Merge tag 'x86_sgx_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-2.6-microblaze.git] / arch / x86 / kernel / cpu / mce / amd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  (c) 2005-2016 Advanced Micro Devices, Inc.
4  *
5  *  Written by Jacob Shin - AMD, Inc.
6  *  Maintained by: Borislav Petkov <bp@alien8.de>
7  *
8  *  All MC4_MISCi registers are shared between cores on a node.
9  */
10 #include <linux/interrupt.h>
11 #include <linux/notifier.h>
12 #include <linux/kobject.h>
13 #include <linux/percpu.h>
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/sysfs.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/cpu.h>
20 #include <linux/smp.h>
21 #include <linux/string.h>
22
23 #include <asm/amd_nb.h>
24 #include <asm/traps.h>
25 #include <asm/apic.h>
26 #include <asm/mce.h>
27 #include <asm/msr.h>
28 #include <asm/trace/irq_vectors.h>
29
30 #include "internal.h"
31
32 #define NR_BLOCKS         5
33 #define THRESHOLD_MAX     0xFFF
34 #define INT_TYPE_APIC     0x00020000
35 #define MASK_VALID_HI     0x80000000
36 #define MASK_CNTP_HI      0x40000000
37 #define MASK_LOCKED_HI    0x20000000
38 #define MASK_LVTOFF_HI    0x00F00000
39 #define MASK_COUNT_EN_HI  0x00080000
40 #define MASK_INT_TYPE_HI  0x00060000
41 #define MASK_OVERFLOW_HI  0x00010000
42 #define MASK_ERR_COUNT_HI 0x00000FFF
43 #define MASK_BLKPTR_LO    0xFF000000
44 #define MCG_XBLK_ADDR     0xC0000400
45
46 /* Deferred error settings */
47 #define MSR_CU_DEF_ERR          0xC0000410
48 #define MASK_DEF_LVTOFF         0x000000F0
49 #define MASK_DEF_INT_TYPE       0x00000006
50 #define DEF_LVT_OFF             0x2
51 #define DEF_INT_TYPE_APIC       0x2
52
53 /* Scalable MCA: */
54
55 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
56 #define SMCA_THR_LVT_OFF        0xF000
57
58 static bool thresholding_irq_en;
59
60 static const char * const th_names[] = {
61         "load_store",
62         "insn_fetch",
63         "combined_unit",
64         "decode_unit",
65         "northbridge",
66         "execution_unit",
67 };
68
69 static const char * const smca_umc_block_names[] = {
70         "dram_ecc",
71         "misc_umc"
72 };
73
74 struct smca_bank_name {
75         const char *name;       /* Short name for sysfs */
76         const char *long_name;  /* Long name for pretty-printing */
77 };
78
79 static struct smca_bank_name smca_names[] = {
80         [SMCA_LS]       = { "load_store",       "Load Store Unit" },
81         [SMCA_LS_V2]    = { "load_store",       "Load Store Unit" },
82         [SMCA_IF]       = { "insn_fetch",       "Instruction Fetch Unit" },
83         [SMCA_L2_CACHE] = { "l2_cache",         "L2 Cache" },
84         [SMCA_DE]       = { "decode_unit",      "Decode Unit" },
85         [SMCA_RESERVED] = { "reserved",         "Reserved" },
86         [SMCA_EX]       = { "execution_unit",   "Execution Unit" },
87         [SMCA_FP]       = { "floating_point",   "Floating Point Unit" },
88         [SMCA_L3_CACHE] = { "l3_cache",         "L3 Cache" },
89         [SMCA_CS]       = { "coherent_slave",   "Coherent Slave" },
90         [SMCA_CS_V2]    = { "coherent_slave",   "Coherent Slave" },
91         [SMCA_PIE]      = { "pie",              "Power, Interrupts, etc." },
92         [SMCA_UMC]      = { "umc",              "Unified Memory Controller" },
93         [SMCA_PB]       = { "param_block",      "Parameter Block" },
94         [SMCA_PSP]      = { "psp",              "Platform Security Processor" },
95         [SMCA_PSP_V2]   = { "psp",              "Platform Security Processor" },
96         [SMCA_SMU]      = { "smu",              "System Management Unit" },
97         [SMCA_SMU_V2]   = { "smu",              "System Management Unit" },
98         [SMCA_MP5]      = { "mp5",              "Microprocessor 5 Unit" },
99         [SMCA_NBIO]     = { "nbio",             "Northbridge IO Unit" },
100         [SMCA_PCIE]     = { "pcie",             "PCI Express Unit" },
101 };
102
103 static const char *smca_get_name(enum smca_bank_types t)
104 {
105         if (t >= N_SMCA_BANK_TYPES)
106                 return NULL;
107
108         return smca_names[t].name;
109 }
110
111 const char *smca_get_long_name(enum smca_bank_types t)
112 {
113         if (t >= N_SMCA_BANK_TYPES)
114                 return NULL;
115
116         return smca_names[t].long_name;
117 }
118 EXPORT_SYMBOL_GPL(smca_get_long_name);
119
120 static enum smca_bank_types smca_get_bank_type(unsigned int bank)
121 {
122         struct smca_bank *b;
123
124         if (bank >= MAX_NR_BANKS)
125                 return N_SMCA_BANK_TYPES;
126
127         b = &smca_banks[bank];
128         if (!b->hwid)
129                 return N_SMCA_BANK_TYPES;
130
131         return b->hwid->bank_type;
132 }
133
134 static struct smca_hwid smca_hwid_mcatypes[] = {
135         /* { bank_type, hwid_mcatype } */
136
137         /* Reserved type */
138         { SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0)        },
139
140         /* ZN Core (HWID=0xB0) MCA types */
141         { SMCA_LS,       HWID_MCATYPE(0xB0, 0x0)        },
142         { SMCA_LS_V2,    HWID_MCATYPE(0xB0, 0x10)       },
143         { SMCA_IF,       HWID_MCATYPE(0xB0, 0x1)        },
144         { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2)        },
145         { SMCA_DE,       HWID_MCATYPE(0xB0, 0x3)        },
146         /* HWID 0xB0 MCATYPE 0x4 is Reserved */
147         { SMCA_EX,       HWID_MCATYPE(0xB0, 0x5)        },
148         { SMCA_FP,       HWID_MCATYPE(0xB0, 0x6)        },
149         { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7)        },
150
151         /* Data Fabric MCA types */
152         { SMCA_CS,       HWID_MCATYPE(0x2E, 0x0)        },
153         { SMCA_PIE,      HWID_MCATYPE(0x2E, 0x1)        },
154         { SMCA_CS_V2,    HWID_MCATYPE(0x2E, 0x2)        },
155
156         /* Unified Memory Controller MCA type */
157         { SMCA_UMC,      HWID_MCATYPE(0x96, 0x0)        },
158
159         /* Parameter Block MCA type */
