7e118660bbd9840538ab26f90e9a3fe3d768b8e4
[linux-2.6-microblaze.git] / arch / x86 / include / asm / pgtable.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_H
3 #define _ASM_X86_PGTABLE_H
4
5 #include <linux/mem_encrypt.h>
6 #include <asm/page.h>
7 #include <asm/pgtable_types.h>
8
9 /*
10  * Macro to mark a page protection value as UC-
11  */
12 #define pgprot_noncached(prot)                                          \
13         ((boot_cpu_data.x86 > 3)                                        \
14          ? (__pgprot(pgprot_val(prot) |                                 \
15                      cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)))     \
16          : (prot))
17
18 /*
19  * Macros to add or remove encryption attribute
20  */
21 #define pgprot_encrypted(prot)  __pgprot(__sme_set(pgprot_val(prot)))
22 #define pgprot_decrypted(prot)  __pgprot(__sme_clr(pgprot_val(prot)))
23
24 #ifndef __ASSEMBLY__
25 #include <asm/x86_init.h>
26 #include <asm/fpu/xstate.h>
27 #include <asm/fpu/api.h>
28
29 extern pgd_t early_top_pgt[PTRS_PER_PGD];
30 int __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
31
32 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm);
33 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm,
34                                    bool user);
35 void ptdump_walk_pgd_level_checkwx(void);
36 void ptdump_walk_user_pgd_level_checkwx(void);
37
38 #ifdef CONFIG_DEBUG_WX
39 #define debug_checkwx()         ptdump_walk_pgd_level_checkwx()
40 #define debug_checkwx_user()    ptdump_walk_user_pgd_level_checkwx()
41 #else
42 #define debug_checkwx()         do { } while (0)
43 #define debug_checkwx_user()    do { } while (0)
44 #endif
45
46 /*
47  * ZERO_PAGE is a global shared page that is always zero: used
48  * for zero-mapped memory areas etc..
49  */
50 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
51         __visible;
52 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page))
53
54 extern spinlock_t pgd_lock;
55 extern struct list_head pgd_list;
56
57 extern struct mm_struct *pgd_page_get_mm(struct page *page);
58
59 extern pmdval_t early_pmd_flags;
60
61 #ifdef CONFIG_PARAVIRT_XXL
62 #include <asm/paravirt.h>
63 #else  /* !CONFIG_PARAVIRT_XXL */
64 #define set_pte(ptep, pte)              native_set_pte(ptep, pte)
65 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
66
67 #define set_pte_atomic(ptep, pte)                                       \
68         native_set_pte_atomic(ptep, pte)
69
70 #define set_pmd(pmdp, pmd)              native_set_pmd(pmdp, pmd)
71
72 #ifndef __PAGETABLE_P4D_FOLDED
73 #define set_pgd(pgdp, pgd)              native_set_pgd(pgdp, pgd)
74 #define pgd_clear(pgd)                  (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0)
75 #endif
76
77 #ifndef set_p4d
78 # define set_p4d(p4dp, p4d)             native_set_p4d(p4dp, p4d)
79 #endif
80
81 #ifndef __PAGETABLE_PUD_FOLDED
82 #define p4d_clear(p4d)                  native_p4d_clear(p4d)
83 #endif
84
85 #ifndef set_pud
86 # define set_pud(pudp, pud)             native_set_pud(pudp, pud)
87 #endif
88
89 #ifndef __PAGETABLE_PUD_FOLDED
90 #define pud_clear(pud)                  native_pud_clear(pud)
91 #endif
92
93 #define pte_clear(mm, addr, ptep)       native_pte_clear(mm, addr, ptep)
94 #define pmd_clear(pmd)                  native_pmd_clear(pmd)
95
96 #define pgd_val(x)      native_pgd_val(x)
97 #define __pgd(x)        native_make_pgd(x)
98
99 #ifndef __PAGETABLE_P4D_FOLDED
100 #define p4d_val(x)      native_p4d_val(x)
101 #define __p4d(x)        native_make_p4d(x)
102 #endif
103
104 #ifndef __PAGETABLE_PUD_FOLDED
105 #define pud_val(x)      native_pud_val(x)
106 #define __pud(x)        native_make_pud(x)
107 #endif
108
109 #ifndef __PAGETABLE_PMD_FOLDED
110 #define pmd_val(x)      native_pmd_val(x)
111 #define __pmd(x)        native_make_pmd(x)
112 #endif
113
114 #define pte_val(x)      native_pte_val(x)
115 #define __pte(x)        native_make_pte(x)
116
117 #define arch_end_context_switch(prev)   do {} while(0)
118 #endif  /* CONFIG_PARAVIRT_XXL */
119
120 /*
121  * The following only work if pte_present() is true.
122  * Undefined behaviour if not..
123  */
124 static inline int pte_dirty(pte_t pte)
125 {
126         return pte_flags(pte) & _PAGE_DIRTY;
127 }
128
129
130 static inline u32 read_pkru(void)
131 {
132         if (boot_cpu_has(X86_FEATURE_OSPKE))
133                 return rdpkru();
134         return 0;
135 }
136
137 static inline void write_pkru(u32 pkru)
138 {
139         struct pkru_state *pk;
140
141         if (!boot_cpu_has(X86_FEATURE_OSPKE))
142                 return;
143
144         pk = get_xsave_addr(&current->thread.fpu.state.xsave, XFEATURE_PKRU);
145
146         /*
147          * The PKRU value in xstate needs to be in sync with the value that is
148          * written to the CPU. The FPU restore on return to userland would
149          * otherwise load the previous value again.
