Merge tag 'sfi-removal-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / kernel / cpu / sgx / main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*  Copyright(c) 2016-20 Intel Corporation. */
3
4 #include <linux/freezer.h>
5 #include <linux/highmem.h>
6 #include <linux/kthread.h>
7 #include <linux/pagemap.h>
8 #include <linux/ratelimit.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/slab.h>
12 #include "driver.h"
13 #include "encl.h"
14 #include "encls.h"
15
16 struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
17 static int sgx_nr_epc_sections;
18 static struct task_struct *ksgxd_tsk;
19 static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
20
21 /*
22  * These variables are part of the state of the reclaimer, and must be accessed
23  * with sgx_reclaimer_lock acquired.
24  */
25 static LIST_HEAD(sgx_active_page_list);
26
27 static DEFINE_SPINLOCK(sgx_reclaimer_lock);
28
29 /*
30  * Reset dirty EPC pages to uninitialized state. Laundry can be left with SECS
31  * pages whose child pages blocked EREMOVE.
32  */
33 static void sgx_sanitize_section(struct sgx_epc_section *section)
34 {
35         struct sgx_epc_page *page;
36         LIST_HEAD(dirty);
37         int ret;
38
39         /* init_laundry_list is thread-local, no need for a lock: */
40         while (!list_empty(&section->init_laundry_list)) {
41                 if (kthread_should_stop())
42                         return;
43
44                 /* needed for access to ->page_list: */
45                 spin_lock(&section->lock);
46
47                 page = list_first_entry(&section->init_laundry_list,
48                                         struct sgx_epc_page, list);
49
50                 ret = __eremove(sgx_get_epc_virt_addr(page));
51                 if (!ret)
52                         list_move(&page->list, &section->page_list);
53                 else
54                         list_move_tail(&page->list, &dirty);
55
56                 spin_unlock(&section->lock);
57
58                 cond_resched();
59         }
60
61         list_splice(&dirty, &section->init_laundry_list);
62 }
63
64 static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
65 {
66         struct sgx_encl_page *page = epc_page->owner;
67         struct sgx_encl *encl = page->encl;
68         struct sgx_encl_mm *encl_mm;
69         bool ret = true;
70         int idx;
71
72         idx = srcu_read_lock(&encl->srcu);
73
74         list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
75                 if (!mmget_not_zero(encl_mm->mm))
76                         continue;
77
78                 mmap_read_lock(encl_mm->mm);
79                 ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
80                 mmap_read_unlock(encl_mm->mm);
81
82                 mmput_async(encl_mm->mm);
83
84                 if (!ret)
85                         break;
86         }
87
88         srcu_read_unlock(&encl->srcu, idx);
89
90         if (!ret)
91                 return false;
92
93         return true;
94 }
95
96 static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
97 {
98         struct sgx_encl_page *page = epc_page->owner;
99         unsigned long addr = page->desc & PAGE_MASK;
100         struct sgx_encl *encl = page->encl;
101         unsigned long mm_list_version;
102         struct sgx_encl_mm *encl_mm;
103         struct vm_area_struct *vma;
104         int idx, ret;
105
106         do {
107                 mm_list_version = encl->mm_list_version;
108
109                 /* Pairs with smp_rmb() in sgx_encl_mm_add(). */
110                 smp_rmb();
111
112                 idx = srcu_read_lock(&encl->srcu);
113
114                 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
115                         if (!mmget_not_zero(encl_mm->mm))
116                                 continue;
117
118                         mmap_read_lock(encl_mm->mm);
119
120                         ret = sgx_encl_find(encl_mm->mm, addr, &vma);
121                         if (!ret && encl == vma->vm_private_data)
122                                 zap_vma_ptes(vma, addr, PAGE_SIZE);
123
124                         mmap_read_unlock(encl_mm->mm);
125
126                         mmput_async(encl_mm->mm);
127                 }
128
129                 srcu_read_unlock(&encl->srcu, idx);
130         } while (unlikely(encl->mm_list_version != mm_list_version));
131
132         mutex_lock(&encl->lock);
133
134         ret = __eblock(sgx_get_epc_virt_addr(epc_page));
135         if (encls_failed(ret))
136                 ENCLS_WARN(ret, "EBLOCK");
137
138         mutex_unlock(&encl->lock);
139 }
140
141 static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
142                           struct sgx_backing *backing)
143 {
144         struct sgx_pageinfo pginfo;
145         int ret;
146
147         pginfo.addr = 0;
148         pginfo.secs = 0;
149
150         pginfo.contents = (unsigned long)kmap_atomic(backing->contents);
151         pginfo.metadata = (unsigned long)kmap_atomic(backing->pcmd) +
152                           backing->pcmd_offset;
153
154         ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
155
156         kunmap_atomic((void *)(unsigned long)(pginfo.metadata -
157                                               backing->pcmd_offset));
158         kunmap_atomic((void *)(unsigned long)pginfo.contents);
159
160         return ret;
161 }
162
163 static void sgx_ipi_cb(void *info)
164 {
165 }
166
167 static const cpumask_t *sgx_encl_ewb_cpumask(struct sgx_encl *encl)
168 {
169         cpumask_t *cpumask = &encl->cpumask;
170         struct sgx_encl_mm *encl_mm;
171         int idx;
172
173         /*
174          * Can race with sgx_encl_mm_add(), but ETRACK has already been
175          * executed, which means that the CPUs running in the new mm will enter
176          * into the enclave with a fresh epoch.
