Merge tag 'pci-v4.20-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[linux-2.6-microblaze.git] / arch / x86 / kernel / cpu / mcheck / mce_amd.c
1 /*
2  *  (c) 2005-2016 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Written by Jacob Shin - AMD, Inc.
8  *  Maintained by: Borislav Petkov <bp@alien8.de>
9  *
10  *  All MC4_MISCi registers are shared between cores on a node.
11  */
12 #include <linux/interrupt.h>
13 #include <linux/notifier.h>
14 #include <linux/kobject.h>
15 #include <linux/percpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/sysfs.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/string.h>
24
25 #include <asm/amd_nb.h>
26 #include <asm/apic.h>
27 #include <asm/mce.h>
28 #include <asm/msr.h>
29 #include <asm/trace/irq_vectors.h>
30
31 #include "mce-internal.h"
32
33 #define NR_BLOCKS         5
34 #define THRESHOLD_MAX     0xFFF
35 #define INT_TYPE_APIC     0x00020000
36 #define MASK_VALID_HI     0x80000000
37 #define MASK_CNTP_HI      0x40000000
38 #define MASK_LOCKED_HI    0x20000000
39 #define MASK_LVTOFF_HI    0x00F00000
40 #define MASK_COUNT_EN_HI  0x00080000
41 #define MASK_INT_TYPE_HI  0x00060000
42 #define MASK_OVERFLOW_HI  0x00010000
43 #define MASK_ERR_COUNT_HI 0x00000FFF
44 #define MASK_BLKPTR_LO    0xFF000000
45 #define MCG_XBLK_ADDR     0xC0000400
46
47 /* Deferred error settings */
48 #define MSR_CU_DEF_ERR          0xC0000410
49 #define MASK_DEF_LVTOFF         0x000000F0
50 #define MASK_DEF_INT_TYPE       0x00000006
51 #define DEF_LVT_OFF             0x2
52 #define DEF_INT_TYPE_APIC       0x2
53
54 /* Scalable MCA: */
55
56 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
57 #define SMCA_THR_LVT_OFF        0xF000
58
59 static bool thresholding_irq_en;
60
61 static const char * const th_names[] = {
62         "load_store",
63         "insn_fetch",
64         "combined_unit",
65         "decode_unit",
66         "northbridge",
67         "execution_unit",
68 };
69
70 static const char * const smca_umc_block_names[] = {
71         "dram_ecc",
72         "misc_umc"
73 };
74
75 struct smca_bank_name {
76         const char *name;       /* Short name for sysfs */
77         const char *long_name;  /* Long name for pretty-printing */
78 };
79
80 static struct smca_bank_name smca_names[] = {
81         [SMCA_LS]       = { "load_store",       "Load Store Unit" },
82         [SMCA_IF]       = { "insn_fetch",       "Instruction Fetch Unit" },
83         [SMCA_L2_CACHE] = { "l2_cache",         "L2 Cache" },
84         [SMCA_DE]       = { "decode_unit",      "Decode Unit" },
85         [SMCA_RESERVED] = { "reserved",         "Reserved" },
86         [SMCA_EX]       = { "execution_unit",   "Execution Unit" },
87         [SMCA_FP]       = { "floating_point",   "Floating Point Unit" },
88         [SMCA_L3_CACHE] = { "l3_cache",         "L3 Cache" },
89         [SMCA_CS]       = { "coherent_slave",   "Coherent Slave" },
90         [SMCA_PIE]      = { "pie",              "Power, Interrupts, etc." },
91         [SMCA_UMC]      = { "umc",              "Unified Memory Controller" },
92         [SMCA_PB]       = { "param_block",      "Parameter Block" },
93         [SMCA_PSP]      = { "psp",              "Platform Security Processor" },
94         [SMCA_SMU]      = { "smu",              "System Management Unit" },
95 };
96
97 static u32 smca_bank_addrs[MAX_NR_BANKS][NR_BLOCKS] __ro_after_init =
98 {
99         [0 ... MAX_NR_BANKS - 1] = { [0 ... NR_BLOCKS - 1] = -1 }
100 };
101
102 const char *smca_get_name(enum smca_bank_types t)
103 {
104         if (t >= N_SMCA_BANK_TYPES)
105                 return NULL;
106
107         return smca_names[t].name;
108 }
109
110 const char *smca_get_long_name(enum smca_bank_types t)
111 {
112         if (t >= N_SMCA_BANK_TYPES)
113                 return NULL;
114
115         return smca_names[t].long_name;
116 }
117 EXPORT_SYMBOL_GPL(smca_get_long_name);
118
119 static enum smca_bank_types smca_get_bank_type(unsigned int bank)
120 {
121         struct smca_bank *b;
122
123         if (bank >= MAX_NR_BANKS)
124                 return N_SMCA_BANK_TYPES;
125
126         b = &smca_banks[bank];
127         if (!b->hwid)
128                 return N_SMCA_BANK_TYPES;
129
130         return b->hwid->bank_type;
131 }
132
133 static struct smca_hwid smca_hwid_mcatypes[] = {
134         /* { bank_type, hwid_mcatype, xec_bitmap } */
135
136         /* Reserved type */
137         { SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0), 0x0 },
138
139         /* ZN Core (HWID=0xB0) MCA types */
140         { SMCA_LS,       HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF },
141         { SMCA_IF,       HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
142         { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
143         { SMCA_DE,       HWID_MCATYPE(0xB0, 0x3), 0x1FF },
144         /* HWID 0xB0 MCATYPE 0x4 is Reserved */
145         { SMCA_EX,       HWID_MCATYPE(0xB0, 0x5), 0x7FF },
146         { SMCA_FP,       HWID_MCATYPE(0xB0, 0x6), 0x7F },
147         { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
148
149         /* Data Fabric MCA types */
150         { SMCA_CS,       HWID_MCATYPE(0x2E, 0x0), 0x1FF },
151         { SMCA_PIE,      HWID_MCATYPE(0x2E, 0x1), 0xF },
152
153         /* Unified Memory Controller MCA type */
154         { SMCA_UMC,      HWID_MCATYPE(0x96, 0x0), 0x3F },
155
156         /* Parameter Block MCA type */
157         { SMCA_PB,       HWID_MCATYPE(0x05, 0x0), 0x1 },
158
159         /* Platform Security Processor MCA type */
160         { SMCA_PSP,      HWID_MCATYPE(0xFF, 0x0), 0x1 },
161
162         /* System Management Unit MCA type */
163         { SMCA_SMU,      HWID_MCATYPE(0x01, 0x0), 0x1 },
164 };
165
166 struct smca_bank smca_banks[MAX_NR_BANKS];
167 EXPORT_SYMBOL_GPL(smca_banks);
168
169 /*
170  * In SMCA enabled processors, we can have multiple banks for a given IP type.
