Merge tag 'drm-misc-next-2021-10-14' of git://anongit.freedesktop.org/drm/drm-misc...
[linux-2.6-microblaze.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61 #include <asm/sigframe.h>
62
63 #include "cpu.h"
64
65 u32 elf_hwcap2 __read_mostly;
66
67 /* all of these masks are initialized in setup_cpu_local_masks() */
68 cpumask_var_t cpu_initialized_mask;
69 cpumask_var_t cpu_callout_mask;
70 cpumask_var_t cpu_callin_mask;
71
72 /* representing cpus for which sibling maps can be computed */
73 cpumask_var_t cpu_sibling_setup_mask;
74
75 /* Number of siblings per CPU package */
76 int smp_num_siblings = 1;
77 EXPORT_SYMBOL(smp_num_siblings);
78
79 /* Last level cache ID of each logical CPU */
80 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
81
82 u16 get_llc_id(unsigned int cpu)
83 {
84         return per_cpu(cpu_llc_id, cpu);
85 }
86 EXPORT_SYMBOL_GPL(get_llc_id);
87
88 /* correctly size the local cpu masks */
89 void __init setup_cpu_local_masks(void)
90 {
91         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
92         alloc_bootmem_cpumask_var(&cpu_callin_mask);
93         alloc_bootmem_cpumask_var(&cpu_callout_mask);
94         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
95 }
96
97 static void default_init(struct cpuinfo_x86 *c)
98 {
99 #ifdef CONFIG_X86_64
100         cpu_detect_cache_sizes(c);
101 #else
102         /* Not much we can do here... */
103         /* Check if at least it has cpuid */
104         if (c->cpuid_level == -1) {
105                 /* No cpuid. It must be an ancient CPU */
106                 if (c->x86 == 4)
107                         strcpy(c->x86_model_id, "486");
108                 else if (c->x86 == 3)
109                         strcpy(c->x86_model_id, "386");
110         }
111 #endif
112 }
113
114 static const struct cpu_dev default_cpu = {
115         .c_init         = default_init,
116         .c_vendor       = "Unknown",
117         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
118 };
119
120 static const struct cpu_dev *this_cpu = &default_cpu;
121
122 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
123 #ifdef CONFIG_X86_64
124         /*
125          * We need valid kernel segments for data and code in long mode too
126          * IRET will check the segment types  kkeil 2000/10/28
127          * Also sysret mandates a special GDT layout
128          *
129          * TLS descriptors are currently at a different place compared to i386.
130          * Hopefully nobody expects them at a fixed place (Wine?)
131          */
132         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
133         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
134         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
135         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
136         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
137         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
138 #else
139         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
140         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
141         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
142         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
143         /*
144          * Segments used for calling PnP BIOS have byte granularity.
145          * They code segments and data segments have fixed 64k limits,
146          * the transfer segment sizes are set at run time.
147          */
148         /* 32-bit code */
149         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
150         /* 16-bit code */
151         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
152         /* 16-bit data */
153         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
154         /* 16-bit data */
155         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
156         /* 16-bit data */
157         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
158         /*
159          * The APM segments have byte granularity and their bases
160          * are set at run time.  All have 64k limits.
161          */
162         /* 32-bit code */
163         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
164         /* 16-bit code */
165         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
166         /* data */
167         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
168
169         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
170         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
171 #endif
172 } };
173 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
174
175 #ifdef CONFIG_X86_64
176 static int __init x86_nopcid_setup(char *s)
177 {
178         /* nopcid doesn't accept parameters */
179         if (s)
180                 return -EINVAL;
181
182         /* do not emit a message if the feature is not present */
183         if (!boot_cpu_has(X86_FEATURE_PCID))
184                 return 0;
185
186         setup_clear_cpu_cap(X86_FEATURE_PCID);
187         pr_info("nopcid: PCID feature disabled\n");
188         return 0;
189 }
190 early_param("nopcid", x86_nopcid_setup);
191 #endif
192
193 static int __init x86_noinvpcid_setup(char *s)
194 {
195         /* noinvpcid doesn't accept parameters */
196         if (s)
197                 return -EINVAL;
198
199         /* do not emit a message if the feature is not present */
200         if (!boot_cpu_has(X86_FEATURE_INVPCID))
201                 return 0;
202
203         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
204         pr_info("noinvpcid: INVPCID feature disabled\n");
205         return 0;
206 }
207 early_param("noinvpcid", x86_noinvpcid_setup);
208
209 #ifdef CONFIG_X86_32
210 static int cachesize_override = -1;
211 static int disable_x86_serial_nr = 1;
212
213 static int __init cachesize_setup(char *str)
214 {
215         get_option(&str, &cachesize_override);
216         return 1;
217 }
218 __setup("cachesize=", cachesize_setup);
219
220 static int __init x86_sep_setup(char *s)
221 {
222         setup_clear_cpu_cap(X86_FEATURE_SEP);
223         return 1;
224 }
225 __setup("nosep", x86_sep_setup);
226
227 /* Standard macro to see if a specific flag is changeable */
228 static inline int flag_is_changeable_p(u32 flag)
229 {
230         u32 f1, f2;
231
232         /*
233          * Cyrix and IDT cpus allow disabling of CPUID
234          * so the code below may return different results
235          * when it is executed before and after enabling
236          * the CPUID. Add "volatile" to not allow gcc to
237          * optimize the subsequent calls to this function.
238          */
239         asm volatile ("pushfl           \n\t"
240                       "pushfl           \n\t"
241                       "popl %0          \n\t"
242                       "movl %0, %1      \n\t"
243                       "xorl %2, %0      \n\t"
244                       "pushl %0         \n\t"
245                       "popfl            \n\t"
246                       "pushfl           \n\t"
247                       "popl %0          \n\t"
248                       "popfl            \n\t"
249
250                       : "=&r" (f1), "=&r" (f2)
251                       : "ir" (flag));
252
253         return ((f1^f2) & flag) != 0;
254 }
255
256 /* Probe for the CPUID instruction */
257 int have_cpuid_p(void)
258 {
259         return flag_is_changeable_p(X86_EFLAGS_ID);
260 }
261
262 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
263 {
264         unsigned long lo, hi;
265
266         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
267                 return;
268
269         /* Disable processor serial number: */
270
271         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
272         lo |= 0x200000;
273         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
274
275         pr_notice("CPU serial number disabled.\n");
276         clear_cpu_cap(c, X86_FEATURE_PN);
277
278         /* Disabling the serial number may affect the cpuid level */
279         c->cpuid_level = cpuid_eax(0);
280 }
281
282 static int __init x86_serial_nr_setup(char *s)
283 {
284         disable_x86_serial_nr = 0;
285         return 1;
286 }
287 __setup("serialnumber", x86_serial_nr_setup);
288 #else
289 static inline int flag_is_changeable_p(u32 flag)
290 {
291         return 1;
292 }
293 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
294 {
295 }
296 #endif
297
298 static __init int setup_disable_smep(char *arg)
299 {
300         setup_clear_cpu_cap(X86_FEATURE_SMEP);
301         return 1;
302 }
303 __setup("nosmep", setup_disable_smep);
304
305 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
306 {
307         if (cpu_has(c, X86_FEATURE_SMEP))
308                 cr4_set_bits(X86_CR4_SMEP);
309 }
310
311 static __init int setup_disable_smap(char *arg)
312 {
313         setup_clear_cpu_cap(X86_FEATURE_SMAP);
314         return 1;
315 }
316 __setup("nosmap", setup_disable_smap);
317
318 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
319 {
320         unsigned long eflags = native_save_fl();
321
322         /* This should have been cleared long ago */
323         BUG_ON(eflags & X86_EFLAGS_AC);
324
325         if (cpu_has(c, X86_FEATURE_SMAP)) {
326 #ifdef CONFIG_X86_SMAP
327                 cr4_set_bits(X86_CR4_SMAP);
328 #else
329                 clear_cpu_cap(c, X86_FEATURE_SMAP);
330                 cr4_clear_bits(X86_CR4_SMAP);
331 #endif
332         }
333 }
334
335 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
336 {
337         /* Check the boot processor, plus build option for UMIP. */
338         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
339                 goto out;
340
341         /* Check the current processor's cpuid bits. */
342         if (!cpu_has(c, X86_FEATURE_UMIP))
343                 goto out;
344
345         cr4_set_bits(X86_CR4_UMIP);
346
347         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
348
349         return;
350
351 out:
352         /*
353          * Make sure UMIP is disabled in case it was enabled in a
354          * previous boot (e.g., via kexec).