177          */
178         cpumask_clear(cpumask);
179
180         idx = srcu_read_lock(&encl->srcu);
181
182         list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
183                 if (!mmget_not_zero(encl_mm->mm))
184                         continue;
185
186                 cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
187
188                 mmput_async(encl_mm->mm);
189         }
190
191         srcu_read_unlock(&encl->srcu, idx);
192
193         return cpumask;
194 }
195
196 /*
197  * Swap page to the regular memory transformed to the blocked state by using
198  * EBLOCK, which means that it can no loger be referenced (no new TLB entries).
199  *
200  * The first trial just tries to write the page assuming that some other thread
201  * has reset the count for threads inside the enlave by using ETRACK, and
202  * previous thread count has been zeroed out. The second trial calls ETRACK
203  * before EWB. If that fails we kick all the HW threads out, and then do EWB,
204  * which should be guaranteed the succeed.
205  */
206 static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
207                          struct sgx_backing *backing)
208 {
209         struct sgx_encl_page *encl_page = epc_page->owner;
210         struct sgx_encl *encl = encl_page->encl;
211         struct sgx_va_page *va_page;
212         unsigned int va_offset;
213         void *va_slot;
214         int ret;
215
216         encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
217
218         va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
219                                    list);
220         va_offset = sgx_alloc_va_slot(va_page);
221         va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
222         if (sgx_va_page_full(va_page))
223                 list_move_tail(&va_page->list, &encl->va_pages);
224
225         ret = __sgx_encl_ewb(epc_page, va_slot, backing);
226         if (ret == SGX_NOT_TRACKED) {
227                 ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
228                 if (ret) {
229                         if (encls_failed(ret))
230                                 ENCLS_WARN(ret, "ETRACK");
231                 }
232
233                 ret = __sgx_encl_ewb(epc_page, va_slot, backing);
234                 if (ret == SGX_NOT_TRACKED) {
235                         /*
236                          * Slow path, send IPIs to kick cpus out of the
237                          * enclave.  Note, it's imperative that the cpu
238                          * mask is generated *after* ETRACK, else we'll
239                          * miss cpus that entered the enclave between
240                          * generating the mask and incrementing epoch.
241                          */
242                         on_each_cpu_mask(sgx_encl_ewb_cpumask(encl),
243                                          sgx_ipi_cb, NULL, 1);
244                         ret = __sgx_encl_ewb(epc_page, va_slot, backing);
245                 }
246         }
247
248         if (ret) {
249                 if (encls_failed(ret))
250                         ENCLS_WARN(ret, "EWB");
251
252                 sgx_free_va_slot(va_page, va_offset);
253         } else {
254                 encl_page->desc |= va_offset;
255                 encl_page->va_page = va_page;
256         }
257 }
258
259 static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
260                                 struct sgx_backing *backing)
261 {
262         struct sgx_encl_page *encl_page = epc_page->owner;
263         struct sgx_encl *encl = encl_page->encl;
264         struct sgx_backing secs_backing;
265         int ret;
266
267         mutex_lock(&encl->lock);
268
269         sgx_encl_ewb(epc_page, backing);
270         encl_page->epc_page = NULL;
271         encl->secs_child_cnt--;
272
273         if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
274                 ret = sgx_encl_get_backing(encl, PFN_DOWN(encl->size),
275                                            &secs_backing);
276                 if (ret)
277                         goto out;
278
279                 sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
280
281                 sgx_free_epc_page(encl->secs.epc_page);
282                 encl->secs.epc_page = NULL;
283
284                 sgx_encl_put_backing(&secs_backing, true);
285         }
286
287 out:
288         mutex_unlock(&encl->lock);
289 }
290
291 /*
292  * Take a fixed number of pages from the head of the active page pool and
293  * reclaim them to the enclave's private shmem files. Skip the pages, which have
294  * been accessed since the last scan. Move those pages to the tail of active
295  * page pool so that the pages get scanned in LRU like fashion.
296  *
297  * Batch process a chunk of pages (at the moment 16) in order to degrade amount
298  * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
299  * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
300  * + EWB) but not sufficiently. Reclaiming one page at a time would also be
301  * problematic as it would increase the lock contention too much, which would
302  * halt forward progress.
303  */
304 static void sgx_reclaim_pages(void)
305 {
306         struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
307         struct sgx_backing backing[SGX_NR_TO_SCAN];
308         struct sgx_epc_section *section;
309         struct sgx_encl_page *encl_page;
310         struct sgx_epc_page *epc_page;
311         pgoff_t page_index;
312         int cnt = 0;
313         int ret;
314         int i;
315
316         spin_lock(&sgx_reclaimer_lock);
317         for (i = 0; i < SGX_NR_TO_SCAN; i++) {
318                 if (list_empty(&sgx_active_page_list))
319                         break;
320
321                 epc_page = list_first_entry(&sgx_active_page_list,
322                                             struct sgx_epc_page, list);
323                 list_del_init(&epc_page->list);
324                 encl_page = epc_page->owner;
325
326                 if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
327                         chunk[cnt++] = epc_page;
328                 else
329                         /* The owner is freeing the page. No need to add the
330                          * page back to the list of reclaimable pages.
331                          */
332                         epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
333         }
334         spin_unlock(&sgx_reclaimer_lock);
335
336         for (i = 0; i < cnt; i++) {
337                 epc_page = chunk[i];
338                 encl_page = epc_page->owner;
339
340                 if (!sgx_reclaimer_age(epc_page))
341                         goto skip;
342
343                 page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
344                 ret = sgx_encl_get_backing(encl_page->encl, page_index, &backing[i]);
345                 if (ret)
346                         goto skip;
347
348                 mutex_lock(&encl_page->encl->lock);
349                 encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
350                 mutex_unlock(&encl_page->encl->lock);
351                 continue;
352
353 skip:
354                 spin_lock(&sgx_reclaimer_lock);
355                 list_add_tail(&epc_page->list, &sgx_active_page_list);
356                 spin_unlock(&sgx_reclaimer_lock);
357
358                 kref_put(&encl_page->encl->refcount, sgx_encl_release);
359
360                 chunk[i] = NULL;
361         }
362
363         for (i = 0; i < cnt; i++) {
364                 epc_page = chunk[i];
365                 if (epc_page)
366                         sgx_reclaimer_block(epc_page);
367         }
368
369         for (i = 0; i < cnt; i++) {
370                 epc_page = chunk[i];
371                 if (!epc_page)
372                         continue;
373
374                 encl_page = epc_page->owner;
375                 sgx_reclaimer_write(epc_page, &backing[i]);
376                 sgx_encl_put_backing(&backing[i], true);
377
378                 kref_put(&encl_page->encl->refcount, sgx_encl_release);
379                 epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
380
381                 section = &sgx_epc_sections[epc_page->section];
382                 spin_lock(&section->lock);
383                 list_add_tail(&epc_page->list, &section->page_list);
384                 section->free_cnt++;
385                 spin_unlock(&section->lock);
386         }
387 }
388
389 static unsigned long sgx_nr_free_pages(void)
390 {
391         unsigned long cnt = 0;
392         int i;
393
394         for (i = 0; i < sgx_nr_epc_sections; i++)
395                 cnt += sgx_epc_sections[i].free_cnt;
396
397         return cnt;
398 }
399
400 static bool sgx_should_reclaim(unsigned long watermark)
401 {
402         return sgx_nr_free_pages() < watermark &&
403                !list_empty(&sgx_active_page_list);
404 }
405
406 static int ksgxd(void *p)
407 {
408         int i;
409
410         set_freezable();
411
412         /*
413          * Sanitize pages in order to recover from kexec(). The 2nd pass is
414          * required for SECS pages, whose child pages blocked EREMOVE.
415          */
416         for (i = 0; i < sgx_nr_epc_sections; i++)
417                 sgx_sanitize_section(&sgx_epc_sections[i]);
418
419         for (i = 0; i < sgx_nr_epc_sections; i++) {
420                 sgx_sanitize_section(&sgx_epc_sections[i]);
421
422                 /* Should never happen. */
423                 if (!list_empty(&sgx_epc_sections[i].init_laundry_list))
424                         WARN(1, "EPC section %d has unsanitized pages.\n", i);
425         }
426
427         while (!kthread_should_stop()) {
428                 if (try_to_freeze())
429                         continue;
430
431                 wait_event_freezable(ksgxd_waitq,
432                                      kthread_should_stop() ||
433                                      sgx_should_reclaim(SGX_NR_HIGH_PAGES));
434
435                 if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
436                         sgx_reclaim_pages();
437
438                 cond_resched();
439         }
440
441         return 0;
442 }
443
444 static bool __init sgx_page_reclaimer_init(void)
445 {
446         struct task_struct *tsk;
447
448         tsk = kthread_run(ksgxd, NULL, "ksgxd");
449         if (IS_ERR(tsk))
450                 return false;
451
452         ksgxd_tsk = tsk;
453
454         return true;
455 }
456
457 static struct sgx_epc_page *__sgx_alloc_epc_page_from_section(struct sgx_epc_section *section)
458 {
459         struct sgx_epc_page *page;
460
461         spin_lock(&section->lock);
462
463         if (list_empty(&section->page_list)) {
464                 spin_unlock(&section->lock);
465                 return NULL;
466         }
467
468         page = list_first_entry(&section->page_list, struct sgx_epc_page, list);
469         list_del_init(&page->list);
470         section->free_cnt--;
471
472         spin_unlock(&section->lock);
473         return page;
474 }
475
476 /**
477  * __sgx_alloc_epc_page() - Allocate an EPC page
478  *
479  * Iterate through EPC sections and borrow a free EPC page to the caller. When a
480  * page is no longer needed it must be released with sgx_free_epc_page().
481  *
482  * Return:
483  *   an EPC page,
484  *   -errno on error
485  */
486 struct sgx_epc_page *__sgx_alloc_epc_page(void)
487 {
488         struct sgx_epc_section *section;
489         struct sgx_epc_page *page;
490         int i;
491
492         for (i = 0; i < sgx_nr_epc_sections; i++) {
493                 section = &sgx_epc_sections[i];
494
495                 page = __sgx_alloc_epc_page_from_section(section);
496                 if (page)
497                         return page;
498         }
499
500         return ERR_PTR(-ENOMEM);
501 }
502
503 /**
504  * sgx_mark_page_reclaimable() - Mark a page as reclaimable
505  * @page:       EPC page
506  *
507  * Mark a page as reclaimable and add it to the active page list. Pages
508  * are automatically removed from the active list when freed.
509  */
510 void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
511 {
512         spin_lock(&sgx_reclaimer_lock);
513         page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
514         list_add_tail(&page->list, &sgx_active_page_list);
515         spin_unlock(&sgx_reclaimer_lock);
516 }
517
518 /**
519  * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
520  * @page:       EPC page
521  *
522  * Clear the reclaimable flag and remove the page from the active page list.
523  *
524  * Return:
525  *   0 on success,
526  *   -EBUSY if the page is in the process of being reclaimed
527  */
528 int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
529 {
530         spin_lock(&sgx_reclaimer_lock);
531         if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
532                 /* The page is being reclaimed. */
533                 if (list_empty(&page->list)) {
534                         spin_unlock(&sgx_reclaimer_lock);
535                         return -EBUSY;
536                 }
537
538                 list_del(&page->list);
539                 page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
540         }
541         spin_unlock(&sgx_reclaimer_lock);
542
543         return 0;
544 }
545
546 /**
547  * sgx_alloc_epc_page() - Allocate an EPC page
548  * @owner:      the owner of the EPC page
549  * @reclaim:    reclaim pages if necessary
550  *
551  * Iterate through EPC sections and borrow a free EPC page to the caller. When a
552  * page is no longer needed it must be released with sgx_free_epc_page(). If
553  * @reclaim is set to true, directly reclaim pages when we are out of pages. No
554  * mm's can be locked when @reclaim is set to true.
555  *
556  * Finally, wake up ksgxd when the number of pages goes below the watermark
557  * before returning back to the caller.
558  *
559  * Return:
560  *   an EPC page,
561  *   -errno on error
562  */
563 struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
564 {
565         struct sgx_epc_page *page;
566
567         for ( ; ; ) {
568                 page = __sgx_alloc_epc_page();
569                 if (!IS_ERR(page)) {
570                         page->owner = owner;
571                         break;
572                 }
573
574                 if (list_empty(&sgx_active_page_list))
575                         return ERR_PTR(-ENOMEM);
576
577                 if (!reclaim) {
578                         page = ERR_PTR(-EBUSY);
579                         break;
580                 }
581
582                 if (signal_pending(current)) {
583                         page = ERR_PTR(-ERESTARTSYS);
584                         break;
585                 }
586
587                 sgx_reclaim_pages();
588                 cond_resched();
589         }
590
591         if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
592                 wake_up(&ksgxd_waitq);
593
594         return page;
595 }
596
597 /**
598  * sgx_free_epc_page() - Free an EPC page
599  * @page:       an EPC page
600  *
601  * Call EREMOVE for an EPC page and insert it back to the list of free pages.
602  */
603 void sgx_free_epc_page(struct sgx_epc_page *page)
604 {
605         struct sgx_epc_section *section = &sgx_epc_sections[page->section];
606         int ret;
607
608         WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED);
609
610         ret = __eremove(sgx_get_epc_virt_addr(page));
611         if (WARN_ONCE(ret, "EREMOVE returned %d (0x%x)", ret, ret))
612                 return;
613
614         spin_lock(&section->lock);
615         list_add_tail(&page->list, &section->page_list);
616         section->free_cnt++;
617         spin_unlock(&section->lock);
618 }
619
620 static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
621                                          unsigned long index,
622                                          struct sgx_epc_section *section)
623 {
624         unsigned long nr_pages = size >> PAGE_SHIFT;
625         unsigned long i;
626
627         section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
628         if (!section->virt_addr)
629                 return false;
630
631         section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
632         if (!section->pages) {
633                 memunmap(section->virt_addr);
634                 return false;
635         }
636
637         section->phys_addr = phys_addr;
638         spin_lock_init(&section->lock);
639         INIT_LIST_HEAD(&section->page_list);
640         INIT_LIST_HEAD(&section->init_laundry_list);
641
642         for (i = 0; i < nr_pages; i++) {
643                 section->pages[i].section = index;
644                 section->pages[i].flags = 0;
645                 section->pages[i].owner = NULL;
646                 list_add_tail(&section->pages[i].list, &section->init_laundry_list);
647         }
648
649         section->free_cnt = nr_pages;
650         return true;
651 }
652
653 /**
654  * A section metric is concatenated in a way that @low bits 12-31 define the
655  * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
656  * metric.
657  */
658 static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
659 {
660         return (low & GENMASK_ULL(31, 12)) +
661                ((high & GENMASK_ULL(19, 0)) << 32);
662 }
663
664 static bool __init sgx_page_cache_init(void)
665 {
666         u32 eax, ebx, ecx, edx, type;
667         u64 pa, size;
668         int i;
669
670         for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
671                 cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
672
673                 type = eax & SGX_CPUID_EPC_MASK;
674                 if (type == SGX_CPUID_EPC_INVALID)
675                         break;
676
677                 if (type != SGX_CPUID_EPC_SECTION) {
678                         pr_err_once("Unknown EPC section type: %u\n", type);
679                         break;
680                 }
681
682                 pa   = sgx_calc_section_metric(eax, ebx);
683                 size = sgx_calc_section_metric(ecx, edx);
684
685                 pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
686
687                 if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
688                         pr_err("No free memory for an EPC section\n");
689                         break;
690                 }
691
692                 sgx_nr_epc_sections++;
693         }
694
695         if (!sgx_nr_epc_sections) {
696                 pr_err("There are zero EPC sections.\n");
697                 return false;
698         }
699
700         return true;
701 }
702
703 static int __init sgx_init(void)
704 {
705         int ret;
706         int i;
707
708         if (!cpu_feature_enabled(X86_FEATURE_SGX))
709                 return -ENODEV;
710
711         if (!sgx_page_cache_init())
712                 return -ENOMEM;
713
714         if (!sgx_page_reclaimer_init()) {
715                 ret = -ENOMEM;
716                 goto err_page_cache;
717         }
718
719         ret = sgx_drv_init();
720         if (ret)
721                 goto err_kthread;
722
723         return 0;
724
725 err_kthread:
726         kthread_stop(ksgxd_tsk);
727
728 err_page_cache:
729         for (i = 0; i < sgx_nr_epc_sections; i++) {
730                 vfree(sgx_epc_sections[i].pages);
731                 memunmap(sgx_epc_sections[i].virt_addr);
732         }
733
734         return ret;
735 }
736
737 device_initcall(sgx_init);