Merge tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61
62 #include "cpu.h"
63
64 u32 elf_hwcap2 __read_mostly;
65
66 /* all of these masks are initialized in setup_cpu_local_masks() */
67 cpumask_var_t cpu_initialized_mask;
68 cpumask_var_t cpu_callout_mask;
69 cpumask_var_t cpu_callin_mask;
70
71 /* representing cpus for which sibling maps can be computed */
72 cpumask_var_t cpu_sibling_setup_mask;
73
74 /* Number of siblings per CPU package */
75 int smp_num_siblings = 1;
76 EXPORT_SYMBOL(smp_num_siblings);
77
78 /* Last level cache ID of each logical CPU */
79 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
80
81 /* correctly size the local cpu masks */
82 void __init setup_cpu_local_masks(void)
83 {
84         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
85         alloc_bootmem_cpumask_var(&cpu_callin_mask);
86         alloc_bootmem_cpumask_var(&cpu_callout_mask);
87         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
88 }
89
90 static void default_init(struct cpuinfo_x86 *c)
91 {
92 #ifdef CONFIG_X86_64
93         cpu_detect_cache_sizes(c);
94 #else
95         /* Not much we can do here... */
96         /* Check if at least it has cpuid */
97         if (c->cpuid_level == -1) {
98                 /* No cpuid. It must be an ancient CPU */
99                 if (c->x86 == 4)
100                         strcpy(c->x86_model_id, "486");
101                 else if (c->x86 == 3)
102                         strcpy(c->x86_model_id, "386");
103         }
104 #endif
105 }
106
107 static const struct cpu_dev default_cpu = {
108         .c_init         = default_init,
109         .c_vendor       = "Unknown",
110         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
111 };
112
113 static const struct cpu_dev *this_cpu = &default_cpu;
114
115 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
116 #ifdef CONFIG_X86_64
117         /*
118          * We need valid kernel segments for data and code in long mode too
119          * IRET will check the segment types  kkeil 2000/10/28
120          * Also sysret mandates a special GDT layout
121          *
122          * TLS descriptors are currently at a different place compared to i386.
123          * Hopefully nobody expects them at a fixed place (Wine?)
124          */
125         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
126         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
127         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
128         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
129         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
130         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
131 #else
132         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
133         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
135         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
136         /*
137          * Segments used for calling PnP BIOS have byte granularity.
138          * They code segments and data segments have fixed 64k limits,
139          * the transfer segment sizes are set at run time.
140          */
141         /* 32-bit code */
142         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143         /* 16-bit code */
144         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145         /* 16-bit data */
146         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
147         /* 16-bit data */
148         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
149         /* 16-bit data */
150         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
151         /*
152          * The APM segments have byte granularity and their bases
153          * are set at run time.  All have 64k limits.
154          */
155         /* 32-bit code */
156         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
157         /* 16-bit code */
158         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
159         /* data */
160         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
161
162         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
163         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
164         GDT_STACK_CANARY_INIT
165 #endif
166 } };
167 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
168
169 #ifdef CONFIG_X86_64
170 static int __init x86_nopcid_setup(char *s)
171 {
172         /* nopcid doesn't accept parameters */
173         if (s)
174                 return -EINVAL;
175
176         /* do not emit a message if the feature is not present */
177         if (!boot_cpu_has(X86_FEATURE_PCID))
178                 return 0;
179
180         setup_clear_cpu_cap(X86_FEATURE_PCID);
181         pr_info("nopcid: PCID feature disabled\n");
182         return 0;
183 }
184 early_param("nopcid", x86_nopcid_setup);
185 #endif
186
187 static int __init x86_noinvpcid_setup(char *s)
188 {
189         /* noinvpcid doesn't accept parameters */
190         if (s)
191                 return -EINVAL;
192
193         /* do not emit a message if the feature is not present */
194         if (!boot_cpu_has(X86_FEATURE_INVPCID))
195                 return 0;
196
197         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
198         pr_info("noinvpcid: INVPCID feature disabled\n");
199         return 0;
200 }
201 early_param("noinvpcid", x86_noinvpcid_setup);
202
203 #ifdef CONFIG_X86_32
204 static int cachesize_override = -1;
205 static int disable_x86_serial_nr = 1;
206
207 static int __init cachesize_setup(char *str)
208 {
209         get_option(&str, &cachesize_override);
210         return 1;
211 }
212 __setup("cachesize=", cachesize_setup);
213
214 static int __init x86_sep_setup(char *s)
215 {
216         setup_clear_cpu_cap(X86_FEATURE_SEP);
217         return 1;
218 }
219 __setup("nosep", x86_sep_setup);
220
221 /* Standard macro to see if a specific flag is changeable */
222 static inline int flag_is_changeable_p(u32 flag)
223 {
224         u32 f1, f2;
225
226         /*
227          * Cyrix and IDT cpus allow disabling of CPUID
228          * so the code below may return different results
229          * when it is executed before and after enabling
230          * the CPUID. Add "volatile" to not allow gcc to
231          * optimize the subsequent calls to this function.
232          */
233         asm volatile ("pushfl           \n\t"
234                       "pushfl           \n\t"
235                       "popl %0          \n\t"
236                       "movl %0, %1      \n\t"
237                       "xorl %2, %0      \n\t"
238                       "pushl %0         \n\t"
239                       "popfl            \n\t"
240                       "pushfl           \n\t"
241                       "popl %0          \n\t"
242                       "popfl            \n\t"
243
244                       : "=&r" (f1), "=&r" (f2)
245                       : "ir" (flag));
246
247         return ((f1^f2) & flag) != 0;
248 }
249
250 /* Probe for the CPUID instruction */
251 int have_cpuid_p(void)
252 {
253         return flag_is_changeable_p(X86_EFLAGS_ID);
254 }
255
256 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
257 {
258         unsigned long lo, hi;
259
260         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
261                 return;
262
263         /* Disable processor serial number: */
264
265         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
266         lo |= 0x200000;
267         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268
269         pr_notice("CPU serial number disabled.\n");
270         clear_cpu_cap(c, X86_FEATURE_PN);
271
272         /* Disabling the serial number may affect the cpuid level */
273         c->cpuid_level = cpuid_eax(0);
274 }
275
276 static int __init x86_serial_nr_setup(char *s)
277 {
278         disable_x86_serial_nr = 0;
279         return 1;
280 }
281 __setup("serialnumber", x86_serial_nr_setup);
282 #else
283 static inline int flag_is_changeable_p(u32 flag)
284 {
285         return 1;
286 }
287 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
288 {
289 }
290 #endif
291
292 static __init int setup_disable_smep(char *arg)
293 {
294         setup_clear_cpu_cap(X86_FEATURE_SMEP);
295         return 1;
296 }
297 __setup("nosmep", setup_disable_smep);
298
299 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
300 {
301         if (cpu_has(c, X86_FEATURE_SMEP))
302                 cr4_set_bits(X86_CR4_SMEP);
303 }
304
305 static __init int setup_disable_smap(char *arg)
306 {
307         setup_clear_cpu_cap(X86_FEATURE_SMAP);
308         return 1;
309 }
310 __setup("nosmap", setup_disable_smap);
311
312 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
313 {
314         unsigned long eflags = native_save_fl();
315
316         /* This should have been cleared long ago */
317         BUG_ON(eflags & X86_EFLAGS_AC);
318
319         if (cpu_has(c, X86_FEATURE_SMAP)) {
320 #ifdef CONFIG_X86_SMAP
321                 cr4_set_bits(X86_CR4_SMAP);
322 #else
323                 cr4_clear_bits(X86_CR4_SMAP);
324 #endif
325         }
326 }
327
328 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
329 {
330         /* Check the boot processor, plus build option for UMIP. */
331         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
332                 goto out;
333
334         /* Check the current processor's cpuid bits. */
335         if (!cpu_has(c, X86_FEATURE_UMIP))
336                 goto out;
337
338         cr4_set_bits(X86_CR4_UMIP);
339
340         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
341
342         return;
343
344 out:
345         /*
346          * Make sure UMIP is disabled in case it was enabled in a
347          * previous boot (e.g., via kexec).
