Merge tag 'memblock-v5.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt...
[linux-2.6-microblaze.git] / arch / x86 / kernel / machine_kexec_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * handle transition of Linux booting another kernel
4  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
5  */
6
7 #define pr_fmt(fmt)     "kexec: " fmt
8
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20 #include <linux/cc_platform.h>
21
22 #include <asm/init.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
30 #include <asm/cpu.h>
31
32 #ifdef CONFIG_ACPI
33 /*
34  * Used while adding mapping for ACPI tables.
35  * Can be reused when other iomem regions need be mapped
36  */
37 struct init_pgtable_data {
38         struct x86_mapping_info *info;
39         pgd_t *level4p;
40 };
41
42 static int mem_region_callback(struct resource *res, void *arg)
43 {
44         struct init_pgtable_data *data = arg;
45         unsigned long mstart, mend;
46
47         mstart = res->start;
48         mend = mstart + resource_size(res) - 1;
49
50         return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
51 }
52
53 static int
54 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
55 {
56         struct init_pgtable_data data;
57         unsigned long flags;
58         int ret;
59
60         data.info = info;
61         data.level4p = level4p;
62         flags = IORESOURCE_MEM | IORESOURCE_BUSY;
63
64         ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
65                                   &data, mem_region_callback);
66         if (ret && ret != -EINVAL)
67                 return ret;
68
69         /* ACPI tables could be located in ACPI Non-volatile Storage region */
70         ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
71                                   &data, mem_region_callback);
72         if (ret && ret != -EINVAL)
73                 return ret;
74
75         return 0;
76 }
77 #else
78 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
79 #endif
80
81 #ifdef CONFIG_KEXEC_FILE
82 const struct kexec_file_ops * const kexec_file_loaders[] = {
83                 &kexec_bzImage64_ops,
84                 NULL
85 };
86 #endif
87
88 static int
89 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
90 {
91 #ifdef CONFIG_EFI
92         unsigned long mstart, mend;
93
94         if (!efi_enabled(EFI_BOOT))
95                 return 0;
96
97         mstart = (boot_params.efi_info.efi_systab |
98                         ((u64)boot_params.efi_info.efi_systab_hi<<32));
99
100         if (efi_enabled(EFI_64BIT))
101                 mend = mstart + sizeof(efi_system_table_64_t);
102         else
103                 mend = mstart + sizeof(efi_system_table_32_t);
104
105         if (!mstart)
106                 return 0;
107
108         return kernel_ident_mapping_init(info, level4p, mstart, mend);
109 #endif
110         return 0;
111 }
112
113 static void free_transition_pgtable(struct kimage *image)
114 {
115         free_page((unsigned long)image->arch.p4d);
116         image->arch.p4d = NULL;
117         free_page((unsigned long)image->arch.pud);
118         image->arch.pud = NULL;
119         free_page((unsigned long)image->arch.pmd);
120         image->arch.pmd = NULL;
121         free_page((unsigned long)image->arch.pte);
122         image->arch.pte = NULL;
123 }
124
125 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
126 {
127         pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
128         unsigned long vaddr, paddr;
129         int result = -ENOMEM;
130         p4d_t *p4d;
131         pud_t *pud;
132         pmd_t *pmd;
133         pte_t *pte;
134
135         vaddr = (unsigned long)relocate_kernel;
136         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
137         pgd += pgd_index(vaddr);
138         if (!pgd_present(*pgd)) {
139                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
140                 if (!p4d)
141                         goto err;
142                 image->arch.p4d = p4d;
143                 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
144         }
145         p4d = p4d_offset(pgd, vaddr);
146         if (!p4d_present(*p4d)) {
147                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
148                 if (!pud)
149                         goto err;
150                 image->arch.pud = pud;
151                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
152         }
153         pud = pud_offset(p4d, vaddr);
154         if (!pud_present(*pud)) {
155                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
156                 if (!pmd)
157                         goto err;
158                 image->arch.pmd = pmd;
159                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
160         }
161         pmd = pmd_offset(pud, vaddr);
162         if (!pmd_present(*pmd)) {
163                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
164                 if (!pte)
165                         goto err;
166                 image->arch.pte = pte;
167                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
