Merge tag 's390-5.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-2.6-microblaze.git] / arch / x86 / events / intel / pt.c
1 /*
2  * Intel(R) Processor Trace PMU driver for perf
3  * Copyright (c) 2013-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * Intel PT is specified in the Intel Architecture Instruction Set Extensions
15  * Programming Reference:
16  * http://software.intel.com/en-us/intel-isa-extensions
17  */
18
19 #undef DEBUG
20
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
23 #include <linux/types.h>
24 #include <linux/slab.h>
25 #include <linux/device.h>
26
27 #include <asm/perf_event.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/intel_pt.h>
31 #include <asm/intel-family.h>
32
33 #include "../perf_event.h"
34 #include "pt.h"
35
36 static DEFINE_PER_CPU(struct pt, pt_ctx);
37
38 static struct pt_pmu pt_pmu;
39
40 /*
41  * Capabilities of Intel PT hardware, such as number of address bits or
42  * supported output schemes, are cached and exported to userspace as "caps"
43  * attribute group of pt pmu device
44  * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
45  * relevant bits together with intel_pt traces.
46  *
47  * These are necessary for both trace decoding (payloads_lip, contains address
48  * width encoded in IP-related packets), and event configuration (bitmasks with
49  * permitted values for certain bit fields).
50  */
51 #define PT_CAP(_n, _l, _r, _m)                                          \
52         [PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,        \
53                             .reg = _r, .mask = _m }
54
55 static struct pt_cap_desc {
56         const char      *name;
57         u32             leaf;
58         u8              reg;
59         u32             mask;
60 } pt_caps[] = {
61         PT_CAP(max_subleaf,             0, CPUID_EAX, 0xffffffff),
62         PT_CAP(cr3_filtering,           0, CPUID_EBX, BIT(0)),
63         PT_CAP(psb_cyc,                 0, CPUID_EBX, BIT(1)),
64         PT_CAP(ip_filtering,            0, CPUID_EBX, BIT(2)),
65         PT_CAP(mtc,                     0, CPUID_EBX, BIT(3)),
66         PT_CAP(ptwrite,                 0, CPUID_EBX, BIT(4)),
67         PT_CAP(power_event_trace,       0, CPUID_EBX, BIT(5)),
68         PT_CAP(topa_output,             0, CPUID_ECX, BIT(0)),
69         PT_CAP(topa_multiple_entries,   0, CPUID_ECX, BIT(1)),
70         PT_CAP(single_range_output,     0, CPUID_ECX, BIT(2)),
71         PT_CAP(output_subsys,           0, CPUID_ECX, BIT(3)),
72         PT_CAP(payloads_lip,            0, CPUID_ECX, BIT(31)),
73         PT_CAP(num_address_ranges,      1, CPUID_EAX, 0x3),
74         PT_CAP(mtc_periods,             1, CPUID_EAX, 0xffff0000),
75         PT_CAP(cycle_thresholds,        1, CPUID_EBX, 0xffff),
76         PT_CAP(psb_periods,             1, CPUID_EBX, 0xffff0000),
77 };
78
79 u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability)
80 {
81         struct pt_cap_desc *cd = &pt_caps[capability];
82         u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
83         unsigned int shift = __ffs(cd->mask);
84
85         return (c & cd->mask) >> shift;
86 }
87 EXPORT_SYMBOL_GPL(intel_pt_validate_cap);
88
89 u32 intel_pt_validate_hw_cap(enum pt_capabilities cap)
90 {
91         return intel_pt_validate_cap(pt_pmu.caps, cap);
92 }
93 EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap);
94
95 static ssize_t pt_cap_show(struct device *cdev,
96                            struct device_attribute *attr,
97                            char *buf)
98 {
99         struct dev_ext_attribute *ea =
100                 container_of(attr, struct dev_ext_attribute, attr);
101         enum pt_capabilities cap = (long)ea->var;
102
103         return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap));
104 }
105
106 static struct attribute_group pt_cap_group __ro_after_init = {
107         .name   = "caps",
108 };
109
110 PMU_FORMAT_ATTR(pt,             "config:0"      );
111 PMU_FORMAT_ATTR(cyc,            "config:1"      );
112 PMU_FORMAT_ATTR(pwr_evt,        "config:4"      );
113 PMU_FORMAT_ATTR(fup_on_ptw,     "config:5"      );
114 PMU_FORMAT_ATTR(mtc,            "config:9"      );
115 PMU_FORMAT_ATTR(tsc,            "config:10"     );
116 PMU_FORMAT_ATTR(noretcomp,      "config:11"     );
117 PMU_FORMAT_ATTR(ptw,            "config:12"     );
118 PMU_FORMAT_ATTR(branch,         "config:13"     );
119 PMU_FORMAT_ATTR(mtc_period,     "config:14-17"  );
120 PMU_FORMAT_ATTR(cyc_thresh,     "config:19-22"  );
121 PMU_FORMAT_ATTR(psb_period,     "config:24-27"  );
122
123 static struct attribute *pt_formats_attr[] = {
124         &format_attr_pt.attr,
125         &format_attr_cyc.attr,
126         &format_attr_pwr_evt.attr,
127         &format_attr_fup_on_ptw.attr,
128         &format_attr_mtc.attr,
129         &format_attr_tsc.attr,
130         &format_attr_noretcomp.attr,
131         &format_attr_ptw.attr,
132         &format_attr_branch.attr,
133         &format_attr_mtc_period.attr,
134         &format_attr_cyc_thresh.attr,
135         &format_attr_psb_period.attr,
136         NULL,
137 };
138
139 static struct attribute_group pt_format_group = {
140         .name   = "format",
141         .attrs  = pt_formats_attr,
142 };
143
144 static ssize_t
145 pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
146                     char *page)
147 {
148         struct perf_pmu_events_attr *pmu_attr =
149                 container_of(attr, struct perf_pmu_events_attr, attr);
150
151         switch (pmu_attr->id) {
152         case 0:
153                 return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
154         case 1:
155                 return sprintf(page, "%u:%u\n",
156                                pt_pmu.tsc_art_num,
157                                pt_pmu.tsc_art_den);
158         default:
159                 break;
160         }
161
162         return -EINVAL;
163 }
164
165 PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
166                pt_timing_attr_show);
167 PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
168                pt_timing_attr_show);
169
170 static struct attribute *pt_timing_attr[] = {
171         &timing_attr_max_nonturbo_ratio.attr.attr,
172         &timing_attr_tsc_art_ratio.attr.attr,
173         NULL,
174 };
175
176 static struct attribute_group pt_timing_group = {
177         .attrs  = pt_timing_attr,
178 };
179
180 static const struct attribute_group *pt_attr_groups[] = {
181         &pt_cap_group,
182         &pt_format_group,
183         &pt_timing_group,
184         NULL,
185 };
186
187 static int __init pt_pmu_hw_init(void)
188 {
189         struct dev_ext_attribute *de_attrs;
190         struct attribute **attrs;
191         size_t size;
192         u64 reg;
193         int ret;
194         long i;
195
196         rdmsrl(MSR_PLATFORM_INFO, reg);
197         pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
198
199         /*
200          * if available, read in TSC to core crystal clock ratio,
201          * otherwise, zero for numerator stands for "not enumerated"
202          * as per SDM
203          */
204         if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
205                 u32 eax, ebx, ecx, edx;
206
207                 cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
208
209                 pt_pmu.tsc_art_num = ebx;
210                 pt_pmu.tsc_art_den = eax;
211         }
212
213         /* model-specific quirks */
214         switch (boot_cpu_data.x86_model) {
215         case INTEL_FAM6_BROADWELL_CORE:
216         case INTEL_FAM6_BROADWELL_XEON_D:
217         case INTEL_FAM6_BROADWELL_GT3E:
218         case INTEL_FAM6_BROADWELL_X:
219                 /* not setting BRANCH_EN will #GP, erratum BDM106 */
220                 pt_pmu.branch_en_always_on = true;
221                 break;
222         default:
223                 break;
224         }
225
226         if (boot_cpu_has(X86_FEATURE_VMX)) {
227                 /*
228                  * Intel SDM, 36.5 "Tracing post-VMXON" says that
229                  * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
230                  * post-VMXON.