150          */
151         fpregs_lock();
152         if (pk)
153                 pk->pkru = pkru;
154         __write_pkru(pkru);
155         fpregs_unlock();
156 }
157
158 static inline int pte_young(pte_t pte)
159 {
160         return pte_flags(pte) & _PAGE_ACCESSED;
161 }
162
163 static inline int pmd_dirty(pmd_t pmd)
164 {
165         return pmd_flags(pmd) & _PAGE_DIRTY;
166 }
167
168 static inline int pmd_young(pmd_t pmd)
169 {
170         return pmd_flags(pmd) & _PAGE_ACCESSED;
171 }
172
173 static inline int pud_dirty(pud_t pud)
174 {
175         return pud_flags(pud) & _PAGE_DIRTY;
176 }
177
178 static inline int pud_young(pud_t pud)
179 {
180         return pud_flags(pud) & _PAGE_ACCESSED;
181 }
182
183 static inline int pte_write(pte_t pte)
184 {
185         return pte_flags(pte) & _PAGE_RW;
186 }
187
188 static inline int pte_huge(pte_t pte)
189 {
190         return pte_flags(pte) & _PAGE_PSE;
191 }
192
193 static inline int pte_global(pte_t pte)
194 {
195         return pte_flags(pte) & _PAGE_GLOBAL;
196 }
197
198 static inline int pte_exec(pte_t pte)
199 {
200         return !(pte_flags(pte) & _PAGE_NX);
201 }
202
203 static inline int pte_special(pte_t pte)
204 {
205         return pte_flags(pte) & _PAGE_SPECIAL;
206 }
207
208 /* Entries that were set to PROT_NONE are inverted */
209
210 static inline u64 protnone_mask(u64 val);
211
212 static inline unsigned long pte_pfn(pte_t pte)
213 {
214         phys_addr_t pfn = pte_val(pte);
215         pfn ^= protnone_mask(pfn);
216         return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT;
217 }
218
219 static inline unsigned long pmd_pfn(pmd_t pmd)
220 {
221         phys_addr_t pfn = pmd_val(pmd);
222         pfn ^= protnone_mask(pfn);
223         return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
224 }
225
226 static inline unsigned long pud_pfn(pud_t pud)
227 {
228         phys_addr_t pfn = pud_val(pud);
229         pfn ^= protnone_mask(pfn);
230         return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT;
231 }
232
233 static inline unsigned long p4d_pfn(p4d_t p4d)
234 {
235         return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
236 }
237
238 static inline unsigned long pgd_pfn(pgd_t pgd)
239 {
240         return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
241 }
242
243 #define p4d_leaf        p4d_large
244 static inline int p4d_large(p4d_t p4d)
245 {
246         /* No 512 GiB pages yet */
247         return 0;
248 }
249
250 #define pte_page(pte)   pfn_to_page(pte_pfn(pte))
251
252 #define pmd_leaf        pmd_large
253 static inline int pmd_large(pmd_t pte)
254 {
255         return pmd_flags(pte) & _PAGE_PSE;
256 }
257
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 static inline int pmd_trans_huge(pmd_t pmd)
260 {
261         return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
262 }
263
264 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
265 static inline int pud_trans_huge(pud_t pud)
266 {
267         return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
268 }
269 #endif
270
271 #define has_transparent_hugepage has_transparent_hugepage
272 static inline int has_transparent_hugepage(void)
273 {
274         return boot_cpu_has(X86_FEATURE_PSE);
275 }
276
277 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
278 static inline int pmd_devmap(pmd_t pmd)
279 {
280         return !!(pmd_val(pmd) & _PAGE_DEVMAP);
281 }
282
283 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
284 static inline int pud_devmap(pud_t pud)
285 {
286         return !!(pud_val(pud) & _PAGE_DEVMAP);
287 }
288 #else
289 static inline int pud_devmap(pud_t pud)
290 {
291         return 0;
292 }
293 #endif
294
295 static inline int pgd_devmap(pgd_t pgd)
296 {
297         return 0;
298 }
299 #endif
300 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
301
302 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
303 {
304         pteval_t v = native_pte_val(pte);
305
306         return native_make_pte(v | set);
307 }
308
309 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
310 {
311         pteval_t v = native_pte_val(pte);
312
313         return native_make_pte(v & ~clear);
314 }
315
316 static inline pte_t pte_mkclean(pte_t pte)
317 {
318         return pte_clear_flags(pte, _PAGE_DIRTY);
319 }
320
321 static inline pte_t pte_mkold(pte_t pte)
322 {
323         return pte_clear_flags(pte, _PAGE_ACCESSED);
324 }
325
326 static inline pte_t pte_wrprotect(pte_t pte)
327 {
328         return pte_clear_flags(pte, _PAGE_RW);
329 }
330
331 static inline pte_t pte_mkexec(pte_t pte)
332 {
333         return pte_clear_flags(pte, _PAGE_NX);
334 }
335
336 static inline pte_t pte_mkdirty(pte_t pte)
337 {
338         return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
339 }
340
341 static inline pte_t pte_mkyoung(pte_t pte)
342 {
343         return pte_set_flags(pte, _PAGE_ACCESSED);
344 }
345
