9ff467bb4894c41a10b5a7e1ce0f62321f216a94
[linux-2.6-microblaze.git] / arch / x86 / kernel / fpu / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1994 Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *  General FPU state handling cleanups
7  *      Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 #include <asm/fpu/internal.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/signal.h>
12 #include <asm/fpu/types.h>
13 #include <asm/traps.h>
14 #include <asm/irq_regs.h>
15
16 #include <linux/hardirq.h>
17 #include <linux/pkeys.h>
18
19 #define CREATE_TRACE_POINTS
20 #include <asm/trace/fpu.h>
21
22 /*
23  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
24  * depending on the FPU hardware format:
25  */
26 union fpregs_state init_fpstate __read_mostly;
27
28 /*
29  * Track whether the kernel is using the FPU state
30  * currently.
31  *
32  * This flag is used:
33  *
34  *   - by IRQ context code to potentially use the FPU
35  *     if it's unused.
36  *
37  *   - to debug kernel_fpu_begin()/end() correctness
38  */
39 static DEFINE_PER_CPU(bool, in_kernel_fpu);
40
41 /*
42  * Track which context is using the FPU on the CPU:
43  */
44 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
45
46 static bool kernel_fpu_disabled(void)
47 {
48         return this_cpu_read(in_kernel_fpu);
49 }
50
51 static bool interrupted_kernel_fpu_idle(void)
52 {
53         return !kernel_fpu_disabled();
54 }
55
56 /*
57  * Were we in user mode (or vm86 mode) when we were
58  * interrupted?
59  *
60  * Doing kernel_fpu_begin/end() is ok if we are running
61  * in an interrupt context from user mode - we'll just
62  * save the FPU state as required.
63  */
64 static bool interrupted_user_mode(void)
65 {
66         struct pt_regs *regs = get_irq_regs();
67         return regs && user_mode(regs);
68 }
69
70 /*
71  * Can we use the FPU in kernel mode with the
72  * whole "kernel_fpu_begin/end()" sequence?
73  *
74  * It's always ok in process context (ie "not interrupt")
75  * but it is sometimes ok even from an irq.
76  */
77 bool irq_fpu_usable(void)
78 {
79         return !in_interrupt() ||
80                 interrupted_user_mode() ||
81                 interrupted_kernel_fpu_idle();
82 }
83 EXPORT_SYMBOL(irq_fpu_usable);
84
85 /*
86  * These must be called with preempt disabled. Returns
87  * 'true' if the FPU state is still intact and we can
88  * keep registers active.
89  *
90  * The legacy FNSAVE instruction cleared all FPU state
91  * unconditionally, so registers are essentially destroyed.
92  * Modern FPU state can be kept in registers, if there are
93  * no pending FP exceptions.
94  */
95 int copy_fpregs_to_fpstate(struct fpu *fpu)
96 {
97         if (likely(use_xsave())) {
98                 copy_xregs_to_kernel(&fpu->state.xsave);
99
100                 /*
101                  * AVX512 state is tracked here because its use is
102                  * known to slow the max clock speed of the core.
103                  */
104                 if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512)
105                         fpu->avx512_timestamp = jiffies;
106                 return 1;
107         }
108
109         if (likely(use_fxsr())) {
110                 copy_fxregs_to_kernel(fpu);
111                 return 1;
112         }
113
114         /*
115          * Legacy FPU register saving, FNSAVE always clears FPU registers,
116          * so we have to mark them inactive:
117          */
118         asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
119
120         return 0;
121 }
122 EXPORT_SYMBOL(copy_fpregs_to_fpstate);
123
124 void kernel_fpu_begin_mask(unsigned int kfpu_mask)
125 {
126         preempt_disable();
127
128         WARN_ON_FPU(!irq_fpu_usable());
129         WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
130
131         this_cpu_write(in_kernel_fpu, true);
132
133         if (!(current->flags & PF_KTHREAD) &&
134             !test_thread_flag(TIF_NEED_FPU_LOAD)) {
135                 set_thread_flag(TIF_NEED_FPU_LOAD);
136                 /*
137                  * Ignore return value -- we don't care if reg state
138                  * is clobbered.