355          */
356         cr4_clear_bits(X86_CR4_UMIP);
357 }
358
359 /* These bits should not change their value after CPU init is finished. */
360 static const unsigned long cr4_pinned_mask =
361         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
362 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
363 static unsigned long cr4_pinned_bits __ro_after_init;
364
365 void native_write_cr0(unsigned long val)
366 {
367         unsigned long bits_missing = 0;
368
369 set_register:
370         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
371
372         if (static_branch_likely(&cr_pinning)) {
373                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
374                         bits_missing = X86_CR0_WP;
375                         val |= bits_missing;
376                         goto set_register;
377                 }
378                 /* Warn after we've set the missing bits. */
379                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
380         }
381 }
382 EXPORT_SYMBOL(native_write_cr0);
383
384 void native_write_cr4(unsigned long val)
385 {
386         unsigned long bits_changed = 0;
387
388 set_register:
389         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
390
391         if (static_branch_likely(&cr_pinning)) {
392                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
393                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
394                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
395                         goto set_register;
396                 }
397                 /* Warn after we've corrected the changed bits. */
398                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
399                           bits_changed);
400         }
401 }
402 #if IS_MODULE(CONFIG_LKDTM)
403 EXPORT_SYMBOL_GPL(native_write_cr4);
404 #endif
405
406 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
407 {
408         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
409
410         lockdep_assert_irqs_disabled();
411
412         newval = (cr4 & ~clear) | set;
413         if (newval != cr4) {
414                 this_cpu_write(cpu_tlbstate.cr4, newval);
415                 __write_cr4(newval);
416         }
417 }
418 EXPORT_SYMBOL(cr4_update_irqsoff);
419
420 /* Read the CR4 shadow. */
421 unsigned long cr4_read_shadow(void)
422 {
423         return this_cpu_read(cpu_tlbstate.cr4);
424 }
425 EXPORT_SYMBOL_GPL(cr4_read_shadow);
426
427 void cr4_init(void)
428 {
429         unsigned long cr4 = __read_cr4();
430
431         if (boot_cpu_has(X86_FEATURE_PCID))
432                 cr4 |= X86_CR4_PCIDE;
433         if (static_branch_likely(&cr_pinning))
434                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
435
436         __write_cr4(cr4);
437
438         /* Initialize cr4 shadow for this CPU. */
439         this_cpu_write(cpu_tlbstate.cr4, cr4);
440 }
441
442 /*
443  * Once CPU feature detection is finished (and boot params have been
444  * parsed), record any of the sensitive CR bits that are set, and
445  * enable CR pinning.
446  */
447 static void __init setup_cr_pinning(void)
448 {
449         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
450         static_key_enable(&cr_pinning.key);
451 }
452
453 static __init int x86_nofsgsbase_setup(char *arg)
454 {
455         /* Require an exact match without trailing characters. */
456         if (strlen(arg))
457                 return 0;
458
459         /* Do not emit a message if the feature is not present. */
460         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
461                 return 1;
462
463         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
464         pr_info("FSGSBASE disabled via kernel command line\n");
465         return 1;
466 }
467 __setup("nofsgsbase", x86_nofsgsbase_setup);
468
469 /*
470  * Protection Keys are not available in 32-bit mode.
471  */
472 static bool pku_disabled;
473
474 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
475 {
476         if (c == &boot_cpu_data) {
477                 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
478                         return;
479                 /*
480                  * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
481                  * bit to be set.  Enforce it.
482                  */
483                 setup_force_cpu_cap(X86_FEATURE_OSPKE);
484
485         } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
486                 return;
487         }
488
489         cr4_set_bits(X86_CR4_PKE);
490         /* Load the default PKRU value */
491         pkru_write_default();
492 }
493
494 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
495 static __init int setup_disable_pku(char *arg)
496 {
497         /*
498          * Do not clear the X86_FEATURE_PKU bit.  All of the
499          * runtime checks are against OSPKE so clearing the
500          * bit does nothing.
501          *
502          * This way, we will see "pku" in cpuinfo, but not
503          * "ospke", which is exactly what we want.  It shows
504          * that the CPU has PKU, but the OS has not enabled it.
505          * This happens to be exactly how a system would look
506          * if we disabled the config option.
507          */
508         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
509         pku_disabled = true;
510         return 1;
511 }
512 __setup("nopku", setup_disable_pku);
513 #endif /* CONFIG_X86_64 */
514
515 /*
516  * Some CPU features depend on higher CPUID levels, which may not always
517  * be available due to CPUID level capping or broken virtualization
518  * software.  Add those features to this table to auto-disable them.
519  */
520 struct cpuid_dependent_feature {
521         u32 feature;
522         u32 level;
523 };
524
525 static const struct cpuid_dependent_feature
526 cpuid_dependent_features[] = {
527         { X86_FEATURE_MWAIT,            0x00000005 },
528         { X86_FEATURE_DCA,              0x00000009 },
529         { X86_FEATURE_XSAVE,            0x0000000d },
530         { 0, 0 }
531 };
532
533 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
534 {
535         const struct cpuid_dependent_feature *df;
536
537         for (df = cpuid_dependent_features; df->feature; df++) {
538
539                 if (!cpu_has(c, df->feature))
540                         continue;
541                 /*
542                  * Note: cpuid_level is set to -1 if unavailable, but
543                  * extended_extended_level is set to 0 if unavailable
544                  * and the legitimate extended levels are all negative
545                  * when signed; hence the weird messing around with
546                  * signs here...
547                  */
548                 if (!((s32)df->level < 0 ?
549                      (u32)df->level > (u32)c->extended_cpuid_level :
550                      (s32)df->level > (s32)c->cpuid_level))
551                         continue;
552
553                 clear_cpu_cap(c, df->feature);
554                 if (!warn)
555                         continue;
556
557                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
558                         x86_cap_flag(df->feature), df->level);
559         }
560 }
561
562 /*
563  * Naming convention should be: <Name> [(<Codename>)]
564  * This table only is used unless init_<vendor>() below doesn't set it;
565  * in particular, if CPUID levels 0x80000002..4 are supported, this
566  * isn't used
567  */
568
569 /* Look up CPU names by table lookup. */
570 static const char *table_lookup_model(struct cpuinfo_x86 *c)
571 {
572 #ifdef CONFIG_X86_32
573         const struct legacy_cpu_model_info *info;
574
575         if (c->x86_model >= 16)
576                 return NULL;    /* Range check */
577
578         if (!this_cpu)
579                 return NULL;
580
581         info = this_cpu->legacy_models;
582
583         while (info->family) {
584                 if (info->family == c->x86)
585                         return info->model_names[c->x86_model];
586                 info++;
587         }
588 #endif
589         return NULL;            /* Not found */
590 }
591
592 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
593 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
594 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
595
596 void load_percpu_segment(int cpu)
597 {
598 #ifdef CONFIG_X86_32
599         loadsegment(fs, __KERNEL_PERCPU);
600 #else
601         __loadsegment_simple(gs, 0);
602         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
603 #endif
604 }
605
606 #ifdef CONFIG_X86_32
607 /* The 32-bit entry code needs to find cpu_entry_area. */
608 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
609 #endif
610
611 /* Load the original GDT from the per-cpu structure */
612 void load_direct_gdt(int cpu)
613 {
614         struct desc_ptr gdt_descr;
615
616         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
617         gdt_descr.size = GDT_SIZE - 1;
618         load_gdt(&gdt_descr);
619 }
620 EXPORT_SYMBOL_GPL(load_direct_gdt);
621
622 /* Load a fixmap remapping of the per-cpu GDT */
623 void load_fixmap_gdt(int cpu)
624 {
625         struct desc_ptr gdt_descr;
626
627         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
628         gdt_descr.size = GDT_SIZE - 1;
629         load_gdt(&gdt_descr);
630 }
631 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
632
633 /*
634  * Current gdt points %fs at the "master" per-cpu area: after this,
635  * it's on the real one.
636  */
637 void switch_to_new_gdt(int cpu)
638 {
639         /* Load the original GDT */
640         load_direct_gdt(cpu);
641         /* Reload the per-cpu base */
642         load_percpu_segment(cpu);
643 }
644
645 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
646
647 static void get_model_name(struct cpuinfo_x86 *c)
648 {
649         unsigned int *v;
650         char *p, *q, *s;
651
652         if (c->extended_cpuid_level < 0x80000004)
653                 return;
654
655         v = (unsigned int *)c->x86_model_id;
656         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
657         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
658         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
659         c->x86_model_id[48] = 0;
660
661         /* Trim whitespace */
662         p = q = s = &c->x86_model_id[0];
663
664         while (*p == ' ')
665                 p++;
666
667         while (*p) {
668                 /* Note the last non-whitespace index */
669                 if (!isspace(*p))
670                         s = q;
671
672                 *q++ = *p++;
673         }
674
675         *(s + 1) = '\0';
676 }
677
678 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
679 {
680         unsigned int eax, ebx, ecx, edx;
681
682         c->x86_max_cores = 1;
683         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
684                 return;
685
686         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
687         if (eax & 0x1f)
688                 c->x86_max_cores = (eax >> 26) + 1;
689 }
690
691 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
692 {
693         unsigned int n, dummy, ebx, ecx, edx, l2size;
694
695         n = c->extended_cpuid_level;
696
697         if (n >= 0x80000005) {
698                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
699                 c->x86_cache_size = (ecx>>24) + (edx>>24);
700 #ifdef CONFIG_X86_64
701                 /* On K8 L1 TLB is inclusive, so don't count it */
702                 c->x86_tlbsize = 0;
703 #endif
704         }
705
706         if (n < 0x80000006)     /* Some chips just has a large L1. */
707                 return;
708
709         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
710         l2size = ecx >> 16;
711
712 #ifdef CONFIG_X86_64
713         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
714 #else
715         /* do processor-specific cache resizing */
716         if (this_cpu->legacy_cache_size)
717                 l2size = this_cpu->legacy_cache_size(c, l2size);
718
719         /* Allow user to override all this if necessary. */
720         if (cachesize_override != -1)
721                 l2size = cachesize_override;
722
723         if (l2size == 0)
724                 return;         /* Again, no L2 cache is possible */
725 #endif
726
727         c->x86_cache_size = l2size;
728 }
729
730 u16 __read_mostly tlb_lli_4k[NR_INFO];
731 u16 __read_mostly tlb_lli_2m[NR_INFO];
732 u16 __read_mostly tlb_lli_4m[NR_INFO];
733 u16 __read_mostly tlb_lld_4k[NR_INFO];
734 u16 __read_mostly tlb_lld_2m[NR_INFO];
735 u16 __read_mostly tlb_lld_4m[NR_INFO];
736 u16 __read_mostly tlb_lld_1g[NR_INFO];
737
738 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
739 {
740         if (this_cpu->c_detect_tlb)
741                 this_cpu->c_detect_tlb(c);
742
743         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
744                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
745                 tlb_lli_4m[ENTRIES]);
746
747         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
748                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
749                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
750 }
751
752 int detect_ht_early(struct cpuinfo_x86 *c)
753 {
754 #ifdef CONFIG_SMP
755         u32 eax, ebx, ecx, edx;
756
757         if (!cpu_has(c, X86_FEATURE_HT))
758                 return -1;
759
760         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
761                 return -1;
762
763         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
764                 return -1;
765
766         cpuid(1, &eax, &ebx, &ecx, &edx);
767
768         smp_num_siblings = (ebx & 0xff0000) >> 16;
769         if (smp_num_siblings == 1)
770                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
771 #endif
772         return 0;
773 }
774
775 void detect_ht(struct cpuinfo_x86 *c)
776 {
777 #ifdef CONFIG_SMP
778         int index_msb, core_bits;
779
780         if (detect_ht_early(c) < 0)
781                 return;
782
783         index_msb = get_count_order(smp_num_siblings);
784         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
785
786         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
787
788         index_msb = get_count_order(smp_num_siblings);
789
790         core_bits = get_count_order(c->x86_max_cores);
791
792         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
793                                        ((1 << core_bits) - 1);
794 #endif
795 }
796
797 static void get_cpu_vendor(struct cpuinfo_x86 *c)
798 {
799         char *v = c->x86_vendor_id;
800         int i;
801
802         for (i = 0; i < X86_VENDOR_NUM; i++) {
803                 if (!cpu_devs[i])
804                         break;
805
806                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
807                     (cpu_devs[i]->c_ident[1] &&
808                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
809
810                         this_cpu = cpu_devs[i];
811                         c->x86_vendor = this_cpu->c_x86_vendor;
812                         return;
813                 }
814         }
815
816         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
817                     "CPU: Your system may be unstable.\n", v);
818
819         c->x86_vendor = X86_VENDOR_UNKNOWN;
820         this_cpu = &default_cpu;
821 }
822
823 void cpu_detect(struct cpuinfo_x86 *c)
824 {
825         /* Get vendor name */
826         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
827               (unsigned int *)&c->x86_vendor_id[0],
828               (unsigned int *)&c->x86_vendor_id[8],
829               (unsigned int *)&c->x86_vendor_id[4]);
830
831         c->x86 = 4;
832         /* Intel-defined flags: level 0x00000001 */
833         if (c->cpuid_level >= 0x00000001) {
834                 u32 junk, tfms, cap0, misc;
835
836                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
837                 c->x86          = x86_family(tfms);
838                 c->x86_model    = x86_model(tfms);
839                 c->x86_stepping = x86_stepping(tfms);
840
841                 if (cap0 & (1<<19)) {
842                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
843                         c->x86_cache_alignment = c->x86_clflush_size;
844                 }
845         }
846 }
847
848 static void apply_forced_caps(struct cpuinfo_x86 *c)
849 {
850         int i;
851
852         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
853                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
854                 c->x86_capability[i] |= cpu_caps_set[i];
855         }
856 }
857
858 static void init_speculation_control(struct cpuinfo_x86 *c)
859 {
860         /*
861          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
862          * and they also have a different bit for STIBP support. Also,
863          * a hypervisor might have set the individual AMD bits even on
864          * Intel CPUs, for finer-grained selection of what's available.