346 static inline pte_t pte_mkwrite(pte_t pte)
347 {
348         return pte_set_flags(pte, _PAGE_RW);
349 }
350
351 static inline pte_t pte_mkhuge(pte_t pte)
352 {
353         return pte_set_flags(pte, _PAGE_PSE);
354 }
355
356 static inline pte_t pte_clrhuge(pte_t pte)
357 {
358         return pte_clear_flags(pte, _PAGE_PSE);
359 }
360
361 static inline pte_t pte_mkglobal(pte_t pte)
362 {
363         return pte_set_flags(pte, _PAGE_GLOBAL);
364 }
365
366 static inline pte_t pte_clrglobal(pte_t pte)
367 {
368         return pte_clear_flags(pte, _PAGE_GLOBAL);
369 }
370
371 static inline pte_t pte_mkspecial(pte_t pte)
372 {
373         return pte_set_flags(pte, _PAGE_SPECIAL);
374 }
375
376 static inline pte_t pte_mkdevmap(pte_t pte)
377 {
378         return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
379 }
380
381 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
382 {
383         pmdval_t v = native_pmd_val(pmd);
384
385         return native_make_pmd(v | set);
386 }
387
388 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
389 {
390         pmdval_t v = native_pmd_val(pmd);
391
392         return native_make_pmd(v & ~clear);
393 }
394
395 static inline pmd_t pmd_mkold(pmd_t pmd)
396 {
397         return pmd_clear_flags(pmd, _PAGE_ACCESSED);
398 }
399
400 static inline pmd_t pmd_mkclean(pmd_t pmd)
401 {
402         return pmd_clear_flags(pmd, _PAGE_DIRTY);
403 }
404
405 static inline pmd_t pmd_wrprotect(pmd_t pmd)
406 {
407         return pmd_clear_flags(pmd, _PAGE_RW);
408 }
409
410 static inline pmd_t pmd_mkdirty(pmd_t pmd)
411 {
412         return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
413 }
414
415 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
416 {
417         return pmd_set_flags(pmd, _PAGE_DEVMAP);
418 }
419
420 static inline pmd_t pmd_mkhuge(pmd_t pmd)
421 {
422         return pmd_set_flags(pmd, _PAGE_PSE);
423 }
424
425 static inline pmd_t pmd_mkyoung(pmd_t pmd)
426 {
427         return pmd_set_flags(pmd, _PAGE_ACCESSED);
428 }
429
430 static inline pmd_t pmd_mkwrite(pmd_t pmd)
431 {
432         return pmd_set_flags(pmd, _PAGE_RW);
433 }
434
435 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
436 {
437         pudval_t v = native_pud_val(pud);
438
439         return native_make_pud(v | set);
440 }
441
442 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
443 {
444         pudval_t v = native_pud_val(pud);
445
446         return native_make_pud(v & ~clear);
447 }
448
449 static inline pud_t pud_mkold(pud_t pud)
450 {
451         return pud_clear_flags(pud, _PAGE_ACCESSED);
452 }
453
454 static inline pud_t pud_mkclean(pud_t pud)
455 {
456         return pud_clear_flags(pud, _PAGE_DIRTY);
457 }
458
459 static inline pud_t pud_wrprotect(pud_t pud)
460 {
461         return pud_clear_flags(pud, _PAGE_RW);
462 }
463
464 static inline pud_t pud_mkdirty(pud_t pud)
465 {
466         return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
467 }
468
469 static inline pud_t pud_mkdevmap(pud_t pud)
470 {
471         return pud_set_flags(pud, _PAGE_DEVMAP);
472 }
473
474 static inline pud_t pud_mkhuge(pud_t pud)
475 {
476         return pud_set_flags(pud, _PAGE_PSE);
477 }
478
479 static inline pud_t pud_mkyoung(pud_t pud)
480 {
481         return pud_set_flags(pud, _PAGE_ACCESSED);
482 }
483
484 static inline pud_t pud_mkwrite(pud_t pud)
485 {
486         return pud_set_flags(pud, _PAGE_RW);
487 }
488
489 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
490 static inline int pte_soft_dirty(pte_t pte)
491 {
492         return pte_flags(pte) & _PAGE_SOFT_DIRTY;
493 }
494
495 static inline int pmd_soft_dirty(pmd_t pmd)
496 {
497         return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
498 }
499
500 static inline int pud_soft_dirty(pud_t pud)
501 {
502         return pud_flags(pud) & _PAGE_SOFT_DIRTY;
503 }
504
505 static inline pte_t pte_mksoft_dirty(pte_t pte)
506 {
507         return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
508 }
509
510 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
511 {
512         return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
513 }
514
515 static inline pud_t pud_mksoft_dirty(pud_t pud)
516 {
517         return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
518 }
519
520 static inline pte_t pte_clear_soft_dirty(pte_t pte)
521 {
522         return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
523 }
524
525 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
526 {
527         return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
528 }
529
530 static inline pud_t pud_clear_soft_dirty(pud_t pud)
531 {
532         return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
533 }
534
535 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
536
537 /*
538  * Mask out unsupported bits in a present pgprot.  Non-present pgprots
539  * can use those bits for other purposes, so leave them be.