168         }
169         pte = pte_offset_kernel(pmd, vaddr);
170
171         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
172                 prot = PAGE_KERNEL_EXEC;
173
174         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
175         return 0;
176 err:
177         return result;
178 }
179
180 static void *alloc_pgt_page(void *data)
181 {
182         struct kimage *image = (struct kimage *)data;
183         struct page *page;
184         void *p = NULL;
185
186         page = kimage_alloc_control_pages(image, 0);
187         if (page) {
188                 p = page_address(page);
189                 clear_page(p);
190         }
191
192         return p;
193 }
194
195 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
196 {
197         struct x86_mapping_info info = {
198                 .alloc_pgt_page = alloc_pgt_page,
199                 .context        = image,
200                 .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
201                 .kernpg_flag    = _KERNPG_TABLE_NOENC,
202         };
203         unsigned long mstart, mend;
204         pgd_t *level4p;
205         int result;
206         int i;
207
208         level4p = (pgd_t *)__va(start_pgtable);
209         clear_page(level4p);
210
211         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
212                 info.page_flag   |= _PAGE_ENC;
213                 info.kernpg_flag |= _PAGE_ENC;
214         }
215
216         if (direct_gbpages)
217                 info.direct_gbpages = true;
218
219         for (i = 0; i < nr_pfn_mapped; i++) {
220                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
221                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
222
223                 result = kernel_ident_mapping_init(&info,
224                                                  level4p, mstart, mend);
225                 if (result)
226                         return result;
227         }
228
229         /*
230          * segments's mem ranges could be outside 0 ~ max_pfn,
231          * for example when jump back to original kernel from kexeced kernel.
232          * or first kernel is booted with user mem map, and second kernel
233          * could be loaded out of that range.
234          */
235         for (i = 0; i < image->nr_segments; i++) {
236                 mstart = image->segment[i].mem;
237                 mend   = mstart + image->segment[i].memsz;
238
239                 result = kernel_ident_mapping_init(&info,
240                                                  level4p, mstart, mend);
241
242                 if (result)
243                         return result;
244         }
245
246         /*
247          * Prepare EFI systab and ACPI tables for kexec kernel since they are
248          * not covered by pfn_mapped.
249          */
250         result = map_efi_systab(&info, level4p);
251         if (result)
252                 return result;
253
254         result = map_acpi_tables(&info, level4p);
255         if (result)
256                 return result;
257
258         return init_transition_pgtable(image, level4p);
259 }
260
261 static void load_segments(void)
262 {
263         __asm__ __volatile__ (
264                 "\tmovl %0,%%ds\n"
265                 "\tmovl %0,%%es\n"
266                 "\tmovl %0,%%ss\n"
267                 "\tmovl %0,%%fs\n"
268                 "\tmovl %0,%%gs\n"
269                 : : "a" (__KERNEL_DS) : "memory"
270                 );
271 }
272
273 int machine_kexec_prepare(struct kimage *image)
274 {
275         unsigned long start_pgtable;
276         int result;
277
278         /* Calculate the offsets */
279         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
280
281         /* Setup the identity mapped 64bit page table */
282         result = init_pgtable(image, start_pgtable);
283         if (result)
284                 return result;
285
286         return 0;
287 }
288
289 void machine_kexec_cleanup(struct kimage *image)
290 {
291         free_transition_pgtable(image);
292 }
293
294 /*
295  * Do not allocate memory (or fail in any way) in machine_kexec().
296  * We are past the point of no return, committed to rebooting now.
297  */
298 void machine_kexec(struct kimage *image)
299 {
300         unsigned long page_list[PAGES_NR];
301         void *control_page;
302         int save_ftrace_enabled;
303
304 #ifdef CONFIG_KEXEC_JUMP
305         if (image->preserve_context)
306                 save_processor_state();
307 #endif
308
309         save_ftrace_enabled = __ftrace_enabled_save();
310
311         /* Interrupts aren't acceptable while we reboot */
312         local_irq_disable();
313         hw_breakpoint_disable();
314         cet_disable();
315
316         if (image->preserve_context) {
317 #ifdef CONFIG_X86_IO_APIC
318                 /*
319                  * We need to put APICs in legacy mode so that we can
320                  * get timer interrupts in second kernel. kexec/kdump
321                  * paths already have calls to restore_boot_irq_mode()
322                  * in one form or other. kexec jump path also need one.
323                  */
324                 clear_IO_APIC();
325                 restore_boot_irq_mode();
326 #endif
327         }
328
329         control_page = page_address(image->control_code_page) + PAGE_SIZE;
330         __memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
331
332         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
333         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
334         page_list[PA_TABLE_PAGE] =
335           (unsigned long)__pa(page_address(image->control_code_page));
336
337         if (image->type == KEXEC_TYPE_DEFAULT)
338                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
339                                                 << PAGE_SHIFT);
340
341         /*
342          * The segment registers are funny things, they have both a
343          * visible and an invisible part.  Whenever the visible part is
344          * set to a specific selector, the invisible part is loaded
345          * with from a table in memory.  At no other time is the
346          * descriptor table in memory accessed.
347          *
348          * I take advantage of this here by force loading the
349          * segments, before I zap the gdt with an invalid value.
350          */
351         load_segments();
352         /*
353          * The gdt & idt are now invalid.
354          * If you want to load them you must set up your own idt & gdt.
355          */
356         native_idt_invalidate();
357         native_gdt_invalidate();
358
359         /* now call it */
360         image->start = relocate_kernel((unsigned long)image->head,
361                                        (unsigned long)page_list,
362                                        image->start,
363                                        image->preserve_context,
364                                        cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT));
365
366 #ifdef CONFIG_KEXEC_JUMP
367         if (image->preserve_context)
368                 restore_processor_state();
369 #endif
370
371         __ftrace_enabled_restore(save_ftrace_enabled);
372 }
373
374 /* arch-dependent functionality related to kexec file-based syscall */
375
376 #ifdef CONFIG_KEXEC_FILE
377 void *arch_kexec_kernel_image_load(struct kimage *image)
378 {
379         if (!image->fops || !image->fops->load)
380                 return ERR_PTR(-ENOEXEC);
381
382         return image->fops->load(image, image->kernel_buf,
383                                  image->kernel_buf_len, image->initrd_buf,
384                                  image->initrd_buf_len, image->cmdline_buf,
385                                  image->cmdline_buf_len);
386 }
387
388 /*
389  * Apply purgatory relocations.
390  *
391  * @pi:         Purgatory to be relocated.
392  * @section:    Section relocations applying to.
393  * @relsec:     Section containing RELAs.
394  * @symtabsec:  Corresponding symtab.
395  *
396  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
397  */
398 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
399                                      Elf_Shdr *section, const Elf_Shdr *relsec,
400                                      const Elf_Shdr *symtabsec)
401 {
402         unsigned int i;
403         Elf64_Rela *rel;
404         Elf64_Sym *sym;
405         void *location;
406         unsigned long address, sec_base, value;
407         const char *strtab, *name, *shstrtab;
408         const Elf_Shdr *sechdrs;
409
410         /* String & section header string table */
411         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
412         strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
413         shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
414
415         rel = (void *)pi->ehdr + relsec->sh_offset;
416
417         pr_debug("Applying relocate section %s to %u\n",
418                  shstrtab + relsec->sh_name, relsec->sh_info);
419
420         for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
421
422                 /*
423                  * rel[i].r_offset contains byte offset from beginning
424                  * of section to the storage unit affected.
425                  *
426                  * This is location to update. This is temporary buffer
427                  * where section is currently loaded. This will finally be
428                  * loaded to a different address later, pointed to by
429                  * ->sh_addr. kexec takes care of moving it
430                  *  (kexec_load_segment()).
431                  */
432                 location = pi->purgatory_buf;
433                 location += section->sh_offset;
434                 location += rel[i].r_offset;
435
436                 /* Final address of the location */
437                 address = section->sh_addr + rel[i].r_offset;
438
439                 /*
440                  * rel[i].r_info contains information about symbol table index
441                  * w.r.t which relocation must be made and type of relocation
442                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
443                  * these respectively.
444                  */
445                 sym = (void *)pi->ehdr + symtabsec->sh_offset;
446                 sym += ELF64_R_SYM(rel[i].r_info);
447
448                 if (sym->st_name)
449                         name = strtab + sym->st_name;
450                 else
451                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
452
453                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
454                          name, sym->st_info, sym->st_shndx, sym->st_value,
455                          sym->st_size);
456
457                 if (sym->st_shndx == SHN_UNDEF) {
458                         pr_err("Undefined symbol: %s\n", name);
459                         return -ENOEXEC;
460                 }
461
462                 if (sym->st_shndx == SHN_COMMON) {
463                         pr_err("symbol '%s' in common section\n", name);
464                         return -ENOEXEC;
465                 }
466
467                 if (sym->st_shndx == SHN_ABS)
468                         sec_base = 0;
469                 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
470                         pr_err("Invalid section %d for symbol %s\n",
471                                sym->st_shndx, name);
472                         return -ENOEXEC;
473                 } else
474                         sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
475
476                 value = sym->st_value;
477                 value += sec_base;
478                 value += rel[i].r_addend;
479
480                 switch (ELF64_R_TYPE(rel[i].r_info)) {
481                 case R_X86_64_NONE:
482                         break;
483                 case R_X86_64_64:
484                         *(u64 *)location = value;
485                         break;
486                 case R_X86_64_32:
487                         *(u32 *)location = value;
488                         if (value != *(u32 *)location)
489                                 goto overflow;
490                         break;
491                 case R_X86_64_32S:
492                         *(s32 *)location = value;
493                         if ((s64)value != *(s32 *)location)
494                                 goto overflow;
495                         break;
496                 case R_X86_64_PC32:
497                 case R_X86_64_PLT32:
498                         value -= (u64)address;
499                         *(u32 *)location = value;
500                         break;
501                 default:
502                         pr_err("Unknown rela relocation: %llu\n",
503                                ELF64_R_TYPE(rel[i].r_info));
504                         return -ENOEXEC;
505                 }
506         }
507         return 0;
508
509 overflow:
510         pr_err("Overflow in relocation type %d value 0x%lx\n",
511                (int)ELF64_R_TYPE(rel[i].r_info), value);
512         return -ENOEXEC;
513 }
514
515 int arch_kimage_file_post_load_cleanup(struct kimage *image)
516 {
517         vfree(image->elf_headers);
518         image->elf_headers = NULL;
519         image->elf_headers_sz = 0;
520
521         return kexec_image_post_load_cleanup_default(image);
522 }
523 #endif /* CONFIG_KEXEC_FILE */
524
525 static int
526 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
527 {
528         struct page *page;
529         unsigned int nr_pages;
530
531         /*
532          * For physical range: [start, end]. We must skip the unassigned
533          * crashk resource with zero-valued "end" member.
534          */
535         if (!end || start > end)
536                 return 0;
537
538         page = pfn_to_page(start >> PAGE_SHIFT);
539         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
540         if (protect)
541                 return set_pages_ro(page, nr_pages);
542         else
543                 return set_pages_rw(page, nr_pages);
544 }
545
546 static void kexec_mark_crashkres(bool protect)
547 {
548         unsigned long control;
549
550         kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
551
552         /* Don't touch the control code page used in crash_kexec().*/
553         control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
554         /* Control code page is located in the 2nd page. */
555         kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
556         control += KEXEC_CONTROL_PAGE_SIZE;
557         kexec_mark_range(control, crashk_res.end, protect);
558 }
559
560 void arch_kexec_protect_crashkres(void)
561 {
562         kexec_mark_crashkres(true);
563 }
564
565 void arch_kexec_unprotect_crashkres(void)
566 {
567         kexec_mark_crashkres(false);
568 }
569
570 /*
571  * During a traditional boot under SME, SME will encrypt the kernel,
572  * so the SME kexec kernel also needs to be un-encrypted in order to
573  * replicate a normal SME boot.
574  *
575  * During a traditional boot under SEV, the kernel has already been
576  * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
577  * order to replicate a normal SEV boot.
578  */
579 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
580 {
581         if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
582                 return 0;
583
584         /*
585          * If host memory encryption is active we need to be sure that kexec
586          * pages are not encrypted because when we boot to the new kernel the
587          * pages won't be accessed encrypted (initially).
588          */
589         return set_memory_decrypted((unsigned long)vaddr, pages);
590 }
591
592 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
593 {
594         if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
595                 return;
596
597         /*
598          * If host memory encryption is active we need to reset the pages back
599          * to being an encrypted mapping before freeing them.
600          */
601         set_memory_encrypted((unsigned long)vaddr, pages);
602 }