171  * So to define a unique name for each bank, we use a temp c-string to append
172  * the MCA_IPID[InstanceId] to type's name in get_name().
173  *
174  * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
175  * is greater than 8 plus 1 (for underscore) plus length of longest type name.
176  */
177 #define MAX_MCATYPE_NAME_LEN    30
178 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
179
180 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
181 static DEFINE_PER_CPU(unsigned int, bank_map);  /* see which banks are on */
182
183 static void amd_threshold_interrupt(void);
184 static void amd_deferred_error_interrupt(void);
185
186 static void default_deferred_error_interrupt(void)
187 {
188         pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
189 }
190 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
191
192 static void smca_configure(unsigned int bank, unsigned int cpu)
193 {
194         unsigned int i, hwid_mcatype;
195         struct smca_hwid *s_hwid;
196         u32 high, low;
197         u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
198
199         /* Set appropriate bits in MCA_CONFIG */
200         if (!rdmsr_safe(smca_config, &low, &high)) {
201                 /*
202                  * OS is required to set the MCAX bit to acknowledge that it is
203                  * now using the new MSR ranges and new registers under each
204                  * bank. It also means that the OS will configure deferred
205                  * errors in the new MCx_CONFIG register. If the bit is not set,
206                  * uncorrectable errors will cause a system panic.
207                  *
208                  * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
209                  */
210                 high |= BIT(0);
211
212                 /*
213                  * SMCA sets the Deferred Error Interrupt type per bank.
214                  *
215                  * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
216                  * if the DeferredIntType bit field is available.
217                  *
218                  * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
219                  * high portion of the MSR). OS should set this to 0x1 to enable
220                  * APIC based interrupt. First, check that no interrupt has been
221                  * set.
222                  */
223                 if ((low & BIT(5)) && !((high >> 5) & 0x3))
224                         high |= BIT(5);
225
226                 wrmsr(smca_config, low, high);
227         }
228
229         /* Return early if this bank was already initialized. */
230         if (smca_banks[bank].hwid)
231                 return;
232
233         if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
234                 pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
235                 return;
236         }
237
238         hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
239                                     (high & MCI_IPID_MCATYPE) >> 16);
240
241         for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
242                 s_hwid = &smca_hwid_mcatypes[i];
243                 if (hwid_mcatype == s_hwid->hwid_mcatype) {
244                         smca_banks[bank].hwid = s_hwid;
245                         smca_banks[bank].id = low;
246                         smca_banks[bank].sysfs_id = s_hwid->count++;
247                         break;
248                 }
249         }
250 }
251
252 struct thresh_restart {
253         struct threshold_block  *b;
254         int                     reset;
255         int                     set_lvt_off;
256         int                     lvt_off;
257         u16                     old_limit;
258 };
259
260 static inline bool is_shared_bank(int bank)
261 {
262         /*
263          * Scalable MCA provides for only one core to have access to the MSRs of
264          * a shared bank.
265          */
266         if (mce_flags.smca)
267                 return false;
268
269         /* Bank 4 is for northbridge reporting and is thus shared */
270         return (bank == 4);
271 }
272
273 static const char *bank4_names(const struct threshold_block *b)
274 {
275         switch (b->address) {
276         /* MSR4_MISC0 */
277         case 0x00000413:
278                 return "dram";
279
280         case 0xc0000408:
281                 return "ht_links";
282
283         case 0xc0000409:
284                 return "l3_cache";
285
286         default:
287                 WARN(1, "Funny MSR: 0x%08x\n", b->address);
288                 return "";
289         }
290 };
291
292
293 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
294 {
295         /*
296          * bank 4 supports APIC LVT interrupts implicitly since forever.