540  */
541 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
542 {
543         pgprotval_t protval = pgprot_val(pgprot);
544
545         if (protval & _PAGE_PRESENT)
546                 protval &= __supported_pte_mask;
547
548         return protval;
549 }
550
551 static inline pgprotval_t check_pgprot(pgprot_t pgprot)
552 {
553         pgprotval_t massaged_val = massage_pgprot(pgprot);
554
555         /* mmdebug.h can not be included here because of dependencies */
556 #ifdef CONFIG_DEBUG_VM
557         WARN_ONCE(pgprot_val(pgprot) != massaged_val,
558                   "attempted to set unsupported pgprot: %016llx "
559                   "bits: %016llx supported: %016llx\n",
560                   (u64)pgprot_val(pgprot),
561                   (u64)pgprot_val(pgprot) ^ massaged_val,
562                   (u64)__supported_pte_mask);
563 #endif
564
565         return massaged_val;
566 }
567
568 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
569 {
570         phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
571         pfn ^= protnone_mask(pgprot_val(pgprot));
572         pfn &= PTE_PFN_MASK;
573         return __pte(pfn | check_pgprot(pgprot));
574 }
575
576 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
577 {
578         phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
579         pfn ^= protnone_mask(pgprot_val(pgprot));
580         pfn &= PHYSICAL_PMD_PAGE_MASK;
581         return __pmd(pfn | check_pgprot(pgprot));
582 }
583
584 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
585 {
586         phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
587         pfn ^= protnone_mask(pgprot_val(pgprot));
588         pfn &= PHYSICAL_PUD_PAGE_MASK;
589         return __pud(pfn | check_pgprot(pgprot));
590 }
591
592 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
593 {
594         return pfn_pmd(pmd_pfn(pmd),
595                       __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
596 }
597
598 static inline pud_t pud_mknotpresent(pud_t pud)
599 {
600         return pfn_pud(pud_pfn(pud),
601               __pgprot(pud_flags(pud) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
602 }
603
604 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask);
605
606 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
607 {
608         pteval_t val = pte_val(pte), oldval = val;
609
610         /*
611          * Chop off the NX bit (if present), and add the NX portion of
612          * the newprot (if present):
613          */
614         val &= _PAGE_CHG_MASK;
615         val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK;
616         val = flip_protnone_guard(oldval, val, PTE_PFN_MASK);
617         return __pte(val);
618 }
619
620 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
621 {
622         pmdval_t val = pmd_val(pmd), oldval = val;
623
624         val &= _HPAGE_CHG_MASK;
625         val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
626         val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK);
627         return __pmd(val);
628 }
629
630 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
631 #define pgprot_modify pgprot_modify
632 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
633 {
634         pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
635         pgprotval_t addbits = pgprot_val(newprot);
636         return __pgprot(preservebits | addbits);
637 }
638
639 #define pte_pgprot(x) __pgprot(pte_flags(x))
640 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
641 #define pud_pgprot(x) __pgprot(pud_flags(x))
642 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
643
644 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
645
646 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
647 {
648         return canon_pgprot(prot);
649 }
650
651 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
652                                          enum page_cache_mode pcm,
653                                          enum page_cache_mode new_pcm)
654 {
655         /*
656          * PAT type is always WB for untracked ranges, so no need to check.
657          */
658         if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
659                 return 1;
660
661         /*
662          * Certain new memtypes are not allowed with certain
663          * requested memtype:
664          * - request is uncached, return cannot be write-back
665          * - request is write-combine, return cannot be write-back
666          * - request is write-through, return cannot be write-back
667          * - request is write-through, return cannot be write-combine
668          */
669         if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
670              new_pcm == _PAGE_CACHE_MODE_WB) ||
671             (pcm == _PAGE_CACHE_MODE_WC &&
672              new_pcm == _PAGE_CACHE_MODE_WB) ||
673             (pcm == _PAGE_CACHE_MODE_WT &&
674              new_pcm == _PAGE_CACHE_MODE_WB) ||
675             (pcm == _PAGE_CACHE_MODE_WT &&
676              new_pcm == _PAGE_CACHE_MODE_WC)) {
677                 return 0;
678         }
679
680         return 1;
681 }
682
683 pmd_t *populate_extra_pmd(unsigned long vaddr);
684 pte_t *populate_extra_pte(unsigned long vaddr);
685
686 #ifdef CONFIG_PAGE_TABLE_ISOLATION
687 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd);
688
689 /*
690  * Take a PGD location (pgdp) and a pgd value that needs to be set there.
691  * Populates the user and returns the resulting PGD that must be set in
692  * the kernel copy of the page tables.