865          */
866         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
867                 set_cpu_cap(c, X86_FEATURE_IBRS);
868                 set_cpu_cap(c, X86_FEATURE_IBPB);
869                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
870         }
871
872         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
873                 set_cpu_cap(c, X86_FEATURE_STIBP);
874
875         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
876             cpu_has(c, X86_FEATURE_VIRT_SSBD))
877                 set_cpu_cap(c, X86_FEATURE_SSBD);
878
879         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
880                 set_cpu_cap(c, X86_FEATURE_IBRS);
881                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
882         }
883
884         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
885                 set_cpu_cap(c, X86_FEATURE_IBPB);
886
887         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
888                 set_cpu_cap(c, X86_FEATURE_STIBP);
889                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
890         }
891
892         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
893                 set_cpu_cap(c, X86_FEATURE_SSBD);
894                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
895                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
896         }
897 }
898
899 void get_cpu_cap(struct cpuinfo_x86 *c)
900 {
901         u32 eax, ebx, ecx, edx;
902
903         /* Intel-defined flags: level 0x00000001 */
904         if (c->cpuid_level >= 0x00000001) {
905                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
906
907                 c->x86_capability[CPUID_1_ECX] = ecx;
908                 c->x86_capability[CPUID_1_EDX] = edx;
909         }
910
911         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
912         if (c->cpuid_level >= 0x00000006)
913                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
914
915         /* Additional Intel-defined flags: level 0x00000007 */
916         if (c->cpuid_level >= 0x00000007) {
917                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
918                 c->x86_capability[CPUID_7_0_EBX] = ebx;
919                 c->x86_capability[CPUID_7_ECX] = ecx;
920                 c->x86_capability[CPUID_7_EDX] = edx;
921
922                 /* Check valid sub-leaf index before accessing it */
923                 if (eax >= 1) {
924                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
925                         c->x86_capability[CPUID_7_1_EAX] = eax;
926                 }
927         }
928
929         /* Extended state features: level 0x0000000d */
930         if (c->cpuid_level >= 0x0000000d) {
931                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
932
933                 c->x86_capability[CPUID_D_1_EAX] = eax;
934         }
935
936         /* AMD-defined flags: level 0x80000001 */
937         eax = cpuid_eax(0x80000000);
938         c->extended_cpuid_level = eax;
939
940         if ((eax & 0xffff0000) == 0x80000000) {
941                 if (eax >= 0x80000001) {
942                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
943
944                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
945                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
946                 }
947         }
948
949         if (c->extended_cpuid_level >= 0x80000007) {
950                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
951
952                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
953                 c->x86_power = edx;
954         }
955
956         if (c->extended_cpuid_level >= 0x80000008) {
957                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
958                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
959         }
960
961         if (c->extended_cpuid_level >= 0x8000000a)
962                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
963
964         if (c->extended_cpuid_level >= 0x8000001f)
965                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
966
967         init_scattered_cpuid_features(c);
968         init_speculation_control(c);
969
970         /*
971          * Clear/Set all flags overridden by options, after probe.
972          * This needs to happen each time we re-probe, which may happen
973          * several times during CPU initialization.
974          */
975         apply_forced_caps(c);
976 }
977
978 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
979 {
980         u32 eax, ebx, ecx, edx;
981
982         if (c->extended_cpuid_level >= 0x80000008) {
983                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
984
985                 c->x86_virt_bits = (eax >> 8) & 0xff;
986                 c->x86_phys_bits = eax & 0xff;
987         }
988 #ifdef CONFIG_X86_32
989         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
990                 c->x86_phys_bits = 36;
991 #endif
992         c->x86_cache_bits = c->x86_phys_bits;
993 }
994
995 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
996 {
997 #ifdef CONFIG_X86_32
998         int i;
999
1000         /*
1001          * First of all, decide if this is a 486 or higher
1002          * It's a 486 if we can modify the AC flag
1003          */
1004         if (flag_is_changeable_p(X86_EFLAGS_AC))
1005                 c->x86 = 4;
1006         else
1007                 c->x86 = 3;
1008
1009         for (i = 0; i < X86_VENDOR_NUM; i++)
1010                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1011                         c->x86_vendor_id[0] = 0;
1012                         cpu_devs[i]->c_identify(c);
1013                         if (c->x86_vendor_id[0]) {
1014                                 get_cpu_vendor(c);
1015                                 break;
1016                         }
1017                 }
1018 #endif
1019 }
1020
1021 #define NO_SPECULATION          BIT(0)
1022 #define NO_MELTDOWN             BIT(1)
1023 #define NO_SSB                  BIT(2)
1024 #define NO_L1TF                 BIT(3)
1025 #define NO_MDS                  BIT(4)
1026 #define MSBDS_ONLY              BIT(5)
1027 #define NO_SWAPGS               BIT(6)
1028 #define NO_ITLB_MULTIHIT        BIT(7)
1029 #define NO_SPECTRE_V2           BIT(8)
1030
1031 #define VULNWL(vendor, family, model, whitelist)        \
1032         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1033
1034 #define VULNWL_INTEL(model, whitelist)          \
1035         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1036
1037 #define VULNWL_AMD(family, whitelist)           \
1038         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1039
1040 #define VULNWL_HYGON(family, whitelist)         \
1041         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1042
1043 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1044         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1045         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1046         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1047         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1048
1049         /* Intel Family 6 */
1050         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1051         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1052         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1053         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1054         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1055
1056         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1060         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1061         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062
1063         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1064
1065         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067
1068         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1069         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1070         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1071
1072         /*
1073          * Technically, swapgs isn't serializing on AMD (despite it previously
1074          * being documented as such in the APM).  But according to AMD, %gs is
1075          * updated non-speculatively, and the issuing of %gs-relative memory
1076          * operands will be blocked until the %gs update completes, which is
1077          * good enough for our purposes.