297          */
298         if (bank == 4)
299                 return true;
300
301         /*
302          * IntP: interrupt present; if this bit is set, the thresholding
303          * bank can generate APIC LVT interrupts
304          */
305         return msr_high_bits & BIT(28);
306 }
307
308 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
309 {
310         int msr = (hi & MASK_LVTOFF_HI) >> 20;
311
312         if (apic < 0) {
313                 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
314                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
315                        b->bank, b->block, b->address, hi, lo);
316                 return 0;
317         }
318
319         if (apic != msr) {
320                 /*
321                  * On SMCA CPUs, LVT offset is programmed at a different MSR, and
322                  * the BIOS provides the value. The original field where LVT offset
323                  * was set is reserved. Return early here:
324                  */
325                 if (mce_flags.smca)
326                         return 0;
327
328                 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
329                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
330                        b->cpu, apic, b->bank, b->block, b->address, hi, lo);
331                 return 0;
332         }
333
334         return 1;
335 };
336
337 /* Reprogram MCx_MISC MSR behind this threshold bank. */
338 static void threshold_restart_bank(void *_tr)
339 {
340         struct thresh_restart *tr = _tr;
341         u32 hi, lo;
342
343         rdmsr(tr->b->address, lo, hi);
344
345         if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
346                 tr->reset = 1;  /* limit cannot be lower than err count */
347
348         if (tr->reset) {                /* reset err count and overflow bit */
349                 hi =
350                     (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
351                     (THRESHOLD_MAX - tr->b->threshold_limit);
352         } else if (tr->old_limit) {     /* change limit w/o reset */
353                 int new_count = (hi & THRESHOLD_MAX) +
354                     (tr->old_limit - tr->b->threshold_limit);
355
356                 hi = (hi & ~MASK_ERR_COUNT_HI) |
357                     (new_count & THRESHOLD_MAX);
358         }
359
360         /* clear IntType */
361         hi &= ~MASK_INT_TYPE_HI;
362
363         if (!tr->b->interrupt_capable)
364                 goto done;
365
366         if (tr->set_lvt_off) {
367                 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
368                         /* set new lvt offset */
369                         hi &= ~MASK_LVTOFF_HI;
370                         hi |= tr->lvt_off << 20;
371                 }
372         }
373
374         if (tr->b->interrupt_enable)
375                 hi |= INT_TYPE_APIC;
376
377  done:
378
379         hi |= MASK_COUNT_EN_HI;
380         wrmsr(tr->b->address, lo, hi);
381 }
382
383 static void mce_threshold_block_init(struct threshold_block *b, int offset)
384 {
385         struct thresh_restart tr = {
386                 .b                      = b,
387                 .set_lvt_off            = 1,
388                 .lvt_off                = offset,
389         };
390
391         b->threshold_limit              = THRESHOLD_MAX;
392         threshold_restart_bank(&tr);
393 };
394
395 static int setup_APIC_mce_threshold(int reserved, int new)
396 {
397         if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
398                                               APIC_EILVT_MSG_FIX, 0))
399                 return new;
400
401         return reserved;
402 }
403
404 static int setup_APIC_deferred_error(int reserved, int new)
405 {
406         if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
407                                               APIC_EILVT_MSG_FIX, 0))
408                 return new;
409
410         return reserved;
411 }
412
413 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
414 {
415         u32 low = 0, high = 0;
416         int def_offset = -1, def_new;
417
418         if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
419                 return;
420
421         def_new = (low & MASK_DEF_LVTOFF) >> 4;
422         if (!(low & MASK_DEF_LVTOFF)) {
423                 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
424                 def_new = DEF_LVT_OFF;
425                 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
426         }
427
428         def_offset = setup_APIC_deferred_error(def_offset, def_new);
429         if ((def_offset == def_new) &&
430             (deferred_error_int_vector != amd_deferred_error_interrupt))
431                 deferred_error_int_vector = amd_deferred_error_interrupt;
432
433         if (!mce_flags.smca)
434                 low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
435
436         wrmsr(MSR_CU_DEF_ERR, low, high);
437 }
438
439 static u32 smca_get_block_address(unsigned int bank, unsigned int block)
440 {
441         u32 low, high;
442         u32 addr = 0;
443
444         if (smca_get_bank_type(bank) == SMCA_RESERVED)
445                 return addr;
446
447         if (!block)
448                 return MSR_AMD64_SMCA_MCx_MISC(bank);
449
450         /* Check our cache first: */
451         if (smca_bank_addrs[bank][block] != -1)
452                 return smca_bank_addrs[bank][block];
453
454         /*
455          * For SMCA enabled processors, BLKPTR field of the first MISC register
456          * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
457          */
458         if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
459                 goto out;
460
461         if (!(low & MCI_CONFIG_MCAX))
462                 goto out;
463
464         if (!rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) &&
465             (low & MASK_BLKPTR_LO))
466                 addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
467
468 out:
469         smca_bank_addrs[bank][block] = addr;
470         return addr;
471 }
472
473 static u32 get_block_address(u32 current_addr, u32 low, u32 high,
474                              unsigned int bank, unsigned int block)
475 {
476         u32 addr = 0, offset = 0;
477
478         if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
479                 return addr;
480
481         if (mce_flags.smca)
482                 return smca_get_block_address(bank, block);
483
484         /* Fall back to method we used for older processors: */
485         switch (block) {
486         case 0:
487                 addr = msr_ops.misc(bank);
488                 break;
489         case 1:
490                 offset = ((low & MASK_BLKPTR_LO) >> 21);
491                 if (offset)
492                         addr = MCG_XBLK_ADDR + offset;
493                 break;
494         default:
495                 addr = ++current_addr;
496         }
497         return addr;
498 }
499
500 static int
501 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
502                         int offset, u32 misc_high)
503 {
504         unsigned int cpu = smp_processor_id();
505         u32 smca_low, smca_high;
506         struct threshold_block b;
507         int new;
508
509         if (!block)
510                 per_cpu(bank_map, cpu) |= (1 << bank);
511
512         memset(&b, 0, sizeof(b));
513         b.cpu                   = cpu;
514         b.bank                  = bank;
515         b.block                 = block;
516         b.address               = addr;
517         b.interrupt_capable     = lvt_interrupt_supported(bank, misc_high);
518
519         if (!b.interrupt_capable)
520                 goto done;
521
522         b.interrupt_enable = 1;
523
524         if (!mce_flags.smca) {
525                 new = (misc_high & MASK_LVTOFF_HI) >> 20;
526                 goto set_offset;
527         }
528
529         /* Gather LVT offset for thresholding: */
530         if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
531                 goto out;
532
533         new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
534
535 set_offset:
536         offset = setup_APIC_mce_threshold(offset, new);
537         if (offset == new)
538                 thresholding_irq_en = true;
539
540 done:
541         mce_threshold_block_init(&b, offset);
542
543 out:
544         return offset;
545 }
546
547 /* cpu init entry point, called from mce.c with preempt off */
548 void mce_amd_feature_init(struct cpuinfo_x86 *c)
549 {
550         u32 low = 0, high = 0, address = 0;
551         unsigned int bank, block, cpu = smp_processor_id();
552         int offset = -1;
553
554         for (bank = 0; bank < mca_cfg.banks; ++bank) {
555                 if (mce_flags.smca)
556                         smca_configure(bank, cpu);
557
558                 for (block = 0; block < NR_BLOCKS; ++block) {
559                         address = get_block_address(address, low, high, bank, block);
560                         if (!address)
561                                 break;
562
563                         if (rdmsr_safe(address, &low, &high))
564                                 break;
565
566                         if (!(high & MASK_VALID_HI))
567                                 continue;
568
569                         if (!(high & MASK_CNTP_HI)  ||
570                              (high & MASK_LOCKED_HI))
571                                 continue;
572
573                         offset = prepare_threshold_block(bank, block, address, offset, high);
574                 }
575         }
576
577         if (mce_flags.succor)
578                 deferred_error_interrupt_enable(c);
579 }
580
581 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
582 {
583         u64 dram_base_addr, dram_limit_addr, dram_hole_base;
584         /* We start from the normalized address */
585         u64 ret_addr = norm_addr;
586
587         u32 tmp;
588
589         u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
590         u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
591         u8 intlv_addr_sel, intlv_addr_bit;
592         u8 num_intlv_bits, hashed_bit;
593         u8 lgcy_mmio_hole_en, base = 0;
594         u8 cs_mask, cs_id = 0;
595         bool hash_enabled = false;
596
597         /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
598         if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
599                 goto out_err;
600
601         /* Remove HiAddrOffset from normalized address, if enabled: */
602         if (tmp & BIT(0)) {
603                 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
604
605                 if (norm_addr >= hi_addr_offset) {
606                         ret_addr -= hi_addr_offset;
607                         base = 1;
608                 }
609         }
610
611         /* Read D18F0x110 (DramBaseAddress). */
612         if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
613                 goto out_err;
614
615         /* Check if address range is valid. */
616         if (!(tmp & BIT(0))) {
617                 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
618                         __func__, tmp);
619                 goto out_err;
620         }
621
622         lgcy_mmio_hole_en = tmp & BIT(1);
623         intlv_num_chan    = (tmp >> 4) & 0xF;
624         intlv_addr_sel    = (tmp >> 8) & 0x7;
625         dram_base_addr    = (tmp & GENMASK_ULL(31, 12)) << 16;
626
627         /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
628         if (intlv_addr_sel > 3) {
629                 pr_err("%s: Invalid interleave address select %d.\n",
630                         __func__, intlv_addr_sel);
631                 goto out_err;
632         }
633
634         /* Read D18F0x114 (DramLimitAddress). */
635         if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
636                 goto out_err;
637
638         intlv_num_sockets = (tmp >> 8) & 0x1;
639         intlv_num_dies    = (tmp >> 10) & 0x3;
640         dram_limit_addr   = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
641
642         intlv_addr_bit = intlv_addr_sel + 8;
643
644         /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
645         switch (intlv_num_chan) {
646         case 0: intlv_num_chan = 0; break;
647         case 1: intlv_num_chan = 1; break;
648         case 3: intlv_num_chan = 2; break;
649         case 5: intlv_num_chan = 3; break;
650         case 7: intlv_num_chan = 4; break;
651
652         case 8: intlv_num_chan = 1;
653                 hash_enabled = true;
654                 break;
655         default:
656                 pr_err("%s: Invalid number of interleaved channels %d.\n",
657                         __func__, intlv_num_chan);
658                 goto out_err;
659         }
660
661         num_intlv_bits = intlv_num_chan;
662
663         if (intlv_num_dies > 2) {
664                 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
665                         __func__, intlv_num_dies);
666                 goto out_err;
667         }
668
669         num_intlv_bits += intlv_num_dies;
670
671         /* Add a bit if sockets are interleaved. */
672         num_intlv_bits += intlv_num_sockets;
673
674         /* Assert num_intlv_bits <= 4 */
675         if (num_intlv_bits > 4) {
676                 pr_err("%s: Invalid interleave bits %d.\n",
677                         __func__, num_intlv_bits);
678                 goto out_err;
679         }
680
681         if (num_intlv_bits > 0) {
682                 u64 temp_addr_x, temp_addr_i, temp_addr_y;
683                 u8 die_id_bit, sock_id_bit, cs_fabric_id;
684
685                 /*
686                  * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
687                  * This is the fabric id for this coherent slave. Use
688                  * umc/channel# as instance id of the coherent slave
689                  * for FICAA.