693  */
694 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
695 {
696         if (!static_cpu_has(X86_FEATURE_PTI))
697                 return pgd;
698         return __pti_set_user_pgtbl(pgdp, pgd);
699 }
700 #else   /* CONFIG_PAGE_TABLE_ISOLATION */
701 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
702 {
703         return pgd;
704 }
705 #endif  /* CONFIG_PAGE_TABLE_ISOLATION */
706
707 #endif  /* __ASSEMBLY__ */
708
709
710 #ifdef CONFIG_X86_32
711 # include <asm/pgtable_32.h>
712 #else
713 # include <asm/pgtable_64.h>
714 #endif
715
716 #ifndef __ASSEMBLY__
717 #include <linux/mm_types.h>
718 #include <linux/mmdebug.h>
719 #include <linux/log2.h>
720 #include <asm/fixmap.h>
721
722 static inline int pte_none(pte_t pte)
723 {
724         return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
725 }
726
727 #define __HAVE_ARCH_PTE_SAME
728 static inline int pte_same(pte_t a, pte_t b)
729 {
730         return a.pte == b.pte;
731 }
732
733 static inline int pte_present(pte_t a)
734 {
735         return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
736 }
737
738 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
739 static inline int pte_devmap(pte_t a)
740 {
741         return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
742 }
743 #endif
744
745 #define pte_accessible pte_accessible
746 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
747 {
748         if (pte_flags(a) & _PAGE_PRESENT)
749                 return true;
750
751         if ((pte_flags(a) & _PAGE_PROTNONE) &&
752                         mm_tlb_flush_pending(mm))
753                 return true;
754
755         return false;
756 }
757
758 static inline int pmd_present(pmd_t pmd)
759 {
760         /*
761          * Checking for _PAGE_PSE is needed too because
762          * split_huge_page will temporarily clear the present bit (but
763          * the _PAGE_PSE flag will remain set at all times while the
764          * _PAGE_PRESENT bit is clear).
765          */
766         return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
767 }
768
769 #ifdef CONFIG_NUMA_BALANCING
770 /*
771  * These work without NUMA balancing but the kernel does not care. See the
772  * comment in include/asm-generic/pgtable.h
773  */
774 static inline int pte_protnone(pte_t pte)
775 {
776         return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
777                 == _PAGE_PROTNONE;
778 }
779
780 static inline int pmd_protnone(pmd_t pmd)
781 {
782         return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
783                 == _PAGE_PROTNONE;
784 }
785 #endif /* CONFIG_NUMA_BALANCING */
786
787 static inline int pmd_none(pmd_t pmd)
788 {
789         /* Only check low word on 32-bit platforms, since it might be
790            out of sync with upper half. */
791         unsigned long val = native_pmd_val(pmd);
792         return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
793 }
794
795 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
796 {
797         return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
798 }
799
800 /*
801  * Currently stuck as a macro due to indirect forward reference to
802  * linux/mmzone.h's __section_mem_map_addr() definition:
803  */
804 #define pmd_page(pmd)   pfn_to_page(pmd_pfn(pmd))
805
806 /*
807  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
808  *
809  * this macro returns the index of the entry in the pmd page which would
810  * control the given virtual address
811  */
812 static inline unsigned long pmd_index(unsigned long address)
813 {
814         return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
815 }
816
817 /*
818  * Conversion functions: convert a page and protection to a page entry,
819  * and a page entry and page directory to the page they refer to.
820  *
821  * (Currently stuck as a macro because of indirect forward reference
822  * to linux/mm.h:page_to_nid())
823  */
824 #define mk_pte(page, pgprot)   pfn_pte(page_to_pfn(page), (pgprot))
825
826 /*
827  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
828  *
829  * this function returns the index of the entry in the pte page which would
830  * control the given virtual address
831  */
832 static inline unsigned long pte_index(unsigned long address)
833 {
834         return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
835 }
836
837 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
838 {
839         return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
840 }
841
842 static inline int pmd_bad(pmd_t pmd)
843 {
844         return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
845 }
846
847 static inline unsigned long pages_to_mb(unsigned long npg)
848 {
849         return npg >> (20 - PAGE_SHIFT);
850 }
851
852 #if CONFIG_PGTABLE_LEVELS > 2
853 static inline int pud_none(pud_t pud)
854 {
855         return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
856 }
857
858 static inline int pud_present(pud_t pud)
859 {
860         return pud_flags(pud) & _PAGE_PRESENT;
861 }
862
863 static inline unsigned long pud_page_vaddr(pud_t pud)
864 {
865         return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud));
866 }
867
868 /*
869  * Currently stuck as a macro due to indirect forward reference to
870  * linux/mmzone.h's __section_mem_map_addr() definition:
871  */
872 #define pud_page(pud)   pfn_to_page(pud_pfn(pud))
873
874 /* Find an entry in the second-level page table.. */
875 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
876 {
877         return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
878 }
879
880 #define pud_leaf        pud_large
881 static inline int pud_large(pud_t pud)
882 {
883         return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
884                 (_PAGE_PSE | _PAGE_PRESENT);
885 }
886
887 static inline int pud_bad(pud_t pud)
888 {
889         return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
890 }
891 #else
892 #define pud_leaf        pud_large
893 static inline int pud_large(pud_t pud)
894 {
895         return 0;
896 }
897 #endif  /* CONFIG_PGTABLE_LEVELS > 2 */
898
899 static inline unsigned long pud_index(unsigned long address)
900 {
901         return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
902 }
903
904 #if CONFIG_PGTABLE_LEVELS > 3
905 static inline int p4d_none(p4d_t p4d)
906 {
907         return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
908 }
909
910 static inline int p4d_present(p4d_t p4d)
911 {
912         return p4d_flags(p4d) & _PAGE_PRESENT;
913 }
914
915 static inline unsigned long p4d_page_vaddr(p4d_t p4d)
916 {
917         return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
918 }
919
920 /*
921  * Currently stuck as a macro due to indirect forward reference to
922  * linux/mmzone.h's __section_mem_map_addr() definition:
923  */
924 #define p4d_page(p4d)   pfn_to_page(p4d_pfn(p4d))
925
926 /* Find an entry in the third-level page table.. */
927 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
928 {
929         return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
930 }
931
932 static inline int p4d_bad(p4d_t p4d)
933 {
934         unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
935
936         if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
937                 ignore_flags |= _PAGE_NX;
938
939         return (p4d_flags(p4d) & ~ignore_flags) != 0;
940 }
941 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
942
943 static inline unsigned long p4d_index(unsigned long address)
944 {
945         return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
946 }
947
948 #if CONFIG_PGTABLE_LEVELS > 4
949 static inline int pgd_present(pgd_t pgd)
950 {
951         if (!pgtable_l5_enabled())
952                 return 1;
953         return pgd_flags(pgd) & _PAGE_PRESENT;
954 }
955
956 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
957 {
958         return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
959 }
960
961 /*
962  * Currently stuck as a macro due to indirect forward reference to
963  * linux/mmzone.h's __section_mem_map_addr() definition:
964  */
965 #define pgd_page(pgd)   pfn_to_page(pgd_pfn(pgd))
966
967 /* to find an entry in a page-table-directory. */
968 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
969 {
970         if (!pgtable_l5_enabled())
971                 return (p4d_t *)pgd;
972         return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
973 }
974
975 static inline int pgd_bad(pgd_t pgd)
976 {
977         unsigned long ignore_flags = _PAGE_USER;
978
979         if (!pgtable_l5_enabled())
980                 return 0;
981
982         if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
983                 ignore_flags |= _PAGE_NX;
984
985         return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
986 }
987
988 static inline int pgd_none(pgd_t pgd)
989 {
990         if (!pgtable_l5_enabled())
991                 return 0;
992         /*
993          * There is no need to do a workaround for the KNL stray
994          * A/D bit erratum here.  PGDs only point to page tables
995          * except on 32-bit non-PAE which is not supported on
996          * KNL.
997          */
998         return !native_pgd_val(pgd);
999 }
1000 #endif  /* CONFIG_PGTABLE_LEVELS > 4 */
1001
1002 #endif  /* __ASSEMBLY__ */
1003
1004 /*
1005  * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
1006  *
1007  * this macro returns the index of the entry in the pgd page which would
1008  * control the given virtual address
1009  */
1010 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
1011
1012 /*
1013  * pgd_offset() returns a (pgd_t *)
1014  * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
1015  */
1016 #define pgd_offset_pgd(pgd, address) (pgd + pgd_index((address)))
1017 /*
1018  * a shortcut to get a pgd_t in a given mm
1019  */
1020 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
1021 /*
1022  * a shortcut which implies the use of the kernel's pgd, instead
1023  * of a process's
1024  */
1025 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
1026
1027
1028 #define KERNEL_PGD_BOUNDARY     pgd_index(PAGE_OFFSET)
1029 #define KERNEL_PGD_PTRS         (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
1030
1031 #ifndef __ASSEMBLY__
1032
1033 extern int direct_gbpages;
1034 void init_mem_mapping(void);
1035 void early_alloc_pgt_buf(void);
1036 extern void memblock_find_dma_reserve(void);
1037
1038 #ifdef CONFIG_X86_64
1039 /* Realmode trampoline initialization. */
1040 extern pgd_t trampoline_pgd_entry;
1041 static inline void __meminit init_trampoline_default(void)
1042 {
1043         /* Default trampoline pgd value */
1044         trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
1045 }
1046
1047 void __init poking_init(void);
1048
1049 # ifdef CONFIG_RANDOMIZE_MEMORY
1050 void __meminit init_trampoline(void);
1051 # else
1052 #  define init_trampoline init_trampoline_default
1053 # endif
1054 #else
1055 static inline void init_trampoline(void) { }
1056 #endif
1057
1058 /* local pte updates need not use xchg for locking */
1059 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
1060 {
1061         pte_t res = *ptep;
1062
1063         /* Pure native function needs no input for mm, addr */
1064         native_pte_clear(NULL, 0, ptep);
1065         return res;
1066 }
1067
1068 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
1069 {
1070         pmd_t res = *pmdp;
1071
1072         native_pmd_clear(pmdp);
1073         return res;
1074 }
1075
1076 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
1077 {
1078         pud_t res = *pudp;
1079
1080         native_pud_clear(pudp);
1081         return res;
1082 }
1083
1084 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
1085                                      pte_t *ptep , pte_t pte)
1086 {
1087         native_set_pte(ptep, pte);
1088 }
1089
1090 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1091                               pmd_t *pmdp, pmd_t pmd)
1092 {
1093         set_pmd(pmdp, pmd);
1094 }
1095
1096 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
1097                               pud_t *pudp, pud_t pud)
1098 {
1099         native_set_pud(pudp, pud);
1100 }
1101
1102 /*
1103  * We only update the dirty/accessed state if we set
1104  * the dirty bit by hand in the kernel, since the hardware
1105  * will do the accessed bit for us, and we don't want to
1106  * race with other CPU's that might be updating the dirty
1107  * bit at the same time.