139                  */
140                 copy_fpregs_to_fpstate(&current->thread.fpu);
141         }
142         __cpu_invalidate_fpregs_state();
143
144         /* Put sane initial values into the control registers. */
145         if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
146                 ldmxcsr(MXCSR_DEFAULT);
147
148         if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
149                 asm volatile ("fninit");
150 }
151 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
152
153 void kernel_fpu_end(void)
154 {
155         WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
156
157         this_cpu_write(in_kernel_fpu, false);
158         preempt_enable();
159 }
160 EXPORT_SYMBOL_GPL(kernel_fpu_end);
161
162 /*
163  * Save the FPU state (mark it for reload if necessary):
164  *
165  * This only ever gets called for the current task.
166  */
167 void fpu__save(struct fpu *fpu)
168 {
169         WARN_ON_FPU(fpu != &current->thread.fpu);
170
171         fpregs_lock();
172         trace_x86_fpu_before_save(fpu);
173
174         if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
175                 if (!copy_fpregs_to_fpstate(fpu)) {
176                         copy_kernel_to_fpregs(&fpu->state);
177                 }
178         }
179
180         trace_x86_fpu_after_save(fpu);
181         fpregs_unlock();
182 }
183
184 static inline void fpstate_init_xstate(struct xregs_state *xsave)
185 {
186         /*
187          * XRSTORS requires these bits set in xcomp_bv, or it will
188          * trigger #GP:
189          */
190         xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask_all;
191 }
192
193 static inline void fpstate_init_fxstate(struct fxregs_state *fx)
194 {
195         fx->cwd = 0x37f;
196         fx->mxcsr = MXCSR_DEFAULT;
197 }
198
199 /*
200  * Legacy x87 fpstate state init:
201  */
202 static inline void fpstate_init_fstate(struct fregs_state *fp)
203 {
204         fp->cwd = 0xffff037fu;
205         fp->swd = 0xffff0000u;
206         fp->twd = 0xffffffffu;
207         fp->fos = 0xffff0000u;
208 }
209
210 void fpstate_init(union fpregs_state *state)
211 {
212         if (!static_cpu_has(X86_FEATURE_FPU)) {
213                 fpstate_init_soft(&state->soft);
214                 return;
215         }
216
217         memset(state, 0, fpu_kernel_xstate_size);
218
219         if (static_cpu_has(X86_FEATURE_XSAVES))
220                 fpstate_init_xstate(&state->xsave);
221         if (static_cpu_has(X86_FEATURE_FXSR))
222                 fpstate_init_fxstate(&state->fxsave);
223         else
224                 fpstate_init_fstate(&state->fsave);
225 }
226 EXPORT_SYMBOL_GPL(fpstate_init);
227
228 int fpu__copy(struct task_struct *dst, struct task_struct *src)
229 {
230         struct fpu *dst_fpu = &dst->thread.fpu;
231         struct fpu *src_fpu = &src->thread.fpu;
232
233         dst_fpu->last_cpu = -1;
234
235         if (!static_cpu_has(X86_FEATURE_FPU))
236                 return 0;
237
238         WARN_ON_FPU(src_fpu != &current->thread.fpu);
239
240         /*
241          * Don't let 'init optimized' areas of the XSAVE area
242          * leak into the child task:
243          */
244         memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
245
246         /*
247          * If the FPU registers are not current just memcpy() the state.
248          * Otherwise save current FPU registers directly into the child's FPU
249          * context, without any memory-to-memory copying.
250          *
251          * ( The function 'fails' in the FNSAVE case, which destroys
252          *   register contents so we have to load them back. )
253          */
254         fpregs_lock();
255         if (test_thread_flag(TIF_NEED_FPU_LOAD))
256                 memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
257
258         else if (!copy_fpregs_to_fpstate(dst_fpu))
259                 copy_kernel_to_fpregs(&dst_fpu->state);
260
261         fpregs_unlock();
262
263         set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
264
265         trace_x86_fpu_copy_src(src_fpu);
266         trace_x86_fpu_copy_dst(dst_fpu);
267
268         return 0;
269 }
270
271 /*
272  * Activate the current task's in-memory FPU context,
273  * if it has not been used before:
274  */
275 static void fpu__initialize(struct fpu *fpu)
276 {
277         WARN_ON_FPU(fpu != &current->thread.fpu);
278
279         set_thread_flag(TIF_NEED_FPU_LOAD);
280         fpstate_init(&fpu->state);
281         trace_x86_fpu_init_state(fpu);
282 }
283
284 /*
285  * This function must be called before we read a task's fpstate.
286  *
287  * There's two cases where this gets called:
288  *
289  * - for the current task (when coredumping), in which case we have
290  *   to save the latest FPU registers into the fpstate,
291  *
292  * - or it's called for stopped tasks (ptrace), in which case the
293  *   registers were already saved by the context-switch code when
294  *   the task scheduled out.
295  *
296  * If the task has used the FPU before then save it.
297  */
298 void fpu__prepare_read(struct fpu *fpu)
299 {
300         if (fpu == &current->thread.fpu)
301                 fpu__save(fpu);
302 }
303
304 /*
305  * This function must be called before we write a task's fpstate.
306  *
307  * Invalidate any cached FPU registers.
308  *
309  * After this function call, after registers in the fpstate are
310  * modified and the child task has woken up, the child task will
311  * restore the modified FPU state from the modified context. If we
312  * didn't clear its cached status here then the cached in-registers
313  * state pending on its former CPU could be restored, corrupting
314  * the modifications.
315  */
316 void fpu__prepare_write(struct fpu *fpu)
317 {
318         /*
319          * Only stopped child tasks can be used to modify the FPU
320          * state in the fpstate buffer:
321          */
322         WARN_ON_FPU(fpu == &current->thread.fpu);
323
324         /* Invalidate any cached state: */
325         __fpu_invalidate_fpregs_state(fpu);
326 }
327
328 /*
329  * Drops current FPU state: deactivates the fpregs and
330  * the fpstate. NOTE: it still leaves previous contents
331  * in the fpregs in the eager-FPU case.
332  *
333  * This function can be used in cases where we know that
334  * a state-restore is coming: either an explicit one,
335  * or a reschedule.
336  */
337 void fpu__drop(struct fpu *fpu)
338 {
339         preempt_disable();
340
341         if (fpu == &current->thread.fpu) {
342                 /* Ignore delayed exceptions from user space */
343                 asm volatile("1: fwait\n"
344                              "2:\n"
345                              _ASM_EXTABLE(1b, 2b));
346                 fpregs_deactivate(fpu);
347         }
348
349         trace_x86_fpu_dropped(fpu);
350
351         preempt_enable();
352 }
353
354 /*
355  * Clear FPU registers by setting them up from the init fpstate.
356  * Caller must do fpregs_[un]lock() around it.
357  */
358 static inline void copy_init_fpstate_to_fpregs(u64 features_mask)
359 {
360         if (use_xsave())
361                 copy_kernel_to_xregs(&init_fpstate.xsave, features_mask);
362         else if (static_cpu_has(X86_FEATURE_FXSR))
363                 copy_kernel_to_fxregs(&init_fpstate.fxsave);
364         else
365                 copy_kernel_to_fregs(&init_fpstate.fsave);
366
367         if (boot_cpu_has(X86_FEATURE_OSPKE))
368                 copy_init_pkru_to_fpregs();
369 }
370
371 /*
372  * Clear the FPU state back to init state.
373  *
374  * Called by sys_execve(), by the signal handler code and by various
375  * error paths.
376  */
377 static void fpu__clear(struct fpu *fpu, bool user_only)
378 {
379         WARN_ON_FPU(fpu != &current->thread.fpu);
380
381         if (!static_cpu_has(X86_FEATURE_FPU)) {
382                 fpu__drop(fpu);
383                 fpu__initialize(fpu);
384                 return;
385         }
386
387         fpregs_lock();
388
389         if (user_only) {
390                 if (!fpregs_state_valid(fpu, smp_processor_id()) &&
391                     xfeatures_mask_supervisor())
392                         copy_kernel_to_xregs(&fpu->state.xsave,
393                                              xfeatures_mask_supervisor());
394                 copy_init_fpstate_to_fpregs(xfeatures_mask_user());
395         } else {
396                 copy_init_fpstate_to_fpregs(xfeatures_mask_all);
397         }
398
399         fpregs_mark_activate();
400         fpregs_unlock();
401 }
402
403 void fpu__clear_user_states(struct fpu *fpu)
404 {
405         fpu__clear(fpu, true);
406 }
407
408 void fpu__clear_all(struct fpu *fpu)
409 {
410         fpu__clear(fpu, false);
411 }
412
413 /*
414  * Load FPU context before returning to userspace.
