113         return p;
114 }
115
116 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
117 {
118         struct x86_mapping_info info = {
119                 .alloc_pgt_page = alloc_pgt_page,
120                 .context        = image,
121                 .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
122                 .kernpg_flag    = _KERNPG_TABLE_NOENC,
123         };
124         unsigned long mstart, mend;
125         pgd_t *level4p;
126         int result;
127         int i;
128
129         level4p = (pgd_t *)__va(start_pgtable);
130         clear_page(level4p);
131
132         if (direct_gbpages)
133                 info.direct_gbpages = true;
134
135         for (i = 0; i < nr_pfn_mapped; i++) {
136                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
137                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
138
139                 result = kernel_ident_mapping_init(&info,
140                                                  level4p, mstart, mend);
141                 if (result)
142                         return result;
143         }
144
145         /*
146          * segments's mem ranges could be outside 0 ~ max_pfn,
147          * for example when jump back to original kernel from kexeced kernel.
148          * or first kernel is booted with user mem map, and second kernel
149          * could be loaded out of that range.
150          */
151         for (i = 0; i < image->nr_segments; i++) {
152                 mstart = image->segment[i].mem;
153                 mend   = mstart + image->segment[i].memsz;
154
155                 result = kernel_ident_mapping_init(&info,
156                                                  level4p, mstart, mend);
157
158                 if (result)
159                         return result;
160         }
161
162         return init_transition_pgtable(image, level4p);
163 }
164
165 static void set_idt(void *newidt, u16 limit)
166 {
167         struct desc_ptr curidt;
168
169         /* x86-64 supports unaliged loads & stores */
170         curidt.size    = limit;
171         curidt.address = (unsigned long)newidt;
172
173         __asm__ __volatile__ (
174                 "lidtq %0\n"
175                 : : "m" (curidt)
176                 );
177 };
178
179
180 static void set_gdt(void *newgdt, u16 limit)
181 {
182         struct desc_ptr curgdt;
183
184         /* x86-64 supports unaligned loads & stores */
185         curgdt.size    = limit;
186         curgdt.address = (unsigned long)newgdt;
187
188         __asm__ __volatile__ (
189                 "lgdtq %0\n"
190                 : : "m" (curgdt)
191                 );
192 };
193
194 static void load_segments(void)
195 {
196         __asm__ __volatile__ (
197                 "\tmovl %0,%%ds\n"
198                 "\tmovl %0,%%es\n"
199                 "\tmovl %0,%%ss\n"
200                 "\tmovl %0,%%fs\n"
201                 "\tmovl %0,%%gs\n"
202                 : : "a" (__KERNEL_DS) : "memory"
203                 );
204 }
205
206 #ifdef CONFIG_KEXEC_FILE
207 /* Update purgatory as needed after various image segments have been prepared */
208 static int arch_update_purgatory(struct kimage *image)
209 {
210         int ret = 0;
211
212         if (!image->file_mode)
213                 return 0;
214
215         /* Setup copying of backup region */
216         if (image->type == KEXEC_TYPE_CRASH) {
217                 ret = kexec_purgatory_get_set_symbol(image,
218                                 "purgatory_backup_dest",
219                                 &image->arch.backup_load_addr,
220                                 sizeof(image->arch.backup_load_addr), 0);
221                 if (ret)
222                         return ret;
223
224                 ret = kexec_purgatory_get_set_symbol(image,
225                                 "purgatory_backup_src",
226                                 &image->arch.backup_src_start,
227                                 sizeof(image->arch.backup_src_start), 0);
228                 if (ret)
229                         return ret;
230
231                 ret = kexec_purgatory_get_set_symbol(image,
232                                 "purgatory_backup_sz",
233                                 &image->arch.backup_src_sz,
234                                 sizeof(image->arch.backup_src_sz), 0);
235                 if (ret)
236                         return ret;
237         }
238
239         return ret;
240 }
241 #else /* !CONFIG_KEXEC_FILE */
242 static inline int arch_update_purgatory(struct kimage *image)
243 {
244         return 0;
245 }
246 #endif /* CONFIG_KEXEC_FILE */
247
248 int machine_kexec_prepare(struct kimage *image)
249 {
250         unsigned long start_pgtable;
251         int result;
252
253         /* Calculate the offsets */
254         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
255
256         /* Setup the identity mapped 64bit page table */
257         result = init_pgtable(image, start_pgtable);
258         if (result)
259                 return result;
260
261         /* update purgatory as needed */
262         result = arch_update_purgatory(image);
263         if (result)
264                 return result;
265
266         return 0;
267 }
268
269 void machine_kexec_cleanup(struct kimage *image)
270 {
271         free_transition_pgtable(image);
272 }
273
274 /*
275  * Do not allocate memory (or fail in any way) in machine_kexec().