160         { SMCA_PB,       HWID_MCATYPE(0x05, 0x0)        },
161
162         /* Platform Security Processor MCA type */
163         { SMCA_PSP,      HWID_MCATYPE(0xFF, 0x0)        },
164         { SMCA_PSP_V2,   HWID_MCATYPE(0xFF, 0x1)        },
165
166         /* System Management Unit MCA type */
167         { SMCA_SMU,      HWID_MCATYPE(0x01, 0x0)        },
168         { SMCA_SMU_V2,   HWID_MCATYPE(0x01, 0x1)        },
169
170         /* Microprocessor 5 Unit MCA type */
171         { SMCA_MP5,      HWID_MCATYPE(0x01, 0x2)        },
172
173         /* Northbridge IO Unit MCA type */
174         { SMCA_NBIO,     HWID_MCATYPE(0x18, 0x0)        },
175
176         /* PCI Express Unit MCA type */
177         { SMCA_PCIE,     HWID_MCATYPE(0x46, 0x0)        },
178 };
179
180 struct smca_bank smca_banks[MAX_NR_BANKS];
181 EXPORT_SYMBOL_GPL(smca_banks);
182
183 /*
184  * In SMCA enabled processors, we can have multiple banks for a given IP type.
185  * So to define a unique name for each bank, we use a temp c-string to append
186  * the MCA_IPID[InstanceId] to type's name in get_name().
187  *
188  * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
189  * is greater than 8 plus 1 (for underscore) plus length of longest type name.
190  */
191 #define MAX_MCATYPE_NAME_LEN    30
192 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
193
194 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
195
196 /*
197  * A list of the banks enabled on each logical CPU. Controls which respective
198  * descriptors to initialize later in mce_threshold_create_device().
199  */
200 static DEFINE_PER_CPU(unsigned int, bank_map);
201
202 /* Map of banks that have more than MCA_MISC0 available. */
203 static DEFINE_PER_CPU(u32, smca_misc_banks_map);
204
205 static void amd_threshold_interrupt(void);
206 static void amd_deferred_error_interrupt(void);
207
208 static void default_deferred_error_interrupt(void)
209 {
210         pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
211 }
212 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
213
214 static void smca_set_misc_banks_map(unsigned int bank, unsigned int cpu)
215 {
216         u32 low, high;
217
218         /*
219          * For SMCA enabled processors, BLKPTR field of the first MISC register
220          * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
221          */
222         if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
223                 return;
224
225         if (!(low & MCI_CONFIG_MCAX))
226                 return;
227
228         if (rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high))
229                 return;
230
231         if (low & MASK_BLKPTR_LO)
232                 per_cpu(smca_misc_banks_map, cpu) |= BIT(bank);
233
234 }
235
236 static void smca_configure(unsigned int bank, unsigned int cpu)
237 {
238         unsigned int i, hwid_mcatype;
239         struct smca_hwid *s_hwid;
240         u32 high, low;
241         u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
242
243         /* Set appropriate bits in MCA_CONFIG */
244         if (!rdmsr_safe(smca_config, &low, &high)) {
245                 /*
246                  * OS is required to set the MCAX bit to acknowledge that it is
247                  * now using the new MSR ranges and new registers under each
248                  * bank. It also means that the OS will configure deferred
249                  * errors in the new MCx_CONFIG register. If the bit is not set,
250                  * uncorrectable errors will cause a system panic.
251                  *
252                  * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
253                  */
254                 high |= BIT(0);
255
256                 /*
257                  * SMCA sets the Deferred Error Interrupt type per bank.
258                  *
259                  * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
260                  * if the DeferredIntType bit field is available.
261                  *
262                  * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
263                  * high portion of the MSR). OS should set this to 0x1 to enable
264                  * APIC based interrupt. First, check that no interrupt has been
265                  * set.
266                  */
267                 if ((low & BIT(5)) && !((high >> 5) & 0x3))
268                         high |= BIT(5);
269
270                 wrmsr(smca_config, low, high);
271         }
272
273         smca_set_misc_banks_map(bank, cpu);
274
275         /* Return early if this bank was already initialized. */
276         if (smca_banks[bank].hwid && smca_banks[bank].hwid->hwid_mcatype != 0)
277                 return;
278
279         if (rdmsr_safe(MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
280                 pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
281                 return;
282         }
283
284         hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
285                                     (high & MCI_IPID_MCATYPE) >> 16);
286
287         for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
288                 s_hwid = &smca_hwid_mcatypes[i];
289                 if (hwid_mcatype == s_hwid->hwid_mcatype) {
290                         smca_banks[bank].hwid = s_hwid;
291                         smca_banks[bank].id = low;
292                         smca_banks[bank].sysfs_id = s_hwid->count++;
293                         break;
294                 }
295         }
296 }
297
298 struct thresh_restart {
299         struct threshold_block  *b;
300         int                     reset;
301         int                     set_lvt_off;
302         int                     lvt_off;
303         u16                     old_limit;
304 };
305
306 static inline bool is_shared_bank(int bank)
307 {
308         /*
309          * Scalable MCA provides for only one core to have access to the MSRs of
310          * a shared bank.