348          */
349         cr4_clear_bits(X86_CR4_UMIP);
350 }
351
352 /* These bits should not change their value after CPU init is finished. */
353 static const unsigned long cr4_pinned_mask =
354         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
355 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
356 static unsigned long cr4_pinned_bits __ro_after_init;
357
358 void native_write_cr0(unsigned long val)
359 {
360         unsigned long bits_missing = 0;
361
362 set_register:
363         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
364
365         if (static_branch_likely(&cr_pinning)) {
366                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
367                         bits_missing = X86_CR0_WP;
368                         val |= bits_missing;
369                         goto set_register;
370                 }
371                 /* Warn after we've set the missing bits. */
372                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
373         }
374 }
375 EXPORT_SYMBOL(native_write_cr0);
376
377 void native_write_cr4(unsigned long val)
378 {
379         unsigned long bits_changed = 0;
380
381 set_register:
382         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
383
384         if (static_branch_likely(&cr_pinning)) {
385                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
386                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
387                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
388                         goto set_register;
389                 }
390                 /* Warn after we've corrected the changed bits. */
391                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
392                           bits_changed);
393         }
394 }
395 #if IS_MODULE(CONFIG_LKDTM)
396 EXPORT_SYMBOL_GPL(native_write_cr4);
397 #endif
398
399 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
400 {
401         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
402
403         lockdep_assert_irqs_disabled();
404
405         newval = (cr4 & ~clear) | set;
406         if (newval != cr4) {
407                 this_cpu_write(cpu_tlbstate.cr4, newval);
408                 __write_cr4(newval);
409         }
410 }
411 EXPORT_SYMBOL(cr4_update_irqsoff);
412
413 /* Read the CR4 shadow. */
414 unsigned long cr4_read_shadow(void)
415 {
416         return this_cpu_read(cpu_tlbstate.cr4);
417 }
418 EXPORT_SYMBOL_GPL(cr4_read_shadow);
419
420 void cr4_init(void)
421 {
422         unsigned long cr4 = __read_cr4();
423
424         if (boot_cpu_has(X86_FEATURE_PCID))
425                 cr4 |= X86_CR4_PCIDE;
426         if (static_branch_likely(&cr_pinning))
427                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
428
429         __write_cr4(cr4);
430
431         /* Initialize cr4 shadow for this CPU. */
432         this_cpu_write(cpu_tlbstate.cr4, cr4);
433 }
434
435 /*
436  * Once CPU feature detection is finished (and boot params have been
437  * parsed), record any of the sensitive CR bits that are set, and
438  * enable CR pinning.
439  */
440 static void __init setup_cr_pinning(void)
441 {
442         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
443         static_key_enable(&cr_pinning.key);
444 }
445
446 static __init int x86_nofsgsbase_setup(char *arg)
447 {
448         /* Require an exact match without trailing characters. */
449         if (strlen(arg))
450                 return 0;
451
452         /* Do not emit a message if the feature is not present. */
453         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
454                 return 1;
455
456         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
457         pr_info("FSGSBASE disabled via kernel command line\n");
458         return 1;
459 }
460 __setup("nofsgsbase", x86_nofsgsbase_setup);
461
462 /*
463  * Protection Keys are not available in 32-bit mode.
464  */
465 static bool pku_disabled;
466
467 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
468 {
469         struct pkru_state *pk;
470
471         /* check the boot processor, plus compile options for PKU: */
472         if (!cpu_feature_enabled(X86_FEATURE_PKU))
473                 return;
474         /* checks the actual processor's cpuid bits: */
475         if (!cpu_has(c, X86_FEATURE_PKU))
476                 return;
477         if (pku_disabled)
478                 return;
479
480         cr4_set_bits(X86_CR4_PKE);
481         pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
482         if (pk)
483                 pk->pkru = init_pkru_value;
484         /*
485          * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
486          * cpuid bit to be set.  We need to ensure that we
487          * update that bit in this CPU's "cpu_info".
488          */
489         set_cpu_cap(c, X86_FEATURE_OSPKE);
490 }
491
492 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
493 static __init int setup_disable_pku(char *arg)
494 {
495         /*
496          * Do not clear the X86_FEATURE_PKU bit.  All of the
497          * runtime checks are against OSPKE so clearing the
498          * bit does nothing.
499          *
500          * This way, we will see "pku" in cpuinfo, but not
501          * "ospke", which is exactly what we want.  It shows
502          * that the CPU has PKU, but the OS has not enabled it.
503          * This happens to be exactly how a system would look
504          * if we disabled the config option.
505          */
506         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
507         pku_disabled = true;
508         return 1;
509 }
510 __setup("nopku", setup_disable_pku);
511 #endif /* CONFIG_X86_64 */
512
513 /*
514  * Some CPU features depend on higher CPUID levels, which may not always
515  * be available due to CPUID level capping or broken virtualization
516  * software.  Add those features to this table to auto-disable them.
517  */
518 struct cpuid_dependent_feature {
519         u32 feature;
520         u32 level;
521 };
522
523 static const struct cpuid_dependent_feature
524 cpuid_dependent_features[] = {
525         { X86_FEATURE_MWAIT,            0x00000005 },
526         { X86_FEATURE_DCA,              0x00000009 },
527         { X86_FEATURE_XSAVE,            0x0000000d },
528         { 0, 0 }
529 };
530
531 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
532 {
533         const struct cpuid_dependent_feature *df;
534
535         for (df = cpuid_dependent_features; df->feature; df++) {
536
537                 if (!cpu_has(c, df->feature))
538                         continue;
539                 /*
540                  * Note: cpuid_level is set to -1 if unavailable, but
541                  * extended_extended_level is set to 0 if unavailable
542                  * and the legitimate extended levels are all negative
543                  * when signed; hence the weird messing around with
544                  * signs here...
545                  */
546                 if (!((s32)df->level < 0 ?