690                  */
691                 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
692                         goto out_err;
693
694                 cs_fabric_id = (tmp >> 8) & 0xFF;
695                 die_id_bit   = 0;
696
697                 /* If interleaved over more than 1 channel: */
698                 if (intlv_num_chan) {
699                         die_id_bit = intlv_num_chan;
700                         cs_mask    = (1 << die_id_bit) - 1;
701                         cs_id      = cs_fabric_id & cs_mask;
702                 }
703
704                 sock_id_bit = die_id_bit;
705
706                 /* Read D18F1x208 (SystemFabricIdMask). */
707                 if (intlv_num_dies || intlv_num_sockets)
708                         if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
709                                 goto out_err;
710
711                 /* If interleaved over more than 1 die. */
712                 if (intlv_num_dies) {
713                         sock_id_bit  = die_id_bit + intlv_num_dies;
714                         die_id_shift = (tmp >> 24) & 0xF;
715                         die_id_mask  = (tmp >> 8) & 0xFF;
716
717                         cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
718                 }
719
720                 /* If interleaved over more than 1 socket. */
721                 if (intlv_num_sockets) {
722                         socket_id_shift = (tmp >> 28) & 0xF;
723                         socket_id_mask  = (tmp >> 16) & 0xFF;
724
725                         cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
726                 }
727
728                 /*
729                  * The pre-interleaved address consists of XXXXXXIIIYYYYY
730                  * where III is the ID for this CS, and XXXXXXYYYYY are the
731                  * address bits from the post-interleaved address.
732                  * "num_intlv_bits" has been calculated to tell us how many "I"
733                  * bits there are. "intlv_addr_bit" tells us how many "Y" bits
734                  * there are (where "I" starts).
735                  */
736                 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
737                 temp_addr_i = (cs_id << intlv_addr_bit);
738                 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
739                 ret_addr    = temp_addr_x | temp_addr_i | temp_addr_y;
740         }
741
742         /* Add dram base address */
743         ret_addr += dram_base_addr;
744
745         /* If legacy MMIO hole enabled */
746         if (lgcy_mmio_hole_en) {
747                 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
748                         goto out_err;
749
750                 dram_hole_base = tmp & GENMASK(31, 24);
751                 if (ret_addr >= dram_hole_base)
752                         ret_addr += (BIT_ULL(32) - dram_hole_base);
753         }
754
755         if (hash_enabled) {
756                 /* Save some parentheses and grab ls-bit at the end. */
757                 hashed_bit =    (ret_addr >> 12) ^
758                                 (ret_addr >> 18) ^
759                                 (ret_addr >> 21) ^
760                                 (ret_addr >> 30) ^
761                                 cs_id;
762
763                 hashed_bit &= BIT(0);
764
765                 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
766                         ret_addr ^= BIT(intlv_addr_bit);
767         }
768
769         /* Is calculated system address is above DRAM limit address? */
770         if (ret_addr > dram_limit_addr)
771                 goto out_err;
772
773         *sys_addr = ret_addr;
774         return 0;
775
776 out_err:
777         return -EINVAL;
778 }
779 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
780
781 bool amd_mce_is_memory_error(struct mce *m)
782 {
783         /* ErrCodeExt[20:16] */
784         u8 xec = (m->status >> 16) & 0x1f;
785
786         if (mce_flags.smca)
787                 return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
788
789         return m->bank == 4 && xec == 0x8;
790 }
791
792 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
793 {
794         struct mce m;
795
796         mce_setup(&m);
797
798         m.status = status;
799         m.misc   = misc;
800         m.bank   = bank;
801         m.tsc    = rdtsc();
802
803         if (m.status & MCI_STATUS_ADDRV) {
804                 m.addr = addr;
805
806                 /*
807                  * Extract [55:<lsb>] where lsb is the least significant
808                  * *valid* bit of the address bits.
809                  */
810                 if (mce_flags.smca) {
811                         u8 lsb = (m.addr >> 56) & 0x3f;
812
813                         m.addr &= GENMASK_ULL(55, lsb);
814                 }
815         }
816
817         if (mce_flags.smca) {
818                 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
819
820                 if (m.status & MCI_STATUS_SYNDV)
821                         rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
822         }
823
824         mce_log(&m);
825 }
826
827 asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(void)
828 {
829         entering_irq();
830         trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
831         inc_irq_stat(irq_deferred_error_count);
832         deferred_error_int_vector();
833         trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
834         exiting_ack_irq();
835 }
836
837 /*
838  * Returns true if the logged error is deferred. False, otherwise.
839  */
840 static inline bool
841 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
842 {
843         u64 status, addr = 0;
844
845         rdmsrl(msr_stat, status);
846         if (!(status & MCI_STATUS_VAL))
847                 return false;
848
849         if (status & MCI_STATUS_ADDRV)
850                 rdmsrl(msr_addr, addr);
851
852         __log_error(bank, status, addr, misc);
853
854         wrmsrl(msr_stat, 0);
855
856         return status & MCI_STATUS_DEFERRED;
857 }
858
859 /*
860  * We have three scenarios for checking for Deferred errors:
861  *
862  * 1) Non-SMCA systems check MCA_STATUS and log error if found.
863  * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
864  *    clear MCA_DESTAT.
865  * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
866  *    log it.
867  */
868 static void log_error_deferred(unsigned int bank)
869 {
870         bool defrd;
871
872         defrd = _log_error_bank(bank, msr_ops.status(bank),
873                                         msr_ops.addr(bank), 0);
874
875         if (!mce_flags.smca)
876                 return;
877
878         /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
879         if (defrd) {
880                 wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
881                 return;
882         }
883
884         /*
885          * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
886          * for a valid error.