231                  */
232                 rdmsrl(MSR_IA32_VMX_MISC, reg);
233                 if (reg & BIT(14))
234                         pt_pmu.vmx = true;
235         }
236
237         attrs = NULL;
238
239         for (i = 0; i < PT_CPUID_LEAVES; i++) {
240                 cpuid_count(20, i,
241                             &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
242                             &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
243                             &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
244                             &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
245         }
246
247         ret = -ENOMEM;
248         size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
249         attrs = kzalloc(size, GFP_KERNEL);
250         if (!attrs)
251                 goto fail;
252
253         size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
254         de_attrs = kzalloc(size, GFP_KERNEL);
255         if (!de_attrs)
256                 goto fail;
257
258         for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
259                 struct dev_ext_attribute *de_attr = de_attrs + i;
260
261                 de_attr->attr.attr.name = pt_caps[i].name;
262
263                 sysfs_attr_init(&de_attr->attr.attr);
264
265                 de_attr->attr.attr.mode         = S_IRUGO;
266                 de_attr->attr.show              = pt_cap_show;
267                 de_attr->var                    = (void *)i;
268
269                 attrs[i] = &de_attr->attr.attr;
270         }
271
272         pt_cap_group.attrs = attrs;
273
274         return 0;
275
276 fail:
277         kfree(attrs);
278
279         return ret;
280 }
281
282 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC     | \
283                           RTIT_CTL_CYC_THRESH   | \
284                           RTIT_CTL_PSB_FREQ)
285
286 #define RTIT_CTL_MTC    (RTIT_CTL_MTC_EN        | \
287                          RTIT_CTL_MTC_RANGE)
288
289 #define RTIT_CTL_PTW    (RTIT_CTL_PTW_EN        | \
290                          RTIT_CTL_FUP_ON_PTW)
291
292 /*
293  * Bit 0 (TraceEn) in the attr.config is meaningless as the
294  * corresponding bit in the RTIT_CTL can only be controlled
295  * by the driver; therefore, repurpose it to mean: pass
296  * through the bit that was previously assumed to be always
297  * on for PT, thereby allowing the user to *not* set it if
298  * they so wish. See also pt_event_valid() and pt_config().
299  */
300 #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN
301
302 #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN        | \
303                         RTIT_CTL_TSC_EN         | \
304                         RTIT_CTL_DISRETC        | \
305                         RTIT_CTL_BRANCH_EN      | \
306                         RTIT_CTL_CYC_PSB        | \
307                         RTIT_CTL_MTC            | \
308                         RTIT_CTL_PWR_EVT_EN     | \
309                         RTIT_CTL_FUP_ON_PTW     | \
310                         RTIT_CTL_PTW_EN)
311
312 static bool pt_event_valid(struct perf_event *event)
313 {
314         u64 config = event->attr.config;
315         u64 allowed, requested;
316
317         if ((config & PT_CONFIG_MASK) != config)
318                 return false;
319
320         if (config & RTIT_CTL_CYC_PSB) {
321                 if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc))
322                         return false;
323
324                 allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods);
325                 requested = (config & RTIT_CTL_PSB_FREQ) >>
326                         RTIT_CTL_PSB_FREQ_OFFSET;
327                 if (requested && (!(allowed & BIT(requested))))
328                         return false;
329
330                 allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds);
331                 requested = (config & RTIT_CTL_CYC_THRESH) >>
332                         RTIT_CTL_CYC_THRESH_OFFSET;
333                 if (requested && (!(allowed & BIT(requested))))
334                         return false;
335         }
336
337         if (config & RTIT_CTL_MTC) {
338                 /*
339                  * In the unlikely case that CPUID lists valid mtc periods,
340                  * but not the mtc capability, drop out here.
341                  *
342                  * Spec says that setting mtc period bits while mtc bit in
343                  * CPUID is 0 will #GP, so better safe than sorry.
344                  */
345                 if (!intel_pt_validate_hw_cap(PT_CAP_mtc))
346                         return false;
347
348                 allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods);
349                 if (!allowed)
350                         return false;
351
352                 requested = (config & RTIT_CTL_MTC_RANGE) >>
353                         RTIT_CTL_MTC_RANGE_OFFSET;
354
355                 if (!(allowed & BIT(requested)))
356                         return false;
357         }
358
359         if (config & RTIT_CTL_PWR_EVT_EN &&
360             !intel_pt_validate_hw_cap(PT_CAP_power_event_trace))
361                 return false;
362
363         if (config & RTIT_CTL_PTW) {
364                 if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite))
365                         return false;
366
367                 /* FUPonPTW without PTW doesn't make sense */
368                 if ((config & RTIT_CTL_FUP_ON_PTW) &&
369                     !(config & RTIT_CTL_PTW_EN))
370                         return false;
371         }
372
373         /*
374          * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config
375          * clears the assomption that BranchEn must always be enabled,
376          * as was the case with the first implementation of PT.
377          * If this bit is not set, the legacy behavior is preserved
378          * for compatibility with the older userspace.
379          *
380          * Re-using bit 0 for this purpose is fine because it is never
381          * directly set by the user; previous attempts at setting it in
382          * the attr.config resulted in -EINVAL.
383          */
384         if (config & RTIT_CTL_PASSTHROUGH) {
385                 /*
386                  * Disallow not setting BRANCH_EN where BRANCH_EN is
387                  * always required.
388                  */
389                 if (pt_pmu.branch_en_always_on &&
390                     !(config & RTIT_CTL_BRANCH_EN))
391                         return false;
392         } else {
393                 /*
394                  * Disallow BRANCH_EN without the PASSTHROUGH.
395                  */
396                 if (config & RTIT_CTL_BRANCH_EN)
397                         return false;
398         }
399
400         return true;
401 }
402
403 /*
404  * PT configuration helpers
405  * These all are cpu affine and operate on a local PT
406  */
407
408 /* Address ranges and their corresponding msr configuration registers */
409 static const struct pt_address_range {
410         unsigned long   msr_a;
411         unsigned long   msr_b;
412         unsigned int    reg_off;
413 } pt_address_ranges[] = {
414         {
415                 .msr_a   = MSR_IA32_RTIT_ADDR0_A,
416                 .msr_b   = MSR_IA32_RTIT_ADDR0_B,
417                 .reg_off = RTIT_CTL_ADDR0_OFFSET,
418         },
419         {
420                 .msr_a   = MSR_IA32_RTIT_ADDR1_A,
421                 .msr_b   = MSR_IA32_RTIT_ADDR1_B,
422                 .reg_off = RTIT_CTL_ADDR1_OFFSET,
423         },
424         {
425                 .msr_a   = MSR_IA32_RTIT_ADDR2_A,
426                 .msr_b   = MSR_IA32_RTIT_ADDR2_B,
427                 .reg_off = RTIT_CTL_ADDR2_OFFSET,
428         },
429         {
430                 .msr_a   = MSR_IA32_RTIT_ADDR3_A,
431                 .msr_b   = MSR_IA32_RTIT_ADDR3_B,
432                 .reg_off = RTIT_CTL_ADDR3_OFFSET,
433         }
434 };
435
436 static u64 pt_config_filters(struct perf_event *event)
437 {
438         struct pt_filters *filters = event->hw.addr_filters;
439         struct pt *pt = this_cpu_ptr(&pt_ctx);
440         unsigned int range = 0;
441         u64 rtit_ctl = 0;
442
443         if (!filters)
444                 return 0;
445
446         perf_event_addr_filters_sync(event);
447
448         for (range = 0; range < filters->nr_filters; range++) {
449                 struct pt_filter *filter = &filters->filter[range];
450
451                 /*
452                  * Note, if the range has zero start/end addresses due
453                  * to its dynamic object not being loaded yet, we just
454                  * go ahead and program zeroed range, which will simply
455                  * produce no data. Note^2: if executable code at 0x0
456                  * is a concern, we can set up an "invalid" configuration
457                  * such as msr_b < msr_a.
458                  */
459
460                 /* avoid redundant msr writes */
461                 if (pt->filters.filter[range].msr_a != filter->msr_a) {
462                         wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
463                         pt->filters.filter[range].msr_a = filter->msr_a;
464                 }
465
466                 if (pt->filters.filter[range].msr_b != filter->msr_b) {
467                         wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
468                         pt->filters.filter[range].msr_b = filter->msr_b;
469                 }
470
471                 rtit_ctl |= filter->config << pt_address_ranges[range].reg_off;
472         }
473
474         return rtit_ctl;
475 }
476
477 static void pt_config(struct perf_event *event)
478 {
479         struct pt *pt = this_cpu_ptr(&pt_ctx);
480         u64 reg;
481
482         /* First round: clear STATUS, in particular the PSB byte counter. */
483         if (!event->hw.config) {
484                 perf_event_itrace_started(event);
485                 wrmsrl(MSR_IA32_RTIT_STATUS, 0);
486         }
487
488         reg = pt_config_filters(event);
489         reg |= RTIT_CTL_TOPA | RTIT_CTL_TRACEEN;
490
491         /*
492          * Previously, we had BRANCH_EN on by default, but now that PT has
493          * grown features outside of branch tracing, it is useful to allow
494          * the user to disable it. Setting bit 0 in the event's attr.config
495          * allows BRANCH_EN to pass through instead of being always on. See
496          * also the comment in pt_event_valid().
497          */
498         if (event->attr.config & BIT(0)) {
499                 reg |= event->attr.config & RTIT_CTL_BRANCH_EN;
500         } else {
501                 reg |= RTIT_CTL_BRANCH_EN;
502         }
503
504         if (!event->attr.exclude_kernel)
505                 reg |= RTIT_CTL_OS;
506         if (!event->attr.exclude_user)
507                 reg |= RTIT_CTL_USR;
508
509         reg |= (event->attr.config & PT_CONFIG_MASK);
510
511         event->hw.config = reg;
512         if (READ_ONCE(pt->vmx_on))
513                 perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL);
514         else
515                 wrmsrl(MSR_IA32_RTIT_CTL, reg);
516 }
517
518 static void pt_config_stop(struct perf_event *event)
519 {
520         struct pt *pt = this_cpu_ptr(&pt_ctx);
521         u64 ctl = READ_ONCE(event->hw.config);
522
523         /* may be already stopped by a PMI */
524         if (!(ctl & RTIT_CTL_TRACEEN))
525                 return;
526
527         ctl &= ~RTIT_CTL_TRACEEN;
528         if (!READ_ONCE(pt->vmx_on))
529                 wrmsrl(MSR_IA32_RTIT_CTL, ctl);
530
531         WRITE_ONCE(event->hw.config, ctl);
532
533         /*
534          * A wrmsr that disables trace generation serializes other PT
535          * registers and causes all data packets to be written to memory,
536          * but a fence is required for the data to become globally visible.
537          *
538          * The below WMB, separating data store and aux_head store matches
539          * the consumer's RMB that separates aux_head load and data load.