547                      (u32)df->level > (u32)c->extended_cpuid_level :
548                      (s32)df->level > (s32)c->cpuid_level))
549                         continue;
550
551                 clear_cpu_cap(c, df->feature);
552                 if (!warn)
553                         continue;
554
555                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
556                         x86_cap_flag(df->feature), df->level);
557         }
558 }
559
560 /*
561  * Naming convention should be: <Name> [(<Codename>)]
562  * This table only is used unless init_<vendor>() below doesn't set it;
563  * in particular, if CPUID levels 0x80000002..4 are supported, this
564  * isn't used
565  */
566
567 /* Look up CPU names by table lookup. */
568 static const char *table_lookup_model(struct cpuinfo_x86 *c)
569 {
570 #ifdef CONFIG_X86_32
571         const struct legacy_cpu_model_info *info;
572
573         if (c->x86_model >= 16)
574                 return NULL;    /* Range check */
575
576         if (!this_cpu)
577                 return NULL;
578
579         info = this_cpu->legacy_models;
580
581         while (info->family) {
582                 if (info->family == c->x86)
583                         return info->model_names[c->x86_model];
584                 info++;
585         }
586 #endif
587         return NULL;            /* Not found */
588 }
589
590 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
591 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
592 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
593
594 void load_percpu_segment(int cpu)
595 {
596 #ifdef CONFIG_X86_32
597         loadsegment(fs, __KERNEL_PERCPU);
598 #else
599         __loadsegment_simple(gs, 0);
600         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
601 #endif
602         load_stack_canary_segment();
603 }
604
605 #ifdef CONFIG_X86_32
606 /* The 32-bit entry code needs to find cpu_entry_area. */
607 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
608 #endif
609
610 /* Load the original GDT from the per-cpu structure */
611 void load_direct_gdt(int cpu)
612 {
613         struct desc_ptr gdt_descr;
614
615         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
616         gdt_descr.size = GDT_SIZE - 1;
617         load_gdt(&gdt_descr);
618 }
619 EXPORT_SYMBOL_GPL(load_direct_gdt);
620
621 /* Load a fixmap remapping of the per-cpu GDT */
622 void load_fixmap_gdt(int cpu)
623 {
624         struct desc_ptr gdt_descr;
625
626         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
627         gdt_descr.size = GDT_SIZE - 1;
628         load_gdt(&gdt_descr);
629 }
630 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
631
632 /*
633  * Current gdt points %fs at the "master" per-cpu area: after this,
634  * it's on the real one.
635  */
636 void switch_to_new_gdt(int cpu)
637 {
638         /* Load the original GDT */
639         load_direct_gdt(cpu);
640         /* Reload the per-cpu base */
641         load_percpu_segment(cpu);
642 }
643
644 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
645
646 static void get_model_name(struct cpuinfo_x86 *c)
647 {
648         unsigned int *v;
649         char *p, *q, *s;
650
651         if (c->extended_cpuid_level < 0x80000004)
652                 return;
653
654         v = (unsigned int *)c->x86_model_id;
655         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
656         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
657         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
658         c->x86_model_id[48] = 0;
659
660         /* Trim whitespace */
661         p = q = s = &c->x86_model_id[0];
662
663         while (*p == ' ')
664                 p++;
665
666         while (*p) {
667                 /* Note the last non-whitespace index */
668                 if (!isspace(*p))
669                         s = q;
670
671                 *q++ = *p++;
672         }
673
674         *(s + 1) = '\0';
675 }
676
677 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
678 {
679         unsigned int eax, ebx, ecx, edx;
680
681         c->x86_max_cores = 1;
682         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
683                 return;
684
685         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
686         if (eax & 0x1f)
687                 c->x86_max_cores = (eax >> 26) + 1;
688 }
689
690 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
691 {
692         unsigned int n, dummy, ebx, ecx, edx, l2size;
693
694         n = c->extended_cpuid_level;
695
696         if (n >= 0x80000005) {
697                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
698                 c->x86_cache_size = (ecx>>24) + (edx>>24);
699 #ifdef CONFIG_X86_64
700                 /* On K8 L1 TLB is inclusive, so don't count it */
701                 c->x86_tlbsize = 0;
702 #endif
703         }
704
705         if (n < 0x80000006)     /* Some chips just has a large L1. */
706                 return;
707
708         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
709         l2size = ecx >> 16;
710
711 #ifdef CONFIG_X86_64
712         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
713 #else
714         /* do processor-specific cache resizing */
715         if (this_cpu->legacy_cache_size)
716                 l2size = this_cpu->legacy_cache_size(c, l2size);
717
718         /* Allow user to override all this if necessary. */
719         if (cachesize_override != -1)
720                 l2size = cachesize_override;
721
722         if (l2size == 0)
723                 return;         /* Again, no L2 cache is possible */
724 #endif
725
726         c->x86_cache_size = l2size;
727 }
728
729 u16 __read_mostly tlb_lli_4k[NR_INFO];
730 u16 __read_mostly tlb_lli_2m[NR_INFO];
731 u16 __read_mostly tlb_lli_4m[NR_INFO];
732 u16 __read_mostly tlb_lld_4k[NR_INFO];
733 u16 __read_mostly tlb_lld_2m[NR_INFO];
734 u16 __read_mostly tlb_lld_4m[NR_INFO];
735 u16 __read_mostly tlb_lld_1g[NR_INFO];
736
737 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
738 {
739         if (this_cpu->c_detect_tlb)
740                 this_cpu->c_detect_tlb(c);
741
742         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
743                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
744                 tlb_lli_4m[ENTRIES]);
745
746         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
747                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
748                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
749 }
750
751 int detect_ht_early(struct cpuinfo_x86 *c)
752 {
753 #ifdef CONFIG_SMP
754         u32 eax, ebx, ecx, edx;
755
756         if (!cpu_has(c, X86_FEATURE_HT))
757                 return -1;
758
759         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
760                 return -1;
761
762         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
763                 return -1;
764
765         cpuid(1, &eax, &ebx, &ecx, &edx);
766
767         smp_num_siblings = (ebx & 0xff0000) >> 16;
768         if (smp_num_siblings == 1)
769                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
770 #endif
771         return 0;
772 }
773
774 void detect_ht(struct cpuinfo_x86 *c)
775 {
776 #ifdef CONFIG_SMP
777         int index_msb, core_bits;
778
779         if (detect_ht_early(c) < 0)
780                 return;
781
782         index_msb = get_count_order(smp_num_siblings);
783         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
784
785         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
786
787         index_msb = get_count_order(smp_num_siblings);
788
789         core_bits = get_count_order(c->x86_max_cores);
790
791         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
792                                        ((1 << core_bits) - 1);
793 #endif
794 }
795
796 static void get_cpu_vendor(struct cpuinfo_x86 *c)
797 {
798         char *v = c->x86_vendor_id;
799         int i;
800
801         for (i = 0; i < X86_VENDOR_NUM; i++) {
802                 if (!cpu_devs[i])
803                         break;
804
805                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
806                     (cpu_devs[i]->c_ident[1] &&
807                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
808
809                         this_cpu = cpu_devs[i];
810                         c->x86_vendor = this_cpu->c_x86_vendor;
811                         return;
812                 }
813         }
814
815         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
816                     "CPU: Your system may be unstable.\n", v);
817
818         c->x86_vendor = X86_VENDOR_UNKNOWN;
819         this_cpu = &default_cpu;
820 }
821
822 void cpu_detect(struct cpuinfo_x86 *c)
823 {
824         /* Get vendor name */
825         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
826               (unsigned int *)&c->x86_vendor_id[0],
827               (unsigned int *)&c->x86_vendor_id[8],
828               (unsigned int *)&c->x86_vendor_id[4]);
829
830         c->x86 = 4;
831         /* Intel-defined flags: level 0x00000001 */
832         if (c->cpuid_level >= 0x00000001) {
833                 u32 junk, tfms, cap0, misc;
834
835                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
836                 c->x86          = x86_family(tfms);
837                 c->x86_model    = x86_model(tfms);
838                 c->x86_stepping = x86_stepping(tfms);
839
840                 if (cap0 & (1<<19)) {
841                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
842                         c->x86_cache_alignment = c->x86_clflush_size;
843                 }
844         }
845 }
846
847 static void apply_forced_caps(struct cpuinfo_x86 *c)
848 {
849         int i;
850
851         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
852                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
853                 c->x86_capability[i] |= cpu_caps_set[i];
854         }
855 }
856
857 static void init_speculation_control(struct cpuinfo_x86 *c)
858 {
859         /*
860          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
861          * and they also have a different bit for STIBP support. Also,
862          * a hypervisor might have set the individual AMD bits even on
863          * Intel CPUs, for finer-grained selection of what's available.