887          */
888         _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
889                               MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
890 }
891
892 /* APIC interrupt handler for deferred errors */
893 static void amd_deferred_error_interrupt(void)
894 {
895         unsigned int bank;
896
897         for (bank = 0; bank < mca_cfg.banks; ++bank)
898                 log_error_deferred(bank);
899 }
900
901 static void log_error_thresholding(unsigned int bank, u64 misc)
902 {
903         _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
904 }
905
906 static void log_and_reset_block(struct threshold_block *block)
907 {
908         struct thresh_restart tr;
909         u32 low = 0, high = 0;
910
911         if (!block)
912                 return;
913
914         if (rdmsr_safe(block->address, &low, &high))
915                 return;
916
917         if (!(high & MASK_OVERFLOW_HI))
918                 return;
919
920         /* Log the MCE which caused the threshold event. */
921         log_error_thresholding(block->bank, ((u64)high << 32) | low);
922
923         /* Reset threshold block after logging error. */
924         memset(&tr, 0, sizeof(tr));
925         tr.b = block;
926         threshold_restart_bank(&tr);
927 }
928
929 /*
930  * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
931  * goes off when error_count reaches threshold_limit.
932  */
933 static void amd_threshold_interrupt(void)
934 {
935         struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
936         unsigned int bank, cpu = smp_processor_id();
937
938         for (bank = 0; bank < mca_cfg.banks; ++bank) {
939                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
940                         continue;
941
942                 first_block = per_cpu(threshold_banks, cpu)[bank]->blocks;
943                 if (!first_block)
944                         continue;
945
946                 /*
947                  * The first block is also the head of the list. Check it first
948                  * before iterating over the rest.
949                  */
950                 log_and_reset_block(first_block);
951                 list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
952                         log_and_reset_block(block);
953         }
954 }
955
956 /*
957  * Sysfs Interface
958  */
959
960 struct threshold_attr {
961         struct attribute attr;
962         ssize_t (*show) (struct threshold_block *, char *);
963         ssize_t (*store) (struct threshold_block *, const char *, size_t count);
964 };
965
966 #define SHOW_FIELDS(name)                                               \
967 static ssize_t show_ ## name(struct threshold_block *b, char *buf)      \
968 {                                                                       \
969         return sprintf(buf, "%lu\n", (unsigned long) b->name);          \
970 }
971 SHOW_FIELDS(interrupt_enable)
972 SHOW_FIELDS(threshold_limit)
973
974 static ssize_t
975 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
976 {
977         struct thresh_restart tr;
978         unsigned long new;
979
980         if (!b->interrupt_capable)
981                 return -EINVAL;
982
983         if (kstrtoul(buf, 0, &new) < 0)
984                 return -EINVAL;
985
986         b->interrupt_enable = !!new;
987
988         memset(&tr, 0, sizeof(tr));
989         tr.b            = b;
990
991         smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
992
993         return size;
994 }
995
996 static ssize_t
997 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
998 {
999         struct thresh_restart tr;
1000         unsigned long new;
1001
1002         if (kstrtoul(buf, 0, &new) < 0)
1003                 return -EINVAL;
1004
1005         if (new > THRESHOLD_MAX)
1006                 new = THRESHOLD_MAX;
1007         if (new < 1)
1008                 new = 1;
1009
1010         memset(&tr, 0, sizeof(tr));
1011         tr.old_limit = b->threshold_limit;
1012         b->threshold_limit = new;
1013         tr.b = b;
1014
1015         smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1016
1017         return size;
1018 }
1019
1020 static ssize_t show_error_count(struct threshold_block *b, char *buf)
1021 {
1022         u32 lo, hi;
1023
1024         rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
1025
1026         return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1027                                      (THRESHOLD_MAX - b->threshold_limit)));
1028 }
1029
1030 static struct threshold_attr error_count = {
1031         .attr = {.name = __stringify(error_count), .mode = 0444 },
1032         .show = show_error_count,
1033 };
1034
1035 #define RW_ATTR(val)                                                    \
1036 static struct threshold_attr val = {                                    \
1037         .attr   = {.name = __stringify(val), .mode = 0644 },            \
1038         .show   = show_## val,                                          \
1039         .store  = store_## val,                                         \
1040 };
1041
1042 RW_ATTR(interrupt_enable);
1043 RW_ATTR(threshold_limit);
1044
1045 static struct attribute *default_attrs[] = {
1046         &threshold_limit.attr,
1047         &error_count.attr,
1048         NULL,   /* possibly interrupt_enable if supported, see below */
1049         NULL,
1050 };
1051
1052 #define to_block(k)     container_of(k, struct threshold_block, kobj)
1053 #define to_attr(a)      container_of(a, struct threshold_attr, attr)
1054
1055 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1056 {
1057         struct threshold_block *b = to_block(kobj);
1058         struct threshold_attr *a = to_attr(attr);
1059         ssize_t ret;
1060
1061         ret = a->show ? a->show(b, buf) : -EIO;
1062
1063         return ret;
1064 }
1065
1066 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1067                      const char *buf, size_t count)
1068 {
1069         struct threshold_block *b = to_block(kobj);
1070         struct threshold_attr *a = to_attr(attr);
1071         ssize_t ret;
1072
1073         ret = a->store ? a->store(b, buf, count) : -EIO;