1078          */
1079
1080         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
1081
1082         /* AMD Family 0xf - 0x12 */
1083         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1086         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1087
1088         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1089         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1090         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1091
1092         /* Zhaoxin Family 7 */
1093         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1094         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1095         {}
1096 };
1097
1098 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1099         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1100                                             INTEL_FAM6_##model, steppings, \
1101                                             X86_FEATURE_ANY, issues)
1102
1103 #define SRBDS           BIT(0)
1104
1105 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1106         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1107         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1108         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1109         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1110         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1111         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1112         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS),
1113         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS),
1114         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPINGS(0x0, 0xC),        SRBDS),
1115         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPINGS(0x0, 0xD),        SRBDS),
1116         {}
1117 };
1118
1119 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1120 {
1121         const struct x86_cpu_id *m = x86_match_cpu(table);
1122
1123         return m && !!(m->driver_data & which);
1124 }
1125
1126 u64 x86_read_arch_cap_msr(void)
1127 {
1128         u64 ia32_cap = 0;
1129
1130         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1131                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1132
1133         return ia32_cap;
1134 }
1135
1136 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1137 {
1138         u64 ia32_cap = x86_read_arch_cap_msr();
1139
1140         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1141         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1142             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1143                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1144
1145         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1146                 return;
1147
1148         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1149
1150         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1151                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1152
1153         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1154             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1155            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1156                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1157
1158         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1159                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1160
1161         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1162             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1163                 setup_force_cpu_bug(X86_BUG_MDS);
1164                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1165                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1166         }
1167
1168         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1169                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1170
1171         /*
1172          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1173          *      - TSX is supported or
1174          *      - TSX_CTRL is present
1175          *
1176          * TSX_CTRL check is needed for cases when TSX could be disabled before
1177          * the kernel boot e.g. kexec.
1178          * TSX_CTRL check alone is not sufficient for cases when the microcode
1179          * update is not present or running as guest that don't get TSX_CTRL.
1180          */
1181         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1182             (cpu_has(c, X86_FEATURE_RTM) ||
1183              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1184                 setup_force_cpu_bug(X86_BUG_TAA);
1185
1186         /*
1187          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1188          * in the vulnerability blacklist.
1189          */
1190         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1191              cpu_has(c, X86_FEATURE_RDSEED)) &&
1192             cpu_matches(cpu_vuln_blacklist, SRBDS))
1193                     setup_force_cpu_bug(X86_BUG_SRBDS);
1194
1195         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1196                 return;
1197
1198         /* Rogue Data Cache Load? No! */
1199         if (ia32_cap & ARCH_CAP_RDCL_NO)
1200                 return;
1201
1202         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1203
1204         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1205                 return;
1206
1207         setup_force_cpu_bug(X86_BUG_L1TF);
1208 }
1209
1210 /*
1211  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1212  * unfortunately, that's not true in practice because of early VIA
1213  * chips and (more importantly) broken virtualizers that are not easy
1214  * to detect. In the latter case it doesn't even *fail* reliably, so
1215  * probing for it doesn't even work. Disable it completely on 32-bit
1216  * unless we can find a reliable way to detect all the broken cases.
1217  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1218  */
1219 static void detect_nopl(void)
1220 {
1221 #ifdef CONFIG_X86_32
1222         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1223 #else
1224         setup_force_cpu_cap(X86_FEATURE_NOPL);
1225 #endif
1226 }
1227
1228 /*
1229  * We parse cpu parameters early because fpu__init_system() is executed
1230  * before parse_early_param().
1231  */
1232 static void __init cpu_parse_early_param(void)
1233 {
1234         char arg[128];
1235         char *argptr = arg;
1236         int arglen, res, bit;
1237
1238 #ifdef CONFIG_X86_32
1239         if (cmdline_find_option_bool(boot_command_line, "no387"))
1240 #ifdef CONFIG_MATH_EMULATION
1241                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1242 #else
1243                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1244 #endif
1245
1246         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1247                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1248 #endif
1249
1250         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1251                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1252
1253         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1254                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1255
1256         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1257                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1258
1259         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1260         if (arglen <= 0)
1261                 return;
1262
1263         pr_info("Clearing CPUID bits:");
1264         do {
1265                 res = get_option(&argptr, &bit);
1266                 if (res == 0 || res == 3)
1267                         break;
1268
1269                 /* If the argument was too long, the last bit may be cut off */
1270                 if (res == 1 && arglen >= sizeof(arg))
1271                         break;
1272
1273                 if (bit >= 0 && bit < NCAPINTS * 32) {
1274                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1275                         setup_clear_cpu_cap(bit);
1276                 }
1277         } while (res == 2);
1278         pr_cont("\n");
1279 }
1280
1281 /*
1282  * Do minimum CPU detection early.
1283  * Fields really needed: vendor, cpuid_level, family, model, mask,
1284  * cache alignment.
1285  * The others are not touched to avoid unwanted side effects.
1286  *
1287  * WARNING: this function is only called on the boot CPU.  Don't add code
1288  * here that is supposed to run on all CPUs.
1289  */
1290 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1291 {
1292 #ifdef CONFIG_X86_64
1293         c->x86_clflush_size = 64;
1294         c->x86_phys_bits = 36;
1295         c->x86_virt_bits = 48;
1296 #else
1297         c->x86_clflush_size = 32;
1298         c->x86_phys_bits = 32;
1299         c->x86_virt_bits = 32;
1300 #endif
1301         c->x86_cache_alignment = c->x86_clflush_size;
1302
1303         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1304         c->extended_cpuid_level = 0;
1305
1306         if (!have_cpuid_p())
1307                 identify_cpu_without_cpuid(c);
1308
1309         /* cyrix could have cpuid enabled via c_identify()*/
1310         if (have_cpuid_p()) {
1311                 cpu_detect(c);
1312                 get_cpu_vendor(c);
1313                 get_cpu_cap(c);
1314                 get_cpu_address_sizes(c);
1315                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1316                 cpu_parse_early_param();
1317
1318                 if (this_cpu->c_early_init)
1319                         this_cpu->c_early_init(c);
1320
1321                 c->cpu_index = 0;
1322                 filter_cpuid_features(c, false);
1323
1324                 if (this_cpu->c_bsp_init)
1325                         this_cpu->c_bsp_init(c);
1326         } else {
1327                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1328         }
1329
1330         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1331
1332         cpu_set_bug_bits(c);
1333
1334         sld_setup(c);
1335
1336         fpu__init_system(c);
1337
1338         init_sigframe_size();
1339
1340 #ifdef CONFIG_X86_32
1341         /*
1342          * Regardless of whether PCID is enumerated, the SDM says
1343          * that it can't be enabled in 32-bit mode.