540          */
541         wmb();
542 }
543
544 static void pt_config_buffer(void *buf, unsigned int topa_idx,
545                              unsigned int output_off)
546 {
547         u64 reg;
548
549         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, virt_to_phys(buf));
550
551         reg = 0x7f | ((u64)topa_idx << 7) | ((u64)output_off << 32);
552
553         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
554 }
555
556 /*
557  * Keep ToPA table-related metadata on the same page as the actual table,
558  * taking up a few words from the top
559  */
560
561 #define TENTS_PER_PAGE (((PAGE_SIZE - 40) / sizeof(struct topa_entry)) - 1)
562
563 /**
564  * struct topa - page-sized ToPA table with metadata at the top
565  * @table:      actual ToPA table entries, as understood by PT hardware
566  * @list:       linkage to struct pt_buffer's list of tables
567  * @phys:       physical address of this page
568  * @offset:     offset of the first entry in this table in the buffer
569  * @size:       total size of all entries in this table
570  * @last:       index of the last initialized entry in this table
571  */
572 struct topa {
573         struct topa_entry       table[TENTS_PER_PAGE];
574         struct list_head        list;
575         u64                     phys;
576         u64                     offset;
577         size_t                  size;
578         int                     last;
579 };
580
581 /* make -1 stand for the last table entry */
582 #define TOPA_ENTRY(t, i) ((i) == -1 ? &(t)->table[(t)->last] : &(t)->table[(i)])
583
584 /**
585  * topa_alloc() - allocate page-sized ToPA table
586  * @cpu:        CPU on which to allocate.
587  * @gfp:        Allocation flags.
588  *
589  * Return:      On success, return the pointer to ToPA table page.
590  */
591 static struct topa *topa_alloc(int cpu, gfp_t gfp)
592 {
593         int node = cpu_to_node(cpu);
594         struct topa *topa;
595         struct page *p;
596
597         p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
598         if (!p)
599                 return NULL;
600
601         topa = page_address(p);
602         topa->last = 0;
603         topa->phys = page_to_phys(p);
604
605         /*
606          * In case of singe-entry ToPA, always put the self-referencing END
607          * link as the 2nd entry in the table
608          */
609         if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
610                 TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT;
611                 TOPA_ENTRY(topa, 1)->end = 1;
612         }
613
614         return topa;
615 }
616
617 /**
618  * topa_free() - free a page-sized ToPA table
619  * @topa:       Table to deallocate.
620  */
621 static void topa_free(struct topa *topa)
622 {
623         free_page((unsigned long)topa);
624 }
625
626 /**
627  * topa_insert_table() - insert a ToPA table into a buffer
628  * @buf:         PT buffer that's being extended.
629  * @topa:        New topa table to be inserted.
630  *
631  * If it's the first table in this buffer, set up buffer's pointers
632  * accordingly; otherwise, add a END=1 link entry to @topa to the current
633  * "last" table and adjust the last table pointer to @topa.
634  */
635 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
636 {
637         struct topa *last = buf->last;
638
639         list_add_tail(&topa->list, &buf->tables);
640
641         if (!buf->first) {
642                 buf->first = buf->last = buf->cur = topa;
643                 return;
644         }
645
646         topa->offset = last->offset + last->size;
647         buf->last = topa;
648
649         if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
650                 return;
651
652         BUG_ON(last->last != TENTS_PER_PAGE - 1);
653
654         TOPA_ENTRY(last, -1)->base = topa->phys >> TOPA_SHIFT;
655         TOPA_ENTRY(last, -1)->end = 1;
656 }
657
658 /**
659  * topa_table_full() - check if a ToPA table is filled up
660  * @topa:       ToPA table.
661  */
662 static bool topa_table_full(struct topa *topa)
663 {
664         /* single-entry ToPA is a special case */
665         if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
666                 return !!topa->last;
667
668         return topa->last == TENTS_PER_PAGE - 1;
669 }
670
671 /**
672  * topa_insert_pages() - create a list of ToPA tables
673  * @buf:        PT buffer being initialized.
674  * @gfp:        Allocation flags.
675  *
676  * This initializes a list of ToPA tables with entries from
677  * the data_pages provided by rb_alloc_aux().
678  *
679  * Return:      0 on success or error code.
680  */
681 static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp)
682 {
683         struct topa *topa = buf->last;
684         int order = 0;
685         struct page *p;
686
687         p = virt_to_page(buf->data_pages[buf->nr_pages]);
688         if (PagePrivate(p))
689                 order = page_private(p);
690
691         if (topa_table_full(topa)) {
692                 topa = topa_alloc(buf->cpu, gfp);
693                 if (!topa)
694                         return -ENOMEM;
695
696                 topa_insert_table(buf, topa);
697         }
698
699         TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
700         TOPA_ENTRY(topa, -1)->size = order;
701         if (!buf->snapshot &&
702             !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
703                 TOPA_ENTRY(topa, -1)->intr = 1;
704                 TOPA_ENTRY(topa, -1)->stop = 1;
705         }
706
707         topa->last++;
708         topa->size += sizes(order);
709
710         buf->nr_pages += 1ul << order;
711
712         return 0;
713 }
714
715 /**
716  * pt_topa_dump() - print ToPA tables and their entries
717  * @buf:        PT buffer.
718  */
719 static void pt_topa_dump(struct pt_buffer *buf)
720 {
721         struct topa *topa;
722
723         list_for_each_entry(topa, &buf->tables, list) {
724                 int i;
725
726                 pr_debug("# table @%p (%016Lx), off %llx size %zx\n", topa->table,
727                          topa->phys, topa->offset, topa->size);
728                 for (i = 0; i < TENTS_PER_PAGE; i++) {
729                         pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
730                                  &topa->table[i],
731                                  (unsigned long)topa->table[i].base << TOPA_SHIFT,
732                                  sizes(topa->table[i].size),
733                                  topa->table[i].end ?  'E' : ' ',
734                                  topa->table[i].intr ? 'I' : ' ',
735                                  topa->table[i].stop ? 'S' : ' ',
736                                  *(u64 *)&topa->table[i]);
737                         if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
738                              topa->table[i].stop) ||
739                             topa->table[i].end)
740                                 break;
741                 }
742         }
743 }
744
745 /**
746  * pt_buffer_advance() - advance to the next output region
747  * @buf:        PT buffer.
748  *
749  * Advance the current pointers in the buffer to the next ToPA entry.
750  */
751 static void pt_buffer_advance(struct pt_buffer *buf)
752 {
753         buf->output_off = 0;
754         buf->cur_idx++;
755
756         if (buf->cur_idx == buf->cur->last) {
757                 if (buf->cur == buf->last)
758                         buf->cur = buf->first;
759                 else
760                         buf->cur = list_entry(buf->cur->list.next, struct topa,
761                                               list);
762                 buf->cur_idx = 0;
763         }
764 }
765
766 /**
767  * pt_update_head() - calculate current offsets and sizes
768  * @pt:         Per-cpu pt context.
769  *
770  * Update buffer's current write pointer position and data size.
771  */
772 static void pt_update_head(struct pt *pt)
773 {
774         struct pt_buffer *buf = perf_get_aux(&pt->handle);
775         u64 topa_idx, base, old;
776
777         /* offset of the first region in this table from the beginning of buf */
778         base = buf->cur->offset + buf->output_off;
779
780         /* offset of the current output region within this table */
781         for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
782                 base += sizes(buf->cur->table[topa_idx].size);
783
784         if (buf->snapshot) {
785                 local_set(&buf->data_size, base);
786         } else {
787                 old = (local64_xchg(&buf->head, base) &
788                        ((buf->nr_pages << PAGE_SHIFT) - 1));
789                 if (base < old)
790                         base += buf->nr_pages << PAGE_SHIFT;
791
792                 local_add(base - old, &buf->data_size);
793         }
794 }
795
796 /**
797  * pt_buffer_region() - obtain current output region's address
798  * @buf:        PT buffer.
799  */
800 static void *pt_buffer_region(struct pt_buffer *buf)
801 {
802         return phys_to_virt(buf->cur->table[buf->cur_idx].base << TOPA_SHIFT);
803 }
804
805 /**
806  * pt_buffer_region_size() - obtain current output region's size
807  * @buf:        PT buffer.
808  */
809 static size_t pt_buffer_region_size(struct pt_buffer *buf)
810 {
811         return sizes(buf->cur->table[buf->cur_idx].size);
812 }
813
814 /**
815  * pt_handle_status() - take care of possible status conditions
816  * @pt:         Per-cpu pt context.
817  */
818 static void pt_handle_status(struct pt *pt)
819 {
820         struct pt_buffer *buf = perf_get_aux(&pt->handle);
821         int advance = 0;
822         u64 status;
823
824         rdmsrl(MSR_IA32_RTIT_STATUS, status);
825
826         if (status & RTIT_STATUS_ERROR) {
827                 pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
828                 pt_topa_dump(buf);
829                 status &= ~RTIT_STATUS_ERROR;
830         }
831
832         if (status & RTIT_STATUS_STOPPED) {
833                 status &= ~RTIT_STATUS_STOPPED;
834
835                 /*
836                  * On systems that only do single-entry ToPA, hitting STOP
837                  * means we are already losing data; need to let the decoder
838                  * know.
839                  */
840                 if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) ||
841                     buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
842                         perf_aux_output_flag(&pt->handle,
843                                              PERF_AUX_FLAG_TRUNCATED);
844                         advance++;
845                 }
846         }
847
848         /*
849          * Also on single-entry ToPA implementations, interrupt will come
850          * before the output reaches its output region's boundary.
851          */
852         if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
853             !buf->snapshot &&
854             pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
855                 void *head = pt_buffer_region(buf);
856
857                 /* everything within this margin needs to be zeroed out */
858                 memset(head + buf->output_off, 0,
859                        pt_buffer_region_size(buf) -
860                        buf->output_off);
861                 advance++;
862         }
863
864         if (advance)
865                 pt_buffer_advance(buf);
866
867         wrmsrl(MSR_IA32_RTIT_STATUS, status);
868 }
869
870 /**
871  * pt_read_offset() - translate registers into buffer pointers
872  * @buf:        PT buffer.
873  *
874  * Set buffer's output pointers from MSR values.
875  */
876 static void pt_read_offset(struct pt_buffer *buf)
877 {
878         u64 offset, base_topa;
879
880         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, base_topa);
881         buf->cur = phys_to_virt(base_topa);
882
883         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, offset);
884         /* offset within current output region */
885         buf->output_off = offset >> 32;
886         /* index of current output region within this table */
887         buf->cur_idx = (offset & 0xffffff80) >> 7;
888 }
889
890 /**
891  * pt_topa_next_entry() - obtain index of the first page in the next ToPA entry
892  * @buf:        PT buffer.
893  * @pg:         Page offset in the buffer.
894  *
895  * When advancing to the next output region (ToPA entry), given a page offset
896  * into the buffer, we need to find the offset of the first page in the next
897  * region.
898  */
899 static unsigned int pt_topa_next_entry(struct pt_buffer *buf, unsigned int pg)
900 {
901         struct topa_entry *te = buf->topa_index[pg];
902
903         /* one region */
904         if (buf->first == buf->last && buf->first->last == 1)
905                 return pg;
906
907         do {
908                 pg++;
909                 pg &= buf->nr_pages - 1;
910         } while (buf->topa_index[pg] == te);
911
912         return pg;
913 }
914
915 /**
916  * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
917  * @buf:        PT buffer.
918  * @handle:     Current output handle.
919  *
920  * Place INT and STOP marks to prevent overwriting old data that the consumer
921  * hasn't yet collected and waking up the consumer after a certain fraction of
922  * the buffer has filled up. Only needed and sensible for non-snapshot counters.
923  *
924  * This obviously relies on buf::head to figure out buffer markers, so it has
925  * to be called after pt_buffer_reset_offsets() and before the hardware tracing
926  * is enabled.