864          */
865         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
866                 set_cpu_cap(c, X86_FEATURE_IBRS);
867                 set_cpu_cap(c, X86_FEATURE_IBPB);
868                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
869         }
870
871         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
872                 set_cpu_cap(c, X86_FEATURE_STIBP);
873
874         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
875             cpu_has(c, X86_FEATURE_VIRT_SSBD))
876                 set_cpu_cap(c, X86_FEATURE_SSBD);
877
878         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
879                 set_cpu_cap(c, X86_FEATURE_IBRS);
880                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
881         }
882
883         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
884                 set_cpu_cap(c, X86_FEATURE_IBPB);
885
886         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
887                 set_cpu_cap(c, X86_FEATURE_STIBP);
888                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
889         }
890
891         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
892                 set_cpu_cap(c, X86_FEATURE_SSBD);
893                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
894                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
895         }
896 }
897
898 void get_cpu_cap(struct cpuinfo_x86 *c)
899 {
900         u32 eax, ebx, ecx, edx;
901
902         /* Intel-defined flags: level 0x00000001 */
903         if (c->cpuid_level >= 0x00000001) {
904                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
905
906                 c->x86_capability[CPUID_1_ECX] = ecx;
907                 c->x86_capability[CPUID_1_EDX] = edx;
908         }
909
910         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
911         if (c->cpuid_level >= 0x00000006)
912                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
913
914         /* Additional Intel-defined flags: level 0x00000007 */
915         if (c->cpuid_level >= 0x00000007) {
916                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
917                 c->x86_capability[CPUID_7_0_EBX] = ebx;
918                 c->x86_capability[CPUID_7_ECX] = ecx;
919                 c->x86_capability[CPUID_7_EDX] = edx;
920
921                 /* Check valid sub-leaf index before accessing it */
922                 if (eax >= 1) {
923                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
924                         c->x86_capability[CPUID_7_1_EAX] = eax;
925                 }
926         }
927
928         /* Extended state features: level 0x0000000d */
929         if (c->cpuid_level >= 0x0000000d) {
930                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
931
932                 c->x86_capability[CPUID_D_1_EAX] = eax;
933         }
934
935         /* AMD-defined flags: level 0x80000001 */
936         eax = cpuid_eax(0x80000000);
937         c->extended_cpuid_level = eax;
938
939         if ((eax & 0xffff0000) == 0x80000000) {
940                 if (eax >= 0x80000001) {
941                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
942
943                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
944                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
945                 }
946         }
947
948         if (c->extended_cpuid_level >= 0x80000007) {
949                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
950
951                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
952                 c->x86_power = edx;
953         }
954
955         if (c->extended_cpuid_level >= 0x80000008) {
956                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
957                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
958         }
959
960         if (c->extended_cpuid_level >= 0x8000000a)
961                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
962
963         init_scattered_cpuid_features(c);
964         init_speculation_control(c);
965
966         /*
967          * Clear/Set all flags overridden by options, after probe.
968          * This needs to happen each time we re-probe, which may happen
969          * several times during CPU initialization.
970          */
971         apply_forced_caps(c);
972 }
973
974 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
975 {
976         u32 eax, ebx, ecx, edx;
977
978         if (c->extended_cpuid_level >= 0x80000008) {
979                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
980
981                 c->x86_virt_bits = (eax >> 8) & 0xff;
982                 c->x86_phys_bits = eax & 0xff;
983         }
984 #ifdef CONFIG_X86_32
985         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
986                 c->x86_phys_bits = 36;
987 #endif
988         c->x86_cache_bits = c->x86_phys_bits;
989 }
990
991 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
992 {
993 #ifdef CONFIG_X86_32
994         int i;
995
996         /*
997          * First of all, decide if this is a 486 or higher
998          * It's a 486 if we can modify the AC flag
999          */
1000         if (flag_is_changeable_p(X86_EFLAGS_AC))
1001                 c->x86 = 4;
1002         else
1003                 c->x86 = 3;
1004
1005         for (i = 0; i < X86_VENDOR_NUM; i++)
1006                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1007                         c->x86_vendor_id[0] = 0;
1008                         cpu_devs[i]->c_identify(c);
1009                         if (c->x86_vendor_id[0]) {
1010                                 get_cpu_vendor(c);
1011                                 break;
1012                         }
1013                 }
1014 #endif
1015 }
1016
1017 #define NO_SPECULATION          BIT(0)
1018 #define NO_MELTDOWN             BIT(1)
1019 #define NO_SSB                  BIT(2)
1020 #define NO_L1TF                 BIT(3)
1021 #define NO_MDS                  BIT(4)
1022 #define MSBDS_ONLY              BIT(5)
1023 #define NO_SWAPGS               BIT(6)
1024 #define NO_ITLB_MULTIHIT        BIT(7)
1025 #define NO_SPECTRE_V2           BIT(8)
1026
1027 #define VULNWL(vendor, family, model, whitelist)        \
1028         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1029
1030 #define VULNWL_INTEL(model, whitelist)          \
1031         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1032
1033 #define VULNWL_AMD(family, whitelist)           \
1034         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1035
1036 #define VULNWL_HYGON(family, whitelist)         \
1037         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1038
1039 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1040         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1041         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1042         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1043         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1044
1045         /* Intel Family 6 */
1046         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1047         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1048         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1049         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1050         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1051
1052         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1053         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058
1059         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1060
1061         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063
1064         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067
1068         /*
1069          * Technically, swapgs isn't serializing on AMD (despite it previously
1070          * being documented as such in the APM).  But according to AMD, %gs is
1071          * updated non-speculatively, and the issuing of %gs-relative memory
1072          * operands will be blocked until the %gs update completes, which is
1073          * good enough for our purposes.
1074          */
1075
1076         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
1077
1078         /* AMD Family 0xf - 0x12 */
1079         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1082         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1083
1084         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1085         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1086         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1087
1088         /* Zhaoxin Family 7 */
1089         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1090         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1091         {}
1092 };
1093
1094 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1095         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1096                                             INTEL_FAM6_##model, steppings, \
1097                                             X86_FEATURE_ANY, issues)
1098
1099 #define SRBDS           BIT(0)
1100
1101 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1102         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1103         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1104         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1105         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1106         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1107         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1108         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS),
1109         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS),
1110         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPINGS(0x0, 0xC),        SRBDS),
1111         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPINGS(0x0, 0xD),        SRBDS),
1112         {}
1113 };
1114
1115 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1116 {
1117         const struct x86_cpu_id *m = x86_match_cpu(table);
1118
1119         return m && !!(m->driver_data & which);
1120 }
1121
1122 u64 x86_read_arch_cap_msr(void)
1123 {
1124         u64 ia32_cap = 0;
1125
1126         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1127                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1128
1129         return ia32_cap;
1130 }
1131
1132 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1133 {
1134         u64 ia32_cap = x86_read_arch_cap_msr();
1135
1136         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1137         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1138             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1139                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1140
1141         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1142                 return;
1143
1144         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1145
1146         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1147                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1148
1149         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1150             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1151            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1152                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1153
1154         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1155                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1156
1157         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1158             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1159                 setup_force_cpu_bug(X86_BUG_MDS);
1160                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1161                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1162         }
1163
1164         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1165                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1166
1167         /*
1168          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1169          *      - TSX is supported or
1170          *      - TSX_CTRL is present
1171          *
1172          * TSX_CTRL check is needed for cases when TSX could be disabled before
1173          * the kernel boot e.g. kexec.
1174          * TSX_CTRL check alone is not sufficient for cases when the microcode
1175          * update is not present or running as guest that don't get TSX_CTRL.
1176          */
1177         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1178             (cpu_has(c, X86_FEATURE_RTM) ||
1179              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1180                 setup_force_cpu_bug(X86_BUG_TAA);
1181
1182         /*
1183          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1184          * in the vulnerability blacklist.
1185          */
1186         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1187              cpu_has(c, X86_FEATURE_RDSEED)) &&
1188             cpu_matches(cpu_vuln_blacklist, SRBDS))
1189                     setup_force_cpu_bug(X86_BUG_SRBDS);
1190
1191         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1192                 return;
1193
1194         /* Rogue Data Cache Load? No! */
1195         if (ia32_cap & ARCH_CAP_RDCL_NO)
1196                 return;
1197
1198         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1199
1200         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1201                 return;
1202
1203         setup_force_cpu_bug(X86_BUG_L1TF);
1204 }
1205
1206 /*
1207  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1208  * unfortunately, that's not true in practice because of early VIA
1209  * chips and (more importantly) broken virtualizers that are not easy
1210  * to detect. In the latter case it doesn't even *fail* reliably, so
1211  * probing for it doesn't even work. Disable it completely on 32-bit
1212  * unless we can find a reliable way to detect all the broken cases.
1213  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1214  */
1215 static void detect_nopl(void)
1216 {
1217 #ifdef CONFIG_X86_32
1218         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1219 #else
1220         setup_force_cpu_cap(X86_FEATURE_NOPL);
1221 #endif
1222 }
1223
1224 /*
1225  * We parse cpu parameters early because fpu__init_system() is executed
1226  * before parse_early_param().
1227  */
1228 static void __init cpu_parse_early_param(void)
1229 {
1230         char arg[128];
1231         char *argptr = arg;
1232         int arglen, res, bit;
1233
1234 #ifdef CONFIG_X86_32
1235         if (cmdline_find_option_bool(boot_command_line, "no387"))
1236 #ifdef CONFIG_MATH_EMULATION
1237                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1238 #else
1239                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1240 #endif
1241
1242         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1243                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1244 #endif
1245
1246         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1247                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1248
1249         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1250                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1251
1252         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1253                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1254
1255         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1256         if (arglen <= 0)
1257                 return;
1258
1259         pr_info("Clearing CPUID bits:");
1260         do {
1261                 res = get_option(&argptr, &bit);
1262                 if (res == 0 || res == 3)
1263                         break;
1264
1265                 /* If the argument was too long, the last bit may be cut off */
1266                 if (res == 1 && arglen >= sizeof(arg))
1267                         break;
1268
1269                 if (bit >= 0 && bit < NCAPINTS * 32) {
1270                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1271                         setup_clear_cpu_cap(bit);
1272                 }
1273         } while (res == 2);
1274         pr_cont("\n");
1275 }
1276
1277 /*
1278  * Do minimum CPU detection early.
1279  * Fields really needed: vendor, cpuid_level, family, model, mask,
1280  * cache alignment.
1281  * The others are not touched to avoid unwanted side effects.
1282  *
1283  * WARNING: this function is only called on the boot CPU.  Don't add code
1284  * here that is supposed to run on all CPUs.
1285  */
1286 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1287 {
1288 #ifdef CONFIG_X86_64
1289         c->x86_clflush_size = 64;
1290         c->x86_phys_bits = 36;
1291         c->x86_virt_bits = 48;
1292 #else
1293         c->x86_clflush_size = 32;
1294         c->x86_phys_bits = 32;
1295         c->x86_virt_bits = 32;
1296 #endif
1297         c->x86_cache_alignment = c->x86_clflush_size;
1298
1299         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1300         c->extended_cpuid_level = 0;
1301
1302         if (!have_cpuid_p())
1303                 identify_cpu_without_cpuid(c);
1304
1305         /* cyrix could have cpuid enabled via c_identify()*/
1306         if (have_cpuid_p()) {
1307                 cpu_detect(c);
1308                 get_cpu_vendor(c);
1309                 get_cpu_cap(c);
1310                 get_cpu_address_sizes(c);
1311                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1312                 cpu_parse_early_param();
1313
1314                 if (this_cpu->c_early_init)
1315                         this_cpu->c_early_init(c);
1316
1317                 c->cpu_index = 0;
1318                 filter_cpuid_features(c, false);
1319
1320                 if (this_cpu->c_bsp_init)
1321                         this_cpu->c_bsp_init(c);
1322         } else {
1323                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1324         }
1325
1326         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1327
1328         cpu_set_bug_bits(c);
1329
1330         cpu_set_core_cap_bits(c);
1331
1332         fpu__init_system(c);
1333
1334 #ifdef CONFIG_X86_32
1335         /*
1336          * Regardless of whether PCID is enumerated, the SDM says
1337          * that it can't be enabled in 32-bit mode.
1338          */
1339         setup_clear_cpu_cap(X86_FEATURE_PCID);
1340 #endif
1341
1342         /*
1343          * Later in the boot process pgtable_l5_enabled() relies on
1344          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1345          * enabled by this point we need to clear the feature bit to avoid
1346          * false-positives at the later stage.
1347          *
1348          * pgtable_l5_enabled() can be false here for several reasons:
1349          *  - 5-level paging is disabled compile-time;
1350          *  - it's 32-bit kernel;
1351          *  - machine doesn't support 5-level paging;
1352          *  - user specified 'no5lvl' in kernel command line.
1353          */
1354         if (!pgtable_l5_enabled())
1355                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1356
1357         detect_nopl();
1358 }
1359
1360 void __init early_cpu_init(void)
1361 {
1362         const struct cpu_dev *const *cdev;
1363         int count = 0;
1364
1365 #ifdef CONFIG_PROCESSOR_SELECT
1366         pr_info("KERNEL supported cpus:\n");
1367 #endif
1368
1369         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1370                 const struct cpu_dev *cpudev = *cdev;
1371
1372                 if (count >= X86_VENDOR_NUM)
1373                         break;
1374                 cpu_devs[count] = cpudev;
1375                 count++;
1376
1377 #ifdef CONFIG_PROCESSOR_SELECT
1378                 {
1379                         unsigned int j;
1380
1381                         for (j = 0; j < 2; j++) {
1382                                 if (!cpudev->c_ident[j])
1383                                         continue;
1384                                 pr_info("  %s %s\n", cpudev->c_vendor,
1385                                         cpudev->c_ident[j]);
1386                         }
1387                 }
1388 #endif
1389         }
1390         early_identify_cpu(&boot_cpu_data);
1391 }
1392
1393 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1394 {
1395 #ifdef CONFIG_X86_64
1396         /*
1397          * Empirically, writing zero to a segment selector on AMD does
1398          * not clear the base, whereas writing zero to a segment
1399          * selector on Intel does clear the base.  Intel's behavior
1400          * allows slightly faster context switches in the common case
1401          * where GS is unused by the prev and next threads.
1402          *
1403          * Since neither vendor documents this anywhere that I can see,
1404          * detect it directly instead of hardcoding the choice by
1405          * vendor.
1406          *
1407          * I've designated AMD's behavior as the "bug" because it's
1408          * counterintuitive and less friendly.
1409          */
1410
1411         unsigned long old_base, tmp;
1412         rdmsrl(MSR_FS_BASE, old_base);
1413         wrmsrl(MSR_FS_BASE, 1);
1414         loadsegment(fs, 0);
1415         rdmsrl(MSR_FS_BASE, tmp);
1416         if (tmp != 0)
1417                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1418         wrmsrl(MSR_FS_BASE, old_base);
1419 #endif
1420 }
1421
1422 static void generic_identify(struct cpuinfo_x86 *c)
1423 {
1424         c->extended_cpuid_level = 0;
1425
1426         if (!have_cpuid_p())
1427                 identify_cpu_without_cpuid(c);
1428
1429         /* cyrix could have cpuid enabled via c_identify()*/
1430         if (!have_cpuid_p())
1431                 return;
1432
1433         cpu_detect(c);
1434
1435         get_cpu_vendor(c);
1436
1437         get_cpu_cap(c);
1438
1439         get_cpu_address_sizes(c);
1440
1441         if (c->cpuid_level >= 0x00000001) {
1442                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1443 #ifdef CONFIG_X86_32
1444 # ifdef CONFIG_SMP
1445                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1446 # else
1447                 c->apicid = c->initial_apicid;
1448 # endif
1449 #endif
1450                 c->phys_proc_id = c->initial_apicid;
1451         }
1452
1453         get_model_name(c); /* Default name */
1454
1455         detect_null_seg_behavior(c);
1456
1457         /*
1458          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1459          * systems that run Linux at CPL > 0 may or may not have the
1460          * issue, but, even if they have the issue, there's absolutely
1461          * nothing we can do about it because we can't use the real IRET
1462          * instruction.
1463          *
1464          * NB: For the time being, only 32-bit kernels support
1465          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1466          * whether to apply espfix using paravirt hooks.  If any
1467          * non-paravirt system ever shows up that does *not* have the
1468          * ESPFIX issue, we can change this.
1469          */
1470 #ifdef CONFIG_X86_32
1471         set_cpu_bug(c, X86_BUG_ESPFIX);
1472 #endif
1473 }
1474
1475 /*
1476  * Validate that ACPI/mptables have the same information about the
1477  * effective APIC id and update the package map.
1478  */
1479 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1480 {
1481 #ifdef CONFIG_SMP
1482         unsigned int apicid, cpu = smp_processor_id();
1483
1484         apicid = apic->cpu_present_to_apicid(cpu);
1485
1486         if (apicid != c->apicid) {
1487                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1488                        cpu, apicid, c->initial_apicid);
1489         }
1490         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1491         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1492 #else
1493         c->logical_proc_id = 0;
1494 #endif
1495 }
1496
1497 /*
1498  * This does the hard work of actually picking apart the CPU stuff...
1499  */
1500 static void identify_cpu(struct cpuinfo_x86 *c)
1501 {
1502         int i;
1503
1504         c->loops_per_jiffy = loops_per_jiffy;
1505         c->x86_cache_size = 0;
1506         c->x86_vendor = X86_VENDOR_UNKNOWN;
1507         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1508         c->x86_vendor_id[0] = '\0'; /* Unset */
1509         c->x86_model_id[0] = '\0';  /* Unset */
1510         c->x86_max_cores = 1;
1511         c->x86_coreid_bits = 0;
1512         c->cu_id = 0xff;
1513 #ifdef CONFIG_X86_64
1514         c->x86_clflush_size = 64;
1515         c->x86_phys_bits = 36;
1516         c->x86_virt_bits = 48;
1517 #else
1518         c->cpuid_level = -1;    /* CPUID not detected */
1519         c->x86_clflush_size = 32;
1520         c->x86_phys_bits = 32;
1521         c->x86_virt_bits = 32;
1522 #endif
1523         c->x86_cache_alignment = c->x86_clflush_size;
1524         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1525 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1526         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1527 #endif
1528
1529         generic_identify(c);
1530
1531         if (this_cpu->c_identify)
1532                 this_cpu->c_identify(c);
1533
1534         /* Clear/Set all flags overridden by options, after probe */
1535         apply_forced_caps(c);
1536
1537 #ifdef CONFIG_X86_64
1538         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1539 #endif
1540
1541         /*
1542          * Vendor-specific initialization.  In this section we
1543          * canonicalize the feature flags, meaning if there are
1544          * features a certain CPU supports which CPUID doesn't
1545          * tell us, CPUID claiming incorrect flags, or other bugs,
1546          * we handle them here.
1547          *
1548          * At the end of this section, c->x86_capability better
1549          * indicate the features this CPU genuinely supports!