1074
1075         return ret;
1076 }
1077
1078 static const struct sysfs_ops threshold_ops = {
1079         .show                   = show,
1080         .store                  = store,
1081 };
1082
1083 static struct kobj_type threshold_ktype = {
1084         .sysfs_ops              = &threshold_ops,
1085         .default_attrs          = default_attrs,
1086 };
1087
1088 static const char *get_name(unsigned int bank, struct threshold_block *b)
1089 {
1090         enum smca_bank_types bank_type;
1091
1092         if (!mce_flags.smca) {
1093                 if (b && bank == 4)
1094                         return bank4_names(b);
1095
1096                 return th_names[bank];
1097         }
1098
1099         bank_type = smca_get_bank_type(bank);
1100         if (bank_type >= N_SMCA_BANK_TYPES)
1101                 return NULL;
1102
1103         if (b && bank_type == SMCA_UMC) {
1104                 if (b->block < ARRAY_SIZE(smca_umc_block_names))
1105                         return smca_umc_block_names[b->block];
1106                 return NULL;
1107         }
1108
1109         if (smca_banks[bank].hwid->count == 1)
1110                 return smca_get_name(bank_type);
1111
1112         snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1113                  "%s_%x", smca_get_name(bank_type),
1114                           smca_banks[bank].sysfs_id);
1115         return buf_mcatype;
1116 }
1117
1118 static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank,
1119                                      unsigned int block, u32 address)
1120 {
1121         struct threshold_block *b = NULL;
1122         u32 low, high;
1123         int err;
1124
1125         if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
1126                 return 0;
1127
1128         if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1129                 return 0;
1130
1131         if (!(high & MASK_VALID_HI)) {
1132                 if (block)
1133                         goto recurse;
1134                 else
1135                         return 0;
1136         }
1137
1138         if (!(high & MASK_CNTP_HI)  ||
1139              (high & MASK_LOCKED_HI))
1140                 goto recurse;
1141
1142         b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1143         if (!b)
1144                 return -ENOMEM;
1145
1146         b->block                = block;
1147         b->bank                 = bank;
1148         b->cpu                  = cpu;
1149         b->address              = address;
1150         b->interrupt_enable     = 0;
1151         b->interrupt_capable    = lvt_interrupt_supported(bank, high);
1152         b->threshold_limit      = THRESHOLD_MAX;
1153
1154         if (b->interrupt_capable) {
1155                 threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1156                 b->interrupt_enable = 1;
1157         } else {
1158                 threshold_ktype.default_attrs[2] = NULL;
1159         }
1160
1161         INIT_LIST_HEAD(&b->miscj);
1162
1163         if (per_cpu(threshold_banks, cpu)[bank]->blocks) {
1164                 list_add(&b->miscj,
1165                          &per_cpu(threshold_banks, cpu)[bank]->blocks->miscj);
1166         } else {
1167                 per_cpu(threshold_banks, cpu)[bank]->blocks = b;
1168         }
1169
1170         err = kobject_init_and_add(&b->kobj, &threshold_ktype,
1171                                    per_cpu(threshold_banks, cpu)[bank]->kobj,
1172                                    get_name(bank, b));
1173         if (err)
1174                 goto out_free;
1175 recurse:
1176         address = get_block_address(address, low, high, bank, ++block);
1177         if (!address)
1178                 return 0;
1179
1180         err = allocate_threshold_blocks(cpu, bank, block, address);
1181         if (err)
1182                 goto out_free;
1183
1184         if (b)
1185                 kobject_uevent(&b->kobj, KOBJ_ADD);
1186
1187         return err;
1188
1189 out_free:
1190         if (b) {
1191                 kobject_put(&b->kobj);
1192                 list_del(&b->miscj);
1193                 kfree(b);
1194         }
1195         return err;
1196 }
1197
1198 static int __threshold_add_blocks(struct threshold_bank *b)
1199 {
1200         struct list_head *head = &b->blocks->miscj;
1201         struct threshold_block *pos = NULL;
1202         struct threshold_block *tmp = NULL;
1203         int err = 0;
1204
1205         err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1206         if (err)
1207                 return err;
1208
1209         list_for_each_entry_safe(pos, tmp, head, miscj) {
1210
1211                 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1212                 if (err) {
1213                         list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1214                                 kobject_del(&pos->kobj);
1215
1216                         return err;
1217                 }
1218         }
1219         return err;
1220 }
1221
1222 static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1223 {
1224         struct device *dev = per_cpu(mce_device, cpu);
1225         struct amd_northbridge *nb = NULL;
1226         struct threshold_bank *b = NULL;
1227         const char *name = get_name(bank, NULL);
1228         int err = 0;
1229
1230         if (!dev)
1231                 return -ENODEV;
1232
1233         if (is_shared_bank(bank)) {
1234                 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1235
1236                 /* threshold descriptor already initialized on this node? */
1237                 if (nb && nb->bank4) {
1238                         /* yes, use it */
1239                         b = nb->bank4;
1240                         err = kobject_add(b->kobj, &dev->kobj, name);
1241                         if (err)
1242                                 goto out;
1243
1244                         per_cpu(threshold_banks, cpu)[bank] = b;
1245                         refcount_inc(&b->cpus);
1246
1247                         err = __threshold_add_blocks(b);
1248
1249                         goto out;
1250                 }
