1f6ac5aaa9043c0c9661a3259b002eeb02e9c0fb
[linux-2.6-microblaze.git] / arch / x86 / kernel / kvmclock.c
1 /*  KVM paravirtual clock driver. A clocksource implementation
2     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
3
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18
19 #include <linux/clocksource.h>
20 #include <linux/kvm_para.h>
21 #include <asm/pvclock.h>
22 #include <asm/msr.h>
23 #include <asm/apic.h>
24 #include <linux/percpu.h>
25 #include <linux/hardirq.h>
26 #include <linux/sched.h>
27 #include <linux/sched/clock.h>
28 #include <linux/mm.h>
29
30 #include <asm/mem_encrypt.h>
31 #include <asm/x86_init.h>
32 #include <asm/reboot.h>
33 #include <asm/kvmclock.h>
34
35 static int kvmclock __ro_after_init = 1;
36 static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
37 static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
38 static u64 kvm_sched_clock_offset;
39
40 static int parse_no_kvmclock(char *arg)
41 {
42         kvmclock = 0;
43         return 0;
44 }
45 early_param("no-kvmclock", parse_no_kvmclock);
46
47 /* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
48 #define HV_CLOCK_SIZE   (sizeof(struct pvclock_vsyscall_time_info) * NR_CPUS)
49 #define WALL_CLOCK_SIZE (sizeof(struct pvclock_wall_clock))
50
51 static u8 hv_clock_mem[PAGE_ALIGN(HV_CLOCK_SIZE)] __aligned(PAGE_SIZE);
52 static u8 wall_clock_mem[PAGE_ALIGN(WALL_CLOCK_SIZE)] __aligned(PAGE_SIZE);
53
54 /* The hypervisor will put information about time periodically here */
55 static struct pvclock_vsyscall_time_info *hv_clock;
56 static struct pvclock_wall_clock *wall_clock;
57
58 /*
59  * The wallclock is the time of day when we booted. Since then, some time may
60  * have elapsed since the hypervisor wrote the data. So we try to account for
61  * that with system time
62  */
63 static void kvm_get_wallclock(struct timespec64 *now)
64 {
65         struct pvclock_vcpu_time_info *vcpu_time;
66         int low, high;
67         int cpu;
68
69         low = (int)slow_virt_to_phys(wall_clock);
70         high = ((u64)slow_virt_to_phys(wall_clock) >> 32);
71
72         native_write_msr(msr_kvm_wall_clock, low, high);
73
74         cpu = get_cpu();
75
76         vcpu_time = &hv_clock[cpu].pvti;
77         pvclock_read_wallclock(wall_clock, vcpu_time, now);
78
79         put_cpu();
80 }
81
82 static int kvm_set_wallclock(const struct timespec64 *now)
83 {
84         return -ENODEV;
85 }
86
87 static u64 kvm_clock_read(void)
88 {
89         struct pvclock_vcpu_time_info *src;
90         u64 ret;
91         int cpu;
92
93         preempt_disable_notrace();
94         cpu = smp_processor_id();
95         src = &hv_clock[cpu].pvti;
96         ret = pvclock_clocksource_read(src);
97         preempt_enable_notrace();
98         return ret;
99 }
100
101 static u64 kvm_clock_get_cycles(struct clocksource *cs)
102 {
103         return kvm_clock_read();
104 }
105
106 static u64 kvm_sched_clock_read(void)
107 {
108         return kvm_clock_read() - kvm_sched_clock_offset;
109 }
110
111 static inline void kvm_sched_clock_init(bool stable)
112 {
113         if (!stable) {
114                 pv_time_ops.sched_clock = kvm_clock_read;
115                 clear_sched_clock_stable();
116                 return;
117         }
118
119         kvm_sched_clock_offset = kvm_clock_read();
120         pv_time_ops.sched_clock = kvm_sched_clock_read;
121
122         printk(KERN_INFO "kvm-clock: using sched offset of %llu cycles\n",
123                         kvm_sched_clock_offset);
124
125         BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
126                  sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
127 }
128
129 /*
130  * If we don't do that, there is the possibility that the guest
131  * will calibrate under heavy load - thus, getting a lower lpj -
132  * and execute the delays themselves without load. This is wrong,
133  * because no delay loop can finish beforehand.