311          */
312         if (mce_flags.smca)
313                 return false;
314
315         /* Bank 4 is for northbridge reporting and is thus shared */
316         return (bank == 4);
317 }
318
319 static const char *bank4_names(const struct threshold_block *b)
320 {
321         switch (b->address) {
322         /* MSR4_MISC0 */
323         case 0x00000413:
324                 return "dram";
325
326         case 0xc0000408:
327                 return "ht_links";
328
329         case 0xc0000409:
330                 return "l3_cache";
331
332         default:
333                 WARN(1, "Funny MSR: 0x%08x\n", b->address);
334                 return "";
335         }
336 };
337
338
339 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
340 {
341         /*
342          * bank 4 supports APIC LVT interrupts implicitly since forever.
343          */
344         if (bank == 4)
345                 return true;
346
347         /*
348          * IntP: interrupt present; if this bit is set, the thresholding
349          * bank can generate APIC LVT interrupts
350          */
351         return msr_high_bits & BIT(28);
352 }
353
354 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
355 {
356         int msr = (hi & MASK_LVTOFF_HI) >> 20;
357
358         if (apic < 0) {
359                 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
360                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
361                        b->bank, b->block, b->address, hi, lo);
362                 return 0;
363         }
364
365         if (apic != msr) {
366                 /*
367                  * On SMCA CPUs, LVT offset is programmed at a different MSR, and
368                  * the BIOS provides the value. The original field where LVT offset
369                  * was set is reserved. Return early here:
370                  */
371                 if (mce_flags.smca)
372                         return 0;
373
374                 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
375                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
376                        b->cpu, apic, b->bank, b->block, b->address, hi, lo);
377                 return 0;
378         }
379
380         return 1;
381 };
382
383 /* Reprogram MCx_MISC MSR behind this threshold bank. */
384 static void threshold_restart_bank(void *_tr)
385 {
386         struct thresh_restart *tr = _tr;
387         u32 hi, lo;
388
389         /* sysfs write might race against an offline operation */
390         if (this_cpu_read(threshold_banks))
391                 return;
392
393         rdmsr(tr->b->address, lo, hi);
394
395         if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
396                 tr->reset = 1;  /* limit cannot be lower than err count */
397
398         if (tr->reset) {                /* reset err count and overflow bit */
399                 hi =
400                     (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
401                     (THRESHOLD_MAX - tr->b->threshold_limit);
402         } else if (tr->old_limit) {     /* change limit w/o reset */
403                 int new_count = (hi & THRESHOLD_MAX) +
404                     (tr->old_limit - tr->b->threshold_limit);
405
406                 hi = (hi & ~MASK_ERR_COUNT_HI) |
407                     (new_count & THRESHOLD_MAX);
408         }
409
410         /* clear IntType */
411         hi &= ~MASK_INT_TYPE_HI;
412
413         if (!tr->b->interrupt_capable)
414                 goto done;
415
416         if (tr->set_lvt_off) {
417                 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
418                         /* set new lvt offset */
419                         hi &= ~MASK_LVTOFF_HI;
420                         hi |= tr->lvt_off << 20;
421                 }
422         }
423
424         if (tr->b->interrupt_enable)
425                 hi |= INT_TYPE_APIC;
426
427  done:
428
429         hi |= MASK_COUNT_EN_HI;
430         wrmsr(tr->b->address, lo, hi);
431 }
432
433 static void mce_threshold_block_init(struct threshold_block *b, int offset)
434 {
435         struct thresh_restart tr = {
436                 .b                      = b,
437                 .set_lvt_off            = 1,
438                 .lvt_off                = offset,
439         };
440
441         b->threshold_limit              = THRESHOLD_MAX;
442         threshold_restart_bank(&tr);
443 };
444
445 static int setup_APIC_mce_threshold(int reserved, int new)
446 {
447         if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
448                                               APIC_EILVT_MSG_FIX, 0))
449                 return new;
450
451         return reserved;
452 }
453
454 static int setup_APIC_deferred_error(int reserved, int new)
455 {
456         if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
457                                               APIC_EILVT_MSG_FIX, 0))
458                 return new;
459
460         return reserved;
461 }
462
463 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
464 {
465         u32 low = 0, high = 0;
466         int def_offset = -1, def_new;
467
468         if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
469                 return;
470
471         def_new = (low & MASK_DEF_LVTOFF) >> 4;
472         if (!(low & MASK_DEF_LVTOFF)) {
473                 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
474                 def_new = DEF_LVT_OFF;
475                 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
476         }
477
478         def_offset = setup_APIC_deferred_error(def_offset, def_new);
479         if ((def_offset == def_new) &&
480             (deferred_error_int_vector != amd_deferred_error_interrupt))
481                 deferred_error_int_vector = amd_deferred_error_interrupt;
482
483         if (!mce_flags.smca)
484                 low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
485
486         wrmsr(MSR_CU_DEF_ERR, low, high);
487 }
488
489 static u32 smca_get_block_address(unsigned int bank, unsigned int block,
490                                   unsigned int cpu)
491 {
492         if (!block)
493                 return MSR_AMD64_SMCA_MCx_MISC(bank);
494
495         if (!(per_cpu(smca_misc_banks_map, cpu) & BIT(bank)))
496                 return 0;
497
498         return MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
499 }
500
501 static u32 get_block_address(u32 current_addr, u32 low, u32 high,
502                              unsigned int bank, unsigned int block,
503                              unsigned int cpu)
504 {
505         u32 addr = 0, offset = 0;
506
507         if ((bank >= per_cpu(mce_num_banks, cpu)) || (block >= NR_BLOCKS))
508                 return addr;
509
510         if (mce_flags.smca)
511                 return smca_get_block_address(bank, block, cpu);
512
513         /* Fall back to method we used for older processors: */
514         switch (block) {
515         case 0:
516                 addr = msr_ops.misc(bank);
517                 break;
518         case 1:
519                 offset = ((low & MASK_BLKPTR_LO) >> 21);
520                 if (offset)
521                         addr = MCG_XBLK_ADDR + offset;
522                 break;
523         default:
524                 addr = ++current_addr;
525         }
526         return addr;
527 }
528
529 static int
530 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
531                         int offset, u32 misc_high)
532 {
533         unsigned int cpu = smp_processor_id();
534         u32 smca_low, smca_high;
535         struct threshold_block b;
536         int new;
537
538         if (!block)
539                 per_cpu(bank_map, cpu) |= (1 << bank);
540
541         memset(&b, 0, sizeof(b));
542         b.cpu                   = cpu;
543         b.bank                  = bank;
544         b.block                 = block;
545         b.address               = addr;
546         b.interrupt_capable     = lvt_interrupt_supported(bank, misc_high);
547
548         if (!b.interrupt_capable)
549                 goto done;
550
551         b.interrupt_enable = 1;
552
553         if (!mce_flags.smca) {
554                 new = (misc_high & MASK_LVTOFF_HI) >> 20;
555                 goto set_offset;
556         }
557
558         /* Gather LVT offset for thresholding: */
559         if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
560                 goto out;
561
562         new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
563
564 set_offset:
565         offset = setup_APIC_mce_threshold(offset, new);
566         if (offset == new)
567                 thresholding_irq_en = true;
568
569 done:
570         mce_threshold_block_init(&b, offset);
571
572 out:
573         return offset;
574 }
575
576 bool amd_filter_mce(struct mce *m)
577 {
578         enum smca_bank_types bank_type = smca_get_bank_type(m->bank);
579         struct cpuinfo_x86 *c = &boot_cpu_data;
580
581         /* See Family 17h Models 10h-2Fh Erratum #1114. */
582         if (c->x86 == 0x17 &&
583             c->x86_model >= 0x10 && c->x86_model <= 0x2F &&
584             bank_type == SMCA_IF && XEC(m->status, 0x3f) == 10)
585                 return true;
586
587         /* NB GART TLB error reporting is disabled by default. */
588         if (c->x86 < 0x17) {
589                 if (m->bank == 4 && XEC(m->status, 0x1f) == 0x5)
590                         return true;
591         }
592
593         return false;
594 }
595
596 /*
597  * Turn off thresholding banks for the following conditions:
598  * - MC4_MISC thresholding is not supported on Family 0x15.
599  * - Prevent possible spurious interrupts from the IF bank on Family 0x17
600  *   Models 0x10-0x2F due to Erratum #1114.
601  */
602 static void disable_err_thresholding(struct cpuinfo_x86 *c, unsigned int bank)
603 {
604         int i, num_msrs;
605         u64 hwcr;
606         bool need_toggle;
607         u32 msrs[NR_BLOCKS];
608
609         if (c->x86 == 0x15 && bank == 4) {
610                 msrs[0] = 0x00000413; /* MC4_MISC0 */
611                 msrs[1] = 0xc0000408; /* MC4_MISC1 */
612                 num_msrs = 2;
613         } else if (c->x86 == 0x17 &&
614                    (c->x86_model >= 0x10 && c->x86_model <= 0x2F)) {
615
616                 if (smca_get_bank_type(bank) != SMCA_IF)
617                         return;
618
619                 msrs[0] = MSR_AMD64_SMCA_MCx_MISC(bank);
620                 num_msrs = 1;
621         } else {
622                 return;
623         }
624
625         rdmsrl(MSR_K7_HWCR, hwcr);
626
627         /* McStatusWrEn has to be set */
628         need_toggle = !(hwcr & BIT(18));
629         if (need_toggle)
630                 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
631
632         /* Clear CntP bit safely */
633         for (i = 0; i < num_msrs; i++)
634                 msr_clear_bit(msrs[i], 62);
635
636         /* restore old settings */
637         if (need_toggle)
638                 wrmsrl(MSR_K7_HWCR, hwcr);
639 }
640
641 /* cpu init entry point, called from mce.c with preempt off */
642 void mce_amd_feature_init(struct cpuinfo_x86 *c)
643 {
644         unsigned int bank, block, cpu = smp_processor_id();
645         u32 low = 0, high = 0, address = 0;
646         int offset = -1;
647
648
649         for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) {
650                 if (mce_flags.smca)
651                         smca_configure(bank, cpu);
652
653                 disable_err_thresholding(c, bank);
654
655                 for (block = 0; block < NR_BLOCKS; ++block) {
656                         address = get_block_address(address, low, high, bank, block, cpu);
657                         if (!address)
658                                 break;
659
660                         if (rdmsr_safe(address, &low, &high))
661                                 break;
662
663                         if (!(high & MASK_VALID_HI))
664                                 continue;
665
666                         if (!(high & MASK_CNTP_HI)  ||
667                              (high & MASK_LOCKED_HI))
668                                 continue;
669
670                         offset = prepare_threshold_block(bank, block, address, offset, high);
671                 }
672         }
673
674         if (mce_flags.succor)
675                 deferred_error_interrupt_enable(c);
676 }
677
678 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
679 {
680         u64 dram_base_addr, dram_limit_addr, dram_hole_base;
681         /* We start from the normalized address */
682         u64 ret_addr = norm_addr;
683
684         u32 tmp;
685
686         u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
687         u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
688         u8 intlv_addr_sel, intlv_addr_bit;
689         u8 num_intlv_bits, hashed_bit;
690         u8 lgcy_mmio_hole_en, base = 0;
691         u8 cs_mask, cs_id = 0;
692         bool hash_enabled = false;
693
694         /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
695         if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
696                 goto out_err;
697
698         /* Remove HiAddrOffset from normalized address, if enabled: */
699         if (tmp & BIT(0)) {
700                 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
701
702                 if (norm_addr >= hi_addr_offset) {
703                         ret_addr -= hi_addr_offset;
704                         base = 1;
705                 }
706         }
707
708         /* Read D18F0x110 (DramBaseAddress). */
709         if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
710                 goto out_err;
711
712         /* Check if address range is valid. */
713         if (!(tmp & BIT(0))) {
714                 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
715                         __func__, tmp);
716                 goto out_err;
717         }
718
719         lgcy_mmio_hole_en = tmp & BIT(1);
720         intlv_num_chan    = (tmp >> 4) & 0xF;
721         intlv_addr_sel    = (tmp >> 8) & 0x7;
722         dram_base_addr    = (tmp & GENMASK_ULL(31, 12)) << 16;
723
724         /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
725         if (intlv_addr_sel > 3) {
726                 pr_err("%s: Invalid interleave address select %d.\n",
727                         __func__, intlv_addr_sel);
728                 goto out_err;
729         }
730
731         /* Read D18F0x114 (DramLimitAddress). */
732         if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
733                 goto out_err;
734
735         intlv_num_sockets = (tmp >> 8) & 0x1;
736         intlv_num_dies    = (tmp >> 10) & 0x3;
737         dram_limit_addr   = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
738
739         intlv_addr_bit = intlv_addr_sel + 8;
740
741         /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
742         switch (intlv_num_chan) {
743         case 0: intlv_num_chan = 0; break;
744         case 1: intlv_num_chan = 1; break;
745         case 3: intlv_num_chan = 2; break;
746         case 5: intlv_num_chan = 3; break;
747         case 7: intlv_num_chan = 4; break;
748
749         case 8: intlv_num_chan = 1;
750                 hash_enabled = true;
751                 break;
752         default:
753                 pr_err("%s: Invalid number of interleaved channels %d.\n",
754                         __func__, intlv_num_chan);
755                 goto out_err;
756         }
757
758         num_intlv_bits = intlv_num_chan;
759
760         if (intlv_num_dies > 2) {
761                 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
762                         __func__, intlv_num_dies);
763                 goto out_err;
764         }
765
766         num_intlv_bits += intlv_num_dies;
767
768         /* Add a bit if sockets are interleaved. */
769         num_intlv_bits += intlv_num_sockets;
770
771         /* Assert num_intlv_bits <= 4 */
772         if (num_intlv_bits > 4) {
773                 pr_err("%s: Invalid interleave bits %d.\n",
774                         __func__, num_intlv_bits);
775                 goto out_err;
776         }
777
778         if (num_intlv_bits > 0) {
779                 u64 temp_addr_x, temp_addr_i, temp_addr_y;
780                 u8 die_id_bit, sock_id_bit, cs_fabric_id;
781
782                 /*
783                  * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
784                  * This is the fabric id for this coherent slave. Use
785                  * umc/channel# as instance id of the coherent slave
786                  * for FICAA.
787                  */
788                 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
789                         goto out_err;
790
791                 cs_fabric_id = (tmp >> 8) & 0xFF;
792                 die_id_bit   = 0;
793
794                 /* If interleaved over more than 1 channel: */
795                 if (intlv_num_chan) {
796                         die_id_bit = intlv_num_chan;
797                         cs_mask    = (1 << die_id_bit) - 1;
798                         cs_id      = cs_fabric_id & cs_mask;
799                 }
800
801                 sock_id_bit = die_id_bit;
802
803                 /* Read D18F1x208 (SystemFabricIdMask). */
804                 if (intlv_num_dies || intlv_num_sockets)
805                         if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
806                                 goto out_err;
807
808                 /* If interleaved over more than 1 die. */
809                 if (intlv_num_dies) {
810                         sock_id_bit  = die_id_bit + intlv_num_dies;
811                         die_id_shift = (tmp >> 24) & 0xF;
812                         die_id_mask  = (tmp >> 8) & 0xFF;
813
814                         cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
815                 }
816
817                 /* If interleaved over more than 1 socket. */
818                 if (intlv_num_sockets) {
819                         socket_id_shift = (tmp >> 28) & 0xF;
820                         socket_id_mask  = (tmp >> 16) & 0xFF;
821
822                         cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
823                 }
824
825                 /*
826                  * The pre-interleaved address consists of XXXXXXIIIYYYYY
827                  * where III is the ID for this CS, and XXXXXXYYYYY are the
828                  * address bits from the post-interleaved address.
829                  * "num_intlv_bits" has been calculated to tell us how many "I"
830                  * bits there are. "intlv_addr_bit" tells us how many "Y" bits
831                  * there are (where "I" starts).
832                  */
833                 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
834                 temp_addr_i = (cs_id << intlv_addr_bit);
835                 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
836                 ret_addr    = temp_addr_x | temp_addr_i | temp_addr_y;
837         }
838
839         /* Add dram base address */
840         ret_addr += dram_base_addr;
841
842         /* If legacy MMIO hole enabled */
843         if (lgcy_mmio_hole_en) {
844                 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
845                         goto out_err;
846
847                 dram_hole_base = tmp & GENMASK(31, 24);
848                 if (ret_addr >= dram_hole_base)
849                         ret_addr += (BIT_ULL(32) - dram_hole_base);
850         }
851
852         if (hash_enabled) {
853                 /* Save some parentheses and grab ls-bit at the end. */
854                 hashed_bit =    (ret_addr >> 12) ^
855                                 (ret_addr >> 18) ^
856                                 (ret_addr >> 21) ^
857                                 (ret_addr >> 30) ^
858                                 cs_id;
859
860                 hashed_bit &= BIT(0);
861
862                 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
863                         ret_addr ^= BIT(intlv_addr_bit);
864         }
865
866         /* Is calculated system address is above DRAM limit address? */
867         if (ret_addr > dram_limit_addr)
868                 goto out_err;
869
870         *sys_addr = ret_addr;
871         return 0;
872
873 out_err:
874         return -EINVAL;
875 }
876 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
877
878 bool amd_mce_is_memory_error(struct mce *m)
879 {
880         /* ErrCodeExt[20:16] */
881         u8 xec = (m->status >> 16) & 0x1f;
882
883         if (mce_flags.smca)
884                 return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
885
886         return m->bank == 4 && xec == 0x8;
887 }
888
889 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
890 {
891         struct mce m;
892
893         mce_setup(&m);
894
895         m.status = status;
896         m.misc   = misc;
897         m.bank   = bank;
898         m.tsc    = rdtsc();
899
900         if (m.status & MCI_STATUS_ADDRV) {
901                 m.addr = addr;
902
903                 /*
904                  * Extract [55:<lsb>] where lsb is the least significant
905                  * *valid* bit of the address bits.