1251         }
1252
1253         b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1254         if (!b) {
1255                 err = -ENOMEM;
1256                 goto out;
1257         }
1258
1259         b->kobj = kobject_create_and_add(name, &dev->kobj);
1260         if (!b->kobj) {
1261                 err = -EINVAL;
1262                 goto out_free;
1263         }
1264
1265         per_cpu(threshold_banks, cpu)[bank] = b;
1266
1267         if (is_shared_bank(bank)) {
1268                 refcount_set(&b->cpus, 1);
1269
1270                 /* nb is already initialized, see above */
1271                 if (nb) {
1272                         WARN_ON(nb->bank4);
1273                         nb->bank4 = b;
1274                 }
1275         }
1276
1277         err = allocate_threshold_blocks(cpu, bank, 0, msr_ops.misc(bank));
1278         if (!err)
1279                 goto out;
1280
1281  out_free:
1282         kfree(b);
1283
1284  out:
1285         return err;
1286 }
1287
1288 static void deallocate_threshold_block(unsigned int cpu,
1289                                                  unsigned int bank)
1290 {
1291         struct threshold_block *pos = NULL;
1292         struct threshold_block *tmp = NULL;
1293         struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1294
1295         if (!head)
1296                 return;
1297
1298         list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1299                 kobject_put(&pos->kobj);
1300                 list_del(&pos->miscj);
1301                 kfree(pos);
1302         }
1303
1304         kfree(per_cpu(threshold_banks, cpu)[bank]->blocks);
1305         per_cpu(threshold_banks, cpu)[bank]->blocks = NULL;
1306 }
1307
1308 static void __threshold_remove_blocks(struct threshold_bank *b)
1309 {
1310         struct threshold_block *pos = NULL;
1311         struct threshold_block *tmp = NULL;
1312
1313         kobject_del(b->kobj);
1314
1315         list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1316                 kobject_del(&pos->kobj);
1317 }
1318
1319 static void threshold_remove_bank(unsigned int cpu, int bank)
1320 {
1321         struct amd_northbridge *nb;
1322         struct threshold_bank *b;
1323
1324         b = per_cpu(threshold_banks, cpu)[bank];
1325         if (!b)
1326                 return;
1327
1328         if (!b->blocks)
1329                 goto free_out;
1330
1331         if (is_shared_bank(bank)) {
1332                 if (!refcount_dec_and_test(&b->cpus)) {
1333                         __threshold_remove_blocks(b);
1334                         per_cpu(threshold_banks, cpu)[bank] = NULL;
1335                         return;
1336                 } else {
1337                         /*
1338                          * the last CPU on this node using the shared bank is
1339                          * going away, remove that bank now.
1340                          */
1341                         nb = node_to_amd_nb(amd_get_nb_id(cpu));
1342                         nb->bank4 = NULL;
1343                 }
1344         }
1345
1346         deallocate_threshold_block(cpu, bank);
1347
1348 free_out:
1349         kobject_del(b->kobj);
1350         kobject_put(b->kobj);
1351         kfree(b);
1352         per_cpu(threshold_banks, cpu)[bank] = NULL;
1353 }
1354
1355 int mce_threshold_remove_device(unsigned int cpu)
1356 {
1357         unsigned int bank;
1358
1359         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1360                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1361                         continue;
1362                 threshold_remove_bank(cpu, bank);
1363         }
1364         kfree(per_cpu(threshold_banks, cpu));
1365         per_cpu(threshold_banks, cpu) = NULL;
1366         return 0;
1367 }
1368
1369 /* create dir/files for all valid threshold banks */
1370 int mce_threshold_create_device(unsigned int cpu)
1371 {
1372         unsigned int bank;
1373         struct threshold_bank **bp;
1374         int err = 0;
1375
1376         bp = per_cpu(threshold_banks, cpu);
1377         if (bp)
1378                 return 0;
1379
1380         bp = kcalloc(mca_cfg.banks, sizeof(struct threshold_bank *),
1381                      GFP_KERNEL);
1382         if (!bp)
1383                 return -ENOMEM;
1384
1385         per_cpu(threshold_banks, cpu) = bp;
1386
1387         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1388                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1389                         continue;
1390                 err = threshold_create_bank(cpu, bank);
1391                 if (err)
1392                         goto err;
1393         }
1394         return err;
1395 err:
1396         mce_threshold_remove_device(cpu);
1397         return err;
1398 }
1399
1400 static __init int threshold_init_device(void)
1401 {
1402         unsigned lcpu = 0;
1403
1404         /* to hit CPUs online before the notifier is up */
1405         for_each_online_cpu(lcpu) {
1406                 int err = mce_threshold_create_device(lcpu);
1407
1408                 if (err)
1409                         return err;
1410         }
1411
1412         if (thresholding_irq_en)
1413                 mce_threshold_vector = amd_threshold_interrupt;
1414
1415         return 0;
1416 }
1417 /*
1418  * there are 3 funcs which need to be _initcalled in a logic sequence:
1419  * 1. xen_late_init_mcelog
1420  * 2. mcheck_init_device
1421  * 3. threshold_init_device
1422  *
1423  * xen_late_init_mcelog must register xen_mce_chrdev_device before
1424  * native mce_chrdev_device registration if running under xen platform;
1425  *
1426  * mcheck_init_device should be inited before threshold_init_device to
1427  * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1428  *
1429  * so we use following _initcalls
1430  * 1. device_initcall(xen_late_init_mcelog);
1431  * 2. device_initcall_sync(mcheck_init_device);
1432  * 3. late_initcall(threshold_init_device);
1433  *
1434  * when running under xen, the initcall order is 1,2,3;
1435  * on baremetal, we skip 1 and we do only 2 and 3.
1436  */
1437 late_initcall(threshold_init_device);