Linux 6.9-rc1
[linux-2.6-microblaze.git] / arch / x86 / kernel / hw_breakpoint.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Copyright (C) 2007 Alan Stern
5  * Copyright (C) 2009 IBM Corporation
6  * Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com>
7  *
8  * Authors: Alan Stern <stern@rowland.harvard.edu>
9  *          K.Prasad <prasad@linux.vnet.ibm.com>
10  *          Frederic Weisbecker <fweisbec@gmail.com>
11  */
12
13 /*
14  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
15  * using the CPU's debug registers.
16  */
17
18 #include <linux/perf_event.h>
19 #include <linux/hw_breakpoint.h>
20 #include <linux/irqflags.h>
21 #include <linux/notifier.h>
22 #include <linux/kallsyms.h>
23 #include <linux/kprobes.h>
24 #include <linux/percpu.h>
25 #include <linux/kdebug.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/sched.h>
29 #include <linux/smp.h>
30
31 #include <asm/hw_breakpoint.h>
32 #include <asm/processor.h>
33 #include <asm/debugreg.h>
34 #include <asm/user.h>
35 #include <asm/desc.h>
36 #include <asm/tlbflush.h>
37
38 /* Per cpu debug control register value */
39 DEFINE_PER_CPU(unsigned long, cpu_dr7);
40 EXPORT_PER_CPU_SYMBOL(cpu_dr7);
41
42 /* Per cpu debug address registers values */
43 static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
44
45 /*
46  * Stores the breakpoints currently in use on each breakpoint address
47  * register for each cpus
48  */
49 static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
50
51
52 static inline unsigned long
53 __encode_dr7(int drnum, unsigned int len, unsigned int type)
54 {
55         unsigned long bp_info;
56
57         bp_info = (len | type) & 0xf;
58         bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
59         bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));
60
61         return bp_info;
62 }
63
64 /*
65  * Encode the length, type, Exact, and Enable bits for a particular breakpoint
66  * as stored in debug register 7.
67  */
68 unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
69 {
70         return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
71 }
72
73 /*
74  * Decode the length and type bits for a particular breakpoint as
75  * stored in debug register 7.  Return the "enabled" status.
76  */
77 int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
78 {
79         int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
80
81         *len = (bp_info & 0xc) | 0x40;
82         *type = (bp_info & 0x3) | 0x80;
83
84         return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
85 }
86
87 /*
88  * Install a perf counter breakpoint.
89  *
90  * We seek a free debug address register and use it for this
91  * breakpoint. Eventually we enable it in the debug control register.
92  *
93  * Atomic: we hold the counter->ctx->lock and we only handle variables
94  * and registers local to this cpu.
95  */
96 int arch_install_hw_breakpoint(struct perf_event *bp)
97 {
98         struct arch_hw_breakpoint *info = counter_arch_bp(bp);
99         unsigned long *dr7;
100         int i;
101
102         lockdep_assert_irqs_disabled();
103
104         for (i = 0; i < HBP_NUM; i++) {
105                 struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
106
107                 if (!*slot) {
108                         *slot = bp;
109                         break;
110                 }
111         }
112
113         if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
114                 return -EBUSY;
115
116         set_debugreg(info->address, i);
117         __this_cpu_write(cpu_debugreg[i], info->address);
118
119         dr7 = this_cpu_ptr(&cpu_dr7);
120         *dr7 |= encode_dr7(i, info->len, info->type);
121
122         /*
123          * Ensure we first write cpu_dr7 before we set the DR7 register.
124          * This ensures an NMI never see cpu_dr7 0 when DR7 is not.
125          */
126         barrier();
127
128         set_debugreg(*dr7, 7);
129         if (info->mask)
130                 amd_set_dr_addr_mask(info->mask, i);
131
132         return 0;
133 }
134
135 /*
136  * Uninstall the breakpoint contained in the given counter.
137  *
138  * First we search the debug address register it uses and then we disable
139  * it.
140  *
141  * Atomic: we hold the counter->ctx->lock and we only handle variables
142  * and registers local to this cpu.
143  */
144 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
145 {
146         struct arch_hw_breakpoint *info = counter_arch_bp(bp);
147         unsigned long dr7;
148         int i;
149
150         lockdep_assert_irqs_disabled();
151
152         for (i = 0; i < HBP_NUM; i++) {
153                 struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
154
155                 if (*slot == bp) {
156                         *slot = NULL;
157                         break;
158                 }
159         }
160
161         if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
162                 return;
163
164         dr7 = this_cpu_read(cpu_dr7);
165         dr7 &= ~__encode_dr7(i, info->len, info->type);
166
167         set_debugreg(dr7, 7);
168         if (info->mask)
169                 amd_set_dr_addr_mask(0, i);
170
171         /*
172          * Ensure the write to cpu_dr7 is after we've set the DR7 register.