906                  */
907                 if (mce_flags.smca) {
908                         u8 lsb = (m.addr >> 56) & 0x3f;
909
910                         m.addr &= GENMASK_ULL(55, lsb);
911                 }
912         }
913
914         if (mce_flags.smca) {
915                 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
916
917                 if (m.status & MCI_STATUS_SYNDV)
918                         rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
919         }
920
921         mce_log(&m);
922 }
923
924 DEFINE_IDTENTRY_SYSVEC(sysvec_deferred_error)
925 {
926         trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
927         inc_irq_stat(irq_deferred_error_count);
928         deferred_error_int_vector();
929         trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
930         ack_APIC_irq();
931 }
932
933 /*
934  * Returns true if the logged error is deferred. False, otherwise.
935  */
936 static inline bool
937 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
938 {
939         u64 status, addr = 0;
940
941         rdmsrl(msr_stat, status);
942         if (!(status & MCI_STATUS_VAL))
943                 return false;
944
945         if (status & MCI_STATUS_ADDRV)
946                 rdmsrl(msr_addr, addr);
947
948         __log_error(bank, status, addr, misc);
949
950         wrmsrl(msr_stat, 0);
951
952         return status & MCI_STATUS_DEFERRED;
953 }
954
955 /*
956  * We have three scenarios for checking for Deferred errors:
957  *
958  * 1) Non-SMCA systems check MCA_STATUS and log error if found.
959  * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
960  *    clear MCA_DESTAT.
961  * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
962  *    log it.
963  */
964 static void log_error_deferred(unsigned int bank)
965 {
966         bool defrd;
967
968         defrd = _log_error_bank(bank, msr_ops.status(bank),
969                                         msr_ops.addr(bank), 0);
970
971         if (!mce_flags.smca)
972                 return;
973
974         /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
975         if (defrd) {
976                 wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
977                 return;
978         }
979
980         /*
981          * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
982          * for a valid error.
983          */
984         _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
985                               MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
986 }
987
988 /* APIC interrupt handler for deferred errors */
989 static void amd_deferred_error_interrupt(void)
990 {
991         unsigned int bank;
992
993         for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank)
994                 log_error_deferred(bank);
995 }
996
997 static void log_error_thresholding(unsigned int bank, u64 misc)
998 {
999         _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
1000 }
1001
1002 static void log_and_reset_block(struct threshold_block *block)
1003 {
1004         struct thresh_restart tr;
1005         u32 low = 0, high = 0;
1006
1007         if (!block)
1008                 return;
1009
1010         if (rdmsr_safe(block->address, &low, &high))
1011                 return;
1012
1013         if (!(high & MASK_OVERFLOW_HI))
1014                 return;
1015
1016         /* Log the MCE which caused the threshold event. */
1017         log_error_thresholding(block->bank, ((u64)high << 32) | low);
1018
1019         /* Reset threshold block after logging error. */
1020         memset(&tr, 0, sizeof(tr));
1021         tr.b = block;
1022         threshold_restart_bank(&tr);
1023 }
1024
1025 /*
1026  * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
1027  * goes off when error_count reaches threshold_limit.
1028  */
1029 static void amd_threshold_interrupt(void)
1030 {
1031         struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
1032         struct threshold_bank **bp = this_cpu_read(threshold_banks);
1033         unsigned int bank, cpu = smp_processor_id();
1034
1035         /*
1036          * Validate that the threshold bank has been initialized already. The
1037          * handler is installed at boot time, but on a hotplug event the
1038          * interrupt might fire before the data has been initialized.
1039          */
1040         if (!bp)
1041                 return;
1042
1043         for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) {
1044                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1045                         continue;
1046
1047                 first_block = bp[bank]->blocks;
1048                 if (!first_block)
1049                         continue;
1050
1051                 /*
1052                  * The first block is also the head of the list. Check it first
1053                  * before iterating over the rest.
1054                  */
1055                 log_and_reset_block(first_block);
1056                 list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
1057                         log_and_reset_block(block);
1058         }
1059 }
1060
1061 /*
1062  * Sysfs Interface
1063  */
1064
1065 struct threshold_attr {
1066         struct attribute attr;
1067         ssize_t (*show) (struct threshold_block *, char *);
1068         ssize_t (*store) (struct threshold_block *, const char *, size_t count);
1069 };
1070
1071 #define SHOW_FIELDS(name)                                               \
1072 static ssize_t show_ ## name(struct threshold_block *b, char *buf)      \
1073 {                                                                       \
1074         return sprintf(buf, "%lu\n", (unsigned long) b->name);          \
1075 }
1076 SHOW_FIELDS(interrupt_enable)
1077 SHOW_FIELDS(threshold_limit)
1078
1079 static ssize_t
1080 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
1081 {
1082         struct thresh_restart tr;
1083         unsigned long new;
1084
1085         if (!b->interrupt_capable)
1086                 return -EINVAL;
1087
1088         if (kstrtoul(buf, 0, &new) < 0)
1089                 return -EINVAL;
1090
1091         b->interrupt_enable = !!new;
1092
1093         memset(&tr, 0, sizeof(tr));
1094         tr.b            = b;
1095
1096         if (smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1))
1097                 return -ENODEV;
1098
1099         return size;
1100 }
1101
1102 static ssize_t
1103 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
1104 {
1105         struct thresh_restart tr;
1106         unsigned long new;
1107
1108         if (kstrtoul(buf, 0, &new) < 0)
1109                 return -EINVAL;
1110
1111         if (new > THRESHOLD_MAX)
1112                 new = THRESHOLD_MAX;
1113         if (new < 1)
1114                 new = 1;
1115
1116         memset(&tr, 0, sizeof(tr));
1117         tr.old_limit = b->threshold_limit;
