x86/fpu: Move fpregs_restore_userregs() to core
[linux-2.6-microblaze.git] / arch / x86 / kernel / fpu / regset.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * FPU register's regset abstraction, for ptrace, core dumps, etc.
4  */
5 #include <linux/sched/task_stack.h>
6 #include <linux/vmalloc.h>
7
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/signal.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/xstate.h>
12
13 #include "context.h"
14 #include "internal.h"
15
16 /*
17  * The xstateregs_active() routine is the same as the regset_fpregs_active() routine,
18  * as the "regset->n" for the xstate regset will be updated based on the feature
19  * capabilities supported by the xsave.
20  */
21 int regset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
22 {
23         return regset->n;
24 }
25
26 int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
27 {
28         if (boot_cpu_has(X86_FEATURE_FXSR))
29                 return regset->n;
30         else
31                 return 0;
32 }
33
34 /*
35  * The regset get() functions are invoked from:
36  *
37  *   - coredump to dump the current task's fpstate. If the current task
38  *     owns the FPU then the memory state has to be synchronized and the
39  *     FPU register state preserved. Otherwise fpstate is already in sync.
40  *
41  *   - ptrace to dump fpstate of a stopped task, in which case the registers
42  *     have already been saved to fpstate on context switch.
43  */
44 static void sync_fpstate(struct fpu *fpu)
45 {
46         if (fpu == &current->thread.fpu)
47                 fpu_sync_fpstate(fpu);
48 }
49
50 /*
51  * Invalidate cached FPU registers before modifying the stopped target
52  * task's fpstate.
53  *
54  * This forces the target task on resume to restore the FPU registers from
55  * modified fpstate. Otherwise the task might skip the restore and operate
56  * with the cached FPU registers which discards the modifications.
57  */
58 static void fpu_force_restore(struct fpu *fpu)
59 {
60         /*
61          * Only stopped child tasks can be used to modify the FPU
62          * state in the fpstate buffer:
63          */
64         WARN_ON_FPU(fpu == &current->thread.fpu);
65
66         __fpu_invalidate_fpregs_state(fpu);
67 }
68
69 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
70                 struct membuf to)
71 {
72         struct fpu *fpu = &target->thread.fpu;
73
74         if (!cpu_feature_enabled(X86_FEATURE_FXSR))
75                 return -ENODEV;
76
77         sync_fpstate(fpu);
78
79         if (!use_xsave()) {
80                 return membuf_write(&to, &fpu->state.fxsave,
81                                     sizeof(fpu->state.fxsave));
82         }
83
84         copy_xstate_to_uabi_buf(to, target, XSTATE_COPY_FX);
85         return 0;
86 }
87
88 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
89                 unsigned int pos, unsigned int count,
90                 const void *kbuf, const void __user *ubuf)
91 {
92         struct fpu *fpu = &target->thread.fpu;
93         struct user32_fxsr_struct newstate;
94         int ret;
95
96         BUILD_BUG_ON(sizeof(newstate) != sizeof(struct fxregs_state));
97
98         if (!cpu_feature_enabled(X86_FEATURE_FXSR))
99                 return -ENODEV;
100
101         /* No funny business with partial or oversized writes is permitted. */
102         if (pos != 0 || count != sizeof(newstate))
103                 return -EINVAL;
104
105         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate, 0, -1);
106         if (ret)
107                 return ret;
108
109         /* Do not allow an invalid MXCSR value. */
110         if (newstate.mxcsr & ~mxcsr_feature_mask)
111                 return -EINVAL;
112
113         fpu_force_restore(fpu);
114
115         /* Copy the state  */
116         memcpy(&fpu->state.fxsave, &newstate, sizeof(newstate));
117
118         /* Clear xmm8..15 */
119         BUILD_BUG_ON(sizeof(fpu->state.fxsave.xmm_space) != 16 * 16);
120         memset(&fpu->state.fxsave.xmm_space[8], 0, 8 * 16);
121
122         /* Mark FP and SSE as in use when XSAVE is enabled */
123         if (use_xsave())
124                 fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FPSSE;
125
126         return 0;
127 }
128
129 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
130                 struct membuf to)
131 {
132         if (!cpu_feature_enabled(X86_FEATURE_XSAVE))
133                 return -ENODEV;
134
135         sync_fpstate(&target->thread.fpu);
136
137         copy_xstate_to_uabi_buf(to, target, XSTATE_COPY_XSAVE);
138         return 0;
139 }