276  * We are past the point of no return, committed to rebooting now.
277  */
278 void machine_kexec(struct kimage *image)
279 {
280         unsigned long page_list[PAGES_NR];
281         void *control_page;
282         int save_ftrace_enabled;
283
284 #ifdef CONFIG_KEXEC_JUMP
285         if (image->preserve_context)
286                 save_processor_state();
287 #endif
288
289         save_ftrace_enabled = __ftrace_enabled_save();
290
291         /* Interrupts aren't acceptable while we reboot */
292         local_irq_disable();
293         hw_breakpoint_disable();
294
295         if (image->preserve_context) {
296 #ifdef CONFIG_X86_IO_APIC
297                 /*
298                  * We need to put APICs in legacy mode so that we can
299                  * get timer interrupts in second kernel. kexec/kdump
300                  * paths already have calls to restore_boot_irq_mode()
301                  * in one form or other. kexec jump path also need one.
302                  */
303                 clear_IO_APIC();
304                 restore_boot_irq_mode();
305 #endif
306         }
307
308         control_page = page_address(image->control_code_page) + PAGE_SIZE;
309         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
310
311         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
312         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
313         page_list[PA_TABLE_PAGE] =
314           (unsigned long)__pa(page_address(image->control_code_page));
315
316         if (image->type == KEXEC_TYPE_DEFAULT)
317                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
318                                                 << PAGE_SHIFT);
319
320         /*
321          * The segment registers are funny things, they have both a
322          * visible and an invisible part.  Whenever the visible part is
323          * set to a specific selector, the invisible part is loaded
324          * with from a table in memory.  At no other time is the
325          * descriptor table in memory accessed.
326          *
327          * I take advantage of this here by force loading the
328          * segments, before I zap the gdt with an invalid value.
329          */
330         load_segments();
331         /*
332          * The gdt & idt are now invalid.
333          * If you want to load them you must set up your own idt & gdt.
334          */
335         set_gdt(phys_to_virt(0), 0);
336         set_idt(phys_to_virt(0), 0);
337
338         /* now call it */
339         image->start = relocate_kernel((unsigned long)image->head,
340                                        (unsigned long)page_list,
341                                        image->start,
342                                        image->preserve_context,
343                                        sme_active());
344
345 #ifdef CONFIG_KEXEC_JUMP
346         if (image->preserve_context)
347                 restore_processor_state();
348 #endif
349
350         __ftrace_enabled_restore(save_ftrace_enabled);
351 }
352
353 void arch_crash_save_vmcoreinfo(void)
354 {
355         VMCOREINFO_NUMBER(phys_base);
356         VMCOREINFO_SYMBOL(init_top_pgt);
357         vmcoreinfo_append_str("NUMBER(pgtable_l5_enabled)=%d\n",
358                         pgtable_l5_enabled());
359
360 #ifdef CONFIG_NUMA
361         VMCOREINFO_SYMBOL(node_data);
362         VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
363 #endif
364         vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
365                               kaslr_offset());
366         VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
367 }
368
369 /* arch-dependent functionality related to kexec file-based syscall */
370
371 #ifdef CONFIG_KEXEC_FILE
372 void *arch_kexec_kernel_image_load(struct kimage *image)
373 {
374         vfree(image->arch.elf_headers);
375         image->arch.elf_headers = NULL;
376
377         if (!image->fops || !image->fops->load)
378                 return ERR_PTR(-ENOEXEC);
379
380         return image->fops->load(image, image->kernel_buf,
381                                  image->kernel_buf_len, image->initrd_buf,
382                                  image->initrd_buf_len, image->cmdline_buf,
383                                  image->cmdline_buf_len);
384 }
385
386 /*
387  * Apply purgatory relocations.
388  *
389  * @pi:         Purgatory to be relocated.
390  * @section:    Section relocations applying to.
391  * @relsec:     Section containing RELAs.
392  * @symtabsec:  Corresponding symtab.
393  *
394  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
395  */
396 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
397                                      Elf_Shdr *section, const Elf_Shdr *relsec,
398                                      const Elf_Shdr *symtabsec)
399 {
400         unsigned int i;
401         Elf64_Rela *rel;
402         Elf64_Sym *sym;
403         void *location;
404         unsigned long address, sec_base, value;
405         const char *strtab, *name, *shstrtab;
406         const Elf_Shdr *sechdrs;
407
408         /* String & section header string table */
409         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
410         strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
411         shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
412
413         rel = (void *)pi->ehdr + relsec->sh_offset;
414
415         pr_debug("Applying relocate section %s to %u\n",
416                  shstrtab + relsec->sh_name, relsec->sh_info);
417
418         for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
419
420                 /*
421                  * rel[i].r_offset contains byte offset from beginning
422                  * of section to the storage unit affected.