173          * This ensures an NMI never see cpu_dr7 0 when DR7 is not.
174          */
175         barrier();
176
177         this_cpu_write(cpu_dr7, dr7);
178 }
179
180 static int arch_bp_generic_len(int x86_len)
181 {
182         switch (x86_len) {
183         case X86_BREAKPOINT_LEN_1:
184                 return HW_BREAKPOINT_LEN_1;
185         case X86_BREAKPOINT_LEN_2:
186                 return HW_BREAKPOINT_LEN_2;
187         case X86_BREAKPOINT_LEN_4:
188                 return HW_BREAKPOINT_LEN_4;
189 #ifdef CONFIG_X86_64
190         case X86_BREAKPOINT_LEN_8:
191                 return HW_BREAKPOINT_LEN_8;
192 #endif
193         default:
194                 return -EINVAL;
195         }
196 }
197
198 int arch_bp_generic_fields(int x86_len, int x86_type,
199                            int *gen_len, int *gen_type)
200 {
201         int len;
202
203         /* Type */
204         switch (x86_type) {
205         case X86_BREAKPOINT_EXECUTE:
206                 if (x86_len != X86_BREAKPOINT_LEN_X)
207                         return -EINVAL;
208
209                 *gen_type = HW_BREAKPOINT_X;
210                 *gen_len = sizeof(long);
211                 return 0;
212         case X86_BREAKPOINT_WRITE:
213                 *gen_type = HW_BREAKPOINT_W;
214                 break;
215         case X86_BREAKPOINT_RW:
216                 *gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
217                 break;
218         default:
219                 return -EINVAL;
220         }
221
222         /* Len */
223         len = arch_bp_generic_len(x86_len);
224         if (len < 0)
225                 return -EINVAL;
226         *gen_len = len;
227
228         return 0;
229 }
230
231 /*
232  * Check for virtual address in kernel space.
233  */
234 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
235 {
236         unsigned long va;
237         int len;
238
239         va = hw->address;
240         len = arch_bp_generic_len(hw->len);
241         WARN_ON_ONCE(len < 0);
242
243         /*
244          * We don't need to worry about va + len - 1 overflowing:
245          * we already require that va is aligned to a multiple of len.
246          */
247         return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX);
248 }
249
250 /*
251  * Checks whether the range [addr, end], overlaps the area [base, base + size).
252  */
253 static inline bool within_area(unsigned long addr, unsigned long end,
254                                unsigned long base, unsigned long size)
255 {
256         return end >= base && addr < (base + size);
257 }
258
259 /*
260  * Checks whether the range from addr to end, inclusive, overlaps the fixed
261  * mapped CPU entry area range or other ranges used for CPU entry.
262  */
263 static inline bool within_cpu_entry(unsigned long addr, unsigned long end)
264 {
265         int cpu;
266
267         /* CPU entry erea is always used for CPU entry */
268         if (within_area(addr, end, CPU_ENTRY_AREA_BASE,
269                         CPU_ENTRY_AREA_MAP_SIZE))
270                 return true;
271
272         /*
273          * When FSGSBASE is enabled, paranoid_entry() fetches the per-CPU
274          * GSBASE value via __per_cpu_offset or pcpu_unit_offsets.
275          */
276 #ifdef CONFIG_SMP
277         if (within_area(addr, end, (unsigned long)__per_cpu_offset,
278                         sizeof(unsigned long) * nr_cpu_ids))
279                 return true;
280 #else
281         if (within_area(addr, end, (unsigned long)&pcpu_unit_offsets,
282                         sizeof(pcpu_unit_offsets)))
283                 return true;
284 #endif
285
286         for_each_possible_cpu(cpu) {
287                 /* The original rw GDT is being used after load_direct_gdt() */
288                 if (within_area(addr, end, (unsigned long)get_cpu_gdt_rw(cpu),
289                                 GDT_SIZE))
290                         return true;
291
292                 /*
293                  * cpu_tss_rw is not directly referenced by hardware, but
294                  * cpu_tss_rw is also used in CPU entry code,
295                  */
296                 if (within_area(addr, end,
297                                 (unsigned long)&per_cpu(cpu_tss_rw, cpu),
298                                 sizeof(struct tss_struct)))
299                         return true;
300
301                 /*
302                  * cpu_tlbstate.user_pcid_flush_mask is used for CPU entry.
303                  * If a data breakpoint on it, it will cause an unwanted #DB.
304                  * Protect the full cpu_tlbstate structure to be sure.