140
141 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
142                   unsigned int pos, unsigned int count,
143                   const void *kbuf, const void __user *ubuf)
144 {
145         struct fpu *fpu = &target->thread.fpu;
146         struct xregs_state *tmpbuf = NULL;
147         int ret;
148
149         if (!cpu_feature_enabled(X86_FEATURE_XSAVE))
150                 return -ENODEV;
151
152         /*
153          * A whole standard-format XSAVE buffer is needed:
154          */
155         if (pos != 0 || count != fpu_user_xstate_size)
156                 return -EFAULT;
157
158         if (!kbuf) {
159                 tmpbuf = vmalloc(count);
160                 if (!tmpbuf)
161                         return -ENOMEM;
162
163                 if (copy_from_user(tmpbuf, ubuf, count)) {
164                         ret = -EFAULT;
165                         goto out;
166                 }
167         }
168
169         fpu_force_restore(fpu);
170         ret = copy_uabi_from_kernel_to_xstate(&fpu->state.xsave, kbuf ?: tmpbuf);
171
172 out:
173         vfree(tmpbuf);
174         return ret;
175 }
176
177 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
178
179 /*
180  * FPU tag word conversions.
181  */
182
183 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
184 {
185         unsigned int tmp; /* to avoid 16 bit prefixes in the code */
186
187         /* Transform each pair of bits into 01 (valid) or 00 (empty) */
188         tmp = ~twd;
189         tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
190         /* and move the valid bits to the lower byte. */
191         tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
192         tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
193         tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
194
195         return tmp;
196 }
197
198 #define FPREG_ADDR(f, n)        ((void *)&(f)->st_space + (n) * 16)
199 #define FP_EXP_TAG_VALID        0
200 #define FP_EXP_TAG_ZERO         1
201 #define FP_EXP_TAG_SPECIAL      2
202 #define FP_EXP_TAG_EMPTY        3
203
204 static inline u32 twd_fxsr_to_i387(struct fxregs_state *fxsave)
205 {
206         struct _fpxreg *st;
207         u32 tos = (fxsave->swd >> 11) & 7;
208         u32 twd = (unsigned long) fxsave->twd;
209         u32 tag;
210         u32 ret = 0xffff0000u;
211         int i;
212
213         for (i = 0; i < 8; i++, twd >>= 1) {
214                 if (twd & 0x1) {
215                         st = FPREG_ADDR(fxsave, (i - tos) & 7);
216
217                         switch (st->exponent & 0x7fff) {
218                         case 0x7fff:
219                                 tag = FP_EXP_TAG_SPECIAL;
220                                 break;
221                         case 0x0000:
222                                 if (!st->significand[0] &&
223                                     !st->significand[1] &&
224                                     !st->significand[2] &&
225                                     !st->significand[3])
226                                         tag = FP_EXP_TAG_ZERO;
227                                 else
228                                         tag = FP_EXP_TAG_SPECIAL;
229                                 break;
230                         default:
231                                 if (st->significand[3] & 0x8000)
232                                         tag = FP_EXP_TAG_VALID;
233                                 else
234                                         tag = FP_EXP_TAG_SPECIAL;
235                                 break;
236                         }
237                 } else {
238                         tag = FP_EXP_TAG_EMPTY;
239                 }
240                 ret |= tag << (2 * i);
241         }
242         return ret;
243 }
244
245 /*
246  * FXSR floating point environment conversions.
247  */
248
249 static void __convert_from_fxsr(struct user_i387_ia32_struct *env,
250                                 struct task_struct *tsk,
251                                 struct fxregs_state *fxsave)
252 {
253         struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
254         struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
255         int i;
256
257         env->cwd = fxsave->cwd | 0xffff0000u;
258         env->swd = fxsave->swd | 0xffff0000u;
259         env->twd = twd_fxsr_to_i387(fxsave);
260
261 #ifdef CONFIG_X86_64
262         env->fip = fxsave->rip;
263         env->foo = fxsave->rdp;
264         /*
265          * should be actually ds/cs at fpu exception time, but
266          * that information is not available in 64bit mode.