423                  *
424                  * This is location to update. This is temporary buffer
425                  * where section is currently loaded. This will finally be
426                  * loaded to a different address later, pointed to by
427                  * ->sh_addr. kexec takes care of moving it
428                  *  (kexec_load_segment()).
429                  */
430                 location = pi->purgatory_buf;
431                 location += section->sh_offset;
432                 location += rel[i].r_offset;
433
434                 /* Final address of the location */
435                 address = section->sh_addr + rel[i].r_offset;
436
437                 /*
438                  * rel[i].r_info contains information about symbol table index
439                  * w.r.t which relocation must be made and type of relocation
440                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
441                  * these respectively.
442                  */
443                 sym = (void *)pi->ehdr + symtabsec->sh_offset;
444                 sym += ELF64_R_SYM(rel[i].r_info);
445
446                 if (sym->st_name)
447                         name = strtab + sym->st_name;
448                 else
449                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
450
451                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
452                          name, sym->st_info, sym->st_shndx, sym->st_value,
453                          sym->st_size);
454
455                 if (sym->st_shndx == SHN_UNDEF) {
456                         pr_err("Undefined symbol: %s\n", name);
457                         return -ENOEXEC;
458                 }
459
460                 if (sym->st_shndx == SHN_COMMON) {
461                         pr_err("symbol '%s' in common section\n", name);
462                         return -ENOEXEC;
463                 }
464
465                 if (sym->st_shndx == SHN_ABS)
466                         sec_base = 0;
467                 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
468                         pr_err("Invalid section %d for symbol %s\n",
469                                sym->st_shndx, name);
470                         return -ENOEXEC;
471                 } else
472                         sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
473
474                 value = sym->st_value;
475                 value += sec_base;
476                 value += rel[i].r_addend;
477
478                 switch (ELF64_R_TYPE(rel[i].r_info)) {
479                 case R_X86_64_NONE:
480                         break;
481                 case R_X86_64_64:
482                         *(u64 *)location = value;
483                         break;
484                 case R_X86_64_32:
485                         *(u32 *)location = value;
486                         if (value != *(u32 *)location)
487                                 goto overflow;
488                         break;
489                 case R_X86_64_32S:
490                         *(s32 *)location = value;
491                         if ((s64)value != *(s32 *)location)
492                                 goto overflow;
493                         break;
494                 case R_X86_64_PC32:
495                 case R_X86_64_PLT32:
496                         value -= (u64)address;
497                         *(u32 *)location = value;
498                         break;
499                 default:
500                         pr_err("Unknown rela relocation: %llu\n",
501                                ELF64_R_TYPE(rel[i].r_info));
502                         return -ENOEXEC;
503                 }
504         }
505         return 0;
506
507 overflow:
508         pr_err("Overflow in relocation type %d value 0x%lx\n",
509                (int)ELF64_R_TYPE(rel[i].r_info), value);
510         return -ENOEXEC;
511 }
512 #endif /* CONFIG_KEXEC_FILE */
513
514 static int
515 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
516 {
517         struct page *page;
518         unsigned int nr_pages;
519
520         /*
521          * For physical range: [start, end]. We must skip the unassigned
522          * crashk resource with zero-valued "end" member.
523          */
524         if (!end || start > end)
525                 return 0;
526
527         page = pfn_to_page(start >> PAGE_SHIFT);
528         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
529         if (protect)
530                 return set_pages_ro(page, nr_pages);
531         else
532                 return set_pages_rw(page, nr_pages);
533 }
534
535 static void kexec_mark_crashkres(bool protect)
536 {
537         unsigned long control;
538
539         kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
540
541         /* Don't touch the control code page used in crash_kexec().*/
542         control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
543         /* Control code page is located in the 2nd page. */
544         kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
545         control += KEXEC_CONTROL_PAGE_SIZE;
546         kexec_mark_range(control, crashk_res.end, protect);
547 }
548
549 void arch_kexec_protect_crashkres(void)
550 {
551         kexec_mark_crashkres(true);
552 }
553
554 void arch_kexec_unprotect_crashkres(void)
555 {
556         kexec_mark_crashkres(false);
557 }
558
559 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
560 {
561         /*
562          * If SME is active we need to be sure that kexec pages are
563          * not encrypted because when we boot to the new kernel the
564          * pages won't be accessed encrypted (initially).
565          */
566         return set_memory_decrypted((unsigned long)vaddr, pages);
567 }
568
569 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
570 {
571         /*
572          * If SME is active we need to reset the pages back to being
573          * an encrypted mapping before freeing them.
574          */
575         set_memory_encrypted((unsigned long)vaddr, pages);
576 }