305                  */
306                 if (within_area(addr, end,
307                                 (unsigned long)&per_cpu(cpu_tlbstate, cpu),
308                                 sizeof(struct tlb_state)))
309                         return true;
310
311                 /*
312                  * When in guest (X86_FEATURE_HYPERVISOR), local_db_save()
313                  * will read per-cpu cpu_dr7 before clear dr7 register.
314                  */
315                 if (within_area(addr, end, (unsigned long)&per_cpu(cpu_dr7, cpu),
316                                 sizeof(cpu_dr7)))
317                         return true;
318         }
319
320         return false;
321 }
322
323 static int arch_build_bp_info(struct perf_event *bp,
324                               const struct perf_event_attr *attr,
325                               struct arch_hw_breakpoint *hw)
326 {
327         unsigned long bp_end;
328
329         bp_end = attr->bp_addr + attr->bp_len - 1;
330         if (bp_end < attr->bp_addr)
331                 return -EINVAL;
332
333         /*
334          * Prevent any breakpoint of any type that overlaps the CPU
335          * entry area and data.  This protects the IST stacks and also
336          * reduces the chance that we ever find out what happens if
337          * there's a data breakpoint on the GDT, IDT, or TSS.
338          */
339         if (within_cpu_entry(attr->bp_addr, bp_end))
340                 return -EINVAL;
341
342         hw->address = attr->bp_addr;
343         hw->mask = 0;
344
345         /* Type */
346         switch (attr->bp_type) {
347         case HW_BREAKPOINT_W:
348                 hw->type = X86_BREAKPOINT_WRITE;
349                 break;
350         case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
351                 hw->type = X86_BREAKPOINT_RW;
352                 break;
353         case HW_BREAKPOINT_X:
354                 /*
355                  * We don't allow kernel breakpoints in places that are not
356                  * acceptable for kprobes.  On non-kprobes kernels, we don't
357                  * allow kernel breakpoints at all.
358                  */
359                 if (attr->bp_addr >= TASK_SIZE_MAX) {
360                         if (within_kprobe_blacklist(attr->bp_addr))
361                                 return -EINVAL;
362                 }
363
364                 hw->type = X86_BREAKPOINT_EXECUTE;
365                 /*
366                  * x86 inst breakpoints need to have a specific undefined len.
367                  * But we still need to check userspace is not trying to setup
368                  * an unsupported length, to get a range breakpoint for example.
369                  */
370                 if (attr->bp_len == sizeof(long)) {
371                         hw->len = X86_BREAKPOINT_LEN_X;
372                         return 0;
373                 }
374                 fallthrough;
375         default:
376                 return -EINVAL;
377         }
378
379         /* Len */
380         switch (attr->bp_len) {
381         case HW_BREAKPOINT_LEN_1:
382                 hw->len = X86_BREAKPOINT_LEN_1;
383                 break;
384         case HW_BREAKPOINT_LEN_2:
385                 hw->len = X86_BREAKPOINT_LEN_2;
386                 break;
387         case HW_BREAKPOINT_LEN_4:
388                 hw->len = X86_BREAKPOINT_LEN_4;
389                 break;
390 #ifdef CONFIG_X86_64
391         case HW_BREAKPOINT_LEN_8:
392                 hw->len = X86_BREAKPOINT_LEN_8;
393                 break;
394 #endif
395         default:
396                 /* AMD range breakpoint */
397                 if (!is_power_of_2(attr->bp_len))
398                         return -EINVAL;
399                 if (attr->bp_addr & (attr->bp_len - 1))
400                         return -EINVAL;
401
402                 if (!boot_cpu_has(X86_FEATURE_BPEXT))
403                         return -EOPNOTSUPP;
404
405                 /*
406                  * It's impossible to use a range breakpoint to fake out
407                  * user vs kernel detection because bp_len - 1 can't
408                  * have the high bit set.  If we ever allow range instruction
409                  * breakpoints, then we'll have to check for kprobe-blacklisted
410                  * addresses anywhere in the range.
411                  */
412                 hw->mask = attr->bp_len - 1;
413                 hw->len = X86_BREAKPOINT_LEN_1;
414         }
415
416         return 0;
417 }
418
419 /*
420  * Validate the arch-specific HW Breakpoint register settings
421  */
422 int hw_breakpoint_arch_parse(struct perf_event *bp,
423                              const struct perf_event_attr *attr,
424                              struct arch_hw_breakpoint *hw)
425 {
426         unsigned int align;
427         int ret;
428
429
430         ret = arch_build_bp_info(bp, attr, hw);
431         if (ret)
432                 return ret;
433
434         switch (hw->len) {
435         case X86_BREAKPOINT_LEN_1:
436                 align = 0;
437                 if (hw->mask)
438                         align = hw->mask;
439                 break;
440         case X86_BREAKPOINT_LEN_2:
441                 align = 1;
442                 break;
443         case X86_BREAKPOINT_LEN_4:
444                 align = 3;
445                 break;
446 #ifdef CONFIG_X86_64
447         case X86_BREAKPOINT_LEN_8:
448                 align = 7;
449                 break;
450 #endif
451         default:
452                 WARN_ON_ONCE(1);
453                 return -EINVAL;
454         }
455
456         /*
457          * Check that the low-order bits of the address are appropriate
458          * for the alignment implied by len.
459          */
460         if (hw->address & align)
461                 return -EINVAL;
462
463         return 0;
464 }
465
466 /*
467  * Release the user breakpoints used by ptrace
468  */
469 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
470 {
471         int i;
472         struct thread_struct *t = &tsk->thread;
473
474         for (i = 0; i < HBP_NUM; i++) {
475                 unregister_hw_breakpoint(t->ptrace_bps[i]);
476                 t->ptrace_bps[i] = NULL;
477         }
478
479         t->virtual_dr6 = 0;
480         t->ptrace_dr7 = 0;
481 }
482
483 void hw_breakpoint_restore(void)
484 {
485         set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0);
486         set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1);
487         set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2);
488         set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3);
489         set_debugreg(DR6_RESERVED, 6);
490         set_debugreg(__this_cpu_read(cpu_dr7), 7);
491 }
492 EXPORT_SYMBOL_GPL(hw_breakpoint_restore);
493
494 /*
495  * Handle debug exception notifications.
496  *
497  * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
498  *
499  * NOTIFY_DONE returned if one of the following conditions is true.
500  * i) When the causative address is from user-space and the exception
501  * is a valid one, i.e. not triggered as a result of lazy debug register
502  * switching
503  * ii) When there are more bits than trap<n> set in DR6 register (such
504  * as BD, BS or BT) indicating that more than one debug condition is
505  * met and requires some more action in do_debug().
506  *
507  * NOTIFY_STOP returned for all other cases
508  *
509  */
510 static int hw_breakpoint_handler(struct die_args *args)
511 {
512         int i, rc = NOTIFY_STOP;
513         struct perf_event *bp;
514         unsigned long *dr6_p;
515         unsigned long dr6;
516         bool bpx;
517
518         /* The DR6 value is pointed by args->err */
519         dr6_p = (unsigned long *)ERR_PTR(args->err);
520         dr6 = *dr6_p;
521
522         /* Do an early return if no trap bits are set in DR6 */
523         if ((dr6 & DR_TRAP_BITS) == 0)
524                 return NOTIFY_DONE;
525
526         /* Handle all the breakpoints that were triggered */
527         for (i = 0; i < HBP_NUM; ++i) {
528                 if (likely(!(dr6 & (DR_TRAP0 << i))))
529                         continue;
530
531                 bp = this_cpu_read(bp_per_reg[i]);
532                 if (!bp)
533                         continue;
534
535                 bpx = bp->hw.info.type == X86_BREAKPOINT_EXECUTE;
536
537                 /*
538                  * TF and data breakpoints are traps and can be merged, however
539                  * instruction breakpoints are faults and will be raised
540                  * separately.
541                  *
542                  * However DR6 can indicate both TF and instruction
543                  * breakpoints. In that case take TF as that has precedence and
544                  * delay the instruction breakpoint for the next exception.
545                  */
546                 if (bpx && (dr6 & DR_STEP))
547                         continue;
548
549                 /*
550                  * Reset the 'i'th TRAP bit in dr6 to denote completion of
551                  * exception handling
552                  */
553                 (*dr6_p) &= ~(DR_TRAP0 << i);
554
555                 perf_bp_event(bp, args->regs);
556
557                 /*
558                  * Set up resume flag to avoid breakpoint recursion when
559                  * returning back to origin.
560                  */
561                 if (bpx)
562                         args->regs->flags |= X86_EFLAGS_RF;
563         }
564
565         /*
566          * Further processing in do_debug() is needed for a) user-space
567          * breakpoints (to generate signals) and b) when the system has
568          * taken exception due to multiple causes
569          */
570         if ((current->thread.virtual_dr6 & DR_TRAP_BITS) ||
571             (dr6 & (~DR_TRAP_BITS)))
572                 rc = NOTIFY_DONE;
573
574         return rc;
575 }
576
577 /*
578  * Handle debug exception notifications.
579  */
580 int hw_breakpoint_exceptions_notify(
581                 struct notifier_block *unused, unsigned long val, void *data)
582 {
583         if (val != DIE_DEBUG)
584                 return NOTIFY_DONE;
585
586         return hw_breakpoint_handler(data);
587 }
588
589 void hw_breakpoint_pmu_read(struct perf_event *bp)
590 {
591         /* TODO */
592 }