1108  */
1109 struct vm_area_struct;
1110
1111 #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1112 extern int ptep_set_access_flags(struct vm_area_struct *vma,
1113                                  unsigned long address, pte_t *ptep,
1114                                  pte_t entry, int dirty);
1115
1116 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1117 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1118                                      unsigned long addr, pte_t *ptep);
1119
1120 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1121 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1122                                   unsigned long address, pte_t *ptep);
1123
1124 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1125 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1126                                        pte_t *ptep)
1127 {
1128         pte_t pte = native_ptep_get_and_clear(ptep);
1129         return pte;
1130 }
1131
1132 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1133 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1134                                             unsigned long addr, pte_t *ptep,
1135                                             int full)
1136 {
1137         pte_t pte;
1138         if (full) {
1139                 /*
1140                  * Full address destruction in progress; paravirt does not
1141                  * care about updates and native needs no locking
1142                  */
1143                 pte = native_local_ptep_get_and_clear(ptep);
1144         } else {
1145                 pte = ptep_get_and_clear(mm, addr, ptep);
1146         }
1147         return pte;
1148 }
1149
1150 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1151 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1152                                       unsigned long addr, pte_t *ptep)
1153 {
1154         clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
1155 }
1156
1157 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
1158
1159 #define mk_pmd(page, pgprot)   pfn_pmd(page_to_pfn(page), (pgprot))
1160
1161 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1162 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1163                                  unsigned long address, pmd_t *pmdp,
1164                                  pmd_t entry, int dirty);
1165 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1166                                  unsigned long address, pud_t *pudp,
1167                                  pud_t entry, int dirty);
1168
1169 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1170 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1171                                      unsigned long addr, pmd_t *pmdp);
1172 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1173                                      unsigned long addr, pud_t *pudp);
1174
1175 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1176 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1177                                   unsigned long address, pmd_t *pmdp);
1178
1179
1180 #define pmd_write pmd_write
1181 static inline int pmd_write(pmd_t pmd)
1182 {
1183         return pmd_flags(pmd) & _PAGE_RW;
1184 }
1185
1186 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1187 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1188                                        pmd_t *pmdp)
1189 {
1190         return native_pmdp_get_and_clear(pmdp);
1191 }
1192
1193 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1194 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1195                                         unsigned long addr, pud_t *pudp)
1196 {
1197         return native_pudp_get_and_clear(pudp);
1198 }
1199
1200 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1201 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1202                                       unsigned long addr, pmd_t *pmdp)
1203 {
1204         clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
1205 }
1206
1207 #define pud_write pud_write
1208 static inline int pud_write(pud_t pud)
1209 {
1210         return pud_flags(pud) & _PAGE_RW;
1211 }
1212
1213 #ifndef pmdp_establish
1214 #define pmdp_establish pmdp_establish
1215 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1216                 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1217 {
1218         if (IS_ENABLED(CONFIG_SMP)) {
1219                 return xchg(pmdp, pmd);
1220         } else {
1221                 pmd_t old = *pmdp;
1222                 WRITE_ONCE(*pmdp, pmd);
1223                 return old;
1224         }
1225 }
1226 #endif
1227 /*
1228  * Page table pages are page-aligned.  The lower half of the top
1229  * level is used for userspace and the top half for the kernel.
1230  *
1231  * Returns true for parts of the PGD that map userspace and
1232  * false for the parts that map the kernel.
1233  */
1234 static inline bool pgdp_maps_userspace(void *__ptr)
1235 {
1236         unsigned long ptr = (unsigned long)__ptr;
1237
1238         return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START);
1239 }
1240
1241 #define pgd_leaf        pgd_large
1242 static inline int pgd_large(pgd_t pgd) { return 0; }
1243
1244 #ifdef CONFIG_PAGE_TABLE_ISOLATION
1245 /*
1246  * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages
1247  * (8k-aligned and 8k in size).  The kernel one is at the beginning 4k and
1248  * the user one is in the last 4k.  To switch between them, you
1249  * just need to flip the 12th bit in their addresses.
1250  */
1251 #define PTI_PGTABLE_SWITCH_BIT  PAGE_SHIFT
1252
1253 /*
1254  * This generates better code than the inline assembly in
1255  * __set_bit().