134  * Any heuristics is subject to fail, because ultimately, a large
135  * poll of guests can be running and trouble each other. So we preset
136  * lpj here
137  */
138 static unsigned long kvm_get_tsc_khz(void)
139 {
140         struct pvclock_vcpu_time_info *src;
141         int cpu;
142         unsigned long tsc_khz;
143
144         cpu = get_cpu();
145         src = &hv_clock[cpu].pvti;
146         tsc_khz = pvclock_tsc_khz(src);
147         put_cpu();
148         setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
149         return tsc_khz;
150 }
151
152 static void kvm_get_preset_lpj(void)
153 {
154         unsigned long khz;
155         u64 lpj;
156
157         khz = kvm_get_tsc_khz();
158
159         lpj = ((u64)khz * 1000);
160         do_div(lpj, HZ);
161         preset_lpj = lpj;
162 }
163
164 bool kvm_check_and_clear_guest_paused(void)
165 {
166         bool ret = false;
167         struct pvclock_vcpu_time_info *src;
168         int cpu = smp_processor_id();
169
170         if (!hv_clock)
171                 return ret;
172
173         src = &hv_clock[cpu].pvti;
174         if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
175                 src->flags &= ~PVCLOCK_GUEST_STOPPED;
176                 pvclock_touch_watchdogs();
177                 ret = true;
178         }
179
180         return ret;
181 }
182
183 struct clocksource kvm_clock = {
184         .name = "kvm-clock",
185         .read = kvm_clock_get_cycles,
186         .rating = 400,
187         .mask = CLOCKSOURCE_MASK(64),
188         .flags = CLOCK_SOURCE_IS_CONTINUOUS,
189 };
190 EXPORT_SYMBOL_GPL(kvm_clock);
191
192 int kvm_register_clock(char *txt)
193 {
194         int cpu = smp_processor_id();
195         int low, high, ret;
196         struct pvclock_vcpu_time_info *src;
197
198         if (!hv_clock)
199                 return 0;
200
201         src = &hv_clock[cpu].pvti;
202         low = (int)slow_virt_to_phys(src) | 1;
203         high = ((u64)slow_virt_to_phys(src) >> 32);
204         ret = native_write_msr_safe(msr_kvm_system_time, low, high);
205         printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
206                cpu, high, low, txt);
207
208         return ret;
209 }
210
211 static void kvm_save_sched_clock_state(void)
212 {
213 }
214
215 static void kvm_restore_sched_clock_state(void)
216 {
217         kvm_register_clock("primary cpu clock, resume");
218 }
219
220 #ifdef CONFIG_X86_LOCAL_APIC
221 static void kvm_setup_secondary_clock(void)
222 {
223         /*
224          * Now that the first cpu already had this clocksource initialized,
225          * we shouldn't fail.
226          */
227         WARN_ON(kvm_register_clock("secondary cpu clock"));
228 }
229 #endif
230
231 /*
232  * After the clock is registered, the host will keep writing to the
233  * registered memory location. If the guest happens to shutdown, this memory
234  * won't be valid. In cases like kexec, in which you install a new kernel, this
235  * means a random memory location will be kept being written. So before any
236  * kind of shutdown from our side, we unregister the clock by writing anything
237  * that does not have the 'enable' bit set in the msr
238  */
239 #ifdef CONFIG_KEXEC_CORE
240 static void kvm_crash_shutdown(struct pt_regs *regs)
241 {
242         native_write_msr(msr_kvm_system_time, 0, 0);
243         kvm_disable_steal_time();
244         native_machine_crash_shutdown(regs);
245 }
246 #endif
247
248 static void kvm_shutdown(void)
249 {
250         native_write_msr(msr_kvm_system_time, 0, 0);
251         kvm_disable_steal_time();
252         native_machine_shutdown();
253 }
254
255 void __init kvmclock_init(void)
256 {
257         struct pvclock_vcpu_time_info *vcpu_time;
258         int cpu;
259         u8 flags;
260
261         if (!kvm_para_available())
262                 return;
263
264         if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
265                 msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
266                 msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
267         } else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
268                 return;
269
270         wall_clock = (struct pvclock_wall_clock *)wall_clock_mem;
271         hv_clock = (struct pvclock_vsyscall_time_info *)hv_clock_mem;
272
273         if (kvm_register_clock("primary cpu clock")) {
274                 hv_clock = NULL;
275                 wall_clock = NULL;
276                 return;
277         }
278
279         printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
280                 msr_kvm_system_time, msr_kvm_wall_clock);
281
282         pvclock_set_pvti_cpu0_va(hv_clock);
283
284         if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
285                 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
286
287         cpu = get_cpu();
288         vcpu_time = &hv_clock[cpu].pvti;
289         flags = pvclock_read_flags(vcpu_time);
290
291         kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
292         put_cpu();
293
294         x86_platform.calibrate_tsc = kvm_get_tsc_khz;
295         x86_platform.calibrate_cpu = kvm_get_tsc_khz;
296         x86_platform.get_wallclock = kvm_get_wallclock;
297         x86_platform.set_wallclock = kvm_set_wallclock;
298 #ifdef CONFIG_X86_LOCAL_APIC
299         x86_cpuinit.early_percpu_clock_init =
300                 kvm_setup_secondary_clock;
301 #endif
302         x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
303         x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
304         machine_ops.shutdown  = kvm_shutdown;
305 #ifdef CONFIG_KEXEC_CORE
306         machine_ops.crash_shutdown  = kvm_crash_shutdown;
307 #endif
308         kvm_get_preset_lpj();
309         clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
310         pv_info.name = "KVM";
311 }
312
313 int __init kvm_setup_vsyscall_timeinfo(void)
314 {
315 #ifdef CONFIG_X86_64
316         int cpu;
317         u8 flags;
318         struct pvclock_vcpu_time_info *vcpu_time;
319
320         if (!hv_clock)
321                 return 0;
322
323         cpu = get_cpu();
324
325         vcpu_time = &hv_clock[cpu].pvti;
326         flags = pvclock_read_flags(vcpu_time);
327
328         put_cpu();
329
330         if (!(flags & PVCLOCK_TSC_STABLE_BIT))
331                 return 1;
332
333         kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
334 #endif
335         return 0;
336 }