1550          */
1551         if (this_cpu->c_init)
1552                 this_cpu->c_init(c);
1553
1554         /* Disable the PN if appropriate */
1555         squash_the_stupid_serial_number(c);
1556
1557         /* Set up SMEP/SMAP/UMIP */
1558         setup_smep(c);
1559         setup_smap(c);
1560         setup_umip(c);
1561
1562         /* Enable FSGSBASE instructions if available. */
1563         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1564                 cr4_set_bits(X86_CR4_FSGSBASE);
1565                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1566         }
1567
1568         /*
1569          * The vendor-specific functions might have changed features.
1570          * Now we do "generic changes."
1571          */
1572
1573         /* Filter out anything that depends on CPUID levels we don't have */
1574         filter_cpuid_features(c, true);
1575
1576         /* If the model name is still unset, do table lookup. */
1577         if (!c->x86_model_id[0]) {
1578                 const char *p;
1579                 p = table_lookup_model(c);
1580                 if (p)
1581                         strcpy(c->x86_model_id, p);
1582                 else
1583                         /* Last resort... */
1584                         sprintf(c->x86_model_id, "%02x/%02x",
1585                                 c->x86, c->x86_model);
1586         }
1587
1588 #ifdef CONFIG_X86_64
1589         detect_ht(c);
1590 #endif
1591
1592         x86_init_rdrand(c);
1593         setup_pku(c);
1594
1595         /*
1596          * Clear/Set all flags overridden by options, need do it
1597          * before following smp all cpus cap AND.
1598          */
1599         apply_forced_caps(c);
1600
1601         /*
1602          * On SMP, boot_cpu_data holds the common feature set between
1603          * all CPUs; so make sure that we indicate which features are
1604          * common between the CPUs.  The first time this routine gets
1605          * executed, c == &boot_cpu_data.
1606          */
1607         if (c != &boot_cpu_data) {
1608                 /* AND the already accumulated flags with these */
1609                 for (i = 0; i < NCAPINTS; i++)
1610                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1611
1612                 /* OR, i.e. replicate the bug flags */
1613                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1614                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1615         }
1616
1617         /* Init Machine Check Exception if available. */
1618         mcheck_cpu_init(c);
1619
1620         select_idle_routine(c);
1621
1622 #ifdef CONFIG_NUMA
1623         numa_add_cpu(smp_processor_id());
1624 #endif
1625 }
1626
1627 /*
1628  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1629  * on 32-bit kernels:
1630  */
1631 #ifdef CONFIG_X86_32
1632 void enable_sep_cpu(void)
1633 {
1634         struct tss_struct *tss;
1635         int cpu;
1636
1637         if (!boot_cpu_has(X86_FEATURE_SEP))
1638                 return;
1639
1640         cpu = get_cpu();
1641         tss = &per_cpu(cpu_tss_rw, cpu);
1642
1643         /*
1644          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1645          * see the big comment in struct x86_hw_tss's definition.
1646          */
1647
1648         tss->x86_tss.ss1 = __KERNEL_CS;
1649         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1650         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1651         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1652
1653         put_cpu();
1654 }
1655 #endif
1656
1657 void __init identify_boot_cpu(void)
1658 {
1659         identify_cpu(&boot_cpu_data);
1660 #ifdef CONFIG_X86_32
1661         sysenter_setup();
1662         enable_sep_cpu();
1663 #endif
1664         cpu_detect_tlb(&boot_cpu_data);
1665         setup_cr_pinning();
1666
1667         tsx_init();
1668 }
1669
1670 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1671 {
1672         BUG_ON(c == &boot_cpu_data);
1673         identify_cpu(c);
1674 #ifdef CONFIG_X86_32
1675         enable_sep_cpu();
1676 #endif
1677         mtrr_ap_init();
1678         validate_apic_and_package_id(c);
1679         x86_spec_ctrl_setup_ap();
1680         update_srbds_msr();
1681 }
1682
1683 static __init int setup_noclflush(char *arg)
1684 {
1685         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1686         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1687         return 1;
1688 }
1689 __setup("noclflush", setup_noclflush);
1690
1691 void print_cpu_info(struct cpuinfo_x86 *c)
1692 {
1693         const char *vendor = NULL;
1694
1695         if (c->x86_vendor < X86_VENDOR_NUM) {
1696                 vendor = this_cpu->c_vendor;
1697         } else {
1698                 if (c->cpuid_level >= 0)
1699                         vendor = c->x86_vendor_id;
1700         }
1701
1702         if (vendor && !strstr(c->x86_model_id, vendor))
1703                 pr_cont("%s ", vendor);
1704
1705         if (c->x86_model_id[0])
1706                 pr_cont("%s", c->x86_model_id);
1707         else
1708                 pr_cont("%d86", c->x86);
1709
1710         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1711
1712         if (c->x86_stepping || c->cpuid_level >= 0)
1713                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1714         else
1715                 pr_cont(")\n");
1716 }
1717
1718 /*
1719  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1720  * But we need to keep a dummy __setup around otherwise it would
1721  * show up as an environment variable for init.
1722  */
1723 static __init int setup_clearcpuid(char *arg)
1724 {
1725         return 1;
1726 }
1727 __setup("clearcpuid=", setup_clearcpuid);
1728
1729 #ifdef CONFIG_X86_64
1730 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1731                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1732 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1733
1734 /*
1735  * The following percpu variables are hot.  Align current_task to
1736  * cacheline size such that they fall in the same cacheline.
1737  */
1738 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1739         &init_task;
1740 EXPORT_PER_CPU_SYMBOL(current_task);
1741
1742 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1743 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1744
1745 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1746 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1747
1748 /* May not be marked __init: used by software suspend */
1749 void syscall_init(void)
1750 {
1751         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1752         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1753
1754 #ifdef CONFIG_IA32_EMULATION
1755         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1756         /*
1757          * This only works on Intel CPUs.
1758          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1759          * This does not cause SYSENTER to jump to the wrong location, because
1760          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1761          */
1762         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1763         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1764                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1765         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1766 #else
1767         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1768         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1769         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1770         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1771 #endif
1772
1773         /* Flags to clear on syscall */
1774         wrmsrl(MSR_SYSCALL_MASK,
1775                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1776                X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1777 }
1778
1779 #else   /* CONFIG_X86_64 */
1780
1781 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1782 EXPORT_PER_CPU_SYMBOL(current_task);
1783 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1784 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1785
1786 /*
1787  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1788  * the top of the kernel stack.  Use an extra percpu variable to track the
1789  * top of the kernel stack directly.
1790  */
1791 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1792         (unsigned long)&init_thread_union + THREAD_SIZE;
1793 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1794
1795 #ifdef CONFIG_STACKPROTECTOR
1796 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1797 #endif
1798
1799 #endif  /* CONFIG_X86_64 */
1800
1801 /*
1802  * Clear all 6 debug registers:
1803  */
1804 static void clear_all_debug_regs(void)
1805 {
1806         int i;
1807
1808         for (i = 0; i < 8; i++) {
1809                 /* Ignore db4, db5 */
1810                 if ((i == 4) || (i == 5))
1811                         continue;
1812
1813                 set_debugreg(0, i);
1814         }
1815 }
1816
1817 #ifdef CONFIG_KGDB
1818 /*
1819  * Restore debug regs if using kgdbwait and you have a kernel debugger
1820  * connection established.
1821  */
1822 static void dbg_restore_debug_regs(void)
1823 {
1824         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1825                 arch_kgdb_ops.correct_hw_break();
1826 }
1827 #else /* ! CONFIG_KGDB */
1828 #define dbg_restore_debug_regs()
1829 #endif /* ! CONFIG_KGDB */
1830
1831 static void wait_for_master_cpu(int cpu)
1832 {
1833 #ifdef CONFIG_SMP
1834         /*
1835          * wait for ACK from master CPU before continuing
1836          * with AP initialization
1837          */
1838         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1839         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1840                 cpu_relax();
1841 #endif
1842 }
1843
1844 #ifdef CONFIG_X86_64
1845 static inline void setup_getcpu(int cpu)
1846 {
1847         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1848         struct desc_struct d = { };
1849
1850         if (boot_cpu_has(X86_FEATURE_RDTSCP))
1851                 write_rdtscp_aux(cpudata);
1852
1853         /* Store CPU and node number in limit. */
1854         d.limit0 = cpudata;
1855         d.limit1 = cpudata >> 16;
1856
1857         d.type = 5;             /* RO data, expand down, accessed */
1858         d.dpl = 3;              /* Visible to user code */
1859         d.s = 1;                /* Not a system segment */
1860         d.p = 1;                /* Present */
1861         d.d = 1;                /* 32-bit */
1862
1863         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1864 }
1865
1866 static inline void ucode_cpu_init(int cpu)
1867 {
1868         if (cpu)
1869                 load_ucode_ap();
1870 }
1871
1872 static inline void tss_setup_ist(struct tss_struct *tss)
1873 {
1874         /* Set up the per-CPU TSS IST stacks */
1875         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1876         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1877         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1878         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1879         /* Only mapped when SEV-ES is active */
1880         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1881 }
1882
1883 #else /* CONFIG_X86_64 */
1884
1885 static inline void setup_getcpu(int cpu) { }
1886
1887 static inline void ucode_cpu_init(int cpu)
1888 {
1889         show_ucode_info_early();
1890 }
1891
1892 static inline void tss_setup_ist(struct tss_struct *tss) { }
1893
1894 #endif /* !CONFIG_X86_64 */
1895
1896 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1897 {
1898         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1899
1900 #ifdef CONFIG_X86_IOPL_IOPERM
1901         tss->io_bitmap.prev_max = 0;
1902         tss->io_bitmap.prev_sequence = 0;
1903         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1904         /*
1905          * Invalidate the extra array entry past the end of the all
1906          * permission bitmap as required by the hardware.
1907          */
1908         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1909 #endif
1910 }
1911
1912 /*
1913  * Setup everything needed to handle exceptions from the IDT, including the IST
1914  * exceptions which use paranoid_entry().
1915  */
1916 void cpu_init_exception_handling(void)
1917 {
1918         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1919         int cpu = raw_smp_processor_id();
1920
1921         /* paranoid_entry() gets the CPU number from the GDT */
1922         setup_getcpu(cpu);
1923
1924         /* IST vectors need TSS to be set up. */
1925         tss_setup_ist(tss);
1926         tss_setup_io_bitmap(tss);
1927         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1928
1929         load_TR_desc();
1930
1931         /* Finally load the IDT */
1932         load_current_idt();
1933 }
1934
1935 /*
1936  * cpu_init() initializes state that is per-CPU. Some data is already
1937  * initialized (naturally) in the bootstrap process, such as the GDT
1938  * and IDT. We reload them nevertheless, this function acts as a
1939  * 'CPU state barrier', nothing should get across.
1940  */
1941 void cpu_init(void)
1942 {
1943         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1944         struct task_struct *cur = current;
1945         int cpu = raw_smp_processor_id();
1946
1947         wait_for_master_cpu(cpu);
1948
1949         ucode_cpu_init(cpu);
1950
1951 #ifdef CONFIG_NUMA
1952         if (this_cpu_read(numa_node) == 0 &&
1953             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1954                 set_numa_node(early_cpu_to_node(cpu));
1955 #endif
1956         setup_getcpu(cpu);
1957
1958         pr_debug("Initializing CPU#%d\n", cpu);
1959
1960         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1961             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1962                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1963
1964         /*
1965          * Initialize the per-CPU GDT with the boot GDT,
1966          * and set up the GDT descriptor:
1967          */
1968         switch_to_new_gdt(cpu);
1969         load_current_idt();
1970
1971         if (IS_ENABLED(CONFIG_X86_64)) {
1972                 loadsegment(fs, 0);
1973                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1974                 syscall_init();
1975
1976                 wrmsrl(MSR_FS_BASE, 0);
1977                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1978                 barrier();
1979
1980                 x2apic_setup();
1981         }
1982
1983         mmgrab(&init_mm);
1984         cur->active_mm = &init_mm;
1985         BUG_ON(cur->mm);
1986         initialize_tlbstate_and_flush();
1987         enter_lazy_tlb(&init_mm, cur);
1988
1989         /* Initialize the TSS. */
1990         tss_setup_ist(tss);
1991         tss_setup_io_bitmap(tss);
1992         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1993
1994         load_TR_desc();
1995         /*
1996          * sp0 points to the entry trampoline stack regardless of what task
1997          * is running.
1998          */
1999         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2000
2001         load_mm_ldt(&init_mm);
2002
2003         clear_all_debug_regs();
2004         dbg_restore_debug_regs();
2005
2006         doublefault_init_cpu_tss();
2007
2008         fpu__init_cpu();
2009
2010         if (is_uv_system())
2011                 uv_cpu_init();
2012
2013         load_fixmap_gdt(cpu);
2014 }
2015
2016 /*
2017  * The microcode loader calls this upon late microcode load to recheck features,
2018  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2019  * hotplug lock.
2020  */
2021 void microcode_check(void)
2022 {
2023         struct cpuinfo_x86 info;
2024
2025         perf_check_microcode();
2026
2027         /* Reload CPUID max function as it might've changed. */
2028         info.cpuid_level = cpuid_eax(0);
2029
2030         /*
2031          * Copy all capability leafs to pick up the synthetic ones so that
2032          * memcmp() below doesn't fail on that. The ones coming from CPUID will
2033          * get overwritten in get_cpu_cap().
2034          */
2035         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2036
2037         get_cpu_cap(&info);
2038
2039         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2040                 return;
2041
2042         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2043         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2044 }
2045
2046 /*
2047  * Invoked from core CPU hotplug code after hotplug operations
2048  */
2049 void arch_smt_update(void)
2050 {
2051         /* Handle the speculative execution misfeatures */
2052         cpu_bugs_smt_update();
2053         /* Check whether IPI broadcasting can be enabled */
2054         apic_smt_update();
2055 }