Linux 6.9-rc1
[linux-2.6-microblaze.git] / arch / x86 / events / intel / lbr.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/msr.h>
7
8 #include "../perf_event.h"
9
10 /*
11  * Intel LBR_SELECT bits
12  * Intel Vol3a, April 2011, Section 16.7 Table 16-10
13  *
14  * Hardware branch filter (not available on all CPUs)
15  */
16 #define LBR_KERNEL_BIT          0 /* do not capture at ring0 */
17 #define LBR_USER_BIT            1 /* do not capture at ring > 0 */
18 #define LBR_JCC_BIT             2 /* do not capture conditional branches */
19 #define LBR_REL_CALL_BIT        3 /* do not capture relative calls */
20 #define LBR_IND_CALL_BIT        4 /* do not capture indirect calls */
21 #define LBR_RETURN_BIT          5 /* do not capture near returns */
22 #define LBR_IND_JMP_BIT         6 /* do not capture indirect jumps */
23 #define LBR_REL_JMP_BIT         7 /* do not capture relative jumps */
24 #define LBR_FAR_BIT             8 /* do not capture far branches */
25 #define LBR_CALL_STACK_BIT      9 /* enable call stack */
26
27 /*
28  * Following bit only exists in Linux; we mask it out before writing it to
29  * the actual MSR. But it helps the constraint perf code to understand
30  * that this is a separate configuration.
31  */
32 #define LBR_NO_INFO_BIT        63 /* don't read LBR_INFO. */
33
34 #define LBR_KERNEL      (1 << LBR_KERNEL_BIT)
35 #define LBR_USER        (1 << LBR_USER_BIT)
36 #define LBR_JCC         (1 << LBR_JCC_BIT)
37 #define LBR_REL_CALL    (1 << LBR_REL_CALL_BIT)
38 #define LBR_IND_CALL    (1 << LBR_IND_CALL_BIT)
39 #define LBR_RETURN      (1 << LBR_RETURN_BIT)
40 #define LBR_REL_JMP     (1 << LBR_REL_JMP_BIT)
41 #define LBR_IND_JMP     (1 << LBR_IND_JMP_BIT)
42 #define LBR_FAR         (1 << LBR_FAR_BIT)
43 #define LBR_CALL_STACK  (1 << LBR_CALL_STACK_BIT)
44 #define LBR_NO_INFO     (1ULL << LBR_NO_INFO_BIT)
45
46 #define LBR_PLM (LBR_KERNEL | LBR_USER)
47
48 #define LBR_SEL_MASK    0x3ff   /* valid bits in LBR_SELECT */
49 #define LBR_NOT_SUPP    -1      /* LBR filter not supported */
50 #define LBR_IGN         0       /* ignored */
51
52 #define LBR_ANY          \
53         (LBR_JCC        |\
54          LBR_REL_CALL   |\
55          LBR_IND_CALL   |\
56          LBR_RETURN     |\
57          LBR_REL_JMP    |\
58          LBR_IND_JMP    |\
59          LBR_FAR)
60
61 #define LBR_FROM_FLAG_MISPRED   BIT_ULL(63)
62 #define LBR_FROM_FLAG_IN_TX     BIT_ULL(62)
63 #define LBR_FROM_FLAG_ABORT     BIT_ULL(61)
64
65 #define LBR_FROM_SIGNEXT_2MSB   (BIT_ULL(60) | BIT_ULL(59))
66
67 /*
68  * Intel LBR_CTL bits
69  *
70  * Hardware branch filter for Arch LBR
71  */
72 #define ARCH_LBR_KERNEL_BIT             1  /* capture at ring0 */
73 #define ARCH_LBR_USER_BIT               2  /* capture at ring > 0 */
74 #define ARCH_LBR_CALL_STACK_BIT         3  /* enable call stack */
75 #define ARCH_LBR_JCC_BIT                16 /* capture conditional branches */
76 #define ARCH_LBR_REL_JMP_BIT            17 /* capture relative jumps */
77 #define ARCH_LBR_IND_JMP_BIT            18 /* capture indirect jumps */
78 #define ARCH_LBR_REL_CALL_BIT           19 /* capture relative calls */
79 #define ARCH_LBR_IND_CALL_BIT           20 /* capture indirect calls */
80 #define ARCH_LBR_RETURN_BIT             21 /* capture near returns */
81 #define ARCH_LBR_OTHER_BRANCH_BIT       22 /* capture other branches */
82
83 #define ARCH_LBR_KERNEL                 (1ULL << ARCH_LBR_KERNEL_BIT)
84 #define ARCH_LBR_USER                   (1ULL << ARCH_LBR_USER_BIT)
85 #define ARCH_LBR_CALL_STACK             (1ULL << ARCH_LBR_CALL_STACK_BIT)
86 #define ARCH_LBR_JCC                    (1ULL << ARCH_LBR_JCC_BIT)
87 #define ARCH_LBR_REL_JMP                (1ULL << ARCH_LBR_REL_JMP_BIT)
88 #define ARCH_LBR_IND_JMP                (1ULL << ARCH_LBR_IND_JMP_BIT)
89 #define ARCH_LBR_REL_CALL               (1ULL << ARCH_LBR_REL_CALL_BIT)
90 #define ARCH_LBR_IND_CALL               (1ULL << ARCH_LBR_IND_CALL_BIT)
91 #define ARCH_LBR_RETURN                 (1ULL << ARCH_LBR_RETURN_BIT)
92 #define ARCH_LBR_OTHER_BRANCH           (1ULL << ARCH_LBR_OTHER_BRANCH_BIT)
93
94 #define ARCH_LBR_ANY                     \
95         (ARCH_LBR_JCC                   |\
96          ARCH_LBR_REL_JMP               |\
97          ARCH_LBR_IND_JMP               |\
98          ARCH_LBR_REL_CALL              |\
99          ARCH_LBR_IND_CALL              |\
100          ARCH_LBR_RETURN                |\
101          ARCH_LBR_OTHER_BRANCH)
102
103 #define ARCH_LBR_CTL_MASK                       0x7f000e
104
105 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
106
107 static __always_inline bool is_lbr_call_stack_bit_set(u64 config)
108 {
109         if (static_cpu_has(X86_FEATURE_ARCH_LBR))
110                 return !!(config & ARCH_LBR_CALL_STACK);
111
112         return !!(config & LBR_CALL_STACK);
113 }
114
115 /*
116  * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
117  * otherwise it becomes near impossible to get a reliable stack.
118  */
119
120 static void __intel_pmu_lbr_enable(bool pmi)
121 {
122         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
123         u64 debugctl, lbr_select = 0, orig_debugctl;
124
125         /*
126          * No need to unfreeze manually, as v4 can do that as part
127          * of the GLOBAL_STATUS ack.
128          */
129         if (pmi && x86_pmu.version >= 4)
130                 return;
131
132         /*
133          * No need to reprogram LBR_SELECT in a PMI, as it
134          * did not change.
135          */
136         if (cpuc->lbr_sel)
137                 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
138         if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel)
139                 wrmsrl(MSR_LBR_SELECT, lbr_select);
140
141         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
142         orig_debugctl = debugctl;
143
144         if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
145                 debugctl |= DEBUGCTLMSR_LBR;
146         /*
147          * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
148          * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
149          * may cause superfluous increase/decrease of LBR_TOS.
150          */
151         if (is_lbr_call_stack_bit_set(lbr_select))
152                 debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
153         else
154                 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
155
156         if (orig_debugctl != debugctl)
157                 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
158
159         if (static_cpu_has(X86_FEATURE_ARCH_LBR))
160                 wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN);
161 }
162
163 void intel_pmu_lbr_reset_32(void)
164 {
165         int i;
166
167         for (i = 0; i < x86_pmu.lbr_nr; i++)
168                 wrmsrl(x86_pmu.lbr_from + i, 0);
169 }
170
171 void intel_pmu_lbr_reset_64(void)
172 {
173         int i;
174
175         for (i = 0; i < x86_pmu.lbr_nr; i++) {
176                 wrmsrl(x86_pmu.lbr_from + i, 0);
177                 wrmsrl(x86_pmu.lbr_to   + i, 0);
178                 if (x86_pmu.lbr_has_info)
179                         wrmsrl(x86_pmu.lbr_info + i, 0);
180         }
181 }
182
183 static void intel_pmu_arch_lbr_reset(void)
184 {
185         /* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */
186         wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr);
187 }
188
189 void intel_pmu_lbr_reset(void)
190 {
191         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
192
193         if (!x86_pmu.lbr_nr)
194                 return;
195
196         x86_pmu.lbr_reset();
197
198         cpuc->last_task_ctx = NULL;
199         cpuc->last_log_id = 0;
200         if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && cpuc->lbr_select)
201                 wrmsrl(MSR_LBR_SELECT, 0);
202 }
203
204 /*
205  * TOS = most recently recorded branch
206  */
207 static inline u64 intel_pmu_lbr_tos(void)
208 {
209         u64 tos;
210
211         rdmsrl(x86_pmu.lbr_tos, tos);
212         return tos;
213 }
214
215 enum {
216         LBR_NONE,
217         LBR_VALID,
218 };
219
220 /*
221  * For format LBR_FORMAT_EIP_FLAGS2, bits 61:62 in MSR_LAST_BRANCH_FROM_x
222  * are the TSX flags when TSX is supported, but when TSX is not supported
223  * they have no consistent behavior:
224  *
225  *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
226  *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
227  *     part of the sign extension.
228  *
229  * Therefore, if:
230  *
231  *   1) LBR format LBR_FORMAT_EIP_FLAGS2
232  *   2) CPU has no TSX support enabled
233  *
234  * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
235  * value from rdmsr() must be converted to have a 61 bits sign extension,
236  * ignoring the TSX flags.
237  */
238 static inline bool lbr_from_signext_quirk_needed(void)
239 {
240         bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
241                            boot_cpu_has(X86_FEATURE_RTM);
242
243         return !tsx_support;
244 }
245
246 static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
247
248 /* If quirk is enabled, ensure sign extension is 63 bits: */
249 inline u64 lbr_from_signext_quirk_wr(u64 val)
250 {
251         if (static_branch_unlikely(&lbr_from_quirk_key)) {
252                 /*
253                  * Sign extend into bits 61:62 while preserving bit 63.
254                  *
255                  * Quirk is enabled when TSX is disabled. Therefore TSX bits
256                  * in val are always OFF and must be changed to be sign
257                  * extension bits. Since bits 59:60 are guaranteed to be
258                  * part of the sign extension bits, we can just copy them
259                  * to 61:62.
260                  */
261                 val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
262         }
263         return val;
264 }
265
266 /*
267  * If quirk is needed, ensure sign extension is 61 bits:
268  */
269 static u64 lbr_from_signext_quirk_rd(u64 val)
270 {
271         if (static_branch_unlikely(&lbr_from_quirk_key)) {
272                 /*
273                  * Quirk is on when TSX is not enabled. Therefore TSX
274                  * flags must be read as OFF.
275                  */
276                 val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
277         }
278         return val;
279 }
280
281 static __always_inline void wrlbr_from(unsigned int idx, u64 val)
282 {
283         val = lbr_from_signext_quirk_wr(val);
284         wrmsrl(x86_pmu.lbr_from + idx, val);
285 }
286
287 static __always_inline void wrlbr_to(unsigned int idx, u64 val)
288 {
289         wrmsrl(x86_pmu.lbr_to + idx, val);
290 }
291
292 static __always_inline void wrlbr_info(unsigned int idx, u64 val)
293 {
294         wrmsrl(x86_pmu.lbr_info + idx, val);
295 }
296
297 static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr)
298 {
299         u64 val;
300
301         if (lbr)
302                 return lbr->from;
303
304         rdmsrl(x86_pmu.lbr_from + idx, val);
305
306         return lbr_from_signext_quirk_rd(val);
307 }
308
309 static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr)
310 {
311         u64 val;
312
313         if (lbr)
314                 return lbr->to;
315
316         rdmsrl(x86_pmu.lbr_to + idx, val);
317
318         return val;
319 }
320
321 static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr)
322 {
323         u64 val;
324
325         if (lbr)
326                 return lbr->info;
327
328         rdmsrl(x86_pmu.lbr_info + idx, val);
329
330         return val;
331 }
332
333 static inline void
334 wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
335 {
336         wrlbr_from(idx, lbr->from);
337         wrlbr_to(idx, lbr->to);
338         if (need_info)
339                 wrlbr_info(idx, lbr->info);
340 }
341
342 static inline bool
343 rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
344 {
345         u64 from = rdlbr_from(idx, NULL);
346
347         /* Don't read invalid entry */
348         if (!from)
349                 return false;
350
351         lbr->from = from;
352         lbr->to = rdlbr_to(idx, NULL);
353         if (need_info)
354                 lbr->info = rdlbr_info(idx, NULL);
355
356         return true;
357 }
358
359 void intel_pmu_lbr_restore(void *ctx)
360 {
361         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
362         struct x86_perf_task_context *task_ctx = ctx;
363         bool need_info = x86_pmu.lbr_has_info;
364         u64 tos = task_ctx->tos;
365         unsigned lbr_idx, mask;
366         int i;
367
368         mask = x86_pmu.lbr_nr - 1;
369         for (i = 0; i < task_ctx->valid_lbrs; i++) {
370                 lbr_idx = (tos - i) & mask;
371                 wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info);
372         }
373
374         for (; i < x86_pmu.lbr_nr; i++) {
375                 lbr_idx = (tos - i) & mask;
376                 wrlbr_from(lbr_idx, 0);
377                 wrlbr_to(lbr_idx, 0);
378                 if (need_info)
379                         wrlbr_info(lbr_idx, 0);
380         }
381
382         wrmsrl(x86_pmu.lbr_tos, tos);
383
384         if (cpuc->lbr_select)
385                 wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
386 }
387
388 static void intel_pmu_arch_lbr_restore(void *ctx)
389 {
390         struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
391         struct lbr_entry *entries = task_ctx->entries;
392         int i;
393
394         /* Fast reset the LBRs before restore if the call stack is not full. */
395         if (!entries[x86_pmu.lbr_nr - 1].from)
396                 intel_pmu_arch_lbr_reset();
397
398         for (i = 0; i < x86_pmu.lbr_nr; i++) {
399                 if (!entries[i].from)
400                         break;
401                 wrlbr_all(&entries[i], i, true);
402         }
403 }
404
405 /*
406  * Restore the Architecture LBR state from the xsave area in the perf
407  * context data for the task via the XRSTORS instruction.
408  */
409 static void intel_pmu_arch_lbr_xrstors(void *ctx)
410 {
411         struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
412
413         xrstors(&task_ctx->xsave, XFEATURE_MASK_LBR);
414 }
415
416 static __always_inline bool lbr_is_reset_in_cstate(void *ctx)
417 {
418         if (static_cpu_has(X86_FEATURE_ARCH_LBR))
419                 return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL);
420
421         return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL);
422 }
423
424 static void __intel_pmu_lbr_restore(void *ctx)
425 {
426         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
427
428         if (task_context_opt(ctx)->lbr_callstack_users == 0 ||
429             task_context_opt(ctx)->lbr_stack_state == LBR_NONE) {
430                 intel_pmu_lbr_reset();
431                 return;
432         }
433
434         /*
435          * Does not restore the LBR registers, if
436          * - No one else touched them, and
437          * - Was not cleared in Cstate
438          */
439         if ((ctx == cpuc->last_task_ctx) &&
440             (task_context_opt(ctx)->log_id == cpuc->last_log_id) &&
441             !lbr_is_reset_in_cstate(ctx)) {
442                 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
443                 return;
444         }
445
446         x86_pmu.lbr_restore(ctx);
447
448         task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
449 }
450
451 void intel_pmu_lbr_save(void *ctx)
452 {
453         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
454         struct x86_perf_task_context *task_ctx = ctx;
455         bool need_info = x86_pmu.lbr_has_info;
456         unsigned lbr_idx, mask;
457         u64 tos;
458         int i;
459
460         mask = x86_pmu.lbr_nr - 1;
461         tos = intel_pmu_lbr_tos();
462         for (i = 0; i < x86_pmu.lbr_nr; i++) {
463                 lbr_idx = (tos - i) & mask;
464                 if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info))
465                         break;
466         }
467         task_ctx->valid_lbrs = i;
468         task_ctx->tos = tos;
469
470         if (cpuc->lbr_select)
471                 rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
472 }
473
474 static void intel_pmu_arch_lbr_save(void *ctx)
475 {
476         struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
477         struct lbr_entry *entries = task_ctx->entries;
478         int i;
479
480         for (i = 0; i < x86_pmu.lbr_nr; i++) {
481                 if (!rdlbr_all(&entries[i], i, true))
482                         break;
483         }
484
485         /* LBR call stack is not full. Reset is required in restore. */
486         if (i < x86_pmu.lbr_nr)
487                 entries[x86_pmu.lbr_nr - 1].from = 0;
488 }
489
490 /*
491  * Save the Architecture LBR state to the xsave area in the perf
492  * context data for the task via the XSAVES instruction.
493  */
494 static void intel_pmu_arch_lbr_xsaves(void *ctx)
495 {
496         struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
497
498         xsaves(&task_ctx->xsave, XFEATURE_MASK_LBR);
499 }
500
501 static void __intel_pmu_lbr_save(void *ctx)
502 {
503         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
504
505         if (task_context_opt(ctx)->lbr_callstack_users == 0) {
506                 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
507                 return;
508         }
509
510         x86_pmu.lbr_save(ctx);
511
512         task_context_opt(ctx)->lbr_stack_state = LBR_VALID;
513
514         cpuc->last_task_ctx = ctx;
515         cpuc->last_log_id = ++task_context_opt(ctx)->log_id;
516 }
517
518 void intel_pmu_lbr_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
519                                  struct perf_event_pmu_context *next_epc)
520 {
521         void *prev_ctx_data, *next_ctx_data;
522
523         swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
524
525         /*
526          * Architecture specific synchronization makes sense in case
527          * both prev_epc->task_ctx_data and next_epc->task_ctx_data
528          * pointers are allocated.
529          */
530
531         prev_ctx_data = next_epc->task_ctx_data;
532         next_ctx_data = prev_epc->task_ctx_data;
533
534         if (!prev_ctx_data || !next_ctx_data)
535                 return;
536
537         swap(task_context_opt(prev_ctx_data)->lbr_callstack_users,
538              task_context_opt(next_ctx_data)->lbr_callstack_users);
539 }
540
541 void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
542 {
543         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
544         void *task_ctx;
545
546         if (!cpuc->lbr_users)
547                 return;
548
549         /*
550          * If LBR callstack feature is enabled and the stack was saved when
551          * the task was scheduled out, restore the stack. Otherwise flush
552          * the LBR stack.
553          */
554         task_ctx = pmu_ctx ? pmu_ctx->task_ctx_data : NULL;
555         if (task_ctx) {
556                 if (sched_in)
557                         __intel_pmu_lbr_restore(task_ctx);
558                 else
559                         __intel_pmu_lbr_save(task_ctx);
560                 return;
561         }
562
563         /*
564          * Since a context switch can flip the address space and LBR entries
565          * are not tagged with an identifier, we need to wipe the LBR, even for
566          * per-cpu events. You simply cannot resolve the branches from the old
567          * address space.
568          */
569         if (sched_in)
570                 intel_pmu_lbr_reset();
571 }
572
573 static inline bool branch_user_callstack(unsigned br_sel)
574 {
575         return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
576 }
577
578 void intel_pmu_lbr_add(struct perf_event *event)
579 {
580         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
581
582         if (!x86_pmu.lbr_nr)
583                 return;
584
585         if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
586                 cpuc->lbr_select = 1;
587
588         cpuc->br_sel = event->hw.branch_reg.reg;
589
590         if (branch_user_callstack(cpuc->br_sel) && event->pmu_ctx->task_ctx_data)
591                 task_context_opt(event->pmu_ctx->task_ctx_data)->lbr_callstack_users++;
592
593         /*
594          * Request pmu::sched_task() callback, which will fire inside the
595          * regular perf event scheduling, so that call will:
596          *
597          *  - restore or wipe; when LBR-callstack,
598          *  - wipe; otherwise,
599          *
600          * when this is from __perf_event_task_sched_in().
601          *
602          * However, if this is from perf_install_in_context(), no such callback
603          * will follow and we'll need to reset the LBR here if this is the
604          * first LBR event.
605          *
606          * The problem is, we cannot tell these cases apart... but we can
607          * exclude the biggest chunk of cases by looking at
608          * event->total_time_running. An event that has accrued runtime cannot
609          * be 'new'. Conversely, a new event can get installed through the
610          * context switch path for the first time.
611          */
612         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
613                 cpuc->lbr_pebs_users++;
614         perf_sched_cb_inc(event->pmu);
615         if (!cpuc->lbr_users++ && !event->total_time_running)
616                 intel_pmu_lbr_reset();
617 }
618
619 void release_lbr_buffers(void)
620 {
621         struct kmem_cache *kmem_cache;
622         struct cpu_hw_events *cpuc;
623         int cpu;
624
625         if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
626                 return;
627
628         for_each_possible_cpu(cpu) {
629                 cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
630                 kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
631                 if (kmem_cache && cpuc->lbr_xsave) {
632                         kmem_cache_free(kmem_cache, cpuc->lbr_xsave);
633                         cpuc->lbr_xsave = NULL;
634                 }
635         }
636 }
637
638 void reserve_lbr_buffers(void)
639 {
640         struct kmem_cache *kmem_cache;
641         struct cpu_hw_events *cpuc;
642         int cpu;
643
644         if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
645                 return;
646
647         for_each_possible_cpu(cpu) {
648                 cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
649                 kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
650                 if (!kmem_cache || cpuc->lbr_xsave)
651                         continue;
652
653                 cpuc->lbr_xsave = kmem_cache_alloc_node(kmem_cache,
654                                                         GFP_KERNEL | __GFP_ZERO,
655                                                         cpu_to_node(cpu));
656         }
657 }
658
659 void intel_pmu_lbr_del(struct perf_event *event)
660 {
661         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
662
663         if (!x86_pmu.lbr_nr)
664                 return;
665
666         if (branch_user_callstack(cpuc->br_sel) &&
667             event->pmu_ctx->task_ctx_data)
668                 task_context_opt(event->pmu_ctx->task_ctx_data)->lbr_callstack_users--;
669
670         if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
671                 cpuc->lbr_select = 0;
672
673         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
674                 cpuc->lbr_pebs_users--;
675         cpuc->lbr_users--;
676         WARN_ON_ONCE(cpuc->lbr_users < 0);
677         WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
678         perf_sched_cb_dec(event->pmu);
679
680         /*
681          * The logged occurrences information is only valid for the
682          * current LBR group. If another LBR group is scheduled in
683          * later, the information from the stale LBRs will be wrongly
684          * interpreted. Reset the LBRs here.
685          *
686          * Only clear once for a branch counter group with the leader
687          * event. Because
688          * - Cannot simply reset the LBRs with the !cpuc->lbr_users.
689          *   Because it's possible that the last LBR user is not in a
690          *   branch counter group, e.g., a branch_counters group +
691          *   several normal LBR events.
692          * - The LBR reset can be done with any one of the events in a
693          *   branch counter group, since they are always scheduled together.
694          *   It's easy to force the leader event an LBR event.
695          */
696         if (is_branch_counters_group(event) && event == event->group_leader)
697                 intel_pmu_lbr_reset();
698 }
699
700 static inline bool vlbr_exclude_host(void)
701 {
702         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
703
704         return test_bit(INTEL_PMC_IDX_FIXED_VLBR,
705                 (unsigned long *)&cpuc->intel_ctrl_guest_mask);
706 }
707
708 void intel_pmu_lbr_enable_all(bool pmi)
709 {
710         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
711
712         if (cpuc->lbr_users && !vlbr_exclude_host())
713                 __intel_pmu_lbr_enable(pmi);
714 }
715
716 void intel_pmu_lbr_disable_all(void)
717 {
718         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
719
720         if (cpuc->lbr_users && !vlbr_exclude_host()) {
721                 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
722                         return __intel_pmu_arch_lbr_disable();
723
724                 __intel_pmu_lbr_disable();
725         }
726 }
727
728 void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
729 {
730         unsigned long mask = x86_pmu.lbr_nr - 1;
731         struct perf_branch_entry *br = cpuc->lbr_entries;
732         u64 tos = intel_pmu_lbr_tos();
733         int i;
734
735         for (i = 0; i < x86_pmu.lbr_nr; i++) {
736                 unsigned long lbr_idx = (tos - i) & mask;
737                 union {
738                         struct {
739                                 u32 from;
740                                 u32 to;
741                         };
742                         u64     lbr;
743                 } msr_lastbranch;
744
745                 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
746
747                 perf_clear_branch_entry_bitfields(br);
748
749                 br->from        = msr_lastbranch.from;
750                 br->to          = msr_lastbranch.to;
751                 br++;
752         }
753         cpuc->lbr_stack.nr = i;
754         cpuc->lbr_stack.hw_idx = tos;
755 }
756
757 /*
758  * Due to lack of segmentation in Linux the effective address (offset)
759  * is the same as the linear address, allowing us to merge the LIP and EIP
760  * LBR formats.
761  */
762 void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
763 {
764         bool need_info = false, call_stack = false;
765         unsigned long mask = x86_pmu.lbr_nr - 1;
766         struct perf_branch_entry *br = cpuc->lbr_entries;
767         u64 tos = intel_pmu_lbr_tos();
768         int i;
769         int out = 0;
770         int num = x86_pmu.lbr_nr;
771
772         if (cpuc->lbr_sel) {
773                 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
774                 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
775                         call_stack = true;
776         }
777
778         for (i = 0; i < num; i++) {
779                 unsigned long lbr_idx = (tos - i) & mask;
780                 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
781                 u16 cycles = 0;
782
783                 from = rdlbr_from(lbr_idx, NULL);
784                 to   = rdlbr_to(lbr_idx, NULL);
785
786                 /*
787                  * Read LBR call stack entries
788                  * until invalid entry (0s) is detected.
789                  */
790                 if (call_stack && !from)
791                         break;
792
793                 if (x86_pmu.lbr_has_info) {
794                         if (need_info) {
795                                 u64 info;
796
797                                 info = rdlbr_info(lbr_idx, NULL);
798                                 mis = !!(info & LBR_INFO_MISPRED);
799                                 pred = !mis;
800                                 cycles = (info & LBR_INFO_CYCLES);
801                                 if (x86_pmu.lbr_has_tsx) {
802                                         in_tx = !!(info & LBR_INFO_IN_TX);
803                                         abort = !!(info & LBR_INFO_ABORT);
804                                 }
805                         }
806                 } else {
807                         int skip = 0;
808
809                         if (x86_pmu.lbr_from_flags) {
810                                 mis = !!(from & LBR_FROM_FLAG_MISPRED);
811                                 pred = !mis;
812                                 skip = 1;
813                         }
814                         if (x86_pmu.lbr_has_tsx) {
815                                 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
816                                 abort = !!(from & LBR_FROM_FLAG_ABORT);
817                                 skip = 3;
818                         }
819                         from = (u64)((((s64)from) << skip) >> skip);
820
821                         if (x86_pmu.lbr_to_cycles) {
822                                 cycles = ((to >> 48) & LBR_INFO_CYCLES);
823                                 to = (u64)((((s64)to) << 16) >> 16);
824                         }
825                 }
826
827                 /*
828                  * Some CPUs report duplicated abort records,
829                  * with the second entry not having an abort bit set.
830                  * Skip them here. This loop runs backwards,
831                  * so we need to undo the previous record.
832                  * If the abort just happened outside the window
833                  * the extra entry cannot be removed.
834                  */
835                 if (abort && x86_pmu.lbr_double_abort && out > 0)
836                         out--;
837
838                 perf_clear_branch_entry_bitfields(br+out);
839                 br[out].from     = from;
840                 br[out].to       = to;
841                 br[out].mispred  = mis;
842                 br[out].predicted = pred;
843                 br[out].in_tx    = in_tx;
844                 br[out].abort    = abort;
845                 br[out].cycles   = cycles;
846                 out++;
847         }
848         cpuc->lbr_stack.nr = out;
849         cpuc->lbr_stack.hw_idx = tos;
850 }
851
852 static DEFINE_STATIC_KEY_FALSE(x86_lbr_mispred);
853 static DEFINE_STATIC_KEY_FALSE(x86_lbr_cycles);
854 static DEFINE_STATIC_KEY_FALSE(x86_lbr_type);
855
856 static __always_inline int get_lbr_br_type(u64 info)
857 {
858         int type = 0;
859
860         if (static_branch_likely(&x86_lbr_type))
861                 type = (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET;
862
863         return type;
864 }
865
866 static __always_inline bool get_lbr_mispred(u64 info)
867 {
868         bool mispred = 0;
869
870         if (static_branch_likely(&x86_lbr_mispred))
871                 mispred = !!(info & LBR_INFO_MISPRED);
872
873         return mispred;
874 }
875
876 static __always_inline u16 get_lbr_cycles(u64 info)
877 {
878         u16 cycles = info & LBR_INFO_CYCLES;
879
880         if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
881             (!static_branch_likely(&x86_lbr_cycles) ||
882              !(info & LBR_INFO_CYC_CNT_VALID)))
883                 cycles = 0;
884
885         return cycles;
886 }
887
888 static_assert((64 - PERF_BRANCH_ENTRY_INFO_BITS_MAX) > LBR_INFO_BR_CNTR_NUM * LBR_INFO_BR_CNTR_BITS);
889
890 static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc,
891                                 struct lbr_entry *entries)
892 {
893         struct perf_branch_entry *e;
894         struct lbr_entry *lbr;
895         u64 from, to, info;
896         int i;
897
898         for (i = 0; i < x86_pmu.lbr_nr; i++) {
899                 lbr = entries ? &entries[i] : NULL;
900                 e = &cpuc->lbr_entries[i];
901
902                 from = rdlbr_from(i, lbr);
903                 /*
904                  * Read LBR entries until invalid entry (0s) is detected.
905                  */
906                 if (!from)
907                         break;
908
909                 to = rdlbr_to(i, lbr);
910                 info = rdlbr_info(i, lbr);
911
912                 perf_clear_branch_entry_bitfields(e);
913
914                 e->from         = from;
915                 e->to           = to;
916                 e->mispred      = get_lbr_mispred(info);
917                 e->predicted    = !e->mispred;
918                 e->in_tx        = !!(info & LBR_INFO_IN_TX);
919                 e->abort        = !!(info & LBR_INFO_ABORT);
920                 e->cycles       = get_lbr_cycles(info);
921                 e->type         = get_lbr_br_type(info);
922
923                 /*
924                  * Leverage the reserved field of cpuc->lbr_entries[i] to
925                  * temporarily store the branch counters information.
926                  * The later code will decide what content can be disclosed
927                  * to the perf tool. Pleae see intel_pmu_lbr_counters_reorder().
928                  */
929                 e->reserved     = (info >> LBR_INFO_BR_CNTR_OFFSET) & LBR_INFO_BR_CNTR_FULL_MASK;
930         }
931
932         cpuc->lbr_stack.nr = i;
933 }
934
935 /*
936  * The enabled order may be different from the counter order.
937  * Update the lbr_counters with the enabled order.
938  */
939 static void intel_pmu_lbr_counters_reorder(struct cpu_hw_events *cpuc,
940                                            struct perf_event *event)
941 {
942         int i, j, pos = 0, order[X86_PMC_IDX_MAX];
943         struct perf_event *leader, *sibling;
944         u64 src, dst, cnt;
945
946         leader = event->group_leader;
947         if (branch_sample_counters(leader))
948                 order[pos++] = leader->hw.idx;
949
950         for_each_sibling_event(sibling, leader) {
951                 if (!branch_sample_counters(sibling))
952                         continue;
953                 order[pos++] = sibling->hw.idx;
954         }
955
956         WARN_ON_ONCE(!pos);
957
958         for (i = 0; i < cpuc->lbr_stack.nr; i++) {
959                 src = cpuc->lbr_entries[i].reserved;
960                 dst = 0;
961                 for (j = 0; j < pos; j++) {
962                         cnt = (src >> (order[j] * LBR_INFO_BR_CNTR_BITS)) & LBR_INFO_BR_CNTR_MASK;
963                         dst |= cnt << j * LBR_INFO_BR_CNTR_BITS;
964                 }
965                 cpuc->lbr_counters[i] = dst;
966                 cpuc->lbr_entries[i].reserved = 0;
967         }
968 }
969
970 void intel_pmu_lbr_save_brstack(struct perf_sample_data *data,
971                                 struct cpu_hw_events *cpuc,
972                                 struct perf_event *event)
973 {
974         if (is_branch_counters_group(event)) {
975                 intel_pmu_lbr_counters_reorder(cpuc, event);
976                 perf_sample_save_brstack(data, event, &cpuc->lbr_stack, cpuc->lbr_counters);
977                 return;
978         }
979
980         perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
981 }
982
983 static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc)
984 {
985         intel_pmu_store_lbr(cpuc, NULL);
986 }
987
988 static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc)
989 {
990         struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave;
991
992         if (!xsave) {
993                 intel_pmu_store_lbr(cpuc, NULL);
994                 return;
995         }
996         xsaves(&xsave->xsave, XFEATURE_MASK_LBR);
997
998         intel_pmu_store_lbr(cpuc, xsave->lbr.entries);
999 }
1000
1001 void intel_pmu_lbr_read(void)
1002 {
1003         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1004
1005         /*
1006          * Don't read when all LBRs users are using adaptive PEBS.
1007          *
1008          * This could be smarter and actually check the event,
1009          * but this simple approach seems to work for now.
1010          */
1011         if (!cpuc->lbr_users || vlbr_exclude_host() ||
1012             cpuc->lbr_users == cpuc->lbr_pebs_users)
1013                 return;
1014
1015         x86_pmu.lbr_read(cpuc);
1016
1017         intel_pmu_lbr_filter(cpuc);
1018 }
1019
1020 /*
1021  * SW filter is used:
1022  * - in case there is no HW filter
1023  * - in case the HW filter has errata or limitations
1024  */
1025 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
1026 {
1027         u64 br_type = event->attr.branch_sample_type;
1028         int mask = 0;
1029
1030         if (br_type & PERF_SAMPLE_BRANCH_USER)
1031                 mask |= X86_BR_USER;
1032
1033         if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
1034                 mask |= X86_BR_KERNEL;
1035
1036         /* we ignore BRANCH_HV here */
1037
1038         if (br_type & PERF_SAMPLE_BRANCH_ANY)
1039                 mask |= X86_BR_ANY;
1040
1041         if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
1042                 mask |= X86_BR_ANY_CALL;
1043
1044         if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
1045                 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
1046
1047         if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
1048                 mask |= X86_BR_IND_CALL;
1049
1050         if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
1051                 mask |= X86_BR_ABORT;
1052
1053         if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
1054                 mask |= X86_BR_IN_TX;
1055
1056         if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
1057                 mask |= X86_BR_NO_TX;
1058
1059         if (br_type & PERF_SAMPLE_BRANCH_COND)
1060                 mask |= X86_BR_JCC;
1061
1062         if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
1063                 if (!x86_pmu_has_lbr_callstack())
1064                         return -EOPNOTSUPP;
1065                 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
1066                         return -EINVAL;
1067                 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
1068                         X86_BR_CALL_STACK;
1069         }
1070
1071         if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
1072                 mask |= X86_BR_IND_JMP;
1073
1074         if (br_type & PERF_SAMPLE_BRANCH_CALL)
1075                 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
1076
1077         if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
1078                 mask |= X86_BR_TYPE_SAVE;
1079
1080         /*
1081          * stash actual user request into reg, it may
1082          * be used by fixup code for some CPU
1083          */
1084         event->hw.branch_reg.reg = mask;
1085         return 0;
1086 }
1087
1088 /*
1089  * setup the HW LBR filter
1090  * Used only when available, may not be enough to disambiguate
1091  * all branches, may need the help of the SW filter
1092  */
1093 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
1094 {
1095         struct hw_perf_event_extra *reg;
1096         u64 br_type = event->attr.branch_sample_type;
1097         u64 mask = 0, v;
1098         int i;
1099
1100         for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
1101                 if (!(br_type & (1ULL << i)))
1102                         continue;
1103
1104                 v = x86_pmu.lbr_sel_map[i];
1105                 if (v == LBR_NOT_SUPP)
1106                         return -EOPNOTSUPP;
1107
1108                 if (v != LBR_IGN)
1109                         mask |= v;
1110         }
1111
1112         reg = &event->hw.branch_reg;
1113         reg->idx = EXTRA_REG_LBR;
1114
1115         if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
1116                 reg->config = mask;
1117
1118                 /*
1119                  * The Arch LBR HW can retrieve the common branch types
1120                  * from the LBR_INFO. It doesn't require the high overhead
1121                  * SW disassemble.
1122                  * Enable the branch type by default for the Arch LBR.
1123                  */
1124                 reg->reg |= X86_BR_TYPE_SAVE;
1125                 return 0;
1126         }
1127
1128         /*
1129          * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
1130          * in suppress mode. So LBR_SELECT should be set to
1131          * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
1132          * But the 10th bit LBR_CALL_STACK does not operate
1133          * in suppress mode.
1134          */
1135         reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
1136
1137         if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
1138             (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
1139             x86_pmu.lbr_has_info)
1140                 reg->config |= LBR_NO_INFO;
1141
1142         return 0;
1143 }
1144
1145 int intel_pmu_setup_lbr_filter(struct perf_event *event)
1146 {
1147         int ret = 0;
1148
1149         /*
1150          * no LBR on this PMU
1151          */
1152         if (!x86_pmu.lbr_nr)
1153                 return -EOPNOTSUPP;
1154
1155         /*
1156          * setup SW LBR filter
1157          */
1158         ret = intel_pmu_setup_sw_lbr_filter(event);
1159         if (ret)
1160                 return ret;
1161
1162         /*
1163          * setup HW LBR filter, if any
1164          */
1165         if (x86_pmu.lbr_sel_map)
1166                 ret = intel_pmu_setup_hw_lbr_filter(event);
1167
1168         return ret;
1169 }
1170
1171 enum {
1172         ARCH_LBR_BR_TYPE_JCC                    = 0,
1173         ARCH_LBR_BR_TYPE_NEAR_IND_JMP           = 1,
1174         ARCH_LBR_BR_TYPE_NEAR_REL_JMP           = 2,
1175         ARCH_LBR_BR_TYPE_NEAR_IND_CALL          = 3,
1176         ARCH_LBR_BR_TYPE_NEAR_REL_CALL          = 4,
1177         ARCH_LBR_BR_TYPE_NEAR_RET               = 5,
1178         ARCH_LBR_BR_TYPE_KNOWN_MAX              = ARCH_LBR_BR_TYPE_NEAR_RET,
1179
1180         ARCH_LBR_BR_TYPE_MAP_MAX                = 16,
1181 };
1182
1183 static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = {
1184         [ARCH_LBR_BR_TYPE_JCC]                  = X86_BR_JCC,
1185         [ARCH_LBR_BR_TYPE_NEAR_IND_JMP]         = X86_BR_IND_JMP,
1186         [ARCH_LBR_BR_TYPE_NEAR_REL_JMP]         = X86_BR_JMP,
1187         [ARCH_LBR_BR_TYPE_NEAR_IND_CALL]        = X86_BR_IND_CALL,
1188         [ARCH_LBR_BR_TYPE_NEAR_REL_CALL]        = X86_BR_CALL,
1189         [ARCH_LBR_BR_TYPE_NEAR_RET]             = X86_BR_RET,
1190 };
1191
1192 /*
1193  * implement actual branch filter based on user demand.
1194  * Hardware may not exactly satisfy that request, thus
1195  * we need to inspect opcodes. Mismatched branches are
1196  * discarded. Therefore, the number of branches returned
1197  * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1198  */
1199 static void
1200 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1201 {
1202         u64 from, to;
1203         int br_sel = cpuc->br_sel;
1204         int i, j, type, to_plm;
1205         bool compress = false;
1206
1207         /* if sampling all branches, then nothing to filter */
1208         if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1209             ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1210                 return;
1211
1212         for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1213
1214                 from = cpuc->lbr_entries[i].from;
1215                 to = cpuc->lbr_entries[i].to;
1216                 type = cpuc->lbr_entries[i].type;
1217
1218                 /*
1219                  * Parse the branch type recorded in LBR_x_INFO MSR.
1220                  * Doesn't support OTHER_BRANCH decoding for now.
1221                  * OTHER_BRANCH branch type still rely on software decoding.
1222                  */
1223                 if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
1224                     type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) {
1225                         to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
1226                         type = arch_lbr_br_type_map[type] | to_plm;
1227                 } else
1228                         type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1229                 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1230                         if (cpuc->lbr_entries[i].in_tx)
1231                                 type |= X86_BR_IN_TX;
1232                         else
1233                                 type |= X86_BR_NO_TX;
1234                 }
1235
1236                 /* if type does not correspond, then discard */
1237                 if (type == X86_BR_NONE || (br_sel & type) != type) {
1238                         cpuc->lbr_entries[i].from = 0;
1239                         compress = true;
1240                 }
1241
1242                 if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1243                         cpuc->lbr_entries[i].type = common_branch_type(type);
1244         }
1245
1246         if (!compress)
1247                 return;
1248
1249         /* remove all entries with from=0 */
1250         for (i = 0; i < cpuc->lbr_stack.nr; ) {
1251                 if (!cpuc->lbr_entries[i].from) {
1252                         j = i;
1253                         while (++j < cpuc->lbr_stack.nr) {
1254                                 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1255                                 cpuc->lbr_counters[j-1] = cpuc->lbr_counters[j];
1256                         }
1257                         cpuc->lbr_stack.nr--;
1258                         if (!cpuc->lbr_entries[i].from)
1259                                 continue;
1260                 }
1261                 i++;
1262         }
1263 }
1264
1265 void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr)
1266 {
1267         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1268
1269         /* Cannot get TOS for large PEBS and Arch LBR */
1270         if (static_cpu_has(X86_FEATURE_ARCH_LBR) ||
1271             (cpuc->n_pebs == cpuc->n_large_pebs))
1272                 cpuc->lbr_stack.hw_idx = -1ULL;
1273         else
1274                 cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos();
1275
1276         intel_pmu_store_lbr(cpuc, lbr);
1277         intel_pmu_lbr_filter(cpuc);
1278 }
1279
1280 /*
1281  * Map interface branch filters onto LBR filters
1282  */
1283 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1284         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1285         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1286         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1287         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1288         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_REL_JMP
1289                                                 | LBR_IND_JMP | LBR_FAR,
1290         /*
1291          * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1292          */
1293         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1294          LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1295         /*
1296          * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1297          */
1298         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1299         [PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1300         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1301 };
1302
1303 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1304         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1305         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1306         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1307         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1308         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_FAR,
1309         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = LBR_REL_CALL | LBR_IND_CALL
1310                                                 | LBR_FAR,
1311         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = LBR_IND_CALL,
1312         [PERF_SAMPLE_BRANCH_COND_SHIFT]         = LBR_JCC,
1313         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]     = LBR_IND_JMP,
1314         [PERF_SAMPLE_BRANCH_CALL_SHIFT]         = LBR_REL_CALL,
1315 };
1316
1317 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1318         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1319         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1320         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1321         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1322         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_FAR,
1323         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = LBR_REL_CALL | LBR_IND_CALL
1324                                                 | LBR_FAR,
1325         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = LBR_IND_CALL,
1326         [PERF_SAMPLE_BRANCH_COND_SHIFT]         = LBR_JCC,
1327         [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]   = LBR_REL_CALL | LBR_IND_CALL
1328                                                 | LBR_RETURN | LBR_CALL_STACK,
1329         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]     = LBR_IND_JMP,
1330         [PERF_SAMPLE_BRANCH_CALL_SHIFT]         = LBR_REL_CALL,
1331 };
1332
1333 static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1334         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = ARCH_LBR_ANY,
1335         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = ARCH_LBR_USER,
1336         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = ARCH_LBR_KERNEL,
1337         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1338         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = ARCH_LBR_RETURN |
1339                                                   ARCH_LBR_OTHER_BRANCH,
1340         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = ARCH_LBR_REL_CALL |
1341                                                   ARCH_LBR_IND_CALL |
1342                                                   ARCH_LBR_OTHER_BRANCH,
1343         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = ARCH_LBR_IND_CALL,
1344         [PERF_SAMPLE_BRANCH_COND_SHIFT]         = ARCH_LBR_JCC,
1345         [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]   = ARCH_LBR_REL_CALL |
1346                                                   ARCH_LBR_IND_CALL |
1347                                                   ARCH_LBR_RETURN |
1348                                                   ARCH_LBR_CALL_STACK,
1349         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]     = ARCH_LBR_IND_JMP,
1350         [PERF_SAMPLE_BRANCH_CALL_SHIFT]         = ARCH_LBR_REL_CALL,
1351 };
1352
1353 /* core */
1354 void __init intel_pmu_lbr_init_core(void)
1355 {
1356         x86_pmu.lbr_nr     = 4;
1357         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1358         x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1359         x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1360
1361         /*
1362          * SW branch filter usage:
1363          * - compensate for lack of HW filter
1364          */
1365 }
1366
1367 /* nehalem/westmere */
1368 void __init intel_pmu_lbr_init_nhm(void)
1369 {
1370         x86_pmu.lbr_nr     = 16;
1371         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1372         x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1373         x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1374
1375         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1376         x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1377
1378         /*
1379          * SW branch filter usage:
1380          * - workaround LBR_SEL errata (see above)
1381          * - support syscall, sysret capture.
1382          *   That requires LBR_FAR but that means far
1383          *   jmp need to be filtered out
1384          */
1385 }
1386
1387 /* sandy bridge */
1388 void __init intel_pmu_lbr_init_snb(void)
1389 {
1390         x86_pmu.lbr_nr   = 16;
1391         x86_pmu.lbr_tos  = MSR_LBR_TOS;
1392         x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1393         x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1394
1395         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1396         x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1397
1398         /*
1399          * SW branch filter usage:
1400          * - support syscall, sysret capture.
1401          *   That requires LBR_FAR but that means far
1402          *   jmp need to be filtered out
1403          */
1404 }
1405
1406 static inline struct kmem_cache *
1407 create_lbr_kmem_cache(size_t size, size_t align)
1408 {
1409         return kmem_cache_create("x86_lbr", size, align, 0, NULL);
1410 }
1411
1412 /* haswell */
1413 void intel_pmu_lbr_init_hsw(void)
1414 {
1415         size_t size = sizeof(struct x86_perf_task_context);
1416
1417         x86_pmu.lbr_nr   = 16;
1418         x86_pmu.lbr_tos  = MSR_LBR_TOS;
1419         x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1420         x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1421
1422         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1423         x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1424
1425         x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1426 }
1427
1428 /* skylake */
1429 __init void intel_pmu_lbr_init_skl(void)
1430 {
1431         size_t size = sizeof(struct x86_perf_task_context);
1432
1433         x86_pmu.lbr_nr   = 32;
1434         x86_pmu.lbr_tos  = MSR_LBR_TOS;
1435         x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1436         x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1437         x86_pmu.lbr_info = MSR_LBR_INFO_0;
1438
1439         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1440         x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1441
1442         x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1443
1444         /*
1445          * SW branch filter usage:
1446          * - support syscall, sysret capture.
1447          *   That requires LBR_FAR but that means far
1448          *   jmp need to be filtered out
1449          */
1450 }
1451
1452 /* atom */
1453 void __init intel_pmu_lbr_init_atom(void)
1454 {
1455         /*
1456          * only models starting at stepping 10 seems
1457          * to have an operational LBR which can freeze
1458          * on PMU interrupt
1459          */
1460         if (boot_cpu_data.x86_model == 28
1461             && boot_cpu_data.x86_stepping < 10) {
1462                 pr_cont("LBR disabled due to erratum");
1463                 return;
1464         }
1465
1466         x86_pmu.lbr_nr     = 8;
1467         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1468         x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1469         x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1470
1471         /*
1472          * SW branch filter usage:
1473          * - compensate for lack of HW filter
1474          */
1475 }
1476
1477 /* slm */
1478 void __init intel_pmu_lbr_init_slm(void)
1479 {
1480         x86_pmu.lbr_nr     = 8;
1481         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1482         x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1483         x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1484
1485         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1486         x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1487
1488         /*
1489          * SW branch filter usage:
1490          * - compensate for lack of HW filter
1491          */
1492         pr_cont("8-deep LBR, ");
1493 }
1494
1495 /* Knights Landing */
1496 void intel_pmu_lbr_init_knl(void)
1497 {
1498         x86_pmu.lbr_nr     = 8;
1499         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1500         x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1501         x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1502
1503         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1504         x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1505
1506         /* Knights Landing does have MISPREDICT bit */
1507         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1508                 x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
1509 }
1510
1511 void intel_pmu_lbr_init(void)
1512 {
1513         switch (x86_pmu.intel_cap.lbr_format) {
1514         case LBR_FORMAT_EIP_FLAGS2:
1515                 x86_pmu.lbr_has_tsx = 1;
1516                 x86_pmu.lbr_from_flags = 1;
1517                 if (lbr_from_signext_quirk_needed())
1518                         static_branch_enable(&lbr_from_quirk_key);
1519                 break;
1520
1521         case LBR_FORMAT_EIP_FLAGS:
1522                 x86_pmu.lbr_from_flags = 1;
1523                 break;
1524
1525         case LBR_FORMAT_INFO:
1526                 x86_pmu.lbr_has_tsx = 1;
1527                 fallthrough;
1528         case LBR_FORMAT_INFO2:
1529                 x86_pmu.lbr_has_info = 1;
1530                 break;
1531
1532         case LBR_FORMAT_TIME:
1533                 x86_pmu.lbr_from_flags = 1;
1534                 x86_pmu.lbr_to_cycles = 1;
1535                 break;
1536         }
1537
1538         if (x86_pmu.lbr_has_info) {
1539                 /*
1540                  * Only used in combination with baseline pebs.
1541                  */
1542                 static_branch_enable(&x86_lbr_mispred);
1543                 static_branch_enable(&x86_lbr_cycles);
1544         }
1545 }
1546
1547 /*
1548  * LBR state size is variable based on the max number of registers.
1549  * This calculates the expected state size, which should match
1550  * what the hardware enumerates for the size of XFEATURE_LBR.
1551  */
1552 static inline unsigned int get_lbr_state_size(void)
1553 {
1554         return sizeof(struct arch_lbr_state) +
1555                x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1556 }
1557
1558 static bool is_arch_lbr_xsave_available(void)
1559 {
1560         if (!boot_cpu_has(X86_FEATURE_XSAVES))
1561                 return false;
1562
1563         /*
1564          * Check the LBR state with the corresponding software structure.
1565          * Disable LBR XSAVES support if the size doesn't match.
1566          */
1567         if (xfeature_size(XFEATURE_LBR) == 0)
1568                 return false;
1569
1570         if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size()))
1571                 return false;
1572
1573         return true;
1574 }
1575
1576 void __init intel_pmu_arch_lbr_init(void)
1577 {
1578         struct pmu *pmu = x86_get_pmu(smp_processor_id());
1579         union cpuid28_eax eax;
1580         union cpuid28_ebx ebx;
1581         union cpuid28_ecx ecx;
1582         unsigned int unused_edx;
1583         bool arch_lbr_xsave;
1584         size_t size;
1585         u64 lbr_nr;
1586
1587         /* Arch LBR Capabilities */
1588         cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx);
1589
1590         lbr_nr = fls(eax.split.lbr_depth_mask) * 8;
1591         if (!lbr_nr)
1592                 goto clear_arch_lbr;
1593
1594         /* Apply the max depth of Arch LBR */
1595         if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr))
1596                 goto clear_arch_lbr;
1597
1598         x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask;
1599         x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset;
1600         x86_pmu.lbr_lip = eax.split.lbr_lip;
1601         x86_pmu.lbr_cpl = ebx.split.lbr_cpl;
1602         x86_pmu.lbr_filter = ebx.split.lbr_filter;
1603         x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack;
1604         x86_pmu.lbr_mispred = ecx.split.lbr_mispred;
1605         x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr;
1606         x86_pmu.lbr_br_type = ecx.split.lbr_br_type;
1607         x86_pmu.lbr_counters = ecx.split.lbr_counters;
1608         x86_pmu.lbr_nr = lbr_nr;
1609
1610         if (!!x86_pmu.lbr_counters)
1611                 x86_pmu.flags |= PMU_FL_BR_CNTR;
1612
1613         if (x86_pmu.lbr_mispred)
1614                 static_branch_enable(&x86_lbr_mispred);
1615         if (x86_pmu.lbr_timed_lbr)
1616                 static_branch_enable(&x86_lbr_cycles);
1617         if (x86_pmu.lbr_br_type)
1618                 static_branch_enable(&x86_lbr_type);
1619
1620         arch_lbr_xsave = is_arch_lbr_xsave_available();
1621         if (arch_lbr_xsave) {
1622                 size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) +
1623                        get_lbr_state_size();
1624                 pmu->task_ctx_cache = create_lbr_kmem_cache(size,
1625                                                             XSAVE_ALIGNMENT);
1626         }
1627
1628         if (!pmu->task_ctx_cache) {
1629                 arch_lbr_xsave = false;
1630
1631                 size = sizeof(struct x86_perf_task_context_arch_lbr) +
1632                        lbr_nr * sizeof(struct lbr_entry);
1633                 pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1634         }
1635
1636         x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0;
1637         x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0;
1638         x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0;
1639
1640         /* LBR callstack requires both CPL and Branch Filtering support */
1641         if (!x86_pmu.lbr_cpl ||
1642             !x86_pmu.lbr_filter ||
1643             !x86_pmu.lbr_call_stack)
1644                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP;
1645
1646         if (!x86_pmu.lbr_cpl) {
1647                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP;
1648                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP;
1649         } else if (!x86_pmu.lbr_filter) {
1650                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP;
1651                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP;
1652                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP;
1653                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP;
1654                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP;
1655                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP;
1656                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP;
1657         }
1658
1659         x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK;
1660         x86_pmu.lbr_ctl_map  = arch_lbr_ctl_map;
1661
1662         if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter)
1663                 x86_pmu.lbr_ctl_map = NULL;
1664
1665         x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset;
1666         if (arch_lbr_xsave) {
1667                 x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves;
1668                 x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors;
1669                 x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave;
1670                 pr_cont("XSAVE ");
1671         } else {
1672                 x86_pmu.lbr_save = intel_pmu_arch_lbr_save;
1673                 x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore;
1674                 x86_pmu.lbr_read = intel_pmu_arch_lbr_read;
1675         }
1676
1677         pr_cont("Architectural LBR, ");
1678
1679         return;
1680
1681 clear_arch_lbr:
1682         setup_clear_cpu_cap(X86_FEATURE_ARCH_LBR);
1683 }
1684
1685 /**
1686  * x86_perf_get_lbr - get the LBR records information
1687  *
1688  * @lbr: the caller's memory to store the LBR records information
1689  */
1690 void x86_perf_get_lbr(struct x86_pmu_lbr *lbr)
1691 {
1692         lbr->nr = x86_pmu.lbr_nr;
1693         lbr->from = x86_pmu.lbr_from;
1694         lbr->to = x86_pmu.lbr_to;
1695         lbr->info = x86_pmu.lbr_info;
1696 }
1697 EXPORT_SYMBOL_GPL(x86_perf_get_lbr);
1698
1699 struct event_constraint vlbr_constraint =
1700         __EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR),
1701                           FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT);