Merge tag 'x86-entry-2021-02-24' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / kernel / kvmclock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*  KVM paravirtual clock driver. A clocksource implementation
3     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
4 */
5
6 #include <linux/clocksource.h>
7 #include <linux/kvm_para.h>
8 #include <asm/pvclock.h>
9 #include <asm/msr.h>
10 #include <asm/apic.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/cpuhotplug.h>
14 #include <linux/sched.h>
15 #include <linux/sched/clock.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/set_memory.h>
19
20 #include <asm/hypervisor.h>
21 #include <asm/mem_encrypt.h>
22 #include <asm/x86_init.h>
23 #include <asm/reboot.h>
24 #include <asm/kvmclock.h>
25
26 static int kvmclock __initdata = 1;
27 static int kvmclock_vsyscall __initdata = 1;
28 static int msr_kvm_system_time __ro_after_init = MSR_KVM_SYSTEM_TIME;
29 static int msr_kvm_wall_clock __ro_after_init = MSR_KVM_WALL_CLOCK;
30 static u64 kvm_sched_clock_offset __ro_after_init;
31
32 static int __init parse_no_kvmclock(char *arg)
33 {
34         kvmclock = 0;
35         return 0;
36 }
37 early_param("no-kvmclock", parse_no_kvmclock);
38
39 static int __init parse_no_kvmclock_vsyscall(char *arg)
40 {
41         kvmclock_vsyscall = 0;
42         return 0;
43 }
44 early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
45
46 /* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
47 #define HVC_BOOT_ARRAY_SIZE \
48         (PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
49
50 static struct pvclock_vsyscall_time_info
51                         hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
52 static struct pvclock_wall_clock wall_clock __bss_decrypted;
53 static DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
54 static struct pvclock_vsyscall_time_info *hvclock_mem;
55
56 static inline struct pvclock_vcpu_time_info *this_cpu_pvti(void)
57 {
58         return &this_cpu_read(hv_clock_per_cpu)->pvti;
59 }
60
61 static inline struct pvclock_vsyscall_time_info *this_cpu_hvclock(void)
62 {
63         return this_cpu_read(hv_clock_per_cpu);
64 }
65
66 /*
67  * The wallclock is the time of day when we booted. Since then, some time may
68  * have elapsed since the hypervisor wrote the data. So we try to account for
69  * that with system time
70  */
71 static void kvm_get_wallclock(struct timespec64 *now)
72 {
73         wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
74         preempt_disable();
75         pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
76         preempt_enable();
77 }
78
79 static int kvm_set_wallclock(const struct timespec64 *now)
80 {
81         return -ENODEV;
82 }
83
84 static u64 kvm_clock_read(void)
85 {
86         u64 ret;
87
88         preempt_disable_notrace();
89         ret = pvclock_clocksource_read(this_cpu_pvti());
90         preempt_enable_notrace();
91         return ret;
92 }
93
94 static u64 kvm_clock_get_cycles(struct clocksource *cs)
95 {
96         return kvm_clock_read();
97 }
98
99 static u64 kvm_sched_clock_read(void)
100 {
101         return kvm_clock_read() - kvm_sched_clock_offset;
102 }
103
104 static inline void kvm_sched_clock_init(bool stable)
105 {
106         if (!stable)
107                 clear_sched_clock_stable();
108         kvm_sched_clock_offset = kvm_clock_read();
109         pv_ops.time.sched_clock = kvm_sched_clock_read;
110
111         pr_info("kvm-clock: using sched offset of %llu cycles",
112                 kvm_sched_clock_offset);
113
114         BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
115                 sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
116 }
117
118 /*
119  * If we don't do that, there is the possibility that the guest
120  * will calibrate under heavy load - thus, getting a lower lpj -
121  * and execute the delays themselves without load. This is wrong,
122  * because no delay loop can finish beforehand.
123  * Any heuristics is subject to fail, because ultimately, a large
124  * poll of guests can be running and trouble each other. So we preset
125  * lpj here
126  */
127 static unsigned long kvm_get_tsc_khz(void)
128 {
129         setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
130         return pvclock_tsc_khz(this_cpu_pvti());
131 }
132
133 static void __init kvm_get_preset_lpj(void)
134 {
135         unsigned long khz;
136         u64 lpj;
137
138         khz = kvm_get_tsc_khz();
139
140         lpj = ((u64)khz * 1000);
141         do_div(lpj, HZ);
142         preset_lpj = lpj;
143 }
144
145 bool kvm_check_and_clear_guest_paused(void)
146 {
147         struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
148         bool ret = false;
149
150         if (!src)
151                 return ret;
152
153         if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
154                 src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
155                 pvclock_touch_watchdogs();
156                 ret = true;
157         }
158         return ret;
159 }
160
161 static int kvm_cs_enable(struct clocksource *cs)
162 {
163         vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
164         return 0;
165 }
166
167 struct clocksource kvm_clock = {
168         .name   = "kvm-clock",
169         .read   = kvm_clock_get_cycles,
170         .rating = 400,
171         .mask   = CLOCKSOURCE_MASK(64),
172         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
173         .enable = kvm_cs_enable,
174 };
175 EXPORT_SYMBOL_GPL(kvm_clock);
176
177 static void kvm_register_clock(char *txt)
178 {
179         struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
180         u64 pa;
181
182         if (!src)
183                 return;
184
185         pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
186         wrmsrl(msr_kvm_system_time, pa);
187         pr_info("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
188 }
189
190 static void kvm_save_sched_clock_state(void)
191 {
192 }
193
194 static void kvm_restore_sched_clock_state(void)
195 {
196         kvm_register_clock("primary cpu clock, resume");
197 }
198
199 #ifdef CONFIG_X86_LOCAL_APIC
200 static void kvm_setup_secondary_clock(void)
201 {
202         kvm_register_clock("secondary cpu clock");
203 }
204 #endif
205
206 /*
207  * After the clock is registered, the host will keep writing to the
208  * registered memory location. If the guest happens to shutdown, this memory
209  * won't be valid. In cases like kexec, in which you install a new kernel, this
210  * means a random memory location will be kept being written. So before any
211  * kind of shutdown from our side, we unregister the clock by writing anything
212  * that does not have the 'enable' bit set in the msr
213  */
214 #ifdef CONFIG_KEXEC_CORE
215 static void kvm_crash_shutdown(struct pt_regs *regs)
216 {
217         native_write_msr(msr_kvm_system_time, 0, 0);
218         kvm_disable_steal_time();
219         native_machine_crash_shutdown(regs);
220 }
221 #endif
222
223 static void kvm_shutdown(void)
224 {
225         native_write_msr(msr_kvm_system_time, 0, 0);
226         kvm_disable_steal_time();
227         native_machine_shutdown();
228 }
229
230 static void __init kvmclock_init_mem(void)
231 {
232         unsigned long ncpus;
233         unsigned int order;
234         struct page *p;
235         int r;
236
237         if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus())
238                 return;
239
240         ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE;
241         order = get_order(ncpus * sizeof(*hvclock_mem));
242
243         p = alloc_pages(GFP_KERNEL, order);
244         if (!p) {
245                 pr_warn("%s: failed to alloc %d pages", __func__, (1U << order));
246                 return;
247         }
248
249         hvclock_mem = page_address(p);
250
251         /*
252          * hvclock is shared between the guest and the hypervisor, must
253          * be mapped decrypted.
254          */
255         if (sev_active()) {
256                 r = set_memory_decrypted((unsigned long) hvclock_mem,
257                                          1UL << order);
258                 if (r) {
259                         __free_pages(p, order);
260                         hvclock_mem = NULL;
261                         pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n");
262                         return;
263                 }
264         }
265
266         memset(hvclock_mem, 0, PAGE_SIZE << order);
267 }
268
269 static int __init kvm_setup_vsyscall_timeinfo(void)
270 {
271 #ifdef CONFIG_X86_64
272         u8 flags;
273
274         if (!per_cpu(hv_clock_per_cpu, 0) || !kvmclock_vsyscall)
275                 return 0;
276
277         flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
278         if (!(flags & PVCLOCK_TSC_STABLE_BIT))
279                 return 0;
280
281         kvm_clock.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
282 #endif
283
284         kvmclock_init_mem();
285
286         return 0;
287 }
288 early_initcall(kvm_setup_vsyscall_timeinfo);
289
290 static int kvmclock_setup_percpu(unsigned int cpu)
291 {
292         struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
293
294         /*
295          * The per cpu area setup replicates CPU0 data to all cpu
296          * pointers. So carefully check. CPU0 has been set up in init
297          * already.
298          */
299         if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
300                 return 0;
301
302         /* Use the static page for the first CPUs, allocate otherwise */
303         if (cpu < HVC_BOOT_ARRAY_SIZE)
304                 p = &hv_clock_boot[cpu];
305         else if (hvclock_mem)
306                 p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE;
307         else
308                 return -ENOMEM;
309
310         per_cpu(hv_clock_per_cpu, cpu) = p;
311         return p ? 0 : -ENOMEM;
312 }
313
314 void __init kvmclock_init(void)
315 {
316         u8 flags;
317
318         if (!kvm_para_available() || !kvmclock)
319                 return;
320
321         if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
322                 msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
323                 msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
324         } else if (!kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
325                 return;
326         }
327
328         if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
329                               kvmclock_setup_percpu, NULL) < 0) {
330                 return;
331         }
332
333         pr_info("kvm-clock: Using msrs %x and %x",
334                 msr_kvm_system_time, msr_kvm_wall_clock);
335
336         this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
337         kvm_register_clock("primary cpu clock");
338         pvclock_set_pvti_cpu0_va(hv_clock_boot);
339
340         if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
341                 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
342
343         flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
344         kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
345
346         x86_platform.calibrate_tsc = kvm_get_tsc_khz;
347         x86_platform.calibrate_cpu = kvm_get_tsc_khz;
348         x86_platform.get_wallclock = kvm_get_wallclock;
349         x86_platform.set_wallclock = kvm_set_wallclock;
350 #ifdef CONFIG_X86_LOCAL_APIC
351         x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
352 #endif
353         x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
354         x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
355         machine_ops.shutdown  = kvm_shutdown;
356 #ifdef CONFIG_KEXEC_CORE
357         machine_ops.crash_shutdown  = kvm_crash_shutdown;
358 #endif
359         kvm_get_preset_lpj();
360
361         /*
362          * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate
363          * with P/T states and does not stop in deep C-states.
364          *
365          * Invariant TSC exposed by host means kvmclock is not necessary:
366          * can use TSC as clocksource.
367          *
368          */
369         if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
370             boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
371             !check_tsc_unstable())
372                 kvm_clock.rating = 299;
373
374         clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
375         pv_info.name = "KVM";
376 }