1344          */
1345         setup_clear_cpu_cap(X86_FEATURE_PCID);
1346 #endif
1347
1348         /*
1349          * Later in the boot process pgtable_l5_enabled() relies on
1350          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1351          * enabled by this point we need to clear the feature bit to avoid
1352          * false-positives at the later stage.
1353          *
1354          * pgtable_l5_enabled() can be false here for several reasons:
1355          *  - 5-level paging is disabled compile-time;
1356          *  - it's 32-bit kernel;
1357          *  - machine doesn't support 5-level paging;
1358          *  - user specified 'no5lvl' in kernel command line.
1359          */
1360         if (!pgtable_l5_enabled())
1361                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1362
1363         detect_nopl();
1364 }
1365
1366 void __init early_cpu_init(void)
1367 {
1368         const struct cpu_dev *const *cdev;
1369         int count = 0;
1370
1371 #ifdef CONFIG_PROCESSOR_SELECT
1372         pr_info("KERNEL supported cpus:\n");
1373 #endif
1374
1375         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1376                 const struct cpu_dev *cpudev = *cdev;
1377
1378                 if (count >= X86_VENDOR_NUM)
1379                         break;
1380                 cpu_devs[count] = cpudev;
1381                 count++;
1382
1383 #ifdef CONFIG_PROCESSOR_SELECT
1384                 {
1385                         unsigned int j;
1386
1387                         for (j = 0; j < 2; j++) {
1388                                 if (!cpudev->c_ident[j])
1389                                         continue;
1390                                 pr_info("  %s %s\n", cpudev->c_vendor,
1391                                         cpudev->c_ident[j]);
1392                         }
1393                 }
1394 #endif
1395         }
1396         early_identify_cpu(&boot_cpu_data);
1397 }
1398
1399 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1400 {
1401 #ifdef CONFIG_X86_64
1402         /*
1403          * Empirically, writing zero to a segment selector on AMD does
1404          * not clear the base, whereas writing zero to a segment
1405          * selector on Intel does clear the base.  Intel's behavior
1406          * allows slightly faster context switches in the common case
1407          * where GS is unused by the prev and next threads.
1408          *
1409          * Since neither vendor documents this anywhere that I can see,
1410          * detect it directly instead of hard-coding the choice by
1411          * vendor.
1412          *
1413          * I've designated AMD's behavior as the "bug" because it's
1414          * counterintuitive and less friendly.
1415          */
1416
1417         unsigned long old_base, tmp;
1418         rdmsrl(MSR_FS_BASE, old_base);
1419         wrmsrl(MSR_FS_BASE, 1);
1420         loadsegment(fs, 0);
1421         rdmsrl(MSR_FS_BASE, tmp);
1422         if (tmp != 0)
1423                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1424         wrmsrl(MSR_FS_BASE, old_base);
1425 #endif
1426 }
1427
1428 static void generic_identify(struct cpuinfo_x86 *c)
1429 {
1430         c->extended_cpuid_level = 0;
1431
1432         if (!have_cpuid_p())
1433                 identify_cpu_without_cpuid(c);
1434
1435         /* cyrix could have cpuid enabled via c_identify()*/
1436         if (!have_cpuid_p())
1437                 return;
1438
1439         cpu_detect(c);
1440
1441         get_cpu_vendor(c);
1442
1443         get_cpu_cap(c);
1444
1445         get_cpu_address_sizes(c);
1446
1447         if (c->cpuid_level >= 0x00000001) {
1448                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1449 #ifdef CONFIG_X86_32
1450 # ifdef CONFIG_SMP
1451                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1452 # else
1453                 c->apicid = c->initial_apicid;
1454 # endif
1455 #endif
1456                 c->phys_proc_id = c->initial_apicid;
1457         }
1458
1459         get_model_name(c); /* Default name */
1460
1461         detect_null_seg_behavior(c);
1462
1463         /*
1464          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1465          * systems that run Linux at CPL > 0 may or may not have the
1466          * issue, but, even if they have the issue, there's absolutely
1467          * nothing we can do about it because we can't use the real IRET
1468          * instruction.
1469          *
1470          * NB: For the time being, only 32-bit kernels support
1471          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1472          * whether to apply espfix using paravirt hooks.  If any
1473          * non-paravirt system ever shows up that does *not* have the
1474          * ESPFIX issue, we can change this.
1475          */
1476 #ifdef CONFIG_X86_32
1477         set_cpu_bug(c, X86_BUG_ESPFIX);
1478 #endif
1479 }
1480
1481 /*
1482  * Validate that ACPI/mptables have the same information about the
1483  * effective APIC id and update the package map.
1484  */
1485 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1486 {
1487 #ifdef CONFIG_SMP
1488         unsigned int apicid, cpu = smp_processor_id();
1489
1490         apicid = apic->cpu_present_to_apicid(cpu);
1491
1492         if (apicid != c->apicid) {
1493                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1494                        cpu, apicid, c->initial_apicid);
1495         }
1496         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1497         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1498 #else
1499         c->logical_proc_id = 0;
1500 #endif
1501 }
1502
1503 /*
1504  * This does the hard work of actually picking apart the CPU stuff...
1505  */
1506 static void identify_cpu(struct cpuinfo_x86 *c)
1507 {
1508         int i;
1509
1510         c->loops_per_jiffy = loops_per_jiffy;
1511         c->x86_cache_size = 0;
1512         c->x86_vendor = X86_VENDOR_UNKNOWN;
1513         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1514         c->x86_vendor_id[0] = '\0'; /* Unset */
1515         c->x86_model_id[0] = '\0';  /* Unset */
1516         c->x86_max_cores = 1;
1517         c->x86_coreid_bits = 0;
1518         c->cu_id = 0xff;
1519 #ifdef CONFIG_X86_64
1520         c->x86_clflush_size = 64;
1521         c->x86_phys_bits = 36;
1522         c->x86_virt_bits = 48;
1523 #else
1524         c->cpuid_level = -1;    /* CPUID not detected */
1525         c->x86_clflush_size = 32;
1526         c->x86_phys_bits = 32;
1527         c->x86_virt_bits = 32;
1528 #endif
1529         c->x86_cache_alignment = c->x86_clflush_size;
1530         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1531 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1532         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1533 #endif
1534
1535         generic_identify(c);
1536
1537         if (this_cpu->c_identify)
1538                 this_cpu->c_identify(c);
1539
1540         /* Clear/Set all flags overridden by options, after probe */
1541         apply_forced_caps(c);
1542
1543 #ifdef CONFIG_X86_64
1544         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1545 #endif
1546
1547         /*
1548          * Vendor-specific initialization.  In this section we
1549          * canonicalize the feature flags, meaning if there are
1550          * features a certain CPU supports which CPUID doesn't
1551          * tell us, CPUID claiming incorrect flags, or other bugs,
1552          * we handle them here.
1553          *
1554          * At the end of this section, c->x86_capability better
1555          * indicate the features this CPU genuinely supports!
1556          */
1557         if (this_cpu->c_init)
1558                 this_cpu->c_init(c);
1559
1560         /* Disable the PN if appropriate */
1561         squash_the_stupid_serial_number(c);
1562
1563         /* Set up SMEP/SMAP/UMIP */
1564         setup_smep(c);
1565         setup_smap(c);
1566         setup_umip(c);
1567
1568         /* Enable FSGSBASE instructions if available. */
1569         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1570                 cr4_set_bits(X86_CR4_FSGSBASE);
1571                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1572         }
1573
1574         /*
1575          * The vendor-specific functions might have changed features.
1576          * Now we do "generic changes."
1577          */
1578
1579         /* Filter out anything that depends on CPUID levels we don't have */
1580         filter_cpuid_features(c, true);
1581
1582         /* If the model name is still unset, do table lookup. */
1583         if (!c->x86_model_id[0]) {
1584                 const char *p;
1585                 p = table_lookup_model(c);
1586                 if (p)
1587                         strcpy(c->x86_model_id, p);
1588                 else
1589                         /* Last resort... */
1590                         sprintf(c->x86_model_id, "%02x/%02x",
1591                                 c->x86, c->x86_model);
1592         }
1593
1594 #ifdef CONFIG_X86_64
1595         detect_ht(c);
1596 #endif
1597
1598         x86_init_rdrand(c);
1599         setup_pku(c);
1600
1601         /*
1602          * Clear/Set all flags overridden by options, need do it
1603          * before following smp all cpus cap AND.
1604          */
1605         apply_forced_caps(c);
1606
1607         /*
1608          * On SMP, boot_cpu_data holds the common feature set between
1609          * all CPUs; so make sure that we indicate which features are
1610          * common between the CPUs.  The first time this routine gets
1611          * executed, c == &boot_cpu_data.
1612          */
1613         if (c != &boot_cpu_data) {
1614                 /* AND the already accumulated flags with these */
1615                 for (i = 0; i < NCAPINTS; i++)
1616                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1617
1618                 /* OR, i.e. replicate the bug flags */
1619                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1620                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1621         }
1622
1623         /* Init Machine Check Exception if available. */
1624         mcheck_cpu_init(c);
1625
1626         select_idle_routine(c);
1627
1628 #ifdef CONFIG_NUMA
1629         numa_add_cpu(smp_processor_id());
1630 #endif
1631 }
1632
1633 /*
1634  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1635  * on 32-bit kernels:
1636  */
1637 #ifdef CONFIG_X86_32
1638 void enable_sep_cpu(void)
1639 {
1640         struct tss_struct *tss;
1641         int cpu;
1642
1643         if (!boot_cpu_has(X86_FEATURE_SEP))
1644                 return;
1645
1646         cpu = get_cpu();
1647         tss = &per_cpu(cpu_tss_rw, cpu);
1648
1649         /*
1650          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1651          * see the big comment in struct x86_hw_tss's definition.
1652          */
1653
1654         tss->x86_tss.ss1 = __KERNEL_CS;
1655         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1656         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1657         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1658
1659         put_cpu();
1660 }
1661 #endif
1662
1663 void __init identify_boot_cpu(void)
1664 {
1665         identify_cpu(&boot_cpu_data);
1666 #ifdef CONFIG_X86_32
1667         sysenter_setup();
1668         enable_sep_cpu();
1669 #endif
1670         cpu_detect_tlb(&boot_cpu_data);
1671         setup_cr_pinning();
1672
1673         tsx_init();
1674 }
1675
1676 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1677 {
1678         BUG_ON(c == &boot_cpu_data);
1679         identify_cpu(c);
1680 #ifdef CONFIG_X86_32
1681         enable_sep_cpu();
1682 #endif
1683         mtrr_ap_init();
1684         validate_apic_and_package_id(c);
1685         x86_spec_ctrl_setup_ap();
1686         update_srbds_msr();
1687 }
1688
1689 static __init int setup_noclflush(char *arg)
1690 {
1691         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1692         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1693         return 1;
1694 }
1695 __setup("noclflush", setup_noclflush);
1696
1697 void print_cpu_info(struct cpuinfo_x86 *c)
1698 {
1699         const char *vendor = NULL;
1700
1701         if (c->x86_vendor < X86_VENDOR_NUM) {
1702                 vendor = this_cpu->c_vendor;
1703         } else {
1704                 if (c->cpuid_level >= 0)
1705                         vendor = c->x86_vendor_id;
1706         }
1707
1708         if (vendor && !strstr(c->x86_model_id, vendor))
1709                 pr_cont("%s ", vendor);
1710
1711         if (c->x86_model_id[0])
1712                 pr_cont("%s", c->x86_model_id);
1713         else
1714                 pr_cont("%d86", c->x86);
1715
1716         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1717
1718         if (c->x86_stepping || c->cpuid_level >= 0)
1719                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1720         else
1721                 pr_cont(")\n");
1722 }
1723
1724 /*
1725  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1726  * function prevents it from becoming an environment variable for init.
1727  */
1728 static __init int setup_clearcpuid(char *arg)
1729 {
1730         return 1;
1731 }
1732 __setup("clearcpuid=", setup_clearcpuid);
1733
1734 #ifdef CONFIG_X86_64
1735 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1736                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1737 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1738
1739 /*
1740  * The following percpu variables are hot.  Align current_task to
1741  * cacheline size such that they fall in the same cacheline.
1742  */
1743 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1744         &init_task;
1745 EXPORT_PER_CPU_SYMBOL(current_task);
1746
1747 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1748 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1749
1750 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1751 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1752
1753 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1754
1755 /* May not be marked __init: used by software suspend */
1756 void syscall_init(void)
1757 {
1758         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1759         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1760
1761 #ifdef CONFIG_IA32_EMULATION
1762         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1763         /*
1764          * This only works on Intel CPUs.
1765          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1766          * This does not cause SYSENTER to jump to the wrong location, because
1767          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1768          */
1769         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1770         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1771                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1772         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1773 #else
1774         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1775         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1776         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1777         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1778 #endif
1779
1780         /*
1781          * Flags to clear on syscall; clear as much as possible
1782          * to minimize user space-kernel interference.
1783          */
1784         wrmsrl(MSR_SYSCALL_MASK,
1785                X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1786                X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1787                X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1788                X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1789                X86_EFLAGS_AC|X86_EFLAGS_ID);
1790 }
1791
1792 #else   /* CONFIG_X86_64 */
1793
1794 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1795 EXPORT_PER_CPU_SYMBOL(current_task);
1796 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1797 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1798
1799 /*
1800  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1801  * the top of the kernel stack.  Use an extra percpu variable to track the
1802  * top of the kernel stack directly.
1803  */
1804 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1805         (unsigned long)&init_thread_union + THREAD_SIZE;
1806 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1807
1808 #ifdef CONFIG_STACKPROTECTOR
1809 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1810 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1811 #endif
1812
1813 #endif  /* CONFIG_X86_64 */
1814
1815 /*
1816  * Clear all 6 debug registers:
1817  */
1818 static void clear_all_debug_regs(void)
1819 {
1820         int i;
1821
1822         for (i = 0; i < 8; i++) {
1823                 /* Ignore db4, db5 */
1824                 if ((i == 4) || (i == 5))
1825                         continue;
1826
1827                 set_debugreg(0, i);
1828         }
1829 }
1830
1831 #ifdef CONFIG_KGDB
1832 /*
1833  * Restore debug regs if using kgdbwait and you have a kernel debugger
1834  * connection established.
1835  */
1836 static void dbg_restore_debug_regs(void)
1837 {
1838         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1839                 arch_kgdb_ops.correct_hw_break();
1840 }
1841 #else /* ! CONFIG_KGDB */
1842 #define dbg_restore_debug_regs()
1843 #endif /* ! CONFIG_KGDB */
1844
1845 static void wait_for_master_cpu(int cpu)
1846 {
1847 #ifdef CONFIG_SMP
1848         /*
1849          * wait for ACK from master CPU before continuing
1850          * with AP initialization
1851          */
1852         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1853         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1854                 cpu_relax();
1855 #endif
1856 }
1857
1858 #ifdef CONFIG_X86_64
1859 static inline void setup_getcpu(int cpu)
1860 {
1861         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1862         struct desc_struct d = { };
1863
1864         if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1865                 wrmsr(MSR_TSC_AUX, cpudata, 0);
1866
1867         /* Store CPU and node number in limit. */
1868         d.limit0 = cpudata;
1869         d.limit1 = cpudata >> 16;
1870
1871         d.type = 5;             /* RO data, expand down, accessed */
1872         d.dpl = 3;              /* Visible to user code */
1873         d.s = 1;                /* Not a system segment */
1874         d.p = 1;                /* Present */
1875         d.d = 1;                /* 32-bit */
1876
1877         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1878 }
1879
1880 static inline void ucode_cpu_init(int cpu)
1881 {
1882         if (cpu)
1883                 load_ucode_ap();
1884 }
1885
1886 static inline void tss_setup_ist(struct tss_struct *tss)
1887 {
1888         /* Set up the per-CPU TSS IST stacks */
1889         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1890         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1891         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1892         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1893         /* Only mapped when SEV-ES is active */
1894         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1895 }
1896
1897 #else /* CONFIG_X86_64 */
1898
1899 static inline void setup_getcpu(int cpu) { }
1900
1901 static inline void ucode_cpu_init(int cpu)
1902 {
1903         show_ucode_info_early();
1904 }
1905
1906 static inline void tss_setup_ist(struct tss_struct *tss) { }
1907
1908 #endif /* !CONFIG_X86_64 */
1909
1910 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1911 {
1912         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1913
1914 #ifdef CONFIG_X86_IOPL_IOPERM
1915         tss->io_bitmap.prev_max = 0;
1916         tss->io_bitmap.prev_sequence = 0;
1917         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1918         /*
1919          * Invalidate the extra array entry past the end of the all
1920          * permission bitmap as required by the hardware.
1921          */
1922         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1923 #endif
1924 }
1925
1926 /*
1927  * Setup everything needed to handle exceptions from the IDT, including the IST
1928  * exceptions which use paranoid_entry().
1929  */
1930 void cpu_init_exception_handling(void)
1931 {
1932         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1933         int cpu = raw_smp_processor_id();
1934
1935         /* paranoid_entry() gets the CPU number from the GDT */
1936         setup_getcpu(cpu);
1937
1938         /* IST vectors need TSS to be set up. */
1939         tss_setup_ist(tss);
1940         tss_setup_io_bitmap(tss);
1941         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1942
1943         load_TR_desc();
1944
1945         /* Finally load the IDT */
1946         load_current_idt();
1947 }
1948
1949 /*
1950  * cpu_init() initializes state that is per-CPU. Some data is already
1951  * initialized (naturally) in the bootstrap process, such as the GDT.  We
1952  * reload it nevertheless, this function acts as a 'CPU state barrier',
1953  * nothing should get across.
1954  */
1955 void cpu_init(void)
1956 {
1957         struct task_struct *cur = current;
1958         int cpu = raw_smp_processor_id();
1959
1960         wait_for_master_cpu(cpu);
1961
1962         ucode_cpu_init(cpu);
1963
1964 #ifdef CONFIG_NUMA
1965         if (this_cpu_read(numa_node) == 0 &&
1966             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1967                 set_numa_node(early_cpu_to_node(cpu));
1968 #endif
1969         pr_debug("Initializing CPU#%d\n", cpu);
1970
1971         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1972             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1973                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1974
1975         /*
1976          * Initialize the per-CPU GDT with the boot GDT,
1977          * and set up the GDT descriptor:
1978          */
1979         switch_to_new_gdt(cpu);
1980
1981         if (IS_ENABLED(CONFIG_X86_64)) {
1982                 loadsegment(fs, 0);
1983                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1984                 syscall_init();
1985
1986                 wrmsrl(MSR_FS_BASE, 0);
1987                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1988                 barrier();
1989
1990                 x2apic_setup();
1991         }
1992
1993         mmgrab(&init_mm);
1994         cur->active_mm = &init_mm;
1995         BUG_ON(cur->mm);
1996         initialize_tlbstate_and_flush();
1997         enter_lazy_tlb(&init_mm, cur);
1998
1999         /*
2000          * sp0 points to the entry trampoline stack regardless of what task
2001          * is running.
2002          */
2003         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2004
2005         load_mm_ldt(&init_mm);
2006
2007         clear_all_debug_regs();
2008         dbg_restore_debug_regs();
2009
2010         doublefault_init_cpu_tss();
2011
2012         fpu__init_cpu();
2013
2014         if (is_uv_system())
2015                 uv_cpu_init();
2016
2017         load_fixmap_gdt(cpu);
2018 }
2019
2020 #ifdef CONFIG_SMP
2021 void cpu_init_secondary(void)
2022 {
2023         /*
2024          * Relies on the BP having set-up the IDT tables, which are loaded
2025          * on this CPU in cpu_init_exception_handling().
2026          */
2027         cpu_init_exception_handling();
2028         cpu_init();
2029 }
2030 #endif
2031
2032 /*
2033  * The microcode loader calls this upon late microcode load to recheck features,
2034  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2035  * hotplug lock.
2036  */
2037 void microcode_check(void)
2038 {
2039         struct cpuinfo_x86 info;
2040
2041         perf_check_microcode();
2042
2043         /* Reload CPUID max function as it might've changed. */
2044         info.cpuid_level = cpuid_eax(0);
2045
2046         /*
2047          * Copy all capability leafs to pick up the synthetic ones so that
2048          * memcmp() below doesn't fail on that. The ones coming from CPUID will
2049          * get overwritten in get_cpu_cap().
2050          */
2051         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2052
2053         get_cpu_cap(&info);
2054
2055         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2056                 return;
2057
2058         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2059         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2060 }
2061
2062 /*
2063  * Invoked from core CPU hotplug code after hotplug operations
2064  */
2065 void arch_smt_update(void)
2066 {
2067         /* Handle the speculative execution misfeatures */
2068         cpu_bugs_smt_update();
2069         /* Check whether IPI broadcasting can be enabled */
2070         apic_smt_update();
2071 }