927  */
928 static int pt_buffer_reset_markers(struct pt_buffer *buf,
929                                    struct perf_output_handle *handle)
930
931 {
932         unsigned long head = local64_read(&buf->head);
933         unsigned long idx, npages, wakeup;
934
935         /* can't stop in the middle of an output region */
936         if (buf->output_off + handle->size + 1 <
937             sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
938                 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
939                 return -EINVAL;
940         }
941
942
943         /* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
944         if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
945                 return 0;
946
947         /* clear STOP and INT from current entry */
948         buf->topa_index[buf->stop_pos]->stop = 0;
949         buf->topa_index[buf->stop_pos]->intr = 0;
950         buf->topa_index[buf->intr_pos]->intr = 0;
951
952         /* how many pages till the STOP marker */
953         npages = handle->size >> PAGE_SHIFT;
954
955         /* if it's on a page boundary, fill up one more page */
956         if (!offset_in_page(head + handle->size + 1))
957                 npages++;
958
959         idx = (head >> PAGE_SHIFT) + npages;
960         idx &= buf->nr_pages - 1;
961         buf->stop_pos = idx;
962
963         wakeup = handle->wakeup >> PAGE_SHIFT;
964
965         /* in the worst case, wake up the consumer one page before hard stop */
966         idx = (head >> PAGE_SHIFT) + npages - 1;
967         if (idx > wakeup)
968                 idx = wakeup;
969
970         idx &= buf->nr_pages - 1;
971         buf->intr_pos = idx;
972
973         buf->topa_index[buf->stop_pos]->stop = 1;
974         buf->topa_index[buf->stop_pos]->intr = 1;
975         buf->topa_index[buf->intr_pos]->intr = 1;
976
977         return 0;
978 }
979
980 /**
981  * pt_buffer_setup_topa_index() - build topa_index[] table of regions
982  * @buf:        PT buffer.
983  *
984  * topa_index[] references output regions indexed by offset into the
985  * buffer for purposes of quick reverse lookup.
986  */
987 static void pt_buffer_setup_topa_index(struct pt_buffer *buf)
988 {
989         struct topa *cur = buf->first, *prev = buf->last;
990         struct topa_entry *te_cur = TOPA_ENTRY(cur, 0),
991                 *te_prev = TOPA_ENTRY(prev, prev->last - 1);
992         int pg = 0, idx = 0;
993
994         while (pg < buf->nr_pages) {
995                 int tidx;
996
997                 /* pages within one topa entry */
998                 for (tidx = 0; tidx < 1 << te_cur->size; tidx++, pg++)
999                         buf->topa_index[pg] = te_prev;
1000
1001                 te_prev = te_cur;
1002
1003                 if (idx == cur->last - 1) {
1004                         /* advance to next topa table */
1005                         idx = 0;
1006                         cur = list_entry(cur->list.next, struct topa, list);
1007                 } else {
1008                         idx++;
1009                 }
1010                 te_cur = TOPA_ENTRY(cur, idx);
1011         }
1012
1013 }
1014
1015 /**
1016  * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
1017  * @buf:        PT buffer.
1018  * @head:       Write pointer (aux_head) from AUX buffer.
1019  *
1020  * Find the ToPA table and entry corresponding to given @head and set buffer's
1021  * "current" pointers accordingly. This is done after we have obtained the
1022  * current aux_head position from a successful call to perf_aux_output_begin()
1023  * to make sure the hardware is writing to the right place.
1024  *
1025  * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
1026  * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
1027  * which are used to determine INT and STOP markers' locations by a subsequent
1028  * call to pt_buffer_reset_markers().
1029  */
1030 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
1031 {
1032         int pg;
1033
1034         if (buf->snapshot)
1035                 head &= (buf->nr_pages << PAGE_SHIFT) - 1;
1036
1037         pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
1038         pg = pt_topa_next_entry(buf, pg);
1039
1040         buf->cur = (struct topa *)((unsigned long)buf->topa_index[pg] & PAGE_MASK);
1041         buf->cur_idx = ((unsigned long)buf->topa_index[pg] -
1042                         (unsigned long)buf->cur) / sizeof(struct topa_entry);
1043         buf->output_off = head & (sizes(buf->cur->table[buf->cur_idx].size) - 1);
1044
1045         local64_set(&buf->head, head);
1046         local_set(&buf->data_size, 0);
1047 }
1048
1049 /**
1050  * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
1051  * @buf:        PT buffer.
1052  */
1053 static void pt_buffer_fini_topa(struct pt_buffer *buf)
1054 {
1055         struct topa *topa, *iter;
1056
1057         list_for_each_entry_safe(topa, iter, &buf->tables, list) {
1058                 /*
1059                  * right now, this is in free_aux() path only, so
1060                  * no need to unlink this table from the list
1061                  */
1062                 topa_free(topa);
1063         }
1064 }
1065
1066 /**
1067  * pt_buffer_init_topa() - initialize ToPA table for pt buffer
1068  * @buf:        PT buffer.
1069  * @size:       Total size of all regions within this ToPA.
1070  * @gfp:        Allocation flags.
1071  */
1072 static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages,
1073                                gfp_t gfp)
1074 {
1075         struct topa *topa;
1076         int err;
1077
1078         topa = topa_alloc(buf->cpu, gfp);
1079         if (!topa)
1080                 return -ENOMEM;
1081
1082         topa_insert_table(buf, topa);
1083
1084         while (buf->nr_pages < nr_pages) {
1085                 err = topa_insert_pages(buf, gfp);
1086                 if (err) {
1087                         pt_buffer_fini_topa(buf);
1088                         return -ENOMEM;
1089                 }
1090         }
1091
1092         pt_buffer_setup_topa_index(buf);
1093
1094         /* link last table to the first one, unless we're double buffering */
1095         if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
1096                 TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT;
1097                 TOPA_ENTRY(buf->last, -1)->end = 1;
1098         }
1099
1100         pt_topa_dump(buf);
1101         return 0;
1102 }
1103
1104 /**
1105  * pt_buffer_setup_aux() - set up topa tables for a PT buffer
1106  * @cpu:        Cpu on which to allocate, -1 means current.
1107  * @pages:      Array of pointers to buffer pages passed from perf core.
1108  * @nr_pages:   Number of pages in the buffer.
1109  * @snapshot:   If this is a snapshot/overwrite counter.
1110  *
1111  * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1112  * bookkeeping for an AUX buffer.
1113  *
1114  * Return:      Our private PT buffer structure.
1115  */
1116 static void *
1117 pt_buffer_setup_aux(struct perf_event *event, void **pages,
1118                     int nr_pages, bool snapshot)
1119 {
1120         struct pt_buffer *buf;
1121         int node, ret, cpu = event->cpu;
1122
1123         if (!nr_pages)
1124                 return NULL;
1125
1126         if (cpu == -1)
1127                 cpu = raw_smp_processor_id();
1128         node = cpu_to_node(cpu);
1129
1130         buf = kzalloc_node(offsetof(struct pt_buffer, topa_index[nr_pages]),
1131                            GFP_KERNEL, node);
1132         if (!buf)
1133                 return NULL;
1134
1135         buf->cpu = cpu;
1136         buf->snapshot = snapshot;
1137         buf->data_pages = pages;
1138
1139         INIT_LIST_HEAD(&buf->tables);
1140
1141         ret = pt_buffer_init_topa(buf, nr_pages, GFP_KERNEL);
1142         if (ret) {
1143                 kfree(buf);
1144                 return NULL;
1145         }
1146
1147         return buf;
1148 }
1149
1150 /**
1151  * pt_buffer_free_aux() - perf AUX deallocation path callback
1152  * @data:       PT buffer.
1153  */
1154 static void pt_buffer_free_aux(void *data)
1155 {
1156         struct pt_buffer *buf = data;
1157
1158         pt_buffer_fini_topa(buf);
1159         kfree(buf);
1160 }
1161
1162 static int pt_addr_filters_init(struct perf_event *event)
1163 {
1164         struct pt_filters *filters;
1165         int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1166
1167         if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1168                 return 0;
1169
1170         filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1171         if (!filters)
1172                 return -ENOMEM;
1173
1174         if (event->parent)
1175                 memcpy(filters, event->parent->hw.addr_filters,
1176                        sizeof(*filters));
1177
1178         event->hw.addr_filters = filters;
1179
1180         return 0;
1181 }
1182
1183 static void pt_addr_filters_fini(struct perf_event *event)
1184 {
1185         kfree(event->hw.addr_filters);
1186         event->hw.addr_filters = NULL;
1187 }
1188
1189 static inline bool valid_kernel_ip(unsigned long ip)
1190 {
1191         return virt_addr_valid(ip) && kernel_ip(ip);
1192 }
1193
1194 static int pt_event_addr_filters_validate(struct list_head *filters)
1195 {
1196         struct perf_addr_filter *filter;
1197         int range = 0;
1198
1199         list_for_each_entry(filter, filters, entry) {
1200                 /*
1201                  * PT doesn't support single address triggers and
1202                  * 'start' filters.
1203                  */
1204                 if (!filter->size ||
1205                     filter->action == PERF_ADDR_FILTER_ACTION_START)
1206                         return -EOPNOTSUPP;
1207
1208                 if (!filter->path.dentry) {
1209                         if (!valid_kernel_ip(filter->offset))
1210                                 return -EINVAL;
1211
1212                         if (!valid_kernel_ip(filter->offset + filter->size))
1213                                 return -EINVAL;
1214                 }
1215
1216                 if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1217                         return -EOPNOTSUPP;
1218         }
1219
1220         return 0;
1221 }
1222
1223 static void pt_event_addr_filters_sync(struct perf_event *event)
1224 {
1225         struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1226         unsigned long msr_a, msr_b;
1227         struct perf_addr_filter_range *fr = event->addr_filter_ranges;
1228         struct pt_filters *filters = event->hw.addr_filters;
1229         struct perf_addr_filter *filter;
1230         int range = 0;
1231
1232         if (!filters)
1233                 return;
1234
1235         list_for_each_entry(filter, &head->list, entry) {
1236                 if (filter->path.dentry && !fr[range].start) {
1237                         msr_a = msr_b = 0;
1238                 } else {
1239                         /* apply the offset */
1240                         msr_a = fr[range].start;
1241                         msr_b = msr_a + fr[range].size - 1;
1242                 }
1243
1244                 filters->filter[range].msr_a  = msr_a;
1245                 filters->filter[range].msr_b  = msr_b;
1246                 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER)
1247                         filters->filter[range].config = 1;
1248                 else
1249                         filters->filter[range].config = 2;
1250                 range++;
1251         }
1252
1253         filters->nr_filters = range;
1254 }
1255
1256 /**
1257  * intel_pt_interrupt() - PT PMI handler
1258  */
1259 void intel_pt_interrupt(void)
1260 {
1261         struct pt *pt = this_cpu_ptr(&pt_ctx);
1262         struct pt_buffer *buf;
1263         struct perf_event *event = pt->handle.event;
1264
1265         /*
1266          * There may be a dangling PT bit in the interrupt status register
1267          * after PT has been disabled by pt_event_stop(). Make sure we don't
1268          * do anything (particularly, re-enable) for this event here.
1269          */
1270         if (!READ_ONCE(pt->handle_nmi))
1271                 return;
1272
1273         if (!event)
1274                 return;
1275
1276         pt_config_stop(event);
1277
1278         buf = perf_get_aux(&pt->handle);
1279         if (!buf)
1280                 return;
1281
1282         pt_read_offset(buf);
1283
1284         pt_handle_status(pt);
1285
1286         pt_update_head(pt);
1287
1288         perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1289
1290         if (!event->hw.state) {
1291                 int ret;
1292
1293                 buf = perf_aux_output_begin(&pt->handle, event);
1294                 if (!buf) {
1295                         event->hw.state = PERF_HES_STOPPED;
1296                         return;
1297                 }
1298
1299                 pt_buffer_reset_offsets(buf, pt->handle.head);
1300                 /* snapshot counters don't use PMI, so it's safe */
1301                 ret = pt_buffer_reset_markers(buf, &pt->handle);
1302                 if (ret) {
1303                         perf_aux_output_end(&pt->handle, 0);
1304                         return;
1305                 }
1306
1307                 pt_config_buffer(buf->cur->table, buf->cur_idx,
1308                                  buf->output_off);
1309                 pt_config(event);
1310         }
1311 }
1312
1313 void intel_pt_handle_vmx(int on)
1314 {
1315         struct pt *pt = this_cpu_ptr(&pt_ctx);
1316         struct perf_event *event;
1317         unsigned long flags;
1318
1319         /* PT plays nice with VMX, do nothing */
1320         if (pt_pmu.vmx)
1321                 return;
1322
1323         /*
1324          * VMXON will clear RTIT_CTL.TraceEn; we need to make
1325          * sure to not try to set it while VMX is on. Disable
1326          * interrupts to avoid racing with pmu callbacks;
1327          * concurrent PMI should be handled fine.
1328          */
1329         local_irq_save(flags);
1330         WRITE_ONCE(pt->vmx_on, on);
1331
1332         /*
1333          * If an AUX transaction is in progress, it will contain
1334          * gap(s), so flag it PARTIAL to inform the user.
1335          */
1336         event = pt->handle.event;
1337         if (event)
1338                 perf_aux_output_flag(&pt->handle,
1339                                      PERF_AUX_FLAG_PARTIAL);
1340
1341         /* Turn PTs back on */
1342         if (!on && event)
1343                 wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config);
1344
1345         local_irq_restore(flags);
1346 }
1347 EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1348
1349 /*
1350  * PMU callbacks
1351  */
1352
1353 static void pt_event_start(struct perf_event *event, int mode)
1354 {
1355         struct hw_perf_event *hwc = &event->hw;
1356         struct pt *pt = this_cpu_ptr(&pt_ctx);
1357         struct pt_buffer *buf;
1358
1359         buf = perf_aux_output_begin(&pt->handle, event);
1360         if (!buf)
1361                 goto fail_stop;
1362
1363         pt_buffer_reset_offsets(buf, pt->handle.head);
1364         if (!buf->snapshot) {
1365                 if (pt_buffer_reset_markers(buf, &pt->handle))
1366                         goto fail_end_stop;
1367         }
1368
1369         WRITE_ONCE(pt->handle_nmi, 1);
1370         hwc->state = 0;
1371
1372         pt_config_buffer(buf->cur->table, buf->cur_idx,
1373                          buf->output_off);
1374         pt_config(event);
1375
1376         return;
1377
1378 fail_end_stop:
1379         perf_aux_output_end(&pt->handle, 0);
1380 fail_stop:
1381         hwc->state = PERF_HES_STOPPED;
1382 }
1383
1384 static void pt_event_stop(struct perf_event *event, int mode)
1385 {
1386         struct pt *pt = this_cpu_ptr(&pt_ctx);
1387
1388         /*
1389          * Protect against the PMI racing with disabling wrmsr,
1390          * see comment in intel_pt_interrupt().
1391          */
1392         WRITE_ONCE(pt->handle_nmi, 0);
1393
1394         pt_config_stop(event);
1395
1396         if (event->hw.state == PERF_HES_STOPPED)
1397                 return;
1398
1399         event->hw.state = PERF_HES_STOPPED;
1400
1401         if (mode & PERF_EF_UPDATE) {
1402                 struct pt_buffer *buf = perf_get_aux(&pt->handle);
1403
1404                 if (!buf)
1405                         return;
1406
1407                 if (WARN_ON_ONCE(pt->handle.event != event))
1408                         return;
1409
1410                 pt_read_offset(buf);
1411
1412                 pt_handle_status(pt);
1413
1414                 pt_update_head(pt);
1415
1416                 if (buf->snapshot)
1417                         pt->handle.head =
1418                                 local_xchg(&buf->data_size,
1419                                            buf->nr_pages << PAGE_SHIFT);
1420                 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1421         }
1422 }
1423
1424 static void pt_event_del(struct perf_event *event, int mode)
1425 {
1426         pt_event_stop(event, PERF_EF_UPDATE);
1427 }
1428
1429 static int pt_event_add(struct perf_event *event, int mode)
1430 {
1431         struct pt *pt = this_cpu_ptr(&pt_ctx);
1432         struct hw_perf_event *hwc = &event->hw;
1433         int ret = -EBUSY;
1434
1435         if (pt->handle.event)
1436                 goto fail;
1437
1438         if (mode & PERF_EF_START) {
1439                 pt_event_start(event, 0);
1440                 ret = -EINVAL;
1441                 if (hwc->state == PERF_HES_STOPPED)
1442                         goto fail;
1443         } else {
1444                 hwc->state = PERF_HES_STOPPED;
1445         }
1446
1447         ret = 0;
1448 fail:
1449
1450         return ret;
1451 }
1452
1453 static void pt_event_read(struct perf_event *event)
1454 {
1455 }
1456
1457 static void pt_event_destroy(struct perf_event *event)
1458 {
1459         pt_addr_filters_fini(event);
1460         x86_del_exclusive(x86_lbr_exclusive_pt);
1461 }
1462
1463 static int pt_event_init(struct perf_event *event)
1464 {
1465         if (event->attr.type != pt_pmu.pmu.type)
1466                 return -ENOENT;
1467
1468         if (!pt_event_valid(event))
1469                 return -EINVAL;
1470
1471         if (x86_add_exclusive(x86_lbr_exclusive_pt))
1472                 return -EBUSY;
1473
1474         if (pt_addr_filters_init(event)) {
1475                 x86_del_exclusive(x86_lbr_exclusive_pt);
1476                 return -ENOMEM;
1477         }
1478
1479         event->destroy = pt_event_destroy;
1480
1481         return 0;
1482 }
1483
1484 void cpu_emergency_stop_pt(void)
1485 {
1486         struct pt *pt = this_cpu_ptr(&pt_ctx);
1487
1488         if (pt->handle.event)
1489                 pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1490 }
1491
1492 static __init int pt_init(void)
1493 {
1494         int ret, cpu, prior_warn = 0;
1495
1496         BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1497
1498         if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1499                 return -ENODEV;
1500
1501         get_online_cpus();
1502         for_each_online_cpu(cpu) {
1503                 u64 ctl;
1504
1505                 ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1506                 if (!ret && (ctl & RTIT_CTL_TRACEEN))
1507                         prior_warn++;
1508         }
1509         put_online_cpus();
1510
1511         if (prior_warn) {
1512                 x86_add_exclusive(x86_lbr_exclusive_pt);
1513                 pr_warn("PT is enabled at boot time, doing nothing\n");
1514
1515                 return -EBUSY;
1516         }
1517
1518         ret = pt_pmu_hw_init();
1519         if (ret)
1520                 return ret;
1521
1522         if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) {
1523                 pr_warn("ToPA output is not supported on this CPU\n");
1524                 return -ENODEV;
1525         }
1526
1527         if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1528                 pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG;
1529
1530         pt_pmu.pmu.capabilities |= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1531         pt_pmu.pmu.attr_groups           = pt_attr_groups;
1532         pt_pmu.pmu.task_ctx_nr           = perf_sw_context;
1533         pt_pmu.pmu.event_init            = pt_event_init;
1534         pt_pmu.pmu.add                   = pt_event_add;
1535         pt_pmu.pmu.del                   = pt_event_del;
1536         pt_pmu.pmu.start                 = pt_event_start;
1537         pt_pmu.pmu.stop                  = pt_event_stop;
1538         pt_pmu.pmu.read                  = pt_event_read;
1539         pt_pmu.pmu.setup_aux             = pt_buffer_setup_aux;
1540         pt_pmu.pmu.free_aux              = pt_buffer_free_aux;
1541         pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1542         pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1543         pt_pmu.pmu.nr_addr_filters       =
1544                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges);
1545
1546         ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1547
1548         return ret;
1549 }
1550 arch_initcall(pt_init);