1256  */
1257 static inline void *ptr_set_bit(void *ptr, int bit)
1258 {
1259         unsigned long __ptr = (unsigned long)ptr;
1260
1261         __ptr |= BIT(bit);
1262         return (void *)__ptr;
1263 }
1264 static inline void *ptr_clear_bit(void *ptr, int bit)
1265 {
1266         unsigned long __ptr = (unsigned long)ptr;
1267
1268         __ptr &= ~BIT(bit);
1269         return (void *)__ptr;
1270 }
1271
1272 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp)
1273 {
1274         return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1275 }
1276
1277 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp)
1278 {
1279         return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1280 }
1281
1282 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp)
1283 {
1284         return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1285 }
1286
1287 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp)
1288 {
1289         return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1290 }
1291 #endif /* CONFIG_PAGE_TABLE_ISOLATION */
1292
1293 /*
1294  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1295  *
1296  *  dst - pointer to pgd range anwhere on a pgd page
1297  *  src - ""
1298  *  count - the number of pgds to copy.
1299  *
1300  * dst and src can be on the same page, but the range must not overlap,
1301  * and must not cross a page boundary.
1302  */
1303 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1304 {
1305         memcpy(dst, src, count * sizeof(pgd_t));
1306 #ifdef CONFIG_PAGE_TABLE_ISOLATION
1307         if (!static_cpu_has(X86_FEATURE_PTI))
1308                 return;
1309         /* Clone the user space pgd as well */
1310         memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
1311                count * sizeof(pgd_t));
1312 #endif
1313 }
1314
1315 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
1316 static inline int page_level_shift(enum pg_level level)
1317 {
1318         return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1319 }
1320 static inline unsigned long page_level_size(enum pg_level level)
1321 {
1322         return 1UL << page_level_shift(level);
1323 }
1324 static inline unsigned long page_level_mask(enum pg_level level)
1325 {
1326         return ~(page_level_size(level) - 1);
1327 }
1328
1329 /*
1330  * The x86 doesn't have any external MMU info: the kernel page
1331  * tables contain all the necessary information.
1332  */
1333 static inline void update_mmu_cache(struct vm_area_struct *vma,
1334                 unsigned long addr, pte_t *ptep)
1335 {
1336 }
1337 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1338                 unsigned long addr, pmd_t *pmd)
1339 {
1340 }
1341 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1342                 unsigned long addr, pud_t *pud)
1343 {
1344 }
1345
1346 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1347 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1348 {
1349         return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1350 }
1351
1352 static inline int pte_swp_soft_dirty(pte_t pte)
1353 {
1354         return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1355 }
1356
1357 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1358 {
1359         return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1360 }
1361
1362 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1363 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1364 {
1365         return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1366 }
1367
1368 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1369 {
1370         return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1371 }
1372
1373 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1374 {
1375         return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1376 }
1377 #endif
1378 #endif
1379
1380 #define PKRU_AD_BIT 0x1
1381 #define PKRU_WD_BIT 0x2
1382 #define PKRU_BITS_PER_PKEY 2
1383
1384 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1385 extern u32 init_pkru_value;
1386 #else
1387 #define init_pkru_value 0
1388 #endif
1389
1390 static inline bool __pkru_allows_read(u32 pkru, u16 pkey)
1391 {
1392         int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1393         return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits));
1394 }
1395
1396 static inline bool __pkru_allows_write(u32 pkru, u16 pkey)
1397 {
1398         int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1399         /*
1400          * Access-disable disables writes too so we need to check
1401          * both bits here.
1402          */
1403         return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits));
1404 }
1405
1406 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1407 {
1408 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1409         /* ifdef to avoid doing 59-bit shift on 32-bit values */
1410         return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1411 #else
1412         return 0;
1413 #endif
1414 }
1415
1416 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1417 {
1418         u32 pkru = read_pkru();
1419
1420         if (!__pkru_allows_read(pkru, pkey))
1421                 return false;
1422         if (write && !__pkru_allows_write(pkru, pkey))
1423                 return false;
1424
1425         return true;
1426 }
1427
1428 /*
1429  * 'pteval' can come from a PTE, PMD or PUD.  We only check
1430  * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1431  * same value on all 3 types.
1432  */
1433 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1434 {
1435         unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1436
1437         if (write)
1438                 need_pte_bits |= _PAGE_RW;
1439
1440         if ((pteval & need_pte_bits) != need_pte_bits)
1441                 return 0;
1442
1443         return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1444 }
1445
1446 #define pte_access_permitted pte_access_permitted
1447 static inline bool pte_access_permitted(pte_t pte, bool write)
1448 {
1449         return __pte_access_permitted(pte_val(pte), write);
1450 }
1451
1452 #define pmd_access_permitted pmd_access_permitted
1453 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1454 {
1455         return __pte_access_permitted(pmd_val(pmd), write);
1456 }
1457
1458 #define pud_access_permitted pud_access_permitted
1459 static inline bool pud_access_permitted(pud_t pud, bool write)
1460 {
1461         return __pte_access_permitted(pud_val(pud), write);
1462 }
1463
1464 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1
1465 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot);
1466
1467 static inline bool arch_has_pfn_modify_check(void)
1468 {
1469         return boot_cpu_has_bug(X86_BUG_L1TF);
1470 }
1471
1472 #define arch_faults_on_old_pte arch_faults_on_old_pte
1473 static inline bool arch_faults_on_old_pte(void)
1474 {
1475         return false;
1476 }
1477
1478 #include <asm-generic/pgtable.h>
1479 #endif  /* __ASSEMBLY__ */
1480
1481 #endif /* _ASM_X86_PGTABLE_H */