1118         b->threshold_limit = new;
1119         tr.b = b;
1120
1121         if (smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1))
1122                 return -ENODEV;
1123
1124         return size;
1125 }
1126
1127 static ssize_t show_error_count(struct threshold_block *b, char *buf)
1128 {
1129         u32 lo, hi;
1130
1131         /* CPU might be offline by now */
1132         if (rdmsr_on_cpu(b->cpu, b->address, &lo, &hi))
1133                 return -ENODEV;
1134
1135         return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1136                                      (THRESHOLD_MAX - b->threshold_limit)));
1137 }
1138
1139 static struct threshold_attr error_count = {
1140         .attr = {.name = __stringify(error_count), .mode = 0444 },
1141         .show = show_error_count,
1142 };
1143
1144 #define RW_ATTR(val)                                                    \
1145 static struct threshold_attr val = {                                    \
1146         .attr   = {.name = __stringify(val), .mode = 0644 },            \
1147         .show   = show_## val,                                          \
1148         .store  = store_## val,                                         \
1149 };
1150
1151 RW_ATTR(interrupt_enable);
1152 RW_ATTR(threshold_limit);
1153
1154 static struct attribute *default_attrs[] = {
1155         &threshold_limit.attr,
1156         &error_count.attr,
1157         NULL,   /* possibly interrupt_enable if supported, see below */
1158         NULL,
1159 };
1160
1161 #define to_block(k)     container_of(k, struct threshold_block, kobj)
1162 #define to_attr(a)      container_of(a, struct threshold_attr, attr)
1163
1164 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1165 {
1166         struct threshold_block *b = to_block(kobj);
1167         struct threshold_attr *a = to_attr(attr);
1168         ssize_t ret;
1169
1170         ret = a->show ? a->show(b, buf) : -EIO;
1171
1172         return ret;
1173 }
1174
1175 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1176                      const char *buf, size_t count)
1177 {
1178         struct threshold_block *b = to_block(kobj);
1179         struct threshold_attr *a = to_attr(attr);
1180         ssize_t ret;
1181
1182         ret = a->store ? a->store(b, buf, count) : -EIO;
1183
1184         return ret;
1185 }
1186
1187 static const struct sysfs_ops threshold_ops = {
1188         .show                   = show,
1189         .store                  = store,
1190 };
1191
1192 static void threshold_block_release(struct kobject *kobj);
1193
1194 static struct kobj_type threshold_ktype = {
1195         .sysfs_ops              = &threshold_ops,
1196         .default_attrs          = default_attrs,
1197         .release                = threshold_block_release,
1198 };
1199
1200 static const char *get_name(unsigned int bank, struct threshold_block *b)
1201 {
1202         enum smca_bank_types bank_type;
1203
1204         if (!mce_flags.smca) {
1205                 if (b && bank == 4)
1206                         return bank4_names(b);
1207
1208                 return th_names[bank];
1209         }
1210
1211         bank_type = smca_get_bank_type(bank);
1212         if (bank_type >= N_SMCA_BANK_TYPES)
1213                 return NULL;
1214
1215         if (b && bank_type == SMCA_UMC) {
1216                 if (b->block < ARRAY_SIZE(smca_umc_block_names))
1217                         return smca_umc_block_names[b->block];
1218                 return NULL;
1219         }
1220
1221         if (smca_banks[bank].hwid->count == 1)
1222                 return smca_get_name(bank_type);
1223
1224         snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1225                  "%s_%x", smca_get_name(bank_type),
1226                           smca_banks[bank].sysfs_id);
1227         return buf_mcatype;
1228 }
1229
1230 static int allocate_threshold_blocks(unsigned int cpu, struct threshold_bank *tb,
1231                                      unsigned int bank, unsigned int block,
1232                                      u32 address)
1233 {
1234         struct threshold_block *b = NULL;
1235         u32 low, high;
1236         int err;
1237
1238         if ((bank >= this_cpu_read(mce_num_banks)) || (block >= NR_BLOCKS))
1239                 return 0;
1240
1241         if (rdmsr_safe(address, &low, &high))
1242                 return 0;
1243
1244         if (!(high & MASK_VALID_HI)) {
1245                 if (block)
1246                         goto recurse;
1247                 else
1248                         return 0;
1249         }
1250
1251         if (!(high & MASK_CNTP_HI)  ||
1252              (high & MASK_LOCKED_HI))
1253                 goto recurse;
1254
1255         b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1256         if (!b)
1257                 return -ENOMEM;
1258
1259         b->block                = block;
1260         b->bank                 = bank;
1261         b->cpu                  = cpu;
1262         b->address              = address;
1263         b->interrupt_enable     = 0;
1264         b->interrupt_capable    = lvt_interrupt_supported(bank, high);
1265         b->threshold_limit      = THRESHOLD_MAX;
1266
1267         if (b->interrupt_capable) {
1268                 threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1269                 b->interrupt_enable = 1;
1270         } else {
1271                 threshold_ktype.default_attrs[2] = NULL;
1272         }
1273
1274         INIT_LIST_HEAD(&b->miscj);
1275
1276         /* This is safe as @tb is not visible yet */
1277         if (tb->blocks)
1278                 list_add(&b->miscj, &tb->blocks->miscj);
1279         else
1280                 tb->blocks = b;
1281
1282         err = kobject_init_and_add(&b->kobj, &threshold_ktype, tb->kobj, get_name(bank, b));
1283         if (err)
1284                 goto out_free;
1285 recurse:
1286         address = get_block_address(address, low, high, bank, ++block, cpu);
1287         if (!address)
1288                 return 0;
1289
1290         err = allocate_threshold_blocks(cpu, tb, bank, block, address);
1291         if (err)
1292                 goto out_free;
1293
1294         if (b)
1295                 kobject_uevent(&b->kobj, KOBJ_ADD);
1296
1297         return 0;
1298
1299 out_free:
1300         if (b) {
1301                 list_del(&b->miscj);
1302                 kobject_put(&b->kobj);
1303         }
1304         return err;
1305 }
1306
1307 static int __threshold_add_blocks(struct threshold_bank *b)
1308 {
1309         struct list_head *head = &b->blocks->miscj;
1310         struct threshold_block *pos = NULL;
1311         struct threshold_block *tmp = NULL;
1312         int err = 0;
1313
1314         err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1315         if (err)
1316                 return err;
1317
1318         list_for_each_entry_safe(pos, tmp, head, miscj) {
1319
1320                 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1321                 if (err) {
1322                         list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1323                                 kobject_del(&pos->kobj);
1324
1325                         return err;
1326                 }
1327         }
1328         return err;
1329 }
1330
1331 static int threshold_create_bank(struct threshold_bank **bp, unsigned int cpu,
1332                                  unsigned int bank)
1333 {
1334         struct device *dev = this_cpu_read(mce_device);
1335         struct amd_northbridge *nb = NULL;
1336         struct threshold_bank *b = NULL;
1337         const char *name = get_name(bank, NULL);
1338         int err = 0;
1339
1340         if (!dev)
1341                 return -ENODEV;
1342
1343         if (is_shared_bank(bank)) {
1344                 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1345
1346                 /* threshold descriptor already initialized on this node? */
1347                 if (nb && nb->bank4) {
1348                         /* yes, use it */
1349                         b = nb->bank4;
1350                         err = kobject_add(b->kobj, &dev->kobj, name);
1351                         if (err)
1352                                 goto out;
1353
1354                         bp[bank] = b;
1355                         refcount_inc(&b->cpus);
1356
1357                         err = __threshold_add_blocks(b);
1358
1359                         goto out;
1360                 }
1361         }
1362
1363         b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1364         if (!b) {
1365                 err = -ENOMEM;
1366                 goto out;
1367         }
1368
1369         /* Associate the bank with the per-CPU MCE device */
1370         b->kobj = kobject_create_and_add(name, &dev->kobj);
1371         if (!b->kobj) {
1372                 err = -EINVAL;
1373                 goto out_free;
1374         }
1375
1376         if (is_shared_bank(bank)) {
1377                 b->shared = 1;
1378                 refcount_set(&b->cpus, 1);
1379
1380                 /* nb is already initialized, see above */
1381                 if (nb) {
1382                         WARN_ON(nb->bank4);
1383                         nb->bank4 = b;
1384                 }
1385         }
1386
1387         err = allocate_threshold_blocks(cpu, b, bank, 0, msr_ops.misc(bank));
1388         if (err)
1389                 goto out_kobj;
1390
1391         bp[bank] = b;
1392         return 0;
1393
1394 out_kobj:
1395         kobject_put(b->kobj);
1396 out_free:
1397         kfree(b);
1398 out:
1399         return err;
1400 }
1401
1402 static void threshold_block_release(struct kobject *kobj)
1403 {
1404         kfree(to_block(kobj));
1405 }
1406
1407 static void deallocate_threshold_blocks(struct threshold_bank *bank)
1408 {
1409         struct threshold_block *pos, *tmp;
1410
1411         list_for_each_entry_safe(pos, tmp, &bank->blocks->miscj, miscj) {
1412                 list_del(&pos->miscj);
1413                 kobject_put(&pos->kobj);
1414         }
1415
1416         kobject_put(&bank->blocks->kobj);
1417 }
1418
1419 static void __threshold_remove_blocks(struct threshold_bank *b)
1420 {
1421         struct threshold_block *pos = NULL;
1422         struct threshold_block *tmp = NULL;
1423
1424         kobject_del(b->kobj);
1425
1426         list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1427                 kobject_del(&pos->kobj);
1428 }
1429
1430 static void threshold_remove_bank(struct threshold_bank *bank)
1431 {
1432         struct amd_northbridge *nb;
1433
1434         if (!bank->blocks)
1435                 goto out_free;
1436
1437         if (!bank->shared)
1438                 goto out_dealloc;
1439
1440         if (!refcount_dec_and_test(&bank->cpus)) {
1441                 __threshold_remove_blocks(bank);
1442                 return;
1443         } else {
1444                 /*
1445                  * The last CPU on this node using the shared bank is going
1446                  * away, remove that bank now.
1447                  */
1448                 nb = node_to_amd_nb(amd_get_nb_id(smp_processor_id()));
1449                 nb->bank4 = NULL;
1450         }
1451
1452 out_dealloc:
1453         deallocate_threshold_blocks(bank);
1454
1455 out_free:
1456         kobject_put(bank->kobj);
1457         kfree(bank);
1458 }
1459
1460 int mce_threshold_remove_device(unsigned int cpu)
1461 {
1462         struct threshold_bank **bp = this_cpu_read(threshold_banks);
1463         unsigned int bank, numbanks = this_cpu_read(mce_num_banks);
1464
1465         if (!bp)
1466                 return 0;
1467
1468         /*
1469          * Clear the pointer before cleaning up, so that the interrupt won't
1470          * touch anything of this.
1471          */
1472         this_cpu_write(threshold_banks, NULL);
1473
1474         for (bank = 0; bank < numbanks; bank++) {
1475                 if (bp[bank]) {
1476                         threshold_remove_bank(bp[bank]);
1477                         bp[bank] = NULL;
1478                 }
1479         }
1480         kfree(bp);
1481         return 0;
1482 }
1483
1484 /**
1485  * mce_threshold_create_device - Create the per-CPU MCE threshold device
1486  * @cpu:        The plugged in CPU
1487  *
1488  * Create directories and files for all valid threshold banks.
1489  *
1490  * This is invoked from the CPU hotplug callback which was installed in
1491  * mcheck_init_device(). The invocation happens in context of the hotplug
1492  * thread running on @cpu.  The callback is invoked on all CPUs which are
1493  * online when the callback is installed or during a real hotplug event.
1494  */
1495 int mce_threshold_create_device(unsigned int cpu)
1496 {
1497         unsigned int numbanks, bank;
1498         struct threshold_bank **bp;
1499         int err;
1500
1501         if (!mce_flags.amd_threshold)
1502                 return 0;
1503
1504         bp = this_cpu_read(threshold_banks);
1505         if (bp)
1506                 return 0;
1507
1508         numbanks = this_cpu_read(mce_num_banks);
1509         bp = kcalloc(numbanks, sizeof(*bp), GFP_KERNEL);
1510         if (!bp)
1511                 return -ENOMEM;
1512
1513         for (bank = 0; bank < numbanks; ++bank) {
1514                 if (!(this_cpu_read(bank_map) & (1 << bank)))
1515                         continue;
1516                 err = threshold_create_bank(bp, cpu, bank);
1517                 if (err)
1518                         goto out_err;
1519         }
1520         this_cpu_write(threshold_banks, bp);
1521
1522         if (thresholding_irq_en)
1523                 mce_threshold_vector = amd_threshold_interrupt;
1524         return 0;
1525 out_err:
1526         mce_threshold_remove_device(cpu);
1527         return err;
1528 }