415  */
416 void switch_fpu_return(void)
417 {
418         if (!static_cpu_has(X86_FEATURE_FPU))
419                 return;
420
421         __fpregs_load_activate();
422 }
423 EXPORT_SYMBOL_GPL(switch_fpu_return);
424
425 #ifdef CONFIG_X86_DEBUG_FPU
426 /*
427  * If current FPU state according to its tracking (loaded FPU context on this
428  * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
429  * loaded on return to userland.
430  */
431 void fpregs_assert_state_consistent(void)
432 {
433         struct fpu *fpu = &current->thread.fpu;
434
435         if (test_thread_flag(TIF_NEED_FPU_LOAD))
436                 return;
437
438         WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
439 }
440 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
441 #endif
442
443 void fpregs_mark_activate(void)
444 {
445         struct fpu *fpu = &current->thread.fpu;
446
447         fpregs_activate(fpu);
448         fpu->last_cpu = smp_processor_id();
449         clear_thread_flag(TIF_NEED_FPU_LOAD);
450 }
451 EXPORT_SYMBOL_GPL(fpregs_mark_activate);
452
453 /*
454  * x87 math exception handling:
455  */
456
457 int fpu__exception_code(struct fpu *fpu, int trap_nr)
458 {
459         int err;
460
461         if (trap_nr == X86_TRAP_MF) {
462                 unsigned short cwd, swd;
463                 /*
464                  * (~cwd & swd) will mask out exceptions that are not set to unmasked
465                  * status.  0x3f is the exception bits in these regs, 0x200 is the
466                  * C1 reg you need in case of a stack fault, 0x040 is the stack
467                  * fault bit.  We should only be taking one exception at a time,
468                  * so if this combination doesn't produce any single exception,
469                  * then we have a bad program that isn't synchronizing its FPU usage
470                  * and it will suffer the consequences since we won't be able to
471                  * fully reproduce the context of the exception.
472                  */
473                 if (boot_cpu_has(X86_FEATURE_FXSR)) {
474                         cwd = fpu->state.fxsave.cwd;
475                         swd = fpu->state.fxsave.swd;
476                 } else {
477                         cwd = (unsigned short)fpu->state.fsave.cwd;
478                         swd = (unsigned short)fpu->state.fsave.swd;
479                 }
480
481                 err = swd & ~cwd;
482         } else {
483                 /*
484                  * The SIMD FPU exceptions are handled a little differently, as there
485                  * is only a single status/control register.  Thus, to determine which
486                  * unmasked exception was caught we must mask the exception mask bits
487                  * at 0x1f80, and then use these to mask the exception bits at 0x3f.
488                  */
489                 unsigned short mxcsr = MXCSR_DEFAULT;
490
491                 if (boot_cpu_has(X86_FEATURE_XMM))
492                         mxcsr = fpu->state.fxsave.mxcsr;
493
494                 err = ~(mxcsr >> 7) & mxcsr;
495         }
496
497         if (err & 0x001) {      /* Invalid op */
498                 /*
499                  * swd & 0x240 == 0x040: Stack Underflow
500                  * swd & 0x240 == 0x240: Stack Overflow
501                  * User must clear the SF bit (0x40) if set
502                  */
503                 return FPE_FLTINV;
504         } else if (err & 0x004) { /* Divide by Zero */
505                 return FPE_FLTDIV;
506         } else if (err & 0x008) { /* Overflow */
507                 return FPE_FLTOVF;
508         } else if (err & 0x012) { /* Denormal, Underflow */
509                 return FPE_FLTUND;
510         } else if (err & 0x020) { /* Precision */
511                 return FPE_FLTRES;
512         }
513
514         /*
515          * If we're using IRQ 13, or supposedly even some trap
516          * X86_TRAP_MF implementations, it's possible
517          * we get a spurious trap, which is not an error.
518          */
519         return 0;
520 }