Merge tag 'configfs-5.11' of git://git.infradead.org/users/hch/configfs
[linux-2.6-microblaze.git] / arch / x86 / events / intel / ds.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
9 #include <asm/insn.h>
10 #include <asm/io.h>
11
12 #include "../perf_event.h"
13
14 /* Waste a full page so it can be mapped into the cpu_entry_area */
15 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
16
17 /* The size of a BTS record in bytes: */
18 #define BTS_RECORD_SIZE         24
19
20 #define PEBS_FIXUP_SIZE         PAGE_SIZE
21
22 /*
23  * pebs_record_32 for p4 and core not supported
24
25 struct pebs_record_32 {
26         u32 flags, ip;
27         u32 ax, bc, cx, dx;
28         u32 si, di, bp, sp;
29 };
30
31  */
32
33 union intel_x86_pebs_dse {
34         u64 val;
35         struct {
36                 unsigned int ld_dse:4;
37                 unsigned int ld_stlb_miss:1;
38                 unsigned int ld_locked:1;
39                 unsigned int ld_reserved:26;
40         };
41         struct {
42                 unsigned int st_l1d_hit:1;
43                 unsigned int st_reserved1:3;
44                 unsigned int st_stlb_miss:1;
45                 unsigned int st_locked:1;
46                 unsigned int st_reserved2:26;
47         };
48 };
49
50
51 /*
52  * Map PEBS Load Latency Data Source encodings to generic
53  * memory data source information
54  */
55 #define P(a, b) PERF_MEM_S(a, b)
56 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
57 #define LEVEL(x) P(LVLNUM, x)
58 #define REM P(REMOTE, REMOTE)
59 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
60
61 /* Version for Sandy Bridge and later */
62 static u64 pebs_data_source[] = {
63         P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
64         OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
65         OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
66         OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
67         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
68         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
69         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
70         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
71         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
72         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
73         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
74         OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
75         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
76         OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
77         OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
78         OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
79 };
80
81 /* Patch up minor differences in the bits */
82 void __init intel_pmu_pebs_data_source_nhm(void)
83 {
84         pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
85         pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
86         pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
87 }
88
89 void __init intel_pmu_pebs_data_source_skl(bool pmem)
90 {
91         u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
92
93         pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
94         pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
95         pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
96         pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
97         pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
98 }
99
100 static u64 precise_store_data(u64 status)
101 {
102         union intel_x86_pebs_dse dse;
103         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
104
105         dse.val = status;
106
107         /*
108          * bit 4: TLB access
109          * 1 = stored missed 2nd level TLB
110          *
111          * so it either hit the walker or the OS
112          * otherwise hit 2nd level TLB
113          */
114         if (dse.st_stlb_miss)
115                 val |= P(TLB, MISS);
116         else
117                 val |= P(TLB, HIT);
118
119         /*
120          * bit 0: hit L1 data cache
121          * if not set, then all we know is that
122          * it missed L1D
123          */
124         if (dse.st_l1d_hit)
125                 val |= P(LVL, HIT);
126         else
127                 val |= P(LVL, MISS);
128
129         /*
130          * bit 5: Locked prefix
131          */
132         if (dse.st_locked)
133                 val |= P(LOCK, LOCKED);
134
135         return val;
136 }
137
138 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
139 {
140         union perf_mem_data_src dse;
141
142         dse.val = PERF_MEM_NA;
143
144         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
145                 dse.mem_op = PERF_MEM_OP_STORE;
146         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
147                 dse.mem_op = PERF_MEM_OP_LOAD;
148
149         /*
150          * L1 info only valid for following events:
151          *
152          * MEM_UOPS_RETIRED.STLB_MISS_STORES
153          * MEM_UOPS_RETIRED.LOCK_STORES
154          * MEM_UOPS_RETIRED.SPLIT_STORES
155          * MEM_UOPS_RETIRED.ALL_STORES
156          */
157         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
158                 if (status & 1)
159                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
160                 else
161                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
162         }
163         return dse.val;
164 }
165
166 static u64 load_latency_data(u64 status)
167 {
168         union intel_x86_pebs_dse dse;
169         u64 val;
170
171         dse.val = status;
172
173         /*
174          * use the mapping table for bit 0-3
175          */
176         val = pebs_data_source[dse.ld_dse];
177
178         /*
179          * Nehalem models do not support TLB, Lock infos
180          */
181         if (x86_pmu.pebs_no_tlb) {
182                 val |= P(TLB, NA) | P(LOCK, NA);
183                 return val;
184         }
185         /*
186          * bit 4: TLB access
187          * 0 = did not miss 2nd level TLB
188          * 1 = missed 2nd level TLB
189          */
190         if (dse.ld_stlb_miss)
191                 val |= P(TLB, MISS) | P(TLB, L2);
192         else
193                 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
194
195         /*
196          * bit 5: locked prefix
197          */
198         if (dse.ld_locked)
199                 val |= P(LOCK, LOCKED);
200
201         return val;
202 }
203
204 struct pebs_record_core {
205         u64 flags, ip;
206         u64 ax, bx, cx, dx;
207         u64 si, di, bp, sp;
208         u64 r8,  r9,  r10, r11;
209         u64 r12, r13, r14, r15;
210 };
211
212 struct pebs_record_nhm {
213         u64 flags, ip;
214         u64 ax, bx, cx, dx;
215         u64 si, di, bp, sp;
216         u64 r8,  r9,  r10, r11;
217         u64 r12, r13, r14, r15;
218         u64 status, dla, dse, lat;
219 };
220
221 /*
222  * Same as pebs_record_nhm, with two additional fields.
223  */
224 struct pebs_record_hsw {
225         u64 flags, ip;
226         u64 ax, bx, cx, dx;
227         u64 si, di, bp, sp;
228         u64 r8,  r9,  r10, r11;
229         u64 r12, r13, r14, r15;
230         u64 status, dla, dse, lat;
231         u64 real_ip, tsx_tuning;
232 };
233
234 union hsw_tsx_tuning {
235         struct {
236                 u32 cycles_last_block     : 32,
237                     hle_abort             : 1,
238                     rtm_abort             : 1,
239                     instruction_abort     : 1,
240                     non_instruction_abort : 1,
241                     retry                 : 1,
242                     data_conflict         : 1,
243                     capacity_writes       : 1,
244                     capacity_reads        : 1;
245         };
246         u64         value;
247 };
248
249 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
250
251 /* Same as HSW, plus TSC */
252
253 struct pebs_record_skl {
254         u64 flags, ip;
255         u64 ax, bx, cx, dx;
256         u64 si, di, bp, sp;
257         u64 r8,  r9,  r10, r11;
258         u64 r12, r13, r14, r15;
259         u64 status, dla, dse, lat;
260         u64 real_ip, tsx_tuning;
261         u64 tsc;
262 };
263
264 void init_debug_store_on_cpu(int cpu)
265 {
266         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
267
268         if (!ds)
269                 return;
270
271         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
272                      (u32)((u64)(unsigned long)ds),
273                      (u32)((u64)(unsigned long)ds >> 32));
274 }
275
276 void fini_debug_store_on_cpu(int cpu)
277 {
278         if (!per_cpu(cpu_hw_events, cpu).ds)
279                 return;
280
281         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
282 }
283
284 static DEFINE_PER_CPU(void *, insn_buffer);
285
286 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
287 {
288         unsigned long start = (unsigned long)cea;
289         phys_addr_t pa;
290         size_t msz = 0;
291
292         pa = virt_to_phys(addr);
293
294         preempt_disable();
295         for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
296                 cea_set_pte(cea, pa, prot);
297
298         /*
299          * This is a cross-CPU update of the cpu_entry_area, we must shoot down
300          * all TLB entries for it.
301          */
302         flush_tlb_kernel_range(start, start + size);
303         preempt_enable();
304 }
305
306 static void ds_clear_cea(void *cea, size_t size)
307 {
308         unsigned long start = (unsigned long)cea;
309         size_t msz = 0;
310
311         preempt_disable();
312         for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
313                 cea_set_pte(cea, 0, PAGE_NONE);
314
315         flush_tlb_kernel_range(start, start + size);
316         preempt_enable();
317 }
318
319 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
320 {
321         unsigned int order = get_order(size);
322         int node = cpu_to_node(cpu);
323         struct page *page;
324
325         page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
326         return page ? page_address(page) : NULL;
327 }
328
329 static void dsfree_pages(const void *buffer, size_t size)
330 {
331         if (buffer)
332                 free_pages((unsigned long)buffer, get_order(size));
333 }
334
335 static int alloc_pebs_buffer(int cpu)
336 {
337         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
338         struct debug_store *ds = hwev->ds;
339         size_t bsiz = x86_pmu.pebs_buffer_size;
340         int max, node = cpu_to_node(cpu);
341         void *buffer, *insn_buff, *cea;
342
343         if (!x86_pmu.pebs)
344                 return 0;
345
346         buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
347         if (unlikely(!buffer))
348                 return -ENOMEM;
349
350         /*
351          * HSW+ already provides us the eventing ip; no need to allocate this
352          * buffer then.
353          */
354         if (x86_pmu.intel_cap.pebs_format < 2) {
355                 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
356                 if (!insn_buff) {
357                         dsfree_pages(buffer, bsiz);
358                         return -ENOMEM;
359                 }
360                 per_cpu(insn_buffer, cpu) = insn_buff;
361         }
362         hwev->ds_pebs_vaddr = buffer;
363         /* Update the cpu entry area mapping */
364         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
365         ds->pebs_buffer_base = (unsigned long) cea;
366         ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
367         ds->pebs_index = ds->pebs_buffer_base;
368         max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
369         ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
370         return 0;
371 }
372
373 static void release_pebs_buffer(int cpu)
374 {
375         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
376         void *cea;
377
378         if (!x86_pmu.pebs)
379                 return;
380
381         kfree(per_cpu(insn_buffer, cpu));
382         per_cpu(insn_buffer, cpu) = NULL;
383
384         /* Clear the fixmap */
385         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
386         ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
387         dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
388         hwev->ds_pebs_vaddr = NULL;
389 }
390
391 static int alloc_bts_buffer(int cpu)
392 {
393         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
394         struct debug_store *ds = hwev->ds;
395         void *buffer, *cea;
396         int max;
397
398         if (!x86_pmu.bts)
399                 return 0;
400
401         buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
402         if (unlikely(!buffer)) {
403                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
404                 return -ENOMEM;
405         }
406         hwev->ds_bts_vaddr = buffer;
407         /* Update the fixmap */
408         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
409         ds->bts_buffer_base = (unsigned long) cea;
410         ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
411         ds->bts_index = ds->bts_buffer_base;
412         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
413         ds->bts_absolute_maximum = ds->bts_buffer_base +
414                                         max * BTS_RECORD_SIZE;
415         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
416                                         (max / 16) * BTS_RECORD_SIZE;
417         return 0;
418 }
419
420 static void release_bts_buffer(int cpu)
421 {
422         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
423         void *cea;
424
425         if (!x86_pmu.bts)
426                 return;
427
428         /* Clear the fixmap */
429         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
430         ds_clear_cea(cea, BTS_BUFFER_SIZE);
431         dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
432         hwev->ds_bts_vaddr = NULL;
433 }
434
435 static int alloc_ds_buffer(int cpu)
436 {
437         struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
438
439         memset(ds, 0, sizeof(*ds));
440         per_cpu(cpu_hw_events, cpu).ds = ds;
441         return 0;
442 }
443
444 static void release_ds_buffer(int cpu)
445 {
446         per_cpu(cpu_hw_events, cpu).ds = NULL;
447 }
448
449 void release_ds_buffers(void)
450 {
451         int cpu;
452
453         if (!x86_pmu.bts && !x86_pmu.pebs)
454                 return;
455
456         for_each_possible_cpu(cpu)
457                 release_ds_buffer(cpu);
458
459         for_each_possible_cpu(cpu) {
460                 /*
461                  * Again, ignore errors from offline CPUs, they will no longer
462                  * observe cpu_hw_events.ds and not program the DS_AREA when
463                  * they come up.
464                  */
465                 fini_debug_store_on_cpu(cpu);
466         }
467
468         for_each_possible_cpu(cpu) {
469                 release_pebs_buffer(cpu);
470                 release_bts_buffer(cpu);
471         }
472 }
473
474 void reserve_ds_buffers(void)
475 {
476         int bts_err = 0, pebs_err = 0;
477         int cpu;
478
479         x86_pmu.bts_active = 0;
480         x86_pmu.pebs_active = 0;
481
482         if (!x86_pmu.bts && !x86_pmu.pebs)
483                 return;
484
485         if (!x86_pmu.bts)
486                 bts_err = 1;
487
488         if (!x86_pmu.pebs)
489                 pebs_err = 1;
490
491         for_each_possible_cpu(cpu) {
492                 if (alloc_ds_buffer(cpu)) {
493                         bts_err = 1;
494                         pebs_err = 1;
495                 }
496
497                 if (!bts_err && alloc_bts_buffer(cpu))
498                         bts_err = 1;
499
500                 if (!pebs_err && alloc_pebs_buffer(cpu))
501                         pebs_err = 1;
502
503                 if (bts_err && pebs_err)
504                         break;
505         }
506
507         if (bts_err) {
508                 for_each_possible_cpu(cpu)
509                         release_bts_buffer(cpu);
510         }
511
512         if (pebs_err) {
513                 for_each_possible_cpu(cpu)
514                         release_pebs_buffer(cpu);
515         }
516
517         if (bts_err && pebs_err) {
518                 for_each_possible_cpu(cpu)
519                         release_ds_buffer(cpu);
520         } else {
521                 if (x86_pmu.bts && !bts_err)
522                         x86_pmu.bts_active = 1;
523
524                 if (x86_pmu.pebs && !pebs_err)
525                         x86_pmu.pebs_active = 1;
526
527                 for_each_possible_cpu(cpu) {
528                         /*
529                          * Ignores wrmsr_on_cpu() errors for offline CPUs they
530                          * will get this call through intel_pmu_cpu_starting().
531                          */
532                         init_debug_store_on_cpu(cpu);
533                 }
534         }
535 }
536
537 /*
538  * BTS
539  */
540
541 struct event_constraint bts_constraint =
542         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
543
544 void intel_pmu_enable_bts(u64 config)
545 {
546         unsigned long debugctlmsr;
547
548         debugctlmsr = get_debugctlmsr();
549
550         debugctlmsr |= DEBUGCTLMSR_TR;
551         debugctlmsr |= DEBUGCTLMSR_BTS;
552         if (config & ARCH_PERFMON_EVENTSEL_INT)
553                 debugctlmsr |= DEBUGCTLMSR_BTINT;
554
555         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
556                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
557
558         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
559                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
560
561         update_debugctlmsr(debugctlmsr);
562 }
563
564 void intel_pmu_disable_bts(void)
565 {
566         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
567         unsigned long debugctlmsr;
568
569         if (!cpuc->ds)
570                 return;
571
572         debugctlmsr = get_debugctlmsr();
573
574         debugctlmsr &=
575                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
576                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
577
578         update_debugctlmsr(debugctlmsr);
579 }
580
581 int intel_pmu_drain_bts_buffer(void)
582 {
583         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
584         struct debug_store *ds = cpuc->ds;
585         struct bts_record {
586                 u64     from;
587                 u64     to;
588                 u64     flags;
589         };
590         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
591         struct bts_record *at, *base, *top;
592         struct perf_output_handle handle;
593         struct perf_event_header header;
594         struct perf_sample_data data;
595         unsigned long skip = 0;
596         struct pt_regs regs;
597
598         if (!event)
599                 return 0;
600
601         if (!x86_pmu.bts_active)
602                 return 0;
603
604         base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
605         top  = (struct bts_record *)(unsigned long)ds->bts_index;
606
607         if (top <= base)
608                 return 0;
609
610         memset(&regs, 0, sizeof(regs));
611
612         ds->bts_index = ds->bts_buffer_base;
613
614         perf_sample_data_init(&data, 0, event->hw.last_period);
615
616         /*
617          * BTS leaks kernel addresses in branches across the cpl boundary,
618          * such as traps or system calls, so unless the user is asking for
619          * kernel tracing (and right now it's not possible), we'd need to
620          * filter them out. But first we need to count how many of those we
621          * have in the current batch. This is an extra O(n) pass, however,
622          * it's much faster than the other one especially considering that
623          * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
624          * alloc_bts_buffer()).
625          */
626         for (at = base; at < top; at++) {
627                 /*
628                  * Note that right now *this* BTS code only works if
629                  * attr::exclude_kernel is set, but let's keep this extra
630                  * check here in case that changes.
631                  */
632                 if (event->attr.exclude_kernel &&
633                     (kernel_ip(at->from) || kernel_ip(at->to)))
634                         skip++;
635         }
636
637         /*
638          * Prepare a generic sample, i.e. fill in the invariant fields.
639          * We will overwrite the from and to address before we output
640          * the sample.
641          */
642         rcu_read_lock();
643         perf_prepare_sample(&header, &data, event, &regs);
644
645         if (perf_output_begin(&handle, &data, event,
646                               header.size * (top - base - skip)))
647                 goto unlock;
648
649         for (at = base; at < top; at++) {
650                 /* Filter out any records that contain kernel addresses. */
651                 if (event->attr.exclude_kernel &&
652                     (kernel_ip(at->from) || kernel_ip(at->to)))
653                         continue;
654
655                 data.ip         = at->from;
656                 data.addr       = at->to;
657
658                 perf_output_sample(&handle, &header, &data, event);
659         }
660
661         perf_output_end(&handle);
662
663         /* There's new data available. */
664         event->hw.interrupts++;
665         event->pending_kill = POLL_IN;
666 unlock:
667         rcu_read_unlock();
668         return 1;
669 }
670
671 static inline void intel_pmu_drain_pebs_buffer(void)
672 {
673         struct perf_sample_data data;
674
675         x86_pmu.drain_pebs(NULL, &data);
676 }
677
678 /*
679  * PEBS
680  */
681 struct event_constraint intel_core2_pebs_event_constraints[] = {
682         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
683         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
684         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
685         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
686         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
687         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
688         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
689         EVENT_CONSTRAINT_END
690 };
691
692 struct event_constraint intel_atom_pebs_event_constraints[] = {
693         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
694         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
695         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
696         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
697         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
698         /* Allow all events as PEBS with no flags */
699         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
700         EVENT_CONSTRAINT_END
701 };
702
703 struct event_constraint intel_slm_pebs_event_constraints[] = {
704         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
705         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
706         /* Allow all events as PEBS with no flags */
707         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
708         EVENT_CONSTRAINT_END
709 };
710
711 struct event_constraint intel_glm_pebs_event_constraints[] = {
712         /* Allow all events as PEBS with no flags */
713         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
714         EVENT_CONSTRAINT_END
715 };
716
717 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
718         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
719         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
720         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
721         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
722         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
723         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
724         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
725         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
726         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
727         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
728         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
729         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
730         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
731         EVENT_CONSTRAINT_END
732 };
733
734 struct event_constraint intel_westmere_pebs_event_constraints[] = {
735         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
736         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
737         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
738         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
739         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
740         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
741         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
742         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
743         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
744         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
745         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
746         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
747         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
748         EVENT_CONSTRAINT_END
749 };
750
751 struct event_constraint intel_snb_pebs_event_constraints[] = {
752         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
753         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
754         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
755         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
756         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
757         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
758         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
759         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
760         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
761         /* Allow all events as PEBS with no flags */
762         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
763         EVENT_CONSTRAINT_END
764 };
765
766 struct event_constraint intel_ivb_pebs_event_constraints[] = {
767         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
768         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
769         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
770         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
771         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
772         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
773         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
774         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
775         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
776         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
777         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
778         /* Allow all events as PEBS with no flags */
779         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
780         EVENT_CONSTRAINT_END
781 };
782
783 struct event_constraint intel_hsw_pebs_event_constraints[] = {
784         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
785         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
786         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
787         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
788         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
789         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
790         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
791         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
792         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
793         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
794         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
795         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
796         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
797         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
798         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
799         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
800         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
801         /* Allow all events as PEBS with no flags */
802         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
803         EVENT_CONSTRAINT_END
804 };
805
806 struct event_constraint intel_bdw_pebs_event_constraints[] = {
807         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
808         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
809         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
810         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
811         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
812         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
813         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
814         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
815         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
816         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
817         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
818         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
819         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
820         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
821         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
822         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
823         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
824         /* Allow all events as PEBS with no flags */
825         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
826         EVENT_CONSTRAINT_END
827 };
828
829
830 struct event_constraint intel_skl_pebs_event_constraints[] = {
831         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),      /* INST_RETIRED.PREC_DIST */
832         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
833         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
834         /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
835         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
836         INTEL_PLD_CONSTRAINT(0x1cd, 0xf),                     /* MEM_TRANS_RETIRED.* */
837         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
838         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
839         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
840         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
841         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
842         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
843         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
844         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
845         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
846         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
847         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
848         /* Allow all events as PEBS with no flags */
849         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
850         EVENT_CONSTRAINT_END
851 };
852
853 struct event_constraint intel_icl_pebs_event_constraints[] = {
854         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL),   /* INST_RETIRED.PREC_DIST */
855         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),  /* SLOTS */
856
857         INTEL_PLD_CONSTRAINT(0x1cd, 0xff),                      /* MEM_TRANS_RETIRED.LOAD_LATENCY */
858         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),    /* MEM_INST_RETIRED.LOAD */
859         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),    /* MEM_INST_RETIRED.STORE */
860
861         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
862
863         INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),                /* MEM_INST_RETIRED.* */
864
865         /*
866          * Everything else is handled by PMU_FL_PEBS_ALL, because we
867          * need the full constraints from the main table.
868          */
869
870         EVENT_CONSTRAINT_END
871 };
872
873 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
874 {
875         struct event_constraint *c;
876
877         if (!event->attr.precise_ip)
878                 return NULL;
879
880         if (x86_pmu.pebs_constraints) {
881                 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
882                         if (constraint_match(c, event->hw.config)) {
883                                 event->hw.flags |= c->flags;
884                                 return c;
885                         }
886                 }
887         }
888
889         /*
890          * Extended PEBS support
891          * Makes the PEBS code search the normal constraints.
892          */
893         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
894                 return NULL;
895
896         return &emptyconstraint;
897 }
898
899 /*
900  * We need the sched_task callback even for per-cpu events when we use
901  * the large interrupt threshold, such that we can provide PID and TID
902  * to PEBS samples.
903  */
904 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
905 {
906         if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
907                 return false;
908
909         return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
910 }
911
912 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
913 {
914         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
915
916         if (!sched_in && pebs_needs_sched_cb(cpuc))
917                 intel_pmu_drain_pebs_buffer();
918 }
919
920 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
921 {
922         struct debug_store *ds = cpuc->ds;
923         u64 threshold;
924         int reserved;
925
926         if (cpuc->n_pebs_via_pt)
927                 return;
928
929         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
930                 reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed;
931         else
932                 reserved = x86_pmu.max_pebs_events;
933
934         if (cpuc->n_pebs == cpuc->n_large_pebs) {
935                 threshold = ds->pebs_absolute_maximum -
936                         reserved * cpuc->pebs_record_size;
937         } else {
938                 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
939         }
940
941         ds->pebs_interrupt_threshold = threshold;
942 }
943
944 static void adaptive_pebs_record_size_update(void)
945 {
946         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
947         u64 pebs_data_cfg = cpuc->pebs_data_cfg;
948         int sz = sizeof(struct pebs_basic);
949
950         if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
951                 sz += sizeof(struct pebs_meminfo);
952         if (pebs_data_cfg & PEBS_DATACFG_GP)
953                 sz += sizeof(struct pebs_gprs);
954         if (pebs_data_cfg & PEBS_DATACFG_XMMS)
955                 sz += sizeof(struct pebs_xmm);
956         if (pebs_data_cfg & PEBS_DATACFG_LBRS)
957                 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
958
959         cpuc->pebs_record_size = sz;
960 }
961
962 #define PERF_PEBS_MEMINFO_TYPE  (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
963                                 PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_WEIGHT | \
964                                 PERF_SAMPLE_TRANSACTION |                    \
965                                 PERF_SAMPLE_DATA_PAGE_SIZE)
966
967 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
968 {
969         struct perf_event_attr *attr = &event->attr;
970         u64 sample_type = attr->sample_type;
971         u64 pebs_data_cfg = 0;
972         bool gprs, tsx_weight;
973
974         if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
975             attr->precise_ip > 1)
976                 return pebs_data_cfg;
977
978         if (sample_type & PERF_PEBS_MEMINFO_TYPE)
979                 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
980
981         /*
982          * We need GPRs when:
983          * + user requested them
984          * + precise_ip < 2 for the non event IP
985          * + For RTM TSX weight we need GPRs for the abort code.
986          */
987         gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
988                (attr->sample_regs_intr & PEBS_GP_REGS);
989
990         tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT) &&
991                      ((attr->config & INTEL_ARCH_EVENT_MASK) ==
992                       x86_pmu.rtm_abort_event);
993
994         if (gprs || (attr->precise_ip < 2) || tsx_weight)
995                 pebs_data_cfg |= PEBS_DATACFG_GP;
996
997         if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
998             (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
999                 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1000
1001         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1002                 /*
1003                  * For now always log all LBRs. Could configure this
1004                  * later.
1005                  */
1006                 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1007                         ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1008         }
1009
1010         return pebs_data_cfg;
1011 }
1012
1013 static void
1014 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1015                   struct perf_event *event, bool add)
1016 {
1017         struct pmu *pmu = event->ctx->pmu;
1018         /*
1019          * Make sure we get updated with the first PEBS
1020          * event. It will trigger also during removal, but
1021          * that does not hurt:
1022          */
1023         bool update = cpuc->n_pebs == 1;
1024
1025         if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1026                 if (!needed_cb)
1027                         perf_sched_cb_inc(pmu);
1028                 else
1029                         perf_sched_cb_dec(pmu);
1030
1031                 update = true;
1032         }
1033
1034         /*
1035          * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1036          * iterating all remaining PEBS events to reconstruct the config.
1037          */
1038         if (x86_pmu.intel_cap.pebs_baseline && add) {
1039                 u64 pebs_data_cfg;
1040
1041                 /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
1042                 if (cpuc->n_pebs == 1) {
1043                         cpuc->pebs_data_cfg = 0;
1044                         cpuc->pebs_record_size = sizeof(struct pebs_basic);
1045                 }
1046
1047                 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1048
1049                 /* Update pebs_record_size if new event requires more data. */
1050                 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
1051                         cpuc->pebs_data_cfg |= pebs_data_cfg;
1052                         adaptive_pebs_record_size_update();
1053                         update = true;
1054                 }
1055         }
1056
1057         if (update)
1058                 pebs_update_threshold(cpuc);
1059 }
1060
1061 void intel_pmu_pebs_add(struct perf_event *event)
1062 {
1063         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1064         struct hw_perf_event *hwc = &event->hw;
1065         bool needed_cb = pebs_needs_sched_cb(cpuc);
1066
1067         cpuc->n_pebs++;
1068         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1069                 cpuc->n_large_pebs++;
1070         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1071                 cpuc->n_pebs_via_pt++;
1072
1073         pebs_update_state(needed_cb, cpuc, event, true);
1074 }
1075
1076 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1077 {
1078         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1079
1080         if (!is_pebs_pt(event))
1081                 return;
1082
1083         if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1084                 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1085 }
1086
1087 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1088 {
1089         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1090         struct hw_perf_event *hwc = &event->hw;
1091         struct debug_store *ds = cpuc->ds;
1092
1093         if (!is_pebs_pt(event))
1094                 return;
1095
1096         if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1097                 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1098
1099         cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1100
1101         wrmsrl(MSR_RELOAD_PMC0 + hwc->idx, ds->pebs_event_reset[hwc->idx]);
1102 }
1103
1104 void intel_pmu_pebs_enable(struct perf_event *event)
1105 {
1106         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1107         struct hw_perf_event *hwc = &event->hw;
1108         struct debug_store *ds = cpuc->ds;
1109
1110         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1111
1112         cpuc->pebs_enabled |= 1ULL << hwc->idx;
1113
1114         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1115                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1116         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1117                 cpuc->pebs_enabled |= 1ULL << 63;
1118
1119         if (x86_pmu.intel_cap.pebs_baseline) {
1120                 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1121                 if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1122                         wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
1123                         cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
1124                 }
1125         }
1126
1127         /*
1128          * Use auto-reload if possible to save a MSR write in the PMI.
1129          * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1130          */
1131         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1132                 unsigned int idx = hwc->idx;
1133
1134                 if (idx >= INTEL_PMC_IDX_FIXED)
1135                         idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1136                 ds->pebs_event_reset[idx] =
1137                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1138         } else {
1139                 ds->pebs_event_reset[hwc->idx] = 0;
1140         }
1141
1142         intel_pmu_pebs_via_pt_enable(event);
1143 }
1144
1145 void intel_pmu_pebs_del(struct perf_event *event)
1146 {
1147         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1148         struct hw_perf_event *hwc = &event->hw;
1149         bool needed_cb = pebs_needs_sched_cb(cpuc);
1150
1151         cpuc->n_pebs--;
1152         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1153                 cpuc->n_large_pebs--;
1154         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1155                 cpuc->n_pebs_via_pt--;
1156
1157         pebs_update_state(needed_cb, cpuc, event, false);
1158 }
1159
1160 void intel_pmu_pebs_disable(struct perf_event *event)
1161 {
1162         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1163         struct hw_perf_event *hwc = &event->hw;
1164
1165         if (cpuc->n_pebs == cpuc->n_large_pebs &&
1166             cpuc->n_pebs != cpuc->n_pebs_via_pt)
1167                 intel_pmu_drain_pebs_buffer();
1168
1169         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1170
1171         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1172             (x86_pmu.version < 5))
1173                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1174         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1175                 cpuc->pebs_enabled &= ~(1ULL << 63);
1176
1177         intel_pmu_pebs_via_pt_disable(event);
1178
1179         if (cpuc->enabled)
1180                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1181
1182         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1183 }
1184
1185 void intel_pmu_pebs_enable_all(void)
1186 {
1187         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1188
1189         if (cpuc->pebs_enabled)
1190                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1191 }
1192
1193 void intel_pmu_pebs_disable_all(void)
1194 {
1195         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1196
1197         if (cpuc->pebs_enabled)
1198                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1199 }
1200
1201 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1202 {
1203         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1204         unsigned long from = cpuc->lbr_entries[0].from;
1205         unsigned long old_to, to = cpuc->lbr_entries[0].to;
1206         unsigned long ip = regs->ip;
1207         int is_64bit = 0;
1208         void *kaddr;
1209         int size;
1210
1211         /*
1212          * We don't need to fixup if the PEBS assist is fault like
1213          */
1214         if (!x86_pmu.intel_cap.pebs_trap)
1215                 return 1;
1216
1217         /*
1218          * No LBR entry, no basic block, no rewinding
1219          */
1220         if (!cpuc->lbr_stack.nr || !from || !to)
1221                 return 0;
1222
1223         /*
1224          * Basic blocks should never cross user/kernel boundaries
1225          */
1226         if (kernel_ip(ip) != kernel_ip(to))
1227                 return 0;
1228
1229         /*
1230          * unsigned math, either ip is before the start (impossible) or
1231          * the basic block is larger than 1 page (sanity)
1232          */
1233         if ((ip - to) > PEBS_FIXUP_SIZE)
1234                 return 0;
1235
1236         /*
1237          * We sampled a branch insn, rewind using the LBR stack
1238          */
1239         if (ip == to) {
1240                 set_linear_ip(regs, from);
1241                 return 1;
1242         }
1243
1244         size = ip - to;
1245         if (!kernel_ip(ip)) {
1246                 int bytes;
1247                 u8 *buf = this_cpu_read(insn_buffer);
1248
1249                 /* 'size' must fit our buffer, see above */
1250                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1251                 if (bytes != 0)
1252                         return 0;
1253
1254                 kaddr = buf;
1255         } else {
1256                 kaddr = (void *)to;
1257         }
1258
1259         do {
1260                 struct insn insn;
1261
1262                 old_to = to;
1263
1264 #ifdef CONFIG_X86_64
1265                 is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1266 #endif
1267                 insn_init(&insn, kaddr, size, is_64bit);
1268                 insn_get_length(&insn);
1269                 /*
1270                  * Make sure there was not a problem decoding the
1271                  * instruction and getting the length.  This is
1272                  * doubly important because we have an infinite
1273                  * loop if insn.length=0.
1274                  */
1275                 if (!insn.length)
1276                         break;
1277
1278                 to += insn.length;
1279                 kaddr += insn.length;
1280                 size -= insn.length;
1281         } while (to < ip);
1282
1283         if (to == ip) {
1284                 set_linear_ip(regs, old_to);
1285                 return 1;
1286         }
1287
1288         /*
1289          * Even though we decoded the basic block, the instruction stream
1290          * never matched the given IP, either the TO or the IP got corrupted.
1291          */
1292         return 0;
1293 }
1294
1295 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1296 {
1297         if (tsx_tuning) {
1298                 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1299                 return tsx.cycles_last_block;
1300         }
1301         return 0;
1302 }
1303
1304 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1305 {
1306         u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1307
1308         /* For RTM XABORTs also log the abort code from AX */
1309         if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1310                 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1311         return txn;
1312 }
1313
1314 static inline u64 get_pebs_status(void *n)
1315 {
1316         if (x86_pmu.intel_cap.pebs_format < 4)
1317                 return ((struct pebs_record_nhm *)n)->status;
1318         return ((struct pebs_basic *)n)->applicable_counters;
1319 }
1320
1321 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1322                 (PERF_X86_EVENT_PEBS_ST_HSW | \
1323                  PERF_X86_EVENT_PEBS_LD_HSW | \
1324                  PERF_X86_EVENT_PEBS_NA_HSW)
1325
1326 static u64 get_data_src(struct perf_event *event, u64 aux)
1327 {
1328         u64 val = PERF_MEM_NA;
1329         int fl = event->hw.flags;
1330         bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1331
1332         if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1333                 val = load_latency_data(aux);
1334         else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1335                 val = precise_datala_hsw(event, aux);
1336         else if (fst)
1337                 val = precise_store_data(aux);
1338         return val;
1339 }
1340
1341 #define PERF_SAMPLE_ADDR_TYPE   (PERF_SAMPLE_ADDR |             \
1342                                  PERF_SAMPLE_PHYS_ADDR |        \
1343                                  PERF_SAMPLE_DATA_PAGE_SIZE)
1344
1345 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1346                                    struct pt_regs *iregs, void *__pebs,
1347                                    struct perf_sample_data *data,
1348                                    struct pt_regs *regs)
1349 {
1350         /*
1351          * We cast to the biggest pebs_record but are careful not to
1352          * unconditionally access the 'extra' entries.
1353          */
1354         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1355         struct pebs_record_skl *pebs = __pebs;
1356         u64 sample_type;
1357         int fll;
1358
1359         if (pebs == NULL)
1360                 return;
1361
1362         sample_type = event->attr.sample_type;
1363         fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1364
1365         perf_sample_data_init(data, 0, event->hw.last_period);
1366
1367         data->period = event->hw.last_period;
1368
1369         /*
1370          * Use latency for weight (only avail with PEBS-LL)
1371          */
1372         if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1373                 data->weight = pebs->lat;
1374
1375         /*
1376          * data.data_src encodes the data source
1377          */
1378         if (sample_type & PERF_SAMPLE_DATA_SRC)
1379                 data->data_src.val = get_data_src(event, pebs->dse);
1380
1381         /*
1382          * We must however always use iregs for the unwinder to stay sane; the
1383          * record BP,SP,IP can point into thin air when the record is from a
1384          * previous PMI context or an (I)RET happened between the record and
1385          * PMI.
1386          */
1387         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1388                 data->callchain = perf_callchain(event, iregs);
1389
1390         /*
1391          * We use the interrupt regs as a base because the PEBS record does not
1392          * contain a full regs set, specifically it seems to lack segment
1393          * descriptors, which get used by things like user_mode().
1394          *
1395          * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1396          */
1397         *regs = *iregs;
1398
1399         /*
1400          * Initialize regs_>flags from PEBS,
1401          * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1402          * i.e., do not rely on it being zero:
1403          */
1404         regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1405
1406         if (sample_type & PERF_SAMPLE_REGS_INTR) {
1407                 regs->ax = pebs->ax;
1408                 regs->bx = pebs->bx;
1409                 regs->cx = pebs->cx;
1410                 regs->dx = pebs->dx;
1411                 regs->si = pebs->si;
1412                 regs->di = pebs->di;
1413
1414                 regs->bp = pebs->bp;
1415                 regs->sp = pebs->sp;
1416
1417 #ifndef CONFIG_X86_32
1418                 regs->r8 = pebs->r8;
1419                 regs->r9 = pebs->r9;
1420                 regs->r10 = pebs->r10;
1421                 regs->r11 = pebs->r11;
1422                 regs->r12 = pebs->r12;
1423                 regs->r13 = pebs->r13;
1424                 regs->r14 = pebs->r14;
1425                 regs->r15 = pebs->r15;
1426 #endif
1427         }
1428
1429         if (event->attr.precise_ip > 1) {
1430                 /*
1431                  * Haswell and later processors have an 'eventing IP'
1432                  * (real IP) which fixes the off-by-1 skid in hardware.
1433                  * Use it when precise_ip >= 2 :
1434                  */
1435                 if (x86_pmu.intel_cap.pebs_format >= 2) {
1436                         set_linear_ip(regs, pebs->real_ip);
1437                         regs->flags |= PERF_EFLAGS_EXACT;
1438                 } else {
1439                         /* Otherwise, use PEBS off-by-1 IP: */
1440                         set_linear_ip(regs, pebs->ip);
1441
1442                         /*
1443                          * With precise_ip >= 2, try to fix up the off-by-1 IP
1444                          * using the LBR. If successful, the fixup function
1445                          * corrects regs->ip and calls set_linear_ip() on regs:
1446                          */
1447                         if (intel_pmu_pebs_fixup_ip(regs))
1448                                 regs->flags |= PERF_EFLAGS_EXACT;
1449                 }
1450         } else {
1451                 /*
1452                  * When precise_ip == 1, return the PEBS off-by-1 IP,
1453                  * no fixup attempted:
1454                  */
1455                 set_linear_ip(regs, pebs->ip);
1456         }
1457
1458
1459         if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1460             x86_pmu.intel_cap.pebs_format >= 1)
1461                 data->addr = pebs->dla;
1462
1463         if (x86_pmu.intel_cap.pebs_format >= 2) {
1464                 /* Only set the TSX weight when no memory weight. */
1465                 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1466                         data->weight = intel_get_tsx_weight(pebs->tsx_tuning);
1467
1468                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1469                         data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1470                                                               pebs->ax);
1471         }
1472
1473         /*
1474          * v3 supplies an accurate time stamp, so we use that
1475          * for the time stamp.
1476          *
1477          * We can only do this for the default trace clock.
1478          */
1479         if (x86_pmu.intel_cap.pebs_format >= 3 &&
1480                 event->attr.use_clockid == 0)
1481                 data->time = native_sched_clock_from_tsc(pebs->tsc);
1482
1483         if (has_branch_stack(event))
1484                 data->br_stack = &cpuc->lbr_stack;
1485 }
1486
1487 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1488                                     struct pebs_gprs *gprs)
1489 {
1490         regs->ax = gprs->ax;
1491         regs->bx = gprs->bx;
1492         regs->cx = gprs->cx;
1493         regs->dx = gprs->dx;
1494         regs->si = gprs->si;
1495         regs->di = gprs->di;
1496         regs->bp = gprs->bp;
1497         regs->sp = gprs->sp;
1498 #ifndef CONFIG_X86_32
1499         regs->r8 = gprs->r8;
1500         regs->r9 = gprs->r9;
1501         regs->r10 = gprs->r10;
1502         regs->r11 = gprs->r11;
1503         regs->r12 = gprs->r12;
1504         regs->r13 = gprs->r13;
1505         regs->r14 = gprs->r14;
1506         regs->r15 = gprs->r15;
1507 #endif
1508 }
1509
1510 /*
1511  * With adaptive PEBS the layout depends on what fields are configured.
1512  */
1513
1514 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1515                                             struct pt_regs *iregs, void *__pebs,
1516                                             struct perf_sample_data *data,
1517                                             struct pt_regs *regs)
1518 {
1519         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1520         struct pebs_basic *basic = __pebs;
1521         void *next_record = basic + 1;
1522         u64 sample_type;
1523         u64 format_size;
1524         struct pebs_meminfo *meminfo = NULL;
1525         struct pebs_gprs *gprs = NULL;
1526         struct x86_perf_regs *perf_regs;
1527
1528         if (basic == NULL)
1529                 return;
1530
1531         perf_regs = container_of(regs, struct x86_perf_regs, regs);
1532         perf_regs->xmm_regs = NULL;
1533
1534         sample_type = event->attr.sample_type;
1535         format_size = basic->format_size;
1536         perf_sample_data_init(data, 0, event->hw.last_period);
1537         data->period = event->hw.last_period;
1538
1539         if (event->attr.use_clockid == 0)
1540                 data->time = native_sched_clock_from_tsc(basic->tsc);
1541
1542         /*
1543          * We must however always use iregs for the unwinder to stay sane; the
1544          * record BP,SP,IP can point into thin air when the record is from a
1545          * previous PMI context or an (I)RET happened between the record and
1546          * PMI.
1547          */
1548         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1549                 data->callchain = perf_callchain(event, iregs);
1550
1551         *regs = *iregs;
1552         /* The ip in basic is EventingIP */
1553         set_linear_ip(regs, basic->ip);
1554         regs->flags = PERF_EFLAGS_EXACT;
1555
1556         /*
1557          * The record for MEMINFO is in front of GP
1558          * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1559          * Save the pointer here but process later.
1560          */
1561         if (format_size & PEBS_DATACFG_MEMINFO) {
1562                 meminfo = next_record;
1563                 next_record = meminfo + 1;
1564         }
1565
1566         if (format_size & PEBS_DATACFG_GP) {
1567                 gprs = next_record;
1568                 next_record = gprs + 1;
1569
1570                 if (event->attr.precise_ip < 2) {
1571                         set_linear_ip(regs, gprs->ip);
1572                         regs->flags &= ~PERF_EFLAGS_EXACT;
1573                 }
1574
1575                 if (sample_type & PERF_SAMPLE_REGS_INTR)
1576                         adaptive_pebs_save_regs(regs, gprs);
1577         }
1578
1579         if (format_size & PEBS_DATACFG_MEMINFO) {
1580                 if (sample_type & PERF_SAMPLE_WEIGHT)
1581                         data->weight = meminfo->latency ?:
1582                                 intel_get_tsx_weight(meminfo->tsx_tuning);
1583
1584                 if (sample_type & PERF_SAMPLE_DATA_SRC)
1585                         data->data_src.val = get_data_src(event, meminfo->aux);
1586
1587                 if (sample_type & PERF_SAMPLE_ADDR_TYPE)
1588                         data->addr = meminfo->address;
1589
1590                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1591                         data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1592                                                           gprs ? gprs->ax : 0);
1593         }
1594
1595         if (format_size & PEBS_DATACFG_XMMS) {
1596                 struct pebs_xmm *xmm = next_record;
1597
1598                 next_record = xmm + 1;
1599                 perf_regs->xmm_regs = xmm->xmm;
1600         }
1601
1602         if (format_size & PEBS_DATACFG_LBRS) {
1603                 struct lbr_entry *lbr = next_record;
1604                 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1605                                         & 0xff) + 1;
1606                 next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1607
1608                 if (has_branch_stack(event)) {
1609                         intel_pmu_store_pebs_lbrs(lbr);
1610                         data->br_stack = &cpuc->lbr_stack;
1611                 }
1612         }
1613
1614         WARN_ONCE(next_record != __pebs + (format_size >> 48),
1615                         "PEBS record size %llu, expected %llu, config %llx\n",
1616                         format_size >> 48,
1617                         (u64)(next_record - __pebs),
1618                         basic->format_size);
1619 }
1620
1621 static inline void *
1622 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1623 {
1624         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1625         void *at;
1626         u64 pebs_status;
1627
1628         /*
1629          * fmt0 does not have a status bitfield (does not use
1630          * perf_record_nhm format)
1631          */
1632         if (x86_pmu.intel_cap.pebs_format < 1)
1633                 return base;
1634
1635         if (base == NULL)
1636                 return NULL;
1637
1638         for (at = base; at < top; at += cpuc->pebs_record_size) {
1639                 unsigned long status = get_pebs_status(at);
1640
1641                 if (test_bit(bit, (unsigned long *)&status)) {
1642                         /* PEBS v3 has accurate status bits */
1643                         if (x86_pmu.intel_cap.pebs_format >= 3)
1644                                 return at;
1645
1646                         if (status == (1 << bit))
1647                                 return at;
1648
1649                         /* clear non-PEBS bit and re-check */
1650                         pebs_status = status & cpuc->pebs_enabled;
1651                         pebs_status &= PEBS_COUNTER_MASK;
1652                         if (pebs_status == (1 << bit))
1653                                 return at;
1654                 }
1655         }
1656         return NULL;
1657 }
1658
1659 void intel_pmu_auto_reload_read(struct perf_event *event)
1660 {
1661         WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1662
1663         perf_pmu_disable(event->pmu);
1664         intel_pmu_drain_pebs_buffer();
1665         perf_pmu_enable(event->pmu);
1666 }
1667
1668 /*
1669  * Special variant of intel_pmu_save_and_restart() for auto-reload.
1670  */
1671 static int
1672 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1673 {
1674         struct hw_perf_event *hwc = &event->hw;
1675         int shift = 64 - x86_pmu.cntval_bits;
1676         u64 period = hwc->sample_period;
1677         u64 prev_raw_count, new_raw_count;
1678         s64 new, old;
1679
1680         WARN_ON(!period);
1681
1682         /*
1683          * drain_pebs() only happens when the PMU is disabled.
1684          */
1685         WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1686
1687         prev_raw_count = local64_read(&hwc->prev_count);
1688         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1689         local64_set(&hwc->prev_count, new_raw_count);
1690
1691         /*
1692          * Since the counter increments a negative counter value and
1693          * overflows on the sign switch, giving the interval:
1694          *
1695          *   [-period, 0]
1696          *
1697          * the difference between two consequtive reads is:
1698          *
1699          *   A) value2 - value1;
1700          *      when no overflows have happened in between,
1701          *
1702          *   B) (0 - value1) + (value2 - (-period));
1703          *      when one overflow happened in between,
1704          *
1705          *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1706          *      when @n overflows happened in between.
1707          *
1708          * Here A) is the obvious difference, B) is the extension to the
1709          * discrete interval, where the first term is to the top of the
1710          * interval and the second term is from the bottom of the next
1711          * interval and C) the extension to multiple intervals, where the
1712          * middle term is the whole intervals covered.
1713          *
1714          * An equivalent of C, by reduction, is:
1715          *
1716          *   value2 - value1 + n * period
1717          */
1718         new = ((s64)(new_raw_count << shift) >> shift);
1719         old = ((s64)(prev_raw_count << shift) >> shift);
1720         local64_add(new - old + count * period, &event->count);
1721
1722         local64_set(&hwc->period_left, -new);
1723
1724         perf_event_update_userpage(event);
1725
1726         return 0;
1727 }
1728
1729 static __always_inline void
1730 __intel_pmu_pebs_event(struct perf_event *event,
1731                        struct pt_regs *iregs,
1732                        struct perf_sample_data *data,
1733                        void *base, void *top,
1734                        int bit, int count,
1735                        void (*setup_sample)(struct perf_event *,
1736                                             struct pt_regs *,
1737                                             void *,
1738                                             struct perf_sample_data *,
1739                                             struct pt_regs *))
1740 {
1741         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1742         struct hw_perf_event *hwc = &event->hw;
1743         struct x86_perf_regs perf_regs;
1744         struct pt_regs *regs = &perf_regs.regs;
1745         void *at = get_next_pebs_record_by_bit(base, top, bit);
1746         static struct pt_regs dummy_iregs;
1747
1748         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1749                 /*
1750                  * Now, auto-reload is only enabled in fixed period mode.
1751                  * The reload value is always hwc->sample_period.
1752                  * May need to change it, if auto-reload is enabled in
1753                  * freq mode later.
1754                  */
1755                 intel_pmu_save_and_restart_reload(event, count);
1756         } else if (!intel_pmu_save_and_restart(event))
1757                 return;
1758
1759         if (!iregs)
1760                 iregs = &dummy_iregs;
1761
1762         while (count > 1) {
1763                 setup_sample(event, iregs, at, data, regs);
1764                 perf_event_output(event, data, regs);
1765                 at += cpuc->pebs_record_size;
1766                 at = get_next_pebs_record_by_bit(at, top, bit);
1767                 count--;
1768         }
1769
1770         setup_sample(event, iregs, at, data, regs);
1771         if (iregs == &dummy_iregs) {
1772                 /*
1773                  * The PEBS records may be drained in the non-overflow context,
1774                  * e.g., large PEBS + context switch. Perf should treat the
1775                  * last record the same as other PEBS records, and doesn't
1776                  * invoke the generic overflow handler.
1777                  */
1778                 perf_event_output(event, data, regs);
1779         } else {
1780                 /*
1781                  * All but the last records are processed.
1782                  * The last one is left to be able to call the overflow handler.
1783                  */
1784                 if (perf_event_overflow(event, data, regs))
1785                         x86_pmu_stop(event, 0);
1786         }
1787 }
1788
1789 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
1790 {
1791         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1792         struct debug_store *ds = cpuc->ds;
1793         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1794         struct pebs_record_core *at, *top;
1795         int n;
1796
1797         if (!x86_pmu.pebs_active)
1798                 return;
1799
1800         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1801         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1802
1803         /*
1804          * Whatever else happens, drain the thing
1805          */
1806         ds->pebs_index = ds->pebs_buffer_base;
1807
1808         if (!test_bit(0, cpuc->active_mask))
1809                 return;
1810
1811         WARN_ON_ONCE(!event);
1812
1813         if (!event->attr.precise_ip)
1814                 return;
1815
1816         n = top - at;
1817         if (n <= 0) {
1818                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1819                         intel_pmu_save_and_restart_reload(event, 0);
1820                 return;
1821         }
1822
1823         __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
1824                                setup_pebs_fixed_sample_data);
1825 }
1826
1827 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
1828 {
1829         struct perf_event *event;
1830         int bit;
1831
1832         /*
1833          * The drain_pebs() could be called twice in a short period
1834          * for auto-reload event in pmu::read(). There are no
1835          * overflows have happened in between.
1836          * It needs to call intel_pmu_save_and_restart_reload() to
1837          * update the event->count for this case.
1838          */
1839         for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
1840                 event = cpuc->events[bit];
1841                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1842                         intel_pmu_save_and_restart_reload(event, 0);
1843         }
1844 }
1845
1846 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
1847 {
1848         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1849         struct debug_store *ds = cpuc->ds;
1850         struct perf_event *event;
1851         void *base, *at, *top;
1852         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1853         short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1854         int bit, i, size;
1855         u64 mask;
1856
1857         if (!x86_pmu.pebs_active)
1858                 return;
1859
1860         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1861         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1862
1863         ds->pebs_index = ds->pebs_buffer_base;
1864
1865         mask = (1ULL << x86_pmu.max_pebs_events) - 1;
1866         size = x86_pmu.max_pebs_events;
1867         if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
1868                 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
1869                 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1870         }
1871
1872         if (unlikely(base >= top)) {
1873                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
1874                 return;
1875         }
1876
1877         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1878                 struct pebs_record_nhm *p = at;
1879                 u64 pebs_status;
1880
1881                 pebs_status = p->status & cpuc->pebs_enabled;
1882                 pebs_status &= mask;
1883
1884                 /* PEBS v3 has more accurate status bits */
1885                 if (x86_pmu.intel_cap.pebs_format >= 3) {
1886                         for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1887                                 counts[bit]++;
1888
1889                         continue;
1890                 }
1891
1892                 /*
1893                  * On some CPUs the PEBS status can be zero when PEBS is
1894                  * racing with clearing of GLOBAL_STATUS.
1895                  *
1896                  * Normally we would drop that record, but in the
1897                  * case when there is only a single active PEBS event
1898                  * we can assume it's for that event.
1899                  */
1900                 if (!pebs_status && cpuc->pebs_enabled &&
1901                         !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1902                         pebs_status = cpuc->pebs_enabled;
1903
1904                 bit = find_first_bit((unsigned long *)&pebs_status,
1905                                         x86_pmu.max_pebs_events);
1906                 if (bit >= x86_pmu.max_pebs_events)
1907                         continue;
1908
1909                 /*
1910                  * The PEBS hardware does not deal well with the situation
1911                  * when events happen near to each other and multiple bits
1912                  * are set. But it should happen rarely.
1913                  *
1914                  * If these events include one PEBS and multiple non-PEBS
1915                  * events, it doesn't impact PEBS record. The record will
1916                  * be handled normally. (slow path)
1917                  *
1918                  * If these events include two or more PEBS events, the
1919                  * records for the events can be collapsed into a single
1920                  * one, and it's not possible to reconstruct all events
1921                  * that caused the PEBS record. It's called collision.
1922                  * If collision happened, the record will be dropped.
1923                  */
1924                 if (pebs_status != (1ULL << bit)) {
1925                         for_each_set_bit(i, (unsigned long *)&pebs_status, size)
1926                                 error[i]++;
1927                         continue;
1928                 }
1929
1930                 counts[bit]++;
1931         }
1932
1933         for_each_set_bit(bit, (unsigned long *)&mask, size) {
1934                 if ((counts[bit] == 0) && (error[bit] == 0))
1935                         continue;
1936
1937                 event = cpuc->events[bit];
1938                 if (WARN_ON_ONCE(!event))
1939                         continue;
1940
1941                 if (WARN_ON_ONCE(!event->attr.precise_ip))
1942                         continue;
1943
1944                 /* log dropped samples number */
1945                 if (error[bit]) {
1946                         perf_log_lost_samples(event, error[bit]);
1947
1948                         if (iregs && perf_event_account_interrupt(event))
1949                                 x86_pmu_stop(event, 0);
1950                 }
1951
1952                 if (counts[bit]) {
1953                         __intel_pmu_pebs_event(event, iregs, data, base,
1954                                                top, bit, counts[bit],
1955                                                setup_pebs_fixed_sample_data);
1956                 }
1957         }
1958 }
1959
1960 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
1961 {
1962         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1963         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1964         struct debug_store *ds = cpuc->ds;
1965         struct perf_event *event;
1966         void *base, *at, *top;
1967         int bit, size;
1968         u64 mask;
1969
1970         if (!x86_pmu.pebs_active)
1971                 return;
1972
1973         base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
1974         top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
1975
1976         ds->pebs_index = ds->pebs_buffer_base;
1977
1978         mask = ((1ULL << x86_pmu.max_pebs_events) - 1) |
1979                (((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
1980         size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1981
1982         if (unlikely(base >= top)) {
1983                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
1984                 return;
1985         }
1986
1987         for (at = base; at < top; at += cpuc->pebs_record_size) {
1988                 u64 pebs_status;
1989
1990                 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
1991                 pebs_status &= mask;
1992
1993                 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1994                         counts[bit]++;
1995         }
1996
1997         for_each_set_bit(bit, (unsigned long *)&mask, size) {
1998                 if (counts[bit] == 0)
1999                         continue;
2000
2001                 event = cpuc->events[bit];
2002                 if (WARN_ON_ONCE(!event))
2003                         continue;
2004
2005                 if (WARN_ON_ONCE(!event->attr.precise_ip))
2006                         continue;
2007
2008                 __intel_pmu_pebs_event(event, iregs, data, base,
2009                                        top, bit, counts[bit],
2010                                        setup_pebs_adaptive_sample_data);
2011         }
2012 }
2013
2014 /*
2015  * BTS, PEBS probe and setup
2016  */
2017
2018 void __init intel_ds_init(void)
2019 {
2020         /*
2021          * No support for 32bit formats
2022          */
2023         if (!boot_cpu_has(X86_FEATURE_DTES64))
2024                 return;
2025
2026         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
2027         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2028         x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2029         if (x86_pmu.version <= 4)
2030                 x86_pmu.pebs_no_isolation = 1;
2031
2032         if (x86_pmu.pebs) {
2033                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2034                 char *pebs_qual = "";
2035                 int format = x86_pmu.intel_cap.pebs_format;
2036
2037                 if (format < 4)
2038                         x86_pmu.intel_cap.pebs_baseline = 0;
2039
2040                 switch (format) {
2041                 case 0:
2042                         pr_cont("PEBS fmt0%c, ", pebs_type);
2043                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2044                         /*
2045                          * Using >PAGE_SIZE buffers makes the WRMSR to
2046                          * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2047                          * mysteriously hang on Core2.
2048                          *
2049                          * As a workaround, we don't do this.
2050                          */
2051                         x86_pmu.pebs_buffer_size = PAGE_SIZE;
2052                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2053                         break;
2054
2055                 case 1:
2056                         pr_cont("PEBS fmt1%c, ", pebs_type);
2057                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2058                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2059                         break;
2060
2061                 case 2:
2062                         pr_cont("PEBS fmt2%c, ", pebs_type);
2063                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2064                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2065                         break;
2066
2067                 case 3:
2068                         pr_cont("PEBS fmt3%c, ", pebs_type);
2069                         x86_pmu.pebs_record_size =
2070                                                 sizeof(struct pebs_record_skl);
2071                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2072                         x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2073                         break;
2074
2075                 case 4:
2076                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2077                         x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2078                         if (x86_pmu.intel_cap.pebs_baseline) {
2079                                 x86_pmu.large_pebs_flags |=
2080                                         PERF_SAMPLE_BRANCH_STACK |
2081                                         PERF_SAMPLE_TIME;
2082                                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2083                                 pebs_qual = "-baseline";
2084                                 x86_get_pmu()->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2085                         } else {
2086                                 /* Only basic record supported */
2087                                 x86_pmu.large_pebs_flags &=
2088                                         ~(PERF_SAMPLE_ADDR |
2089                                           PERF_SAMPLE_TIME |
2090                                           PERF_SAMPLE_DATA_SRC |
2091                                           PERF_SAMPLE_TRANSACTION |
2092                                           PERF_SAMPLE_REGS_USER |
2093                                           PERF_SAMPLE_REGS_INTR);
2094                         }
2095                         pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2096
2097                         if (x86_pmu.intel_cap.pebs_output_pt_available) {
2098                                 pr_cont("PEBS-via-PT, ");
2099                                 x86_get_pmu()->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2100                         }
2101
2102                         break;
2103
2104                 default:
2105                         pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2106                         x86_pmu.pebs = 0;
2107                 }
2108         }
2109 }
2110
2111 void perf_restore_debug_store(void)
2112 {
2113         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2114
2115         if (!x86_pmu.bts && !x86_pmu.pebs)
2116                 return;
2117
2118         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2119 }