267          */
268         env->fcs = task_pt_regs(tsk)->cs;
269         if (tsk == current) {
270                 savesegment(ds, env->fos);
271         } else {
272                 env->fos = tsk->thread.ds;
273         }
274         env->fos |= 0xffff0000;
275 #else
276         env->fip = fxsave->fip;
277         env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
278         env->foo = fxsave->foo;
279         env->fos = fxsave->fos;
280 #endif
281
282         for (i = 0; i < 8; ++i)
283                 memcpy(&to[i], &from[i], sizeof(to[0]));
284 }
285
286 void
287 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
288 {
289         __convert_from_fxsr(env, tsk, &tsk->thread.fpu.state.fxsave);
290 }
291
292 void convert_to_fxsr(struct fxregs_state *fxsave,
293                      const struct user_i387_ia32_struct *env)
294
295 {
296         struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
297         struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
298         int i;
299
300         fxsave->cwd = env->cwd;
301         fxsave->swd = env->swd;
302         fxsave->twd = twd_i387_to_fxsr(env->twd);
303         fxsave->fop = (u16) ((u32) env->fcs >> 16);
304 #ifdef CONFIG_X86_64
305         fxsave->rip = env->fip;
306         fxsave->rdp = env->foo;
307         /* cs and ds ignored */
308 #else
309         fxsave->fip = env->fip;
310         fxsave->fcs = (env->fcs & 0xffff);
311         fxsave->foo = env->foo;
312         fxsave->fos = env->fos;
313 #endif
314
315         for (i = 0; i < 8; ++i)
316                 memcpy(&to[i], &from[i], sizeof(from[0]));
317 }
318
319 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
320                struct membuf to)
321 {
322         struct fpu *fpu = &target->thread.fpu;
323         struct user_i387_ia32_struct env;
324         struct fxregs_state fxsave, *fx;
325
326         sync_fpstate(fpu);
327
328         if (!cpu_feature_enabled(X86_FEATURE_FPU))
329                 return fpregs_soft_get(target, regset, to);
330
331         if (!cpu_feature_enabled(X86_FEATURE_FXSR)) {
332                 return membuf_write(&to, &fpu->state.fsave,
333                                     sizeof(struct fregs_state));
334         }
335
336         if (use_xsave()) {
337                 struct membuf mb = { .p = &fxsave, .left = sizeof(fxsave) };
338
339                 /* Handle init state optimized xstate correctly */
340                 copy_xstate_to_uabi_buf(mb, target, XSTATE_COPY_FP);
341                 fx = &fxsave;
342         } else {
343                 fx = &fpu->state.fxsave;
344         }
345
346         __convert_from_fxsr(&env, target, fx);
347         return membuf_write(&to, &env, sizeof(env));
348 }
349
350 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
351                unsigned int pos, unsigned int count,
352                const void *kbuf, const void __user *ubuf)
353 {
354         struct fpu *fpu = &target->thread.fpu;
355         struct user_i387_ia32_struct env;
356         int ret;
357
358         /* No funny business with partial or oversized writes is permitted. */
359         if (pos != 0 || count != sizeof(struct user_i387_ia32_struct))
360                 return -EINVAL;
361
362         if (!cpu_feature_enabled(X86_FEATURE_FPU))
363                 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
364
365         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
366         if (ret)
367                 return ret;
368
369         fpu_force_restore(fpu);
370
371         if (cpu_feature_enabled(X86_FEATURE_FXSR))
372                 convert_to_fxsr(&fpu->state.fxsave, &env);
373         else
374                 memcpy(&fpu->state.fsave, &env, sizeof(env));
375
376         /*
377          * Update the header bit in the xsave header, indicating the
378          * presence of FP.
379          */
380         if (cpu_feature_enabled(X86_FEATURE_XSAVE))
381                 fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FP;
382
383         return 0;
384 }
385
386 #endif  /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */