x86/cpu: Move cpu_l[l2]c_id into topology info
[linux-2.6-microblaze.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/uv/uv.h>
65 #include <asm/set_memory.h>
66 #include <asm/traps.h>
67 #include <asm/sev.h>
68
69 #include "cpu.h"
70
71 u32 elf_hwcap2 __read_mostly;
72
73 /* Number of siblings per CPU package */
74 int smp_num_siblings = 1;
75 EXPORT_SYMBOL(smp_num_siblings);
76
77 static struct ppin_info {
78         int     feature;
79         int     msr_ppin_ctl;
80         int     msr_ppin;
81 } ppin_info[] = {
82         [X86_VENDOR_INTEL] = {
83                 .feature = X86_FEATURE_INTEL_PPIN,
84                 .msr_ppin_ctl = MSR_PPIN_CTL,
85                 .msr_ppin = MSR_PPIN
86         },
87         [X86_VENDOR_AMD] = {
88                 .feature = X86_FEATURE_AMD_PPIN,
89                 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
90                 .msr_ppin = MSR_AMD_PPIN
91         },
92 };
93
94 static const struct x86_cpu_id ppin_cpuids[] = {
95         X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
96         X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
97
98         /* Legacy models without CPUID enumeration */
99         X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
100         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
101         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
102         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
103         X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
104         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
105         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
106         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
107         X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
108         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
109         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
110
111         {}
112 };
113
114 static void ppin_init(struct cpuinfo_x86 *c)
115 {
116         const struct x86_cpu_id *id;
117         unsigned long long val;
118         struct ppin_info *info;
119
120         id = x86_match_cpu(ppin_cpuids);
121         if (!id)
122                 return;
123
124         /*
125          * Testing the presence of the MSR is not enough. Need to check
126          * that the PPIN_CTL allows reading of the PPIN.
127          */
128         info = (struct ppin_info *)id->driver_data;
129
130         if (rdmsrl_safe(info->msr_ppin_ctl, &val))
131                 goto clear_ppin;
132
133         if ((val & 3UL) == 1UL) {
134                 /* PPIN locked in disabled mode */
135                 goto clear_ppin;
136         }
137
138         /* If PPIN is disabled, try to enable */
139         if (!(val & 2UL)) {
140                 wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
141                 rdmsrl_safe(info->msr_ppin_ctl, &val);
142         }
143
144         /* Is the enable bit set? */
145         if (val & 2UL) {
146                 c->ppin = __rdmsr(info->msr_ppin);
147                 set_cpu_cap(c, info->feature);
148                 return;
149         }
150
151 clear_ppin:
152         clear_cpu_cap(c, info->feature);
153 }
154
155 static void default_init(struct cpuinfo_x86 *c)
156 {
157 #ifdef CONFIG_X86_64
158         cpu_detect_cache_sizes(c);
159 #else
160         /* Not much we can do here... */
161         /* Check if at least it has cpuid */
162         if (c->cpuid_level == -1) {
163                 /* No cpuid. It must be an ancient CPU */
164                 if (c->x86 == 4)
165                         strcpy(c->x86_model_id, "486");
166                 else if (c->x86 == 3)
167                         strcpy(c->x86_model_id, "386");
168         }
169 #endif
170 }
171
172 static const struct cpu_dev default_cpu = {
173         .c_init         = default_init,
174         .c_vendor       = "Unknown",
175         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
176 };
177
178 static const struct cpu_dev *this_cpu = &default_cpu;
179
180 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
181 #ifdef CONFIG_X86_64
182         /*
183          * We need valid kernel segments for data and code in long mode too
184          * IRET will check the segment types  kkeil 2000/10/28
185          * Also sysret mandates a special GDT layout
186          *
187          * TLS descriptors are currently at a different place compared to i386.
188          * Hopefully nobody expects them at a fixed place (Wine?)
189          */
190         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
191         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
192         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
193         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
194         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
195         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
196 #else
197         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
198         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
199         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
200         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
201         /*
202          * Segments used for calling PnP BIOS have byte granularity.
203          * They code segments and data segments have fixed 64k limits,
204          * the transfer segment sizes are set at run time.
205          */
206         /* 32-bit code */
207         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
208         /* 16-bit code */
209         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
210         /* 16-bit data */
211         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
212         /* 16-bit data */
213         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
214         /* 16-bit data */
215         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
216         /*
217          * The APM segments have byte granularity and their bases
218          * are set at run time.  All have 64k limits.
219          */
220         /* 32-bit code */
221         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
222         /* 16-bit code */
223         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
224         /* data */
225         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
226
227         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
228         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
229 #endif
230 } };
231 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
232
233 #ifdef CONFIG_X86_64
234 static int __init x86_nopcid_setup(char *s)
235 {
236         /* nopcid doesn't accept parameters */
237         if (s)
238                 return -EINVAL;
239
240         /* do not emit a message if the feature is not present */
241         if (!boot_cpu_has(X86_FEATURE_PCID))
242                 return 0;
243
244         setup_clear_cpu_cap(X86_FEATURE_PCID);
245         pr_info("nopcid: PCID feature disabled\n");
246         return 0;
247 }
248 early_param("nopcid", x86_nopcid_setup);
249 #endif
250
251 static int __init x86_noinvpcid_setup(char *s)
252 {
253         /* noinvpcid doesn't accept parameters */
254         if (s)
255                 return -EINVAL;
256
257         /* do not emit a message if the feature is not present */
258         if (!boot_cpu_has(X86_FEATURE_INVPCID))
259                 return 0;
260
261         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
262         pr_info("noinvpcid: INVPCID feature disabled\n");
263         return 0;
264 }
265 early_param("noinvpcid", x86_noinvpcid_setup);
266
267 #ifdef CONFIG_X86_32
268 static int cachesize_override = -1;
269 static int disable_x86_serial_nr = 1;
270
271 static int __init cachesize_setup(char *str)
272 {
273         get_option(&str, &cachesize_override);
274         return 1;
275 }
276 __setup("cachesize=", cachesize_setup);
277
278 /* Standard macro to see if a specific flag is changeable */
279 static inline int flag_is_changeable_p(u32 flag)
280 {
281         u32 f1, f2;
282
283         /*
284          * Cyrix and IDT cpus allow disabling of CPUID
285          * so the code below may return different results
286          * when it is executed before and after enabling
287          * the CPUID. Add "volatile" to not allow gcc to
288          * optimize the subsequent calls to this function.
289          */
290         asm volatile ("pushfl           \n\t"
291                       "pushfl           \n\t"
292                       "popl %0          \n\t"
293                       "movl %0, %1      \n\t"
294                       "xorl %2, %0      \n\t"
295                       "pushl %0         \n\t"
296                       "popfl            \n\t"
297                       "pushfl           \n\t"
298                       "popl %0          \n\t"
299                       "popfl            \n\t"
300
301                       : "=&r" (f1), "=&r" (f2)
302                       : "ir" (flag));
303
304         return ((f1^f2) & flag) != 0;
305 }
306
307 /* Probe for the CPUID instruction */
308 int have_cpuid_p(void)
309 {
310         return flag_is_changeable_p(X86_EFLAGS_ID);
311 }
312
313 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
314 {
315         unsigned long lo, hi;
316
317         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
318                 return;
319
320         /* Disable processor serial number: */
321
322         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
323         lo |= 0x200000;
324         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
325
326         pr_notice("CPU serial number disabled.\n");
327         clear_cpu_cap(c, X86_FEATURE_PN);
328
329         /* Disabling the serial number may affect the cpuid level */
330         c->cpuid_level = cpuid_eax(0);
331 }
332
333 static int __init x86_serial_nr_setup(char *s)
334 {
335         disable_x86_serial_nr = 0;
336         return 1;
337 }
338 __setup("serialnumber", x86_serial_nr_setup);
339 #else
340 static inline int flag_is_changeable_p(u32 flag)
341 {
342         return 1;
343 }
344 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
345 {
346 }
347 #endif
348
349 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
350 {
351         if (cpu_has(c, X86_FEATURE_SMEP))
352                 cr4_set_bits(X86_CR4_SMEP);
353 }
354
355 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
356 {
357         unsigned long eflags = native_save_fl();
358
359         /* This should have been cleared long ago */
360         BUG_ON(eflags & X86_EFLAGS_AC);
361
362         if (cpu_has(c, X86_FEATURE_SMAP))
363                 cr4_set_bits(X86_CR4_SMAP);
364 }
365
366 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
367 {
368         /* Check the boot processor, plus build option for UMIP. */
369         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
370                 goto out;
371
372         /* Check the current processor's cpuid bits. */
373         if (!cpu_has(c, X86_FEATURE_UMIP))
374                 goto out;
375
376         cr4_set_bits(X86_CR4_UMIP);
377
378         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
379
380         return;
381
382 out:
383         /*
384          * Make sure UMIP is disabled in case it was enabled in a
385          * previous boot (e.g., via kexec).
386          */
387         cr4_clear_bits(X86_CR4_UMIP);
388 }
389
390 /* These bits should not change their value after CPU init is finished. */
391 static const unsigned long cr4_pinned_mask =
392         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
393         X86_CR4_FSGSBASE | X86_CR4_CET;
394 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
395 static unsigned long cr4_pinned_bits __ro_after_init;
396
397 void native_write_cr0(unsigned long val)
398 {
399         unsigned long bits_missing = 0;
400
401 set_register:
402         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
403
404         if (static_branch_likely(&cr_pinning)) {
405                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
406                         bits_missing = X86_CR0_WP;
407                         val |= bits_missing;
408                         goto set_register;
409                 }
410                 /* Warn after we've set the missing bits. */
411                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
412         }
413 }
414 EXPORT_SYMBOL(native_write_cr0);
415
416 void __no_profile native_write_cr4(unsigned long val)
417 {
418         unsigned long bits_changed = 0;
419
420 set_register:
421         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
422
423         if (static_branch_likely(&cr_pinning)) {
424                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
425                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
426                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
427                         goto set_register;
428                 }
429                 /* Warn after we've corrected the changed bits. */
430                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
431                           bits_changed);
432         }
433 }
434 #if IS_MODULE(CONFIG_LKDTM)
435 EXPORT_SYMBOL_GPL(native_write_cr4);
436 #endif
437
438 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
439 {
440         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
441
442         lockdep_assert_irqs_disabled();
443
444         newval = (cr4 & ~clear) | set;
445         if (newval != cr4) {
446                 this_cpu_write(cpu_tlbstate.cr4, newval);
447                 __write_cr4(newval);
448         }
449 }
450 EXPORT_SYMBOL(cr4_update_irqsoff);
451
452 /* Read the CR4 shadow. */
453 unsigned long cr4_read_shadow(void)
454 {
455         return this_cpu_read(cpu_tlbstate.cr4);
456 }
457 EXPORT_SYMBOL_GPL(cr4_read_shadow);
458
459 void cr4_init(void)
460 {
461         unsigned long cr4 = __read_cr4();
462
463         if (boot_cpu_has(X86_FEATURE_PCID))
464                 cr4 |= X86_CR4_PCIDE;
465         if (static_branch_likely(&cr_pinning))
466                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
467
468         __write_cr4(cr4);
469
470         /* Initialize cr4 shadow for this CPU. */
471         this_cpu_write(cpu_tlbstate.cr4, cr4);
472 }
473
474 /*
475  * Once CPU feature detection is finished (and boot params have been
476  * parsed), record any of the sensitive CR bits that are set, and
477  * enable CR pinning.
478  */
479 static void __init setup_cr_pinning(void)
480 {
481         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
482         static_key_enable(&cr_pinning.key);
483 }
484
485 static __init int x86_nofsgsbase_setup(char *arg)
486 {
487         /* Require an exact match without trailing characters. */
488         if (strlen(arg))
489                 return 0;
490
491         /* Do not emit a message if the feature is not present. */
492         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
493                 return 1;
494
495         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
496         pr_info("FSGSBASE disabled via kernel command line\n");
497         return 1;
498 }
499 __setup("nofsgsbase", x86_nofsgsbase_setup);
500
501 /*
502  * Protection Keys are not available in 32-bit mode.
503  */
504 static bool pku_disabled;
505
506 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
507 {
508         if (c == &boot_cpu_data) {
509                 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
510                         return;
511                 /*
512                  * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
513                  * bit to be set.  Enforce it.
514                  */
515                 setup_force_cpu_cap(X86_FEATURE_OSPKE);
516
517         } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
518                 return;
519         }
520
521         cr4_set_bits(X86_CR4_PKE);
522         /* Load the default PKRU value */
523         pkru_write_default();
524 }
525
526 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
527 static __init int setup_disable_pku(char *arg)
528 {
529         /*
530          * Do not clear the X86_FEATURE_PKU bit.  All of the
531          * runtime checks are against OSPKE so clearing the
532          * bit does nothing.
533          *
534          * This way, we will see "pku" in cpuinfo, but not
535          * "ospke", which is exactly what we want.  It shows
536          * that the CPU has PKU, but the OS has not enabled it.
537          * This happens to be exactly how a system would look
538          * if we disabled the config option.
539          */
540         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
541         pku_disabled = true;
542         return 1;
543 }
544 __setup("nopku", setup_disable_pku);
545 #endif
546
547 #ifdef CONFIG_X86_KERNEL_IBT
548
549 __noendbr u64 ibt_save(bool disable)
550 {
551         u64 msr = 0;
552
553         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
554                 rdmsrl(MSR_IA32_S_CET, msr);
555                 if (disable)
556                         wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
557         }
558
559         return msr;
560 }
561
562 __noendbr void ibt_restore(u64 save)
563 {
564         u64 msr;
565
566         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
567                 rdmsrl(MSR_IA32_S_CET, msr);
568                 msr &= ~CET_ENDBR_EN;
569                 msr |= (save & CET_ENDBR_EN);
570                 wrmsrl(MSR_IA32_S_CET, msr);
571         }
572 }
573
574 #endif
575
576 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
577 {
578         bool user_shstk, kernel_ibt;
579
580         if (!IS_ENABLED(CONFIG_X86_CET))
581                 return;
582
583         kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
584         user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
585                      IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
586
587         if (!kernel_ibt && !user_shstk)
588                 return;
589
590         if (user_shstk)
591                 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
592
593         if (kernel_ibt)
594                 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
595         else
596                 wrmsrl(MSR_IA32_S_CET, 0);
597
598         cr4_set_bits(X86_CR4_CET);
599
600         if (kernel_ibt && ibt_selftest()) {
601                 pr_err("IBT selftest: Failed!\n");
602                 wrmsrl(MSR_IA32_S_CET, 0);
603                 setup_clear_cpu_cap(X86_FEATURE_IBT);
604         }
605 }
606
607 __noendbr void cet_disable(void)
608 {
609         if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
610               cpu_feature_enabled(X86_FEATURE_SHSTK)))
611                 return;
612
613         wrmsrl(MSR_IA32_S_CET, 0);
614         wrmsrl(MSR_IA32_U_CET, 0);
615 }
616
617 /*
618  * Some CPU features depend on higher CPUID levels, which may not always
619  * be available due to CPUID level capping or broken virtualization
620  * software.  Add those features to this table to auto-disable them.
621  */
622 struct cpuid_dependent_feature {
623         u32 feature;
624         u32 level;
625 };
626
627 static const struct cpuid_dependent_feature
628 cpuid_dependent_features[] = {
629         { X86_FEATURE_MWAIT,            0x00000005 },
630         { X86_FEATURE_DCA,              0x00000009 },
631         { X86_FEATURE_XSAVE,            0x0000000d },
632         { 0, 0 }
633 };
634
635 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
636 {
637         const struct cpuid_dependent_feature *df;
638
639         for (df = cpuid_dependent_features; df->feature; df++) {
640
641                 if (!cpu_has(c, df->feature))
642                         continue;
643                 /*
644                  * Note: cpuid_level is set to -1 if unavailable, but
645                  * extended_extended_level is set to 0 if unavailable
646                  * and the legitimate extended levels are all negative
647                  * when signed; hence the weird messing around with
648                  * signs here...
649                  */
650                 if (!((s32)df->level < 0 ?
651                      (u32)df->level > (u32)c->extended_cpuid_level :
652                      (s32)df->level > (s32)c->cpuid_level))
653                         continue;
654
655                 clear_cpu_cap(c, df->feature);
656                 if (!warn)
657                         continue;
658
659                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
660                         x86_cap_flag(df->feature), df->level);
661         }
662 }
663
664 /*
665  * Naming convention should be: <Name> [(<Codename>)]
666  * This table only is used unless init_<vendor>() below doesn't set it;
667  * in particular, if CPUID levels 0x80000002..4 are supported, this
668  * isn't used
669  */
670
671 /* Look up CPU names by table lookup. */
672 static const char *table_lookup_model(struct cpuinfo_x86 *c)
673 {
674 #ifdef CONFIG_X86_32
675         const struct legacy_cpu_model_info *info;
676
677         if (c->x86_model >= 16)
678                 return NULL;    /* Range check */
679
680         if (!this_cpu)
681                 return NULL;
682
683         info = this_cpu->legacy_models;
684
685         while (info->family) {
686                 if (info->family == c->x86)
687                         return info->model_names[c->x86_model];
688                 info++;
689         }
690 #endif
691         return NULL;            /* Not found */
692 }
693
694 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
695 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
696 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
697
698 #ifdef CONFIG_X86_32
699 /* The 32-bit entry code needs to find cpu_entry_area. */
700 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
701 #endif
702
703 /* Load the original GDT from the per-cpu structure */
704 void load_direct_gdt(int cpu)
705 {
706         struct desc_ptr gdt_descr;
707
708         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
709         gdt_descr.size = GDT_SIZE - 1;
710         load_gdt(&gdt_descr);
711 }
712 EXPORT_SYMBOL_GPL(load_direct_gdt);
713
714 /* Load a fixmap remapping of the per-cpu GDT */
715 void load_fixmap_gdt(int cpu)
716 {
717         struct desc_ptr gdt_descr;
718
719         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
720         gdt_descr.size = GDT_SIZE - 1;
721         load_gdt(&gdt_descr);
722 }
723 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
724
725 /**
726  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
727  * @cpu:        The CPU number for which this is invoked
728  *
729  * Invoked during early boot to switch from early GDT and early per CPU to
730  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
731  * switch is implicit by loading the direct GDT. On 64bit this requires
732  * to update GSBASE.
733  */
734 void __init switch_gdt_and_percpu_base(int cpu)
735 {
736         load_direct_gdt(cpu);
737
738 #ifdef CONFIG_X86_64
739         /*
740          * No need to load %gs. It is already correct.
741          *
742          * Writing %gs on 64bit would zero GSBASE which would make any per
743          * CPU operation up to the point of the wrmsrl() fault.
744          *
745          * Set GSBASE to the new offset. Until the wrmsrl() happens the
746          * early mapping is still valid. That means the GSBASE update will
747          * lose any prior per CPU data which was not copied over in
748          * setup_per_cpu_areas().
749          *
750          * This works even with stackprotector enabled because the
751          * per CPU stack canary is 0 in both per CPU areas.
752          */
753         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
754 #else
755         /*
756          * %fs is already set to __KERNEL_PERCPU, but after switching GDT
757          * it is required to load FS again so that the 'hidden' part is
758          * updated from the new GDT. Up to this point the early per CPU
759          * translation is active. Any content of the early per CPU data
760          * which was not copied over in setup_per_cpu_areas() is lost.
761          */
762         loadsegment(fs, __KERNEL_PERCPU);
763 #endif
764 }
765
766 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
767
768 static void get_model_name(struct cpuinfo_x86 *c)
769 {
770         unsigned int *v;
771         char *p, *q, *s;
772
773         if (c->extended_cpuid_level < 0x80000004)
774                 return;
775
776         v = (unsigned int *)c->x86_model_id;
777         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
778         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
779         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
780         c->x86_model_id[48] = 0;
781
782         /* Trim whitespace */
783         p = q = s = &c->x86_model_id[0];
784
785         while (*p == ' ')
786                 p++;
787
788         while (*p) {
789                 /* Note the last non-whitespace index */
790                 if (!isspace(*p))
791                         s = q;
792
793                 *q++ = *p++;
794         }
795
796         *(s + 1) = '\0';
797 }
798
799 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
800 {
801         unsigned int eax, ebx, ecx, edx;
802
803         c->x86_max_cores = 1;
804         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
805                 return;
806
807         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
808         if (eax & 0x1f)
809                 c->x86_max_cores = (eax >> 26) + 1;
810 }
811
812 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
813 {
814         unsigned int n, dummy, ebx, ecx, edx, l2size;
815
816         n = c->extended_cpuid_level;
817
818         if (n >= 0x80000005) {
819                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
820                 c->x86_cache_size = (ecx>>24) + (edx>>24);
821 #ifdef CONFIG_X86_64
822                 /* On K8 L1 TLB is inclusive, so don't count it */
823                 c->x86_tlbsize = 0;
824 #endif
825         }
826
827         if (n < 0x80000006)     /* Some chips just has a large L1. */
828                 return;
829
830         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
831         l2size = ecx >> 16;
832
833 #ifdef CONFIG_X86_64
834         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
835 #else
836         /* do processor-specific cache resizing */
837         if (this_cpu->legacy_cache_size)
838                 l2size = this_cpu->legacy_cache_size(c, l2size);
839
840         /* Allow user to override all this if necessary. */
841         if (cachesize_override != -1)
842                 l2size = cachesize_override;
843
844         if (l2size == 0)
845                 return;         /* Again, no L2 cache is possible */
846 #endif
847
848         c->x86_cache_size = l2size;
849 }
850
851 u16 __read_mostly tlb_lli_4k[NR_INFO];
852 u16 __read_mostly tlb_lli_2m[NR_INFO];
853 u16 __read_mostly tlb_lli_4m[NR_INFO];
854 u16 __read_mostly tlb_lld_4k[NR_INFO];
855 u16 __read_mostly tlb_lld_2m[NR_INFO];
856 u16 __read_mostly tlb_lld_4m[NR_INFO];
857 u16 __read_mostly tlb_lld_1g[NR_INFO];
858
859 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
860 {
861         if (this_cpu->c_detect_tlb)
862                 this_cpu->c_detect_tlb(c);
863
864         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
865                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
866                 tlb_lli_4m[ENTRIES]);
867
868         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
869                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
870                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
871 }
872
873 int detect_ht_early(struct cpuinfo_x86 *c)
874 {
875 #ifdef CONFIG_SMP
876         u32 eax, ebx, ecx, edx;
877
878         if (!cpu_has(c, X86_FEATURE_HT))
879                 return -1;
880
881         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
882                 return -1;
883
884         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
885                 return -1;
886
887         cpuid(1, &eax, &ebx, &ecx, &edx);
888
889         smp_num_siblings = (ebx & 0xff0000) >> 16;
890         if (smp_num_siblings == 1)
891                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
892 #endif
893         return 0;
894 }
895
896 void detect_ht(struct cpuinfo_x86 *c)
897 {
898 #ifdef CONFIG_SMP
899         int index_msb, core_bits;
900
901         if (detect_ht_early(c) < 0)
902                 return;
903
904         index_msb = get_count_order(smp_num_siblings);
905         c->topo.pkg_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb);
906
907         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
908
909         index_msb = get_count_order(smp_num_siblings);
910
911         core_bits = get_count_order(c->x86_max_cores);
912
913         c->topo.core_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb) &
914                 ((1 << core_bits) - 1);
915 #endif
916 }
917
918 static void get_cpu_vendor(struct cpuinfo_x86 *c)
919 {
920         char *v = c->x86_vendor_id;
921         int i;
922
923         for (i = 0; i < X86_VENDOR_NUM; i++) {
924                 if (!cpu_devs[i])
925                         break;
926
927                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
928                     (cpu_devs[i]->c_ident[1] &&
929                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
930
931                         this_cpu = cpu_devs[i];
932                         c->x86_vendor = this_cpu->c_x86_vendor;
933                         return;
934                 }
935         }
936
937         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
938                     "CPU: Your system may be unstable.\n", v);
939
940         c->x86_vendor = X86_VENDOR_UNKNOWN;
941         this_cpu = &default_cpu;
942 }
943
944 void cpu_detect(struct cpuinfo_x86 *c)
945 {
946         /* Get vendor name */
947         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
948               (unsigned int *)&c->x86_vendor_id[0],
949               (unsigned int *)&c->x86_vendor_id[8],
950               (unsigned int *)&c->x86_vendor_id[4]);
951
952         c->x86 = 4;
953         /* Intel-defined flags: level 0x00000001 */
954         if (c->cpuid_level >= 0x00000001) {
955                 u32 junk, tfms, cap0, misc;
956
957                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
958                 c->x86          = x86_family(tfms);
959                 c->x86_model    = x86_model(tfms);
960                 c->x86_stepping = x86_stepping(tfms);
961
962                 if (cap0 & (1<<19)) {
963                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
964                         c->x86_cache_alignment = c->x86_clflush_size;
965                 }
966         }
967 }
968
969 static void apply_forced_caps(struct cpuinfo_x86 *c)
970 {
971         int i;
972
973         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
974                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
975                 c->x86_capability[i] |= cpu_caps_set[i];
976         }
977 }
978
979 static void init_speculation_control(struct cpuinfo_x86 *c)
980 {
981         /*
982          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
983          * and they also have a different bit for STIBP support. Also,
984          * a hypervisor might have set the individual AMD bits even on
985          * Intel CPUs, for finer-grained selection of what's available.
986          */
987         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
988                 set_cpu_cap(c, X86_FEATURE_IBRS);
989                 set_cpu_cap(c, X86_FEATURE_IBPB);
990                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
991         }
992
993         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
994                 set_cpu_cap(c, X86_FEATURE_STIBP);
995
996         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
997             cpu_has(c, X86_FEATURE_VIRT_SSBD))
998                 set_cpu_cap(c, X86_FEATURE_SSBD);
999
1000         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
1001                 set_cpu_cap(c, X86_FEATURE_IBRS);
1002                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1003         }
1004
1005         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1006                 set_cpu_cap(c, X86_FEATURE_IBPB);
1007
1008         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1009                 set_cpu_cap(c, X86_FEATURE_STIBP);
1010                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1011         }
1012
1013         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1014                 set_cpu_cap(c, X86_FEATURE_SSBD);
1015                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1016                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1017         }
1018 }
1019
1020 void get_cpu_cap(struct cpuinfo_x86 *c)
1021 {
1022         u32 eax, ebx, ecx, edx;
1023
1024         /* Intel-defined flags: level 0x00000001 */
1025         if (c->cpuid_level >= 0x00000001) {
1026                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1027
1028                 c->x86_capability[CPUID_1_ECX] = ecx;
1029                 c->x86_capability[CPUID_1_EDX] = edx;
1030         }
1031
1032         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1033         if (c->cpuid_level >= 0x00000006)
1034                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1035
1036         /* Additional Intel-defined flags: level 0x00000007 */
1037         if (c->cpuid_level >= 0x00000007) {
1038                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1039                 c->x86_capability[CPUID_7_0_EBX] = ebx;
1040                 c->x86_capability[CPUID_7_ECX] = ecx;
1041                 c->x86_capability[CPUID_7_EDX] = edx;
1042
1043                 /* Check valid sub-leaf index before accessing it */
1044                 if (eax >= 1) {
1045                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1046                         c->x86_capability[CPUID_7_1_EAX] = eax;
1047                 }
1048         }
1049
1050         /* Extended state features: level 0x0000000d */
1051         if (c->cpuid_level >= 0x0000000d) {
1052                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1053
1054                 c->x86_capability[CPUID_D_1_EAX] = eax;
1055         }
1056
1057         /* AMD-defined flags: level 0x80000001 */
1058         eax = cpuid_eax(0x80000000);
1059         c->extended_cpuid_level = eax;
1060
1061         if ((eax & 0xffff0000) == 0x80000000) {
1062                 if (eax >= 0x80000001) {
1063                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1064
1065                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1066                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
1067                 }
1068         }
1069
1070         if (c->extended_cpuid_level >= 0x80000007) {
1071                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1072
1073                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1074                 c->x86_power = edx;
1075         }
1076
1077         if (c->extended_cpuid_level >= 0x80000008) {
1078                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1079                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1080         }
1081
1082         if (c->extended_cpuid_level >= 0x8000000a)
1083                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1084
1085         if (c->extended_cpuid_level >= 0x8000001f)
1086                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1087
1088         if (c->extended_cpuid_level >= 0x80000021)
1089                 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1090
1091         init_scattered_cpuid_features(c);
1092         init_speculation_control(c);
1093
1094         /*
1095          * Clear/Set all flags overridden by options, after probe.
1096          * This needs to happen each time we re-probe, which may happen
1097          * several times during CPU initialization.
1098          */
1099         apply_forced_caps(c);
1100 }
1101
1102 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1103 {
1104         u32 eax, ebx, ecx, edx;
1105
1106         if (c->extended_cpuid_level >= 0x80000008) {
1107                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1108
1109                 c->x86_virt_bits = (eax >> 8) & 0xff;
1110                 c->x86_phys_bits = eax & 0xff;
1111         }
1112 #ifdef CONFIG_X86_32
1113         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1114                 c->x86_phys_bits = 36;
1115 #endif
1116         c->x86_cache_bits = c->x86_phys_bits;
1117 }
1118
1119 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1120 {
1121 #ifdef CONFIG_X86_32
1122         int i;
1123
1124         /*
1125          * First of all, decide if this is a 486 or higher
1126          * It's a 486 if we can modify the AC flag
1127          */
1128         if (flag_is_changeable_p(X86_EFLAGS_AC))
1129                 c->x86 = 4;
1130         else
1131                 c->x86 = 3;
1132
1133         for (i = 0; i < X86_VENDOR_NUM; i++)
1134                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1135                         c->x86_vendor_id[0] = 0;
1136                         cpu_devs[i]->c_identify(c);
1137                         if (c->x86_vendor_id[0]) {
1138                                 get_cpu_vendor(c);
1139                                 break;
1140                         }
1141                 }
1142 #endif
1143 }
1144
1145 #define NO_SPECULATION          BIT(0)
1146 #define NO_MELTDOWN             BIT(1)
1147 #define NO_SSB                  BIT(2)
1148 #define NO_L1TF                 BIT(3)
1149 #define NO_MDS                  BIT(4)
1150 #define MSBDS_ONLY              BIT(5)
1151 #define NO_SWAPGS               BIT(6)
1152 #define NO_ITLB_MULTIHIT        BIT(7)
1153 #define NO_SPECTRE_V2           BIT(8)
1154 #define NO_MMIO                 BIT(9)
1155 #define NO_EIBRS_PBRSB          BIT(10)
1156
1157 #define VULNWL(vendor, family, model, whitelist)        \
1158         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1159
1160 #define VULNWL_INTEL(model, whitelist)          \
1161         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1162
1163 #define VULNWL_AMD(family, whitelist)           \
1164         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1165
1166 #define VULNWL_HYGON(family, whitelist)         \
1167         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1168
1169 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1170         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1171         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1172         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1173         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1174         VULNWL(VORTEX,  5, X86_MODEL_ANY,       NO_SPECULATION),
1175         VULNWL(VORTEX,  6, X86_MODEL_ANY,       NO_SPECULATION),
1176
1177         /* Intel Family 6 */
1178         VULNWL_INTEL(TIGERLAKE,                 NO_MMIO),
1179         VULNWL_INTEL(TIGERLAKE_L,               NO_MMIO),
1180         VULNWL_INTEL(ALDERLAKE,                 NO_MMIO),
1181         VULNWL_INTEL(ALDERLAKE_L,               NO_MMIO),
1182
1183         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1184         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1185         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1186         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1187         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1188
1189         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1190         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1191         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1192         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1193         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1194         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1195
1196         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1197
1198         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1199         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1200
1201         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1202         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1203         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1204
1205         /*
1206          * Technically, swapgs isn't serializing on AMD (despite it previously
1207          * being documented as such in the APM).  But according to AMD, %gs is
1208          * updated non-speculatively, and the issuing of %gs-relative memory
1209          * operands will be blocked until the %gs update completes, which is
1210          * good enough for our purposes.
1211          */
1212
1213         VULNWL_INTEL(ATOM_TREMONT,              NO_EIBRS_PBRSB),
1214         VULNWL_INTEL(ATOM_TREMONT_L,            NO_EIBRS_PBRSB),
1215         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1216
1217         /* AMD Family 0xf - 0x12 */
1218         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1219         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1220         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1221         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1222
1223         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1224         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1225         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1226
1227         /* Zhaoxin Family 7 */
1228         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1229         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1230         {}
1231 };
1232
1233 #define VULNBL(vendor, family, model, blacklist)        \
1234         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1235
1236 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1237         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1238                                             INTEL_FAM6_##model, steppings, \
1239                                             X86_FEATURE_ANY, issues)
1240
1241 #define VULNBL_AMD(family, blacklist)           \
1242         VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1243
1244 #define VULNBL_HYGON(family, blacklist)         \
1245         VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1246
1247 #define SRBDS           BIT(0)
1248 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1249 #define MMIO            BIT(1)
1250 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1251 #define MMIO_SBDS       BIT(2)
1252 /* CPU is affected by RETbleed, speculating where you would not expect it */
1253 #define RETBLEED        BIT(3)
1254 /* CPU is affected by SMT (cross-thread) return predictions */
1255 #define SMT_RSB         BIT(4)
1256 /* CPU is affected by SRSO */
1257 #define SRSO            BIT(5)
1258 /* CPU is affected by GDS */
1259 #define GDS             BIT(6)
1260
1261 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1262         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1263         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1264         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1265         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1266         VULNBL_INTEL_STEPPINGS(HASWELL_X,       X86_STEPPING_ANY,               MMIO),
1267         VULNBL_INTEL_STEPPINGS(BROADWELL_D,     X86_STEPPING_ANY,               MMIO),
1268         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1269         VULNBL_INTEL_STEPPINGS(BROADWELL_X,     X86_STEPPING_ANY,               MMIO),
1270         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1271         VULNBL_INTEL_STEPPINGS(SKYLAKE_X,       X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1272         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1273         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1274         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1275         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1276         VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,    X86_STEPPING_ANY,               RETBLEED),
1277         VULNBL_INTEL_STEPPINGS(ICELAKE_L,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1278         VULNBL_INTEL_STEPPINGS(ICELAKE_D,       X86_STEPPING_ANY,               MMIO | GDS),
1279         VULNBL_INTEL_STEPPINGS(ICELAKE_X,       X86_STEPPING_ANY,               MMIO | GDS),
1280         VULNBL_INTEL_STEPPINGS(COMETLAKE,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1281         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPINGS(0x0, 0x0),        MMIO | RETBLEED),
1282         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1283         VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,     X86_STEPPING_ANY,               GDS),
1284         VULNBL_INTEL_STEPPINGS(TIGERLAKE,       X86_STEPPING_ANY,               GDS),
1285         VULNBL_INTEL_STEPPINGS(LAKEFIELD,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1286         VULNBL_INTEL_STEPPINGS(ROCKETLAKE,      X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1287         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,    X86_STEPPING_ANY,               MMIO | MMIO_SBDS),
1288         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,  X86_STEPPING_ANY,               MMIO),
1289         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,  X86_STEPPING_ANY,               MMIO | MMIO_SBDS),
1290
1291         VULNBL_AMD(0x15, RETBLEED),
1292         VULNBL_AMD(0x16, RETBLEED),
1293         VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1294         VULNBL_HYGON(0x18, RETBLEED | SMT_RSB),
1295         VULNBL_AMD(0x19, SRSO),
1296         {}
1297 };
1298
1299 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1300 {
1301         const struct x86_cpu_id *m = x86_match_cpu(table);
1302
1303         return m && !!(m->driver_data & which);
1304 }
1305
1306 u64 x86_read_arch_cap_msr(void)
1307 {
1308         u64 ia32_cap = 0;
1309
1310         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1311                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1312
1313         return ia32_cap;
1314 }
1315
1316 static bool arch_cap_mmio_immune(u64 ia32_cap)
1317 {
1318         return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1319                 ia32_cap & ARCH_CAP_PSDP_NO &&
1320                 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1321 }
1322
1323 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1324 {
1325         u64 ia32_cap = x86_read_arch_cap_msr();
1326
1327         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1328         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1329             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1330                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1331
1332         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1333                 return;
1334
1335         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1336
1337         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1338                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1339
1340         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1341             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1342            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1343                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1344
1345         /*
1346          * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1347          * flag and protect from vendor-specific bugs via the whitelist.
1348          */
1349         if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1350                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1351                 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1352                     !(ia32_cap & ARCH_CAP_PBRSB_NO))
1353                         setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1354         }
1355
1356         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1357             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1358                 setup_force_cpu_bug(X86_BUG_MDS);
1359                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1360                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1361         }
1362
1363         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1364                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1365
1366         /*
1367          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1368          *      - TSX is supported or
1369          *      - TSX_CTRL is present
1370          *
1371          * TSX_CTRL check is needed for cases when TSX could be disabled before
1372          * the kernel boot e.g. kexec.
1373          * TSX_CTRL check alone is not sufficient for cases when the microcode
1374          * update is not present or running as guest that don't get TSX_CTRL.
1375          */
1376         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1377             (cpu_has(c, X86_FEATURE_RTM) ||
1378              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1379                 setup_force_cpu_bug(X86_BUG_TAA);
1380
1381         /*
1382          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1383          * in the vulnerability blacklist.
1384          *
1385          * Some of the implications and mitigation of Shared Buffers Data
1386          * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1387          * SRBDS.
1388          */
1389         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1390              cpu_has(c, X86_FEATURE_RDSEED)) &&
1391             cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1392                     setup_force_cpu_bug(X86_BUG_SRBDS);
1393
1394         /*
1395          * Processor MMIO Stale Data bug enumeration
1396          *
1397          * Affected CPU list is generally enough to enumerate the vulnerability,
1398          * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1399          * not want the guest to enumerate the bug.
1400          *
1401          * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1402          * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1403          */
1404         if (!arch_cap_mmio_immune(ia32_cap)) {
1405                 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1406                         setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1407                 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1408                         setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1409         }
1410
1411         if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1412                 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1413                         setup_force_cpu_bug(X86_BUG_RETBLEED);
1414         }
1415
1416         if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1417                 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1418
1419         if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1420                 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1421                         setup_force_cpu_bug(X86_BUG_SRSO);
1422         }
1423
1424         /*
1425          * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1426          * an affected processor, the VMM may have disabled the use of GATHER by
1427          * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1428          * which means that AVX will be disabled.
1429          */
1430         if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1431             boot_cpu_has(X86_FEATURE_AVX))
1432                 setup_force_cpu_bug(X86_BUG_GDS);
1433
1434         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1435                 return;
1436
1437         /* Rogue Data Cache Load? No! */
1438         if (ia32_cap & ARCH_CAP_RDCL_NO)
1439                 return;
1440
1441         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1442
1443         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1444                 return;
1445
1446         setup_force_cpu_bug(X86_BUG_L1TF);
1447 }
1448
1449 /*
1450  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1451  * unfortunately, that's not true in practice because of early VIA
1452  * chips and (more importantly) broken virtualizers that are not easy
1453  * to detect. In the latter case it doesn't even *fail* reliably, so
1454  * probing for it doesn't even work. Disable it completely on 32-bit
1455  * unless we can find a reliable way to detect all the broken cases.
1456  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1457  */
1458 static void detect_nopl(void)
1459 {
1460 #ifdef CONFIG_X86_32
1461         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1462 #else
1463         setup_force_cpu_cap(X86_FEATURE_NOPL);
1464 #endif
1465 }
1466
1467 /*
1468  * We parse cpu parameters early because fpu__init_system() is executed
1469  * before parse_early_param().
1470  */
1471 static void __init cpu_parse_early_param(void)
1472 {
1473         char arg[128];
1474         char *argptr = arg, *opt;
1475         int arglen, taint = 0;
1476
1477 #ifdef CONFIG_X86_32
1478         if (cmdline_find_option_bool(boot_command_line, "no387"))
1479 #ifdef CONFIG_MATH_EMULATION
1480                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1481 #else
1482                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1483 #endif
1484
1485         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1486                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1487 #endif
1488
1489         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1490                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1491
1492         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1493                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1494
1495         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1496                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1497
1498         if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1499                 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1500
1501         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1502         if (arglen <= 0)
1503                 return;
1504
1505         pr_info("Clearing CPUID bits:");
1506
1507         while (argptr) {
1508                 bool found __maybe_unused = false;
1509                 unsigned int bit;
1510
1511                 opt = strsep(&argptr, ",");
1512
1513                 /*
1514                  * Handle naked numbers first for feature flags which don't
1515                  * have names.
1516                  */
1517                 if (!kstrtouint(opt, 10, &bit)) {
1518                         if (bit < NCAPINTS * 32) {
1519
1520                                 /* empty-string, i.e., ""-defined feature flags */
1521                                 if (!x86_cap_flags[bit])
1522                                         pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1523                                 else
1524                                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1525
1526                                 setup_clear_cpu_cap(bit);
1527                                 taint++;
1528                         }
1529                         /*
1530                          * The assumption is that there are no feature names with only
1531                          * numbers in the name thus go to the next argument.
1532                          */
1533                         continue;
1534                 }
1535
1536                 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1537                         if (!x86_cap_flag(bit))
1538                                 continue;
1539
1540                         if (strcmp(x86_cap_flag(bit), opt))
1541                                 continue;
1542
1543                         pr_cont(" %s", opt);
1544                         setup_clear_cpu_cap(bit);
1545                         taint++;
1546                         found = true;
1547                         break;
1548                 }
1549
1550                 if (!found)
1551                         pr_cont(" (unknown: %s)", opt);
1552         }
1553         pr_cont("\n");
1554
1555         if (taint)
1556                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1557 }
1558
1559 /*
1560  * Do minimum CPU detection early.
1561  * Fields really needed: vendor, cpuid_level, family, model, mask,
1562  * cache alignment.
1563  * The others are not touched to avoid unwanted side effects.
1564  *
1565  * WARNING: this function is only called on the boot CPU.  Don't add code
1566  * here that is supposed to run on all CPUs.
1567  */
1568 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1569 {
1570 #ifdef CONFIG_X86_64
1571         c->x86_clflush_size = 64;
1572         c->x86_phys_bits = 36;
1573         c->x86_virt_bits = 48;
1574 #else
1575         c->x86_clflush_size = 32;
1576         c->x86_phys_bits = 32;
1577         c->x86_virt_bits = 32;
1578 #endif
1579         c->x86_cache_alignment = c->x86_clflush_size;
1580
1581         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1582         c->extended_cpuid_level = 0;
1583
1584         if (!have_cpuid_p())
1585                 identify_cpu_without_cpuid(c);
1586
1587         /* cyrix could have cpuid enabled via c_identify()*/
1588         if (have_cpuid_p()) {
1589                 cpu_detect(c);
1590                 get_cpu_vendor(c);
1591                 get_cpu_cap(c);
1592                 get_cpu_address_sizes(c);
1593                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1594                 cpu_parse_early_param();
1595
1596                 if (this_cpu->c_early_init)
1597                         this_cpu->c_early_init(c);
1598
1599                 c->cpu_index = 0;
1600                 filter_cpuid_features(c, false);
1601
1602                 if (this_cpu->c_bsp_init)
1603                         this_cpu->c_bsp_init(c);
1604         } else {
1605                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1606         }
1607
1608         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1609
1610         cpu_set_bug_bits(c);
1611
1612         sld_setup(c);
1613
1614 #ifdef CONFIG_X86_32
1615         /*
1616          * Regardless of whether PCID is enumerated, the SDM says
1617          * that it can't be enabled in 32-bit mode.
1618          */
1619         setup_clear_cpu_cap(X86_FEATURE_PCID);
1620 #endif
1621
1622         /*
1623          * Later in the boot process pgtable_l5_enabled() relies on
1624          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1625          * enabled by this point we need to clear the feature bit to avoid
1626          * false-positives at the later stage.
1627          *
1628          * pgtable_l5_enabled() can be false here for several reasons:
1629          *  - 5-level paging is disabled compile-time;
1630          *  - it's 32-bit kernel;
1631          *  - machine doesn't support 5-level paging;
1632          *  - user specified 'no5lvl' in kernel command line.
1633          */
1634         if (!pgtable_l5_enabled())
1635                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1636
1637         detect_nopl();
1638 }
1639
1640 void __init early_cpu_init(void)
1641 {
1642         const struct cpu_dev *const *cdev;
1643         int count = 0;
1644
1645 #ifdef CONFIG_PROCESSOR_SELECT
1646         pr_info("KERNEL supported cpus:\n");
1647 #endif
1648
1649         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1650                 const struct cpu_dev *cpudev = *cdev;
1651
1652                 if (count >= X86_VENDOR_NUM)
1653                         break;
1654                 cpu_devs[count] = cpudev;
1655                 count++;
1656
1657 #ifdef CONFIG_PROCESSOR_SELECT
1658                 {
1659                         unsigned int j;
1660
1661                         for (j = 0; j < 2; j++) {
1662                                 if (!cpudev->c_ident[j])
1663                                         continue;
1664                                 pr_info("  %s %s\n", cpudev->c_vendor,
1665                                         cpudev->c_ident[j]);
1666                         }
1667                 }
1668 #endif
1669         }
1670         early_identify_cpu(&boot_cpu_data);
1671 }
1672
1673 static bool detect_null_seg_behavior(void)
1674 {
1675         /*
1676          * Empirically, writing zero to a segment selector on AMD does
1677          * not clear the base, whereas writing zero to a segment
1678          * selector on Intel does clear the base.  Intel's behavior
1679          * allows slightly faster context switches in the common case
1680          * where GS is unused by the prev and next threads.
1681          *
1682          * Since neither vendor documents this anywhere that I can see,
1683          * detect it directly instead of hard-coding the choice by
1684          * vendor.
1685          *
1686          * I've designated AMD's behavior as the "bug" because it's
1687          * counterintuitive and less friendly.
1688          */
1689
1690         unsigned long old_base, tmp;
1691         rdmsrl(MSR_FS_BASE, old_base);
1692         wrmsrl(MSR_FS_BASE, 1);
1693         loadsegment(fs, 0);
1694         rdmsrl(MSR_FS_BASE, tmp);
1695         wrmsrl(MSR_FS_BASE, old_base);
1696         return tmp == 0;
1697 }
1698
1699 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1700 {
1701         /* BUG_NULL_SEG is only relevant with 64bit userspace */
1702         if (!IS_ENABLED(CONFIG_X86_64))
1703                 return;
1704
1705         if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1706                 return;
1707
1708         /*
1709          * CPUID bit above wasn't set. If this kernel is still running
1710          * as a HV guest, then the HV has decided not to advertize
1711          * that CPUID bit for whatever reason.  For example, one
1712          * member of the migration pool might be vulnerable.  Which
1713          * means, the bug is present: set the BUG flag and return.
1714          */
1715         if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1716                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1717                 return;
1718         }
1719
1720         /*
1721          * Zen2 CPUs also have this behaviour, but no CPUID bit.
1722          * 0x18 is the respective family for Hygon.
1723          */
1724         if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1725             detect_null_seg_behavior())
1726                 return;
1727
1728         /* All the remaining ones are affected */
1729         set_cpu_bug(c, X86_BUG_NULL_SEG);
1730 }
1731
1732 static void generic_identify(struct cpuinfo_x86 *c)
1733 {
1734         c->extended_cpuid_level = 0;
1735
1736         if (!have_cpuid_p())
1737                 identify_cpu_without_cpuid(c);
1738
1739         /* cyrix could have cpuid enabled via c_identify()*/
1740         if (!have_cpuid_p())
1741                 return;
1742
1743         cpu_detect(c);
1744
1745         get_cpu_vendor(c);
1746
1747         get_cpu_cap(c);
1748
1749         get_cpu_address_sizes(c);
1750
1751         if (c->cpuid_level >= 0x00000001) {
1752                 c->topo.initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1753 #ifdef CONFIG_X86_32
1754 # ifdef CONFIG_SMP
1755                 c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1756 # else
1757                 c->topo.apicid = c->topo.initial_apicid;
1758 # endif
1759 #endif
1760                 c->topo.pkg_id = c->topo.initial_apicid;
1761         }
1762
1763         get_model_name(c); /* Default name */
1764
1765         /*
1766          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1767          * systems that run Linux at CPL > 0 may or may not have the
1768          * issue, but, even if they have the issue, there's absolutely
1769          * nothing we can do about it because we can't use the real IRET
1770          * instruction.
1771          *
1772          * NB: For the time being, only 32-bit kernels support
1773          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1774          * whether to apply espfix using paravirt hooks.  If any
1775          * non-paravirt system ever shows up that does *not* have the
1776          * ESPFIX issue, we can change this.
1777          */
1778 #ifdef CONFIG_X86_32
1779         set_cpu_bug(c, X86_BUG_ESPFIX);
1780 #endif
1781 }
1782
1783 /*
1784  * Validate that ACPI/mptables have the same information about the
1785  * effective APIC id and update the package map.
1786  */
1787 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1788 {
1789 #ifdef CONFIG_SMP
1790         unsigned int apicid, cpu = smp_processor_id();
1791
1792         apicid = apic->cpu_present_to_apicid(cpu);
1793
1794         if (apicid != c->topo.apicid) {
1795                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1796                        cpu, apicid, c->topo.initial_apicid);
1797         }
1798         BUG_ON(topology_update_package_map(c->topo.pkg_id, cpu));
1799         BUG_ON(topology_update_die_map(c->topo.die_id, cpu));
1800 #else
1801         c->topo.logical_pkg_id = 0;
1802 #endif
1803 }
1804
1805 /*
1806  * This does the hard work of actually picking apart the CPU stuff...
1807  */
1808 static void identify_cpu(struct cpuinfo_x86 *c)
1809 {
1810         int i;
1811
1812         c->loops_per_jiffy = loops_per_jiffy;
1813         c->x86_cache_size = 0;
1814         c->x86_vendor = X86_VENDOR_UNKNOWN;
1815         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1816         c->x86_vendor_id[0] = '\0'; /* Unset */
1817         c->x86_model_id[0] = '\0';  /* Unset */
1818         c->x86_max_cores = 1;
1819         c->x86_coreid_bits = 0;
1820         c->topo.cu_id = 0xff;
1821         c->topo.llc_id = BAD_APICID;
1822         c->topo.l2c_id = BAD_APICID;
1823 #ifdef CONFIG_X86_64
1824         c->x86_clflush_size = 64;
1825         c->x86_phys_bits = 36;
1826         c->x86_virt_bits = 48;
1827 #else
1828         c->cpuid_level = -1;    /* CPUID not detected */
1829         c->x86_clflush_size = 32;
1830         c->x86_phys_bits = 32;
1831         c->x86_virt_bits = 32;
1832 #endif
1833         c->x86_cache_alignment = c->x86_clflush_size;
1834         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1835 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1836         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1837 #endif
1838
1839         generic_identify(c);
1840
1841         if (this_cpu->c_identify)
1842                 this_cpu->c_identify(c);
1843
1844         /* Clear/Set all flags overridden by options, after probe */
1845         apply_forced_caps(c);
1846
1847 #ifdef CONFIG_X86_64
1848         c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1849 #endif
1850
1851         /*
1852          * Vendor-specific initialization.  In this section we
1853          * canonicalize the feature flags, meaning if there are
1854          * features a certain CPU supports which CPUID doesn't
1855          * tell us, CPUID claiming incorrect flags, or other bugs,
1856          * we handle them here.
1857          *
1858          * At the end of this section, c->x86_capability better
1859          * indicate the features this CPU genuinely supports!
1860          */
1861         if (this_cpu->c_init)
1862                 this_cpu->c_init(c);
1863
1864         /* Disable the PN if appropriate */
1865         squash_the_stupid_serial_number(c);
1866
1867         /* Set up SMEP/SMAP/UMIP */
1868         setup_smep(c);
1869         setup_smap(c);
1870         setup_umip(c);
1871
1872         /* Enable FSGSBASE instructions if available. */
1873         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1874                 cr4_set_bits(X86_CR4_FSGSBASE);
1875                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1876         }
1877
1878         /*
1879          * The vendor-specific functions might have changed features.
1880          * Now we do "generic changes."
1881          */
1882
1883         /* Filter out anything that depends on CPUID levels we don't have */
1884         filter_cpuid_features(c, true);
1885
1886         /* If the model name is still unset, do table lookup. */
1887         if (!c->x86_model_id[0]) {
1888                 const char *p;
1889                 p = table_lookup_model(c);
1890                 if (p)
1891                         strcpy(c->x86_model_id, p);
1892                 else
1893                         /* Last resort... */
1894                         sprintf(c->x86_model_id, "%02x/%02x",
1895                                 c->x86, c->x86_model);
1896         }
1897
1898 #ifdef CONFIG_X86_64
1899         detect_ht(c);
1900 #endif
1901
1902         x86_init_rdrand(c);
1903         setup_pku(c);
1904         setup_cet(c);
1905
1906         /*
1907          * Clear/Set all flags overridden by options, need do it
1908          * before following smp all cpus cap AND.
1909          */
1910         apply_forced_caps(c);
1911
1912         /*
1913          * On SMP, boot_cpu_data holds the common feature set between
1914          * all CPUs; so make sure that we indicate which features are
1915          * common between the CPUs.  The first time this routine gets
1916          * executed, c == &boot_cpu_data.
1917          */
1918         if (c != &boot_cpu_data) {
1919                 /* AND the already accumulated flags with these */
1920                 for (i = 0; i < NCAPINTS; i++)
1921                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1922
1923                 /* OR, i.e. replicate the bug flags */
1924                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1925                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1926         }
1927
1928         ppin_init(c);
1929
1930         /* Init Machine Check Exception if available. */
1931         mcheck_cpu_init(c);
1932
1933         select_idle_routine(c);
1934
1935 #ifdef CONFIG_NUMA
1936         numa_add_cpu(smp_processor_id());
1937 #endif
1938 }
1939
1940 /*
1941  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1942  * on 32-bit kernels:
1943  */
1944 #ifdef CONFIG_X86_32
1945 void enable_sep_cpu(void)
1946 {
1947         struct tss_struct *tss;
1948         int cpu;
1949
1950         if (!boot_cpu_has(X86_FEATURE_SEP))
1951                 return;
1952
1953         cpu = get_cpu();
1954         tss = &per_cpu(cpu_tss_rw, cpu);
1955
1956         /*
1957          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1958          * see the big comment in struct x86_hw_tss's definition.
1959          */
1960
1961         tss->x86_tss.ss1 = __KERNEL_CS;
1962         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1963         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1964         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1965
1966         put_cpu();
1967 }
1968 #endif
1969
1970 static __init void identify_boot_cpu(void)
1971 {
1972         identify_cpu(&boot_cpu_data);
1973         if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1974                 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1975 #ifdef CONFIG_X86_32
1976         enable_sep_cpu();
1977 #endif
1978         cpu_detect_tlb(&boot_cpu_data);
1979         setup_cr_pinning();
1980
1981         tsx_init();
1982         lkgs_init();
1983 }
1984
1985 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1986 {
1987         BUG_ON(c == &boot_cpu_data);
1988         identify_cpu(c);
1989 #ifdef CONFIG_X86_32
1990         enable_sep_cpu();
1991 #endif
1992         validate_apic_and_package_id(c);
1993         x86_spec_ctrl_setup_ap();
1994         update_srbds_msr();
1995         if (boot_cpu_has_bug(X86_BUG_GDS))
1996                 update_gds_msr();
1997
1998         tsx_ap_init();
1999 }
2000
2001 void print_cpu_info(struct cpuinfo_x86 *c)
2002 {
2003         const char *vendor = NULL;
2004
2005         if (c->x86_vendor < X86_VENDOR_NUM) {
2006                 vendor = this_cpu->c_vendor;
2007         } else {
2008                 if (c->cpuid_level >= 0)
2009                         vendor = c->x86_vendor_id;
2010         }
2011
2012         if (vendor && !strstr(c->x86_model_id, vendor))
2013                 pr_cont("%s ", vendor);
2014
2015         if (c->x86_model_id[0])
2016                 pr_cont("%s", c->x86_model_id);
2017         else
2018                 pr_cont("%d86", c->x86);
2019
2020         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2021
2022         if (c->x86_stepping || c->cpuid_level >= 0)
2023                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2024         else
2025                 pr_cont(")\n");
2026 }
2027
2028 /*
2029  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
2030  * function prevents it from becoming an environment variable for init.
2031  */
2032 static __init int setup_clearcpuid(char *arg)
2033 {
2034         return 1;
2035 }
2036 __setup("clearcpuid=", setup_clearcpuid);
2037
2038 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2039         .current_task   = &init_task,
2040         .preempt_count  = INIT_PREEMPT_COUNT,
2041         .top_of_stack   = TOP_OF_INIT_STACK,
2042 };
2043 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2044
2045 #ifdef CONFIG_X86_64
2046 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2047                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2048 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2049
2050 static void wrmsrl_cstar(unsigned long val)
2051 {
2052         /*
2053          * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2054          * is so far ignored by the CPU, but raises a #VE trap in a TDX
2055          * guest. Avoid the pointless write on all Intel CPUs.
2056          */
2057         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2058                 wrmsrl(MSR_CSTAR, val);
2059 }
2060
2061 /* May not be marked __init: used by software suspend */
2062 void syscall_init(void)
2063 {
2064         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2065         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2066
2067 #ifdef CONFIG_IA32_EMULATION
2068         wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2069         /*
2070          * This only works on Intel CPUs.
2071          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2072          * This does not cause SYSENTER to jump to the wrong location, because
2073          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2074          */
2075         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2076         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2077                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2078         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2079 #else
2080         wrmsrl_cstar((unsigned long)ignore_sysret);
2081         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2082         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2083         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2084 #endif
2085
2086         /*
2087          * Flags to clear on syscall; clear as much as possible
2088          * to minimize user space-kernel interference.
2089          */
2090         wrmsrl(MSR_SYSCALL_MASK,
2091                X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2092                X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2093                X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2094                X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2095                X86_EFLAGS_AC|X86_EFLAGS_ID);
2096 }
2097
2098 #else   /* CONFIG_X86_64 */
2099
2100 #ifdef CONFIG_STACKPROTECTOR
2101 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2102 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2103 #endif
2104
2105 #endif  /* CONFIG_X86_64 */
2106
2107 /*
2108  * Clear all 6 debug registers:
2109  */
2110 static void clear_all_debug_regs(void)
2111 {
2112         int i;
2113
2114         for (i = 0; i < 8; i++) {
2115                 /* Ignore db4, db5 */
2116                 if ((i == 4) || (i == 5))
2117                         continue;
2118
2119                 set_debugreg(0, i);
2120         }
2121 }
2122
2123 #ifdef CONFIG_KGDB
2124 /*
2125  * Restore debug regs if using kgdbwait and you have a kernel debugger
2126  * connection established.
2127  */
2128 static void dbg_restore_debug_regs(void)
2129 {
2130         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2131                 arch_kgdb_ops.correct_hw_break();
2132 }
2133 #else /* ! CONFIG_KGDB */
2134 #define dbg_restore_debug_regs()
2135 #endif /* ! CONFIG_KGDB */
2136
2137 static inline void setup_getcpu(int cpu)
2138 {
2139         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2140         struct desc_struct d = { };
2141
2142         if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2143                 wrmsr(MSR_TSC_AUX, cpudata, 0);
2144
2145         /* Store CPU and node number in limit. */
2146         d.limit0 = cpudata;
2147         d.limit1 = cpudata >> 16;
2148
2149         d.type = 5;             /* RO data, expand down, accessed */
2150         d.dpl = 3;              /* Visible to user code */
2151         d.s = 1;                /* Not a system segment */
2152         d.p = 1;                /* Present */
2153         d.d = 1;                /* 32-bit */
2154
2155         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2156 }
2157
2158 #ifdef CONFIG_X86_64
2159 static inline void ucode_cpu_init(int cpu) { }
2160
2161 static inline void tss_setup_ist(struct tss_struct *tss)
2162 {
2163         /* Set up the per-CPU TSS IST stacks */
2164         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2165         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2166         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2167         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2168         /* Only mapped when SEV-ES is active */
2169         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2170 }
2171
2172 #else /* CONFIG_X86_64 */
2173
2174 static inline void ucode_cpu_init(int cpu)
2175 {
2176         show_ucode_info_early();
2177 }
2178
2179 static inline void tss_setup_ist(struct tss_struct *tss) { }
2180
2181 #endif /* !CONFIG_X86_64 */
2182
2183 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2184 {
2185         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2186
2187 #ifdef CONFIG_X86_IOPL_IOPERM
2188         tss->io_bitmap.prev_max = 0;
2189         tss->io_bitmap.prev_sequence = 0;
2190         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2191         /*
2192          * Invalidate the extra array entry past the end of the all
2193          * permission bitmap as required by the hardware.
2194          */
2195         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2196 #endif
2197 }
2198
2199 /*
2200  * Setup everything needed to handle exceptions from the IDT, including the IST
2201  * exceptions which use paranoid_entry().
2202  */
2203 void cpu_init_exception_handling(void)
2204 {
2205         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2206         int cpu = raw_smp_processor_id();
2207
2208         /* paranoid_entry() gets the CPU number from the GDT */
2209         setup_getcpu(cpu);
2210
2211         /* IST vectors need TSS to be set up. */
2212         tss_setup_ist(tss);
2213         tss_setup_io_bitmap(tss);
2214         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2215
2216         load_TR_desc();
2217
2218         /* GHCB needs to be setup to handle #VC. */
2219         setup_ghcb();
2220
2221         /* Finally load the IDT */
2222         load_current_idt();
2223 }
2224
2225 /*
2226  * cpu_init() initializes state that is per-CPU. Some data is already
2227  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2228  * reload it nevertheless, this function acts as a 'CPU state barrier',
2229  * nothing should get across.
2230  */
2231 void cpu_init(void)
2232 {
2233         struct task_struct *cur = current;
2234         int cpu = raw_smp_processor_id();
2235
2236         ucode_cpu_init(cpu);
2237
2238 #ifdef CONFIG_NUMA
2239         if (this_cpu_read(numa_node) == 0 &&
2240             early_cpu_to_node(cpu) != NUMA_NO_NODE)
2241                 set_numa_node(early_cpu_to_node(cpu));
2242 #endif
2243         pr_debug("Initializing CPU#%d\n", cpu);
2244
2245         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2246             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2247                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2248
2249         if (IS_ENABLED(CONFIG_X86_64)) {
2250                 loadsegment(fs, 0);
2251                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2252                 syscall_init();
2253
2254                 wrmsrl(MSR_FS_BASE, 0);
2255                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2256                 barrier();
2257
2258                 x2apic_setup();
2259         }
2260
2261         mmgrab(&init_mm);
2262         cur->active_mm = &init_mm;
2263         BUG_ON(cur->mm);
2264         initialize_tlbstate_and_flush();
2265         enter_lazy_tlb(&init_mm, cur);
2266
2267         /*
2268          * sp0 points to the entry trampoline stack regardless of what task
2269          * is running.
2270          */
2271         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2272
2273         load_mm_ldt(&init_mm);
2274
2275         clear_all_debug_regs();
2276         dbg_restore_debug_regs();
2277
2278         doublefault_init_cpu_tss();
2279
2280         if (is_uv_system())
2281                 uv_cpu_init();
2282
2283         load_fixmap_gdt(cpu);
2284 }
2285
2286 #ifdef CONFIG_MICROCODE_LATE_LOADING
2287 /**
2288  * store_cpu_caps() - Store a snapshot of CPU capabilities
2289  * @curr_info: Pointer where to store it
2290  *
2291  * Returns: None
2292  */
2293 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2294 {
2295         /* Reload CPUID max function as it might've changed. */
2296         curr_info->cpuid_level = cpuid_eax(0);
2297
2298         /* Copy all capability leafs and pick up the synthetic ones. */
2299         memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2300                sizeof(curr_info->x86_capability));
2301
2302         /* Get the hardware CPUID leafs */
2303         get_cpu_cap(curr_info);
2304 }
2305
2306 /**
2307  * microcode_check() - Check if any CPU capabilities changed after an update.
2308  * @prev_info:  CPU capabilities stored before an update.
2309  *
2310  * The microcode loader calls this upon late microcode load to recheck features,
2311  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2312  *
2313  * Return: None
2314  */
2315 void microcode_check(struct cpuinfo_x86 *prev_info)
2316 {
2317         struct cpuinfo_x86 curr_info;
2318
2319         perf_check_microcode();
2320
2321         amd_check_microcode();
2322
2323         store_cpu_caps(&curr_info);
2324
2325         if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2326                     sizeof(prev_info->x86_capability)))
2327                 return;
2328
2329         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2330         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2331 }
2332 #endif
2333
2334 /*
2335  * Invoked from core CPU hotplug code after hotplug operations
2336  */
2337 void arch_smt_update(void)
2338 {
2339         /* Handle the speculative execution misfeatures */
2340         cpu_bugs_smt_update();
2341         /* Check whether IPI broadcasting can be enabled */
2342         apic_smt_update();
2343 }
2344
2345 void __init arch_cpu_finalize_init(void)
2346 {
2347         identify_boot_cpu();
2348
2349         /*
2350          * identify_boot_cpu() initialized SMT support information, let the
2351          * core code know.
2352          */
2353         cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings);
2354
2355         if (!IS_ENABLED(CONFIG_SMP)) {
2356                 pr_info("CPU: ");
2357                 print_cpu_info(&boot_cpu_data);
2358         }
2359
2360         cpu_select_mitigations();
2361
2362         arch_smt_update();
2363
2364         if (IS_ENABLED(CONFIG_X86_32)) {
2365                 /*
2366                  * Check whether this is a real i386 which is not longer
2367                  * supported and fixup the utsname.
2368                  */
2369                 if (boot_cpu_data.x86 < 4)
2370                         panic("Kernel requires i486+ for 'invlpg' and other features");
2371
2372                 init_utsname()->machine[1] =
2373                         '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2374         }
2375
2376         /*
2377          * Must be before alternatives because it might set or clear
2378          * feature bits.
2379          */
2380         fpu__init_system();
2381         fpu__init_cpu();
2382
2383         alternative_instructions();
2384
2385         if (IS_ENABLED(CONFIG_X86_64)) {
2386                 /*
2387                  * Make sure the first 2MB area is not mapped by huge pages
2388                  * There are typically fixed size MTRRs in there and overlapping
2389                  * MTRRs into large pages causes slow downs.
2390                  *
2391                  * Right now we don't do that with gbpages because there seems
2392                  * very little benefit for that case.
2393                  */
2394                 if (!direct_gbpages)
2395                         set_memory_4k((unsigned long)__va(0), 1);
2396         } else {
2397                 fpu__init_check_bugs();
2398         }
2399
2400         /*
2401          * This needs to be called before any devices perform DMA
2402          * operations that might use the SWIOTLB bounce buffers. It will
2403          * mark the bounce buffers as decrypted so that their usage will
2404          * not cause "plain-text" data to be decrypted when accessed. It
2405          * must be called after late_time_init() so that Hyper-V x86/x64
2406          * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2407          */
2408         mem_encrypt_init();
2409 }