Merge tag 'arm-drivers-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / arch / x86 / events / intel / ds.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
9 #include <asm/insn.h>
10 #include <asm/io.h>
11
12 #include "../perf_event.h"
13
14 /* Waste a full page so it can be mapped into the cpu_entry_area */
15 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
16
17 /* The size of a BTS record in bytes: */
18 #define BTS_RECORD_SIZE         24
19
20 #define PEBS_FIXUP_SIZE         PAGE_SIZE
21
22 /*
23  * pebs_record_32 for p4 and core not supported
24
25 struct pebs_record_32 {
26         u32 flags, ip;
27         u32 ax, bc, cx, dx;
28         u32 si, di, bp, sp;
29 };
30
31  */
32
33 union intel_x86_pebs_dse {
34         u64 val;
35         struct {
36                 unsigned int ld_dse:4;
37                 unsigned int ld_stlb_miss:1;
38                 unsigned int ld_locked:1;
39                 unsigned int ld_data_blk:1;
40                 unsigned int ld_addr_blk:1;
41                 unsigned int ld_reserved:24;
42         };
43         struct {
44                 unsigned int st_l1d_hit:1;
45                 unsigned int st_reserved1:3;
46                 unsigned int st_stlb_miss:1;
47                 unsigned int st_locked:1;
48                 unsigned int st_reserved2:26;
49         };
50         struct {
51                 unsigned int st_lat_dse:4;
52                 unsigned int st_lat_stlb_miss:1;
53                 unsigned int st_lat_locked:1;
54                 unsigned int ld_reserved3:26;
55         };
56 };
57
58
59 /*
60  * Map PEBS Load Latency Data Source encodings to generic
61  * memory data source information
62  */
63 #define P(a, b) PERF_MEM_S(a, b)
64 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
65 #define LEVEL(x) P(LVLNUM, x)
66 #define REM P(REMOTE, REMOTE)
67 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
68
69 /* Version for Sandy Bridge and later */
70 static u64 pebs_data_source[] = {
71         P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
72         OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
73         OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
74         OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
75         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
76         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
77         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
78         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
79         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
80         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
81         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
82         OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
83         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
84         OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
85         OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
86         OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
87 };
88
89 /* Patch up minor differences in the bits */
90 void __init intel_pmu_pebs_data_source_nhm(void)
91 {
92         pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
93         pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
94         pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
95 }
96
97 void __init intel_pmu_pebs_data_source_skl(bool pmem)
98 {
99         u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
100
101         pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
102         pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
103         pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
104         pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
105         pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
106 }
107
108 static u64 precise_store_data(u64 status)
109 {
110         union intel_x86_pebs_dse dse;
111         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
112
113         dse.val = status;
114
115         /*
116          * bit 4: TLB access
117          * 1 = stored missed 2nd level TLB
118          *
119          * so it either hit the walker or the OS
120          * otherwise hit 2nd level TLB
121          */
122         if (dse.st_stlb_miss)
123                 val |= P(TLB, MISS);
124         else
125                 val |= P(TLB, HIT);
126
127         /*
128          * bit 0: hit L1 data cache
129          * if not set, then all we know is that
130          * it missed L1D
131          */
132         if (dse.st_l1d_hit)
133                 val |= P(LVL, HIT);
134         else
135                 val |= P(LVL, MISS);
136
137         /*
138          * bit 5: Locked prefix
139          */
140         if (dse.st_locked)
141                 val |= P(LOCK, LOCKED);
142
143         return val;
144 }
145
146 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
147 {
148         union perf_mem_data_src dse;
149
150         dse.val = PERF_MEM_NA;
151
152         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
153                 dse.mem_op = PERF_MEM_OP_STORE;
154         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
155                 dse.mem_op = PERF_MEM_OP_LOAD;
156
157         /*
158          * L1 info only valid for following events:
159          *
160          * MEM_UOPS_RETIRED.STLB_MISS_STORES
161          * MEM_UOPS_RETIRED.LOCK_STORES
162          * MEM_UOPS_RETIRED.SPLIT_STORES
163          * MEM_UOPS_RETIRED.ALL_STORES
164          */
165         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
166                 if (status & 1)
167                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
168                 else
169                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
170         }
171         return dse.val;
172 }
173
174 static u64 load_latency_data(u64 status)
175 {
176         union intel_x86_pebs_dse dse;
177         u64 val;
178
179         dse.val = status;
180
181         /*
182          * use the mapping table for bit 0-3
183          */
184         val = pebs_data_source[dse.ld_dse];
185
186         /*
187          * Nehalem models do not support TLB, Lock infos
188          */
189         if (x86_pmu.pebs_no_tlb) {
190                 val |= P(TLB, NA) | P(LOCK, NA);
191                 return val;
192         }
193         /*
194          * bit 4: TLB access
195          * 0 = did not miss 2nd level TLB
196          * 1 = missed 2nd level TLB
197          */
198         if (dse.ld_stlb_miss)
199                 val |= P(TLB, MISS) | P(TLB, L2);
200         else
201                 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
202
203         /*
204          * bit 5: locked prefix
205          */
206         if (dse.ld_locked)
207                 val |= P(LOCK, LOCKED);
208
209         /*
210          * Ice Lake and earlier models do not support block infos.
211          */
212         if (!x86_pmu.pebs_block) {
213                 val |= P(BLK, NA);
214                 return val;
215         }
216         /*
217          * bit 6: load was blocked since its data could not be forwarded
218          *        from a preceding store
219          */
220         if (dse.ld_data_blk)
221                 val |= P(BLK, DATA);
222
223         /*
224          * bit 7: load was blocked due to potential address conflict with
225          *        a preceding store
226          */
227         if (dse.ld_addr_blk)
228                 val |= P(BLK, ADDR);
229
230         if (!dse.ld_data_blk && !dse.ld_addr_blk)
231                 val |= P(BLK, NA);
232
233         return val;
234 }
235
236 static u64 store_latency_data(u64 status)
237 {
238         union intel_x86_pebs_dse dse;
239         u64 val;
240
241         dse.val = status;
242
243         /*
244          * use the mapping table for bit 0-3
245          */
246         val = pebs_data_source[dse.st_lat_dse];
247
248         /*
249          * bit 4: TLB access
250          * 0 = did not miss 2nd level TLB
251          * 1 = missed 2nd level TLB
252          */
253         if (dse.st_lat_stlb_miss)
254                 val |= P(TLB, MISS) | P(TLB, L2);
255         else
256                 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
257
258         /*
259          * bit 5: locked prefix
260          */
261         if (dse.st_lat_locked)
262                 val |= P(LOCK, LOCKED);
263
264         val |= P(BLK, NA);
265
266         return val;
267 }
268
269 struct pebs_record_core {
270         u64 flags, ip;
271         u64 ax, bx, cx, dx;
272         u64 si, di, bp, sp;
273         u64 r8,  r9,  r10, r11;
274         u64 r12, r13, r14, r15;
275 };
276
277 struct pebs_record_nhm {
278         u64 flags, ip;
279         u64 ax, bx, cx, dx;
280         u64 si, di, bp, sp;
281         u64 r8,  r9,  r10, r11;
282         u64 r12, r13, r14, r15;
283         u64 status, dla, dse, lat;
284 };
285
286 /*
287  * Same as pebs_record_nhm, with two additional fields.
288  */
289 struct pebs_record_hsw {
290         u64 flags, ip;
291         u64 ax, bx, cx, dx;
292         u64 si, di, bp, sp;
293         u64 r8,  r9,  r10, r11;
294         u64 r12, r13, r14, r15;
295         u64 status, dla, dse, lat;
296         u64 real_ip, tsx_tuning;
297 };
298
299 union hsw_tsx_tuning {
300         struct {
301                 u32 cycles_last_block     : 32,
302                     hle_abort             : 1,
303                     rtm_abort             : 1,
304                     instruction_abort     : 1,
305                     non_instruction_abort : 1,
306                     retry                 : 1,
307                     data_conflict         : 1,
308                     capacity_writes       : 1,
309                     capacity_reads        : 1;
310         };
311         u64         value;
312 };
313
314 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
315
316 /* Same as HSW, plus TSC */
317
318 struct pebs_record_skl {
319         u64 flags, ip;
320         u64 ax, bx, cx, dx;
321         u64 si, di, bp, sp;
322         u64 r8,  r9,  r10, r11;
323         u64 r12, r13, r14, r15;
324         u64 status, dla, dse, lat;
325         u64 real_ip, tsx_tuning;
326         u64 tsc;
327 };
328
329 void init_debug_store_on_cpu(int cpu)
330 {
331         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
332
333         if (!ds)
334                 return;
335
336         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
337                      (u32)((u64)(unsigned long)ds),
338                      (u32)((u64)(unsigned long)ds >> 32));
339 }
340
341 void fini_debug_store_on_cpu(int cpu)
342 {
343         if (!per_cpu(cpu_hw_events, cpu).ds)
344                 return;
345
346         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
347 }
348
349 static DEFINE_PER_CPU(void *, insn_buffer);
350
351 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
352 {
353         unsigned long start = (unsigned long)cea;
354         phys_addr_t pa;
355         size_t msz = 0;
356
357         pa = virt_to_phys(addr);
358
359         preempt_disable();
360         for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
361                 cea_set_pte(cea, pa, prot);
362
363         /*
364          * This is a cross-CPU update of the cpu_entry_area, we must shoot down
365          * all TLB entries for it.
366          */
367         flush_tlb_kernel_range(start, start + size);
368         preempt_enable();
369 }
370
371 static void ds_clear_cea(void *cea, size_t size)
372 {
373         unsigned long start = (unsigned long)cea;
374         size_t msz = 0;
375
376         preempt_disable();
377         for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
378                 cea_set_pte(cea, 0, PAGE_NONE);
379
380         flush_tlb_kernel_range(start, start + size);
381         preempt_enable();
382 }
383
384 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
385 {
386         unsigned int order = get_order(size);
387         int node = cpu_to_node(cpu);
388         struct page *page;
389
390         page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
391         return page ? page_address(page) : NULL;
392 }
393
394 static void dsfree_pages(const void *buffer, size_t size)
395 {
396         if (buffer)
397                 free_pages((unsigned long)buffer, get_order(size));
398 }
399
400 static int alloc_pebs_buffer(int cpu)
401 {
402         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
403         struct debug_store *ds = hwev->ds;
404         size_t bsiz = x86_pmu.pebs_buffer_size;
405         int max, node = cpu_to_node(cpu);
406         void *buffer, *insn_buff, *cea;
407
408         if (!x86_pmu.pebs)
409                 return 0;
410
411         buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
412         if (unlikely(!buffer))
413                 return -ENOMEM;
414
415         /*
416          * HSW+ already provides us the eventing ip; no need to allocate this
417          * buffer then.
418          */
419         if (x86_pmu.intel_cap.pebs_format < 2) {
420                 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
421                 if (!insn_buff) {
422                         dsfree_pages(buffer, bsiz);
423                         return -ENOMEM;
424                 }
425                 per_cpu(insn_buffer, cpu) = insn_buff;
426         }
427         hwev->ds_pebs_vaddr = buffer;
428         /* Update the cpu entry area mapping */
429         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
430         ds->pebs_buffer_base = (unsigned long) cea;
431         ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
432         ds->pebs_index = ds->pebs_buffer_base;
433         max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
434         ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
435         return 0;
436 }
437
438 static void release_pebs_buffer(int cpu)
439 {
440         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
441         void *cea;
442
443         if (!x86_pmu.pebs)
444                 return;
445
446         kfree(per_cpu(insn_buffer, cpu));
447         per_cpu(insn_buffer, cpu) = NULL;
448
449         /* Clear the fixmap */
450         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
451         ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
452         dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
453         hwev->ds_pebs_vaddr = NULL;
454 }
455
456 static int alloc_bts_buffer(int cpu)
457 {
458         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
459         struct debug_store *ds = hwev->ds;
460         void *buffer, *cea;
461         int max;
462
463         if (!x86_pmu.bts)
464                 return 0;
465
466         buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
467         if (unlikely(!buffer)) {
468                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
469                 return -ENOMEM;
470         }
471         hwev->ds_bts_vaddr = buffer;
472         /* Update the fixmap */
473         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
474         ds->bts_buffer_base = (unsigned long) cea;
475         ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
476         ds->bts_index = ds->bts_buffer_base;
477         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
478         ds->bts_absolute_maximum = ds->bts_buffer_base +
479                                         max * BTS_RECORD_SIZE;
480         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
481                                         (max / 16) * BTS_RECORD_SIZE;
482         return 0;
483 }
484
485 static void release_bts_buffer(int cpu)
486 {
487         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
488         void *cea;
489
490         if (!x86_pmu.bts)
491                 return;
492
493         /* Clear the fixmap */
494         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
495         ds_clear_cea(cea, BTS_BUFFER_SIZE);
496         dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
497         hwev->ds_bts_vaddr = NULL;
498 }
499
500 static int alloc_ds_buffer(int cpu)
501 {
502         struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
503
504         memset(ds, 0, sizeof(*ds));
505         per_cpu(cpu_hw_events, cpu).ds = ds;
506         return 0;
507 }
508
509 static void release_ds_buffer(int cpu)
510 {
511         per_cpu(cpu_hw_events, cpu).ds = NULL;
512 }
513
514 void release_ds_buffers(void)
515 {
516         int cpu;
517
518         if (!x86_pmu.bts && !x86_pmu.pebs)
519                 return;
520
521         for_each_possible_cpu(cpu)
522                 release_ds_buffer(cpu);
523
524         for_each_possible_cpu(cpu) {
525                 /*
526                  * Again, ignore errors from offline CPUs, they will no longer
527                  * observe cpu_hw_events.ds and not program the DS_AREA when
528                  * they come up.
529                  */
530                 fini_debug_store_on_cpu(cpu);
531         }
532
533         for_each_possible_cpu(cpu) {
534                 release_pebs_buffer(cpu);
535                 release_bts_buffer(cpu);
536         }
537 }
538
539 void reserve_ds_buffers(void)
540 {
541         int bts_err = 0, pebs_err = 0;
542         int cpu;
543
544         x86_pmu.bts_active = 0;
545         x86_pmu.pebs_active = 0;
546
547         if (!x86_pmu.bts && !x86_pmu.pebs)
548                 return;
549
550         if (!x86_pmu.bts)
551                 bts_err = 1;
552
553         if (!x86_pmu.pebs)
554                 pebs_err = 1;
555
556         for_each_possible_cpu(cpu) {
557                 if (alloc_ds_buffer(cpu)) {
558                         bts_err = 1;
559                         pebs_err = 1;
560                 }
561
562                 if (!bts_err && alloc_bts_buffer(cpu))
563                         bts_err = 1;
564
565                 if (!pebs_err && alloc_pebs_buffer(cpu))
566                         pebs_err = 1;
567
568                 if (bts_err && pebs_err)
569                         break;
570         }
571
572         if (bts_err) {
573                 for_each_possible_cpu(cpu)
574                         release_bts_buffer(cpu);
575         }
576
577         if (pebs_err) {
578                 for_each_possible_cpu(cpu)
579                         release_pebs_buffer(cpu);
580         }
581
582         if (bts_err && pebs_err) {
583                 for_each_possible_cpu(cpu)
584                         release_ds_buffer(cpu);
585         } else {
586                 if (x86_pmu.bts && !bts_err)
587                         x86_pmu.bts_active = 1;
588
589                 if (x86_pmu.pebs && !pebs_err)
590                         x86_pmu.pebs_active = 1;
591
592                 for_each_possible_cpu(cpu) {
593                         /*
594                          * Ignores wrmsr_on_cpu() errors for offline CPUs they
595                          * will get this call through intel_pmu_cpu_starting().
596                          */
597                         init_debug_store_on_cpu(cpu);
598                 }
599         }
600 }
601
602 /*
603  * BTS
604  */
605
606 struct event_constraint bts_constraint =
607         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
608
609 void intel_pmu_enable_bts(u64 config)
610 {
611         unsigned long debugctlmsr;
612
613         debugctlmsr = get_debugctlmsr();
614
615         debugctlmsr |= DEBUGCTLMSR_TR;
616         debugctlmsr |= DEBUGCTLMSR_BTS;
617         if (config & ARCH_PERFMON_EVENTSEL_INT)
618                 debugctlmsr |= DEBUGCTLMSR_BTINT;
619
620         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
621                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
622
623         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
624                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
625
626         update_debugctlmsr(debugctlmsr);
627 }
628
629 void intel_pmu_disable_bts(void)
630 {
631         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
632         unsigned long debugctlmsr;
633
634         if (!cpuc->ds)
635                 return;
636
637         debugctlmsr = get_debugctlmsr();
638
639         debugctlmsr &=
640                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
641                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
642
643         update_debugctlmsr(debugctlmsr);
644 }
645
646 int intel_pmu_drain_bts_buffer(void)
647 {
648         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
649         struct debug_store *ds = cpuc->ds;
650         struct bts_record {
651                 u64     from;
652                 u64     to;
653                 u64     flags;
654         };
655         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
656         struct bts_record *at, *base, *top;
657         struct perf_output_handle handle;
658         struct perf_event_header header;
659         struct perf_sample_data data;
660         unsigned long skip = 0;
661         struct pt_regs regs;
662
663         if (!event)
664                 return 0;
665
666         if (!x86_pmu.bts_active)
667                 return 0;
668
669         base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
670         top  = (struct bts_record *)(unsigned long)ds->bts_index;
671
672         if (top <= base)
673                 return 0;
674
675         memset(&regs, 0, sizeof(regs));
676
677         ds->bts_index = ds->bts_buffer_base;
678
679         perf_sample_data_init(&data, 0, event->hw.last_period);
680
681         /*
682          * BTS leaks kernel addresses in branches across the cpl boundary,
683          * such as traps or system calls, so unless the user is asking for
684          * kernel tracing (and right now it's not possible), we'd need to
685          * filter them out. But first we need to count how many of those we
686          * have in the current batch. This is an extra O(n) pass, however,
687          * it's much faster than the other one especially considering that
688          * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
689          * alloc_bts_buffer()).
690          */
691         for (at = base; at < top; at++) {
692                 /*
693                  * Note that right now *this* BTS code only works if
694                  * attr::exclude_kernel is set, but let's keep this extra
695                  * check here in case that changes.
696                  */
697                 if (event->attr.exclude_kernel &&
698                     (kernel_ip(at->from) || kernel_ip(at->to)))
699                         skip++;
700         }
701
702         /*
703          * Prepare a generic sample, i.e. fill in the invariant fields.
704          * We will overwrite the from and to address before we output
705          * the sample.
706          */
707         rcu_read_lock();
708         perf_prepare_sample(&header, &data, event, &regs);
709
710         if (perf_output_begin(&handle, &data, event,
711                               header.size * (top - base - skip)))
712                 goto unlock;
713
714         for (at = base; at < top; at++) {
715                 /* Filter out any records that contain kernel addresses. */
716                 if (event->attr.exclude_kernel &&
717                     (kernel_ip(at->from) || kernel_ip(at->to)))
718                         continue;
719
720                 data.ip         = at->from;
721                 data.addr       = at->to;
722
723                 perf_output_sample(&handle, &header, &data, event);
724         }
725
726         perf_output_end(&handle);
727
728         /* There's new data available. */
729         event->hw.interrupts++;
730         event->pending_kill = POLL_IN;
731 unlock:
732         rcu_read_unlock();
733         return 1;
734 }
735
736 static inline void intel_pmu_drain_pebs_buffer(void)
737 {
738         struct perf_sample_data data;
739
740         x86_pmu.drain_pebs(NULL, &data);
741 }
742
743 /*
744  * PEBS
745  */
746 struct event_constraint intel_core2_pebs_event_constraints[] = {
747         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
748         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
749         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
750         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
751         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
752         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
753         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
754         EVENT_CONSTRAINT_END
755 };
756
757 struct event_constraint intel_atom_pebs_event_constraints[] = {
758         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
759         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
760         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
761         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
762         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
763         /* Allow all events as PEBS with no flags */
764         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
765         EVENT_CONSTRAINT_END
766 };
767
768 struct event_constraint intel_slm_pebs_event_constraints[] = {
769         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
770         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
771         /* Allow all events as PEBS with no flags */
772         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
773         EVENT_CONSTRAINT_END
774 };
775
776 struct event_constraint intel_glm_pebs_event_constraints[] = {
777         /* Allow all events as PEBS with no flags */
778         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
779         EVENT_CONSTRAINT_END
780 };
781
782 struct event_constraint intel_grt_pebs_event_constraints[] = {
783         /* Allow all events as PEBS with no flags */
784         INTEL_PLD_CONSTRAINT(0x5d0, 0xf),
785         INTEL_PSD_CONSTRAINT(0x6d0, 0xf),
786         EVENT_CONSTRAINT_END
787 };
788
789 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
790         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
791         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
792         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
793         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
794         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
795         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
796         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
797         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
798         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
799         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
800         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
801         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
802         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
803         EVENT_CONSTRAINT_END
804 };
805
806 struct event_constraint intel_westmere_pebs_event_constraints[] = {
807         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
808         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
809         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
810         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
811         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
812         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
813         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
814         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
815         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
816         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
817         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
818         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
819         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
820         EVENT_CONSTRAINT_END
821 };
822
823 struct event_constraint intel_snb_pebs_event_constraints[] = {
824         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
825         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
826         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
827         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
828         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
829         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
830         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
831         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
832         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
833         /* Allow all events as PEBS with no flags */
834         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
835         EVENT_CONSTRAINT_END
836 };
837
838 struct event_constraint intel_ivb_pebs_event_constraints[] = {
839         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
840         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
841         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
842         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
843         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
844         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
845         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
846         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
847         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
848         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
849         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
850         /* Allow all events as PEBS with no flags */
851         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
852         EVENT_CONSTRAINT_END
853 };
854
855 struct event_constraint intel_hsw_pebs_event_constraints[] = {
856         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
857         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
858         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
859         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
860         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
861         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
862         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
863         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
864         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
865         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
866         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
867         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
868         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
869         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
870         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
871         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
872         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
873         /* Allow all events as PEBS with no flags */
874         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
875         EVENT_CONSTRAINT_END
876 };
877
878 struct event_constraint intel_bdw_pebs_event_constraints[] = {
879         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
880         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
881         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
882         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
883         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
884         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
885         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
886         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
887         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
888         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
889         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
890         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
891         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
892         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
893         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
894         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
895         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
896         /* Allow all events as PEBS with no flags */
897         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
898         EVENT_CONSTRAINT_END
899 };
900
901
902 struct event_constraint intel_skl_pebs_event_constraints[] = {
903         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),      /* INST_RETIRED.PREC_DIST */
904         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
905         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
906         /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
907         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
908         INTEL_PLD_CONSTRAINT(0x1cd, 0xf),                     /* MEM_TRANS_RETIRED.* */
909         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
910         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
911         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
912         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
913         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
914         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
915         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
916         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
917         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
918         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
919         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
920         /* Allow all events as PEBS with no flags */
921         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
922         EVENT_CONSTRAINT_END
923 };
924
925 struct event_constraint intel_icl_pebs_event_constraints[] = {
926         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL),   /* INST_RETIRED.PREC_DIST */
927         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),  /* SLOTS */
928
929         INTEL_PLD_CONSTRAINT(0x1cd, 0xff),                      /* MEM_TRANS_RETIRED.LOAD_LATENCY */
930         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),    /* MEM_INST_RETIRED.LOAD */
931         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),    /* MEM_INST_RETIRED.STORE */
932
933         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
934
935         INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),                /* MEM_INST_RETIRED.* */
936
937         /*
938          * Everything else is handled by PMU_FL_PEBS_ALL, because we
939          * need the full constraints from the main table.
940          */
941
942         EVENT_CONSTRAINT_END
943 };
944
945 struct event_constraint intel_spr_pebs_event_constraints[] = {
946         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL),
947         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
948
949         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
950         INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
951         INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
952         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),
953         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),
954
955         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
956
957         INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
958
959         /*
960          * Everything else is handled by PMU_FL_PEBS_ALL, because we
961          * need the full constraints from the main table.
962          */
963
964         EVENT_CONSTRAINT_END
965 };
966
967 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
968 {
969         struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
970         struct event_constraint *c;
971
972         if (!event->attr.precise_ip)
973                 return NULL;
974
975         if (pebs_constraints) {
976                 for_each_event_constraint(c, pebs_constraints) {
977                         if (constraint_match(c, event->hw.config)) {
978                                 event->hw.flags |= c->flags;
979                                 return c;
980                         }
981                 }
982         }
983
984         /*
985          * Extended PEBS support
986          * Makes the PEBS code search the normal constraints.
987          */
988         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
989                 return NULL;
990
991         return &emptyconstraint;
992 }
993
994 /*
995  * We need the sched_task callback even for per-cpu events when we use
996  * the large interrupt threshold, such that we can provide PID and TID
997  * to PEBS samples.
998  */
999 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1000 {
1001         if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1002                 return false;
1003
1004         return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1005 }
1006
1007 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
1008 {
1009         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1010
1011         if (!sched_in && pebs_needs_sched_cb(cpuc))
1012                 intel_pmu_drain_pebs_buffer();
1013 }
1014
1015 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1016 {
1017         struct debug_store *ds = cpuc->ds;
1018         int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
1019         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1020         u64 threshold;
1021         int reserved;
1022
1023         if (cpuc->n_pebs_via_pt)
1024                 return;
1025
1026         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1027                 reserved = max_pebs_events + num_counters_fixed;
1028         else
1029                 reserved = max_pebs_events;
1030
1031         if (cpuc->n_pebs == cpuc->n_large_pebs) {
1032                 threshold = ds->pebs_absolute_maximum -
1033                         reserved * cpuc->pebs_record_size;
1034         } else {
1035                 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1036         }
1037
1038         ds->pebs_interrupt_threshold = threshold;
1039 }
1040
1041 static void adaptive_pebs_record_size_update(void)
1042 {
1043         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1044         u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1045         int sz = sizeof(struct pebs_basic);
1046
1047         if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1048                 sz += sizeof(struct pebs_meminfo);
1049         if (pebs_data_cfg & PEBS_DATACFG_GP)
1050                 sz += sizeof(struct pebs_gprs);
1051         if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1052                 sz += sizeof(struct pebs_xmm);
1053         if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1054                 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1055
1056         cpuc->pebs_record_size = sz;
1057 }
1058
1059 #define PERF_PEBS_MEMINFO_TYPE  (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
1060                                 PERF_SAMPLE_PHYS_ADDR |                      \
1061                                 PERF_SAMPLE_WEIGHT_TYPE |                    \
1062                                 PERF_SAMPLE_TRANSACTION |                    \
1063                                 PERF_SAMPLE_DATA_PAGE_SIZE)
1064
1065 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1066 {
1067         struct perf_event_attr *attr = &event->attr;
1068         u64 sample_type = attr->sample_type;
1069         u64 pebs_data_cfg = 0;
1070         bool gprs, tsx_weight;
1071
1072         if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1073             attr->precise_ip > 1)
1074                 return pebs_data_cfg;
1075
1076         if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1077                 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1078
1079         /*
1080          * We need GPRs when:
1081          * + user requested them
1082          * + precise_ip < 2 for the non event IP
1083          * + For RTM TSX weight we need GPRs for the abort code.
1084          */
1085         gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
1086                (attr->sample_regs_intr & PEBS_GP_REGS);
1087
1088         tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1089                      ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1090                       x86_pmu.rtm_abort_event);
1091
1092         if (gprs || (attr->precise_ip < 2) || tsx_weight)
1093                 pebs_data_cfg |= PEBS_DATACFG_GP;
1094
1095         if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1096             (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1097                 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1098
1099         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1100                 /*
1101                  * For now always log all LBRs. Could configure this
1102                  * later.
1103                  */
1104                 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1105                         ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1106         }
1107
1108         return pebs_data_cfg;
1109 }
1110
1111 static void
1112 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1113                   struct perf_event *event, bool add)
1114 {
1115         struct pmu *pmu = event->ctx->pmu;
1116         /*
1117          * Make sure we get updated with the first PEBS
1118          * event. It will trigger also during removal, but
1119          * that does not hurt:
1120          */
1121         bool update = cpuc->n_pebs == 1;
1122
1123         if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1124                 if (!needed_cb)
1125                         perf_sched_cb_inc(pmu);
1126                 else
1127                         perf_sched_cb_dec(pmu);
1128
1129                 update = true;
1130         }
1131
1132         /*
1133          * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1134          * iterating all remaining PEBS events to reconstruct the config.
1135          */
1136         if (x86_pmu.intel_cap.pebs_baseline && add) {
1137                 u64 pebs_data_cfg;
1138
1139                 /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
1140                 if (cpuc->n_pebs == 1) {
1141                         cpuc->pebs_data_cfg = 0;
1142                         cpuc->pebs_record_size = sizeof(struct pebs_basic);
1143                 }
1144
1145                 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1146
1147                 /* Update pebs_record_size if new event requires more data. */
1148                 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
1149                         cpuc->pebs_data_cfg |= pebs_data_cfg;
1150                         adaptive_pebs_record_size_update();
1151                         update = true;
1152                 }
1153         }
1154
1155         if (update)
1156                 pebs_update_threshold(cpuc);
1157 }
1158
1159 void intel_pmu_pebs_add(struct perf_event *event)
1160 {
1161         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1162         struct hw_perf_event *hwc = &event->hw;
1163         bool needed_cb = pebs_needs_sched_cb(cpuc);
1164
1165         cpuc->n_pebs++;
1166         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1167                 cpuc->n_large_pebs++;
1168         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1169                 cpuc->n_pebs_via_pt++;
1170
1171         pebs_update_state(needed_cb, cpuc, event, true);
1172 }
1173
1174 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1175 {
1176         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1177
1178         if (!is_pebs_pt(event))
1179                 return;
1180
1181         if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1182                 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1183 }
1184
1185 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1186 {
1187         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1188         struct hw_perf_event *hwc = &event->hw;
1189         struct debug_store *ds = cpuc->ds;
1190         u64 value = ds->pebs_event_reset[hwc->idx];
1191         u32 base = MSR_RELOAD_PMC0;
1192         unsigned int idx = hwc->idx;
1193
1194         if (!is_pebs_pt(event))
1195                 return;
1196
1197         if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1198                 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1199
1200         cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1201
1202         if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1203                 base = MSR_RELOAD_FIXED_CTR0;
1204                 idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1205                 value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1206         }
1207         wrmsrl(base + idx, value);
1208 }
1209
1210 void intel_pmu_pebs_enable(struct perf_event *event)
1211 {
1212         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1213         struct hw_perf_event *hwc = &event->hw;
1214         struct debug_store *ds = cpuc->ds;
1215         unsigned int idx = hwc->idx;
1216
1217         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1218
1219         cpuc->pebs_enabled |= 1ULL << hwc->idx;
1220
1221         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1222                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1223         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1224                 cpuc->pebs_enabled |= 1ULL << 63;
1225
1226         if (x86_pmu.intel_cap.pebs_baseline) {
1227                 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1228                 if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1229                         wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
1230                         cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
1231                 }
1232         }
1233
1234         if (idx >= INTEL_PMC_IDX_FIXED)
1235                 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1236
1237         /*
1238          * Use auto-reload if possible to save a MSR write in the PMI.
1239          * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1240          */
1241         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1242                 ds->pebs_event_reset[idx] =
1243                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1244         } else {
1245                 ds->pebs_event_reset[idx] = 0;
1246         }
1247
1248         intel_pmu_pebs_via_pt_enable(event);
1249 }
1250
1251 void intel_pmu_pebs_del(struct perf_event *event)
1252 {
1253         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1254         struct hw_perf_event *hwc = &event->hw;
1255         bool needed_cb = pebs_needs_sched_cb(cpuc);
1256
1257         cpuc->n_pebs--;
1258         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1259                 cpuc->n_large_pebs--;
1260         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1261                 cpuc->n_pebs_via_pt--;
1262
1263         pebs_update_state(needed_cb, cpuc, event, false);
1264 }
1265
1266 void intel_pmu_pebs_disable(struct perf_event *event)
1267 {
1268         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1269         struct hw_perf_event *hwc = &event->hw;
1270
1271         if (cpuc->n_pebs == cpuc->n_large_pebs &&
1272             cpuc->n_pebs != cpuc->n_pebs_via_pt)
1273                 intel_pmu_drain_pebs_buffer();
1274
1275         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1276
1277         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1278             (x86_pmu.version < 5))
1279                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1280         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1281                 cpuc->pebs_enabled &= ~(1ULL << 63);
1282
1283         intel_pmu_pebs_via_pt_disable(event);
1284
1285         if (cpuc->enabled)
1286                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1287
1288         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1289 }
1290
1291 void intel_pmu_pebs_enable_all(void)
1292 {
1293         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1294
1295         if (cpuc->pebs_enabled)
1296                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1297 }
1298
1299 void intel_pmu_pebs_disable_all(void)
1300 {
1301         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1302
1303         if (cpuc->pebs_enabled)
1304                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1305 }
1306
1307 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1308 {
1309         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1310         unsigned long from = cpuc->lbr_entries[0].from;
1311         unsigned long old_to, to = cpuc->lbr_entries[0].to;
1312         unsigned long ip = regs->ip;
1313         int is_64bit = 0;
1314         void *kaddr;
1315         int size;
1316
1317         /*
1318          * We don't need to fixup if the PEBS assist is fault like
1319          */
1320         if (!x86_pmu.intel_cap.pebs_trap)
1321                 return 1;
1322
1323         /*
1324          * No LBR entry, no basic block, no rewinding
1325          */
1326         if (!cpuc->lbr_stack.nr || !from || !to)
1327                 return 0;
1328
1329         /*
1330          * Basic blocks should never cross user/kernel boundaries
1331          */
1332         if (kernel_ip(ip) != kernel_ip(to))
1333                 return 0;
1334
1335         /*
1336          * unsigned math, either ip is before the start (impossible) or
1337          * the basic block is larger than 1 page (sanity)
1338          */
1339         if ((ip - to) > PEBS_FIXUP_SIZE)
1340                 return 0;
1341
1342         /*
1343          * We sampled a branch insn, rewind using the LBR stack
1344          */
1345         if (ip == to) {
1346                 set_linear_ip(regs, from);
1347                 return 1;
1348         }
1349
1350         size = ip - to;
1351         if (!kernel_ip(ip)) {
1352                 int bytes;
1353                 u8 *buf = this_cpu_read(insn_buffer);
1354
1355                 /* 'size' must fit our buffer, see above */
1356                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1357                 if (bytes != 0)
1358                         return 0;
1359
1360                 kaddr = buf;
1361         } else {
1362                 kaddr = (void *)to;
1363         }
1364
1365         do {
1366                 struct insn insn;
1367
1368                 old_to = to;
1369
1370 #ifdef CONFIG_X86_64
1371                 is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1372 #endif
1373                 insn_init(&insn, kaddr, size, is_64bit);
1374
1375                 /*
1376                  * Make sure there was not a problem decoding the instruction.
1377                  * This is doubly important because we have an infinite loop if
1378                  * insn.length=0.
1379                  */
1380                 if (insn_get_length(&insn))
1381                         break;
1382
1383                 to += insn.length;
1384                 kaddr += insn.length;
1385                 size -= insn.length;
1386         } while (to < ip);
1387
1388         if (to == ip) {
1389                 set_linear_ip(regs, old_to);
1390                 return 1;
1391         }
1392
1393         /*
1394          * Even though we decoded the basic block, the instruction stream
1395          * never matched the given IP, either the TO or the IP got corrupted.
1396          */
1397         return 0;
1398 }
1399
1400 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1401 {
1402         if (tsx_tuning) {
1403                 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1404                 return tsx.cycles_last_block;
1405         }
1406         return 0;
1407 }
1408
1409 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1410 {
1411         u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1412
1413         /* For RTM XABORTs also log the abort code from AX */
1414         if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1415                 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1416         return txn;
1417 }
1418
1419 static inline u64 get_pebs_status(void *n)
1420 {
1421         if (x86_pmu.intel_cap.pebs_format < 4)
1422                 return ((struct pebs_record_nhm *)n)->status;
1423         return ((struct pebs_basic *)n)->applicable_counters;
1424 }
1425
1426 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1427                 (PERF_X86_EVENT_PEBS_ST_HSW | \
1428                  PERF_X86_EVENT_PEBS_LD_HSW | \
1429                  PERF_X86_EVENT_PEBS_NA_HSW)
1430
1431 static u64 get_data_src(struct perf_event *event, u64 aux)
1432 {
1433         u64 val = PERF_MEM_NA;
1434         int fl = event->hw.flags;
1435         bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1436
1437         if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1438                 val = load_latency_data(aux);
1439         else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1440                 val = store_latency_data(aux);
1441         else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1442                 val = precise_datala_hsw(event, aux);
1443         else if (fst)
1444                 val = precise_store_data(aux);
1445         return val;
1446 }
1447
1448 #define PERF_SAMPLE_ADDR_TYPE   (PERF_SAMPLE_ADDR |             \
1449                                  PERF_SAMPLE_PHYS_ADDR |        \
1450                                  PERF_SAMPLE_DATA_PAGE_SIZE)
1451
1452 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1453                                    struct pt_regs *iregs, void *__pebs,
1454                                    struct perf_sample_data *data,
1455                                    struct pt_regs *regs)
1456 {
1457         /*
1458          * We cast to the biggest pebs_record but are careful not to
1459          * unconditionally access the 'extra' entries.
1460          */
1461         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1462         struct pebs_record_skl *pebs = __pebs;
1463         u64 sample_type;
1464         int fll;
1465
1466         if (pebs == NULL)
1467                 return;
1468
1469         sample_type = event->attr.sample_type;
1470         fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1471
1472         perf_sample_data_init(data, 0, event->hw.last_period);
1473
1474         data->period = event->hw.last_period;
1475
1476         /*
1477          * Use latency for weight (only avail with PEBS-LL)
1478          */
1479         if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE))
1480                 data->weight.full = pebs->lat;
1481
1482         /*
1483          * data.data_src encodes the data source
1484          */
1485         if (sample_type & PERF_SAMPLE_DATA_SRC)
1486                 data->data_src.val = get_data_src(event, pebs->dse);
1487
1488         /*
1489          * We must however always use iregs for the unwinder to stay sane; the
1490          * record BP,SP,IP can point into thin air when the record is from a
1491          * previous PMI context or an (I)RET happened between the record and
1492          * PMI.
1493          */
1494         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1495                 data->callchain = perf_callchain(event, iregs);
1496
1497         /*
1498          * We use the interrupt regs as a base because the PEBS record does not
1499          * contain a full regs set, specifically it seems to lack segment
1500          * descriptors, which get used by things like user_mode().
1501          *
1502          * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1503          */
1504         *regs = *iregs;
1505
1506         /*
1507          * Initialize regs_>flags from PEBS,
1508          * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1509          * i.e., do not rely on it being zero:
1510          */
1511         regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1512
1513         if (sample_type & PERF_SAMPLE_REGS_INTR) {
1514                 regs->ax = pebs->ax;
1515                 regs->bx = pebs->bx;
1516                 regs->cx = pebs->cx;
1517                 regs->dx = pebs->dx;
1518                 regs->si = pebs->si;
1519                 regs->di = pebs->di;
1520
1521                 regs->bp = pebs->bp;
1522                 regs->sp = pebs->sp;
1523
1524 #ifndef CONFIG_X86_32
1525                 regs->r8 = pebs->r8;
1526                 regs->r9 = pebs->r9;
1527                 regs->r10 = pebs->r10;
1528                 regs->r11 = pebs->r11;
1529                 regs->r12 = pebs->r12;
1530                 regs->r13 = pebs->r13;
1531                 regs->r14 = pebs->r14;
1532                 regs->r15 = pebs->r15;
1533 #endif
1534         }
1535
1536         if (event->attr.precise_ip > 1) {
1537                 /*
1538                  * Haswell and later processors have an 'eventing IP'
1539                  * (real IP) which fixes the off-by-1 skid in hardware.
1540                  * Use it when precise_ip >= 2 :
1541                  */
1542                 if (x86_pmu.intel_cap.pebs_format >= 2) {
1543                         set_linear_ip(regs, pebs->real_ip);
1544                         regs->flags |= PERF_EFLAGS_EXACT;
1545                 } else {
1546                         /* Otherwise, use PEBS off-by-1 IP: */
1547                         set_linear_ip(regs, pebs->ip);
1548
1549                         /*
1550                          * With precise_ip >= 2, try to fix up the off-by-1 IP
1551                          * using the LBR. If successful, the fixup function
1552                          * corrects regs->ip and calls set_linear_ip() on regs:
1553                          */
1554                         if (intel_pmu_pebs_fixup_ip(regs))
1555                                 regs->flags |= PERF_EFLAGS_EXACT;
1556                 }
1557         } else {
1558                 /*
1559                  * When precise_ip == 1, return the PEBS off-by-1 IP,
1560                  * no fixup attempted:
1561                  */
1562                 set_linear_ip(regs, pebs->ip);
1563         }
1564
1565
1566         if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1567             x86_pmu.intel_cap.pebs_format >= 1)
1568                 data->addr = pebs->dla;
1569
1570         if (x86_pmu.intel_cap.pebs_format >= 2) {
1571                 /* Only set the TSX weight when no memory weight. */
1572                 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll)
1573                         data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1574
1575                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1576                         data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1577                                                               pebs->ax);
1578         }
1579
1580         /*
1581          * v3 supplies an accurate time stamp, so we use that
1582          * for the time stamp.
1583          *
1584          * We can only do this for the default trace clock.
1585          */
1586         if (x86_pmu.intel_cap.pebs_format >= 3 &&
1587                 event->attr.use_clockid == 0)
1588                 data->time = native_sched_clock_from_tsc(pebs->tsc);
1589
1590         if (has_branch_stack(event))
1591                 data->br_stack = &cpuc->lbr_stack;
1592 }
1593
1594 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1595                                     struct pebs_gprs *gprs)
1596 {
1597         regs->ax = gprs->ax;
1598         regs->bx = gprs->bx;
1599         regs->cx = gprs->cx;
1600         regs->dx = gprs->dx;
1601         regs->si = gprs->si;
1602         regs->di = gprs->di;
1603         regs->bp = gprs->bp;
1604         regs->sp = gprs->sp;
1605 #ifndef CONFIG_X86_32
1606         regs->r8 = gprs->r8;
1607         regs->r9 = gprs->r9;
1608         regs->r10 = gprs->r10;
1609         regs->r11 = gprs->r11;
1610         regs->r12 = gprs->r12;
1611         regs->r13 = gprs->r13;
1612         regs->r14 = gprs->r14;
1613         regs->r15 = gprs->r15;
1614 #endif
1615 }
1616
1617 #define PEBS_LATENCY_MASK                       0xffff
1618 #define PEBS_CACHE_LATENCY_OFFSET               32
1619
1620 /*
1621  * With adaptive PEBS the layout depends on what fields are configured.
1622  */
1623
1624 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1625                                             struct pt_regs *iregs, void *__pebs,
1626                                             struct perf_sample_data *data,
1627                                             struct pt_regs *regs)
1628 {
1629         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1630         struct pebs_basic *basic = __pebs;
1631         void *next_record = basic + 1;
1632         u64 sample_type;
1633         u64 format_size;
1634         struct pebs_meminfo *meminfo = NULL;
1635         struct pebs_gprs *gprs = NULL;
1636         struct x86_perf_regs *perf_regs;
1637
1638         if (basic == NULL)
1639                 return;
1640
1641         perf_regs = container_of(regs, struct x86_perf_regs, regs);
1642         perf_regs->xmm_regs = NULL;
1643
1644         sample_type = event->attr.sample_type;
1645         format_size = basic->format_size;
1646         perf_sample_data_init(data, 0, event->hw.last_period);
1647         data->period = event->hw.last_period;
1648
1649         if (event->attr.use_clockid == 0)
1650                 data->time = native_sched_clock_from_tsc(basic->tsc);
1651
1652         /*
1653          * We must however always use iregs for the unwinder to stay sane; the
1654          * record BP,SP,IP can point into thin air when the record is from a
1655          * previous PMI context or an (I)RET happened between the record and
1656          * PMI.
1657          */
1658         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1659                 data->callchain = perf_callchain(event, iregs);
1660
1661         *regs = *iregs;
1662         /* The ip in basic is EventingIP */
1663         set_linear_ip(regs, basic->ip);
1664         regs->flags = PERF_EFLAGS_EXACT;
1665
1666         /*
1667          * The record for MEMINFO is in front of GP
1668          * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1669          * Save the pointer here but process later.
1670          */
1671         if (format_size & PEBS_DATACFG_MEMINFO) {
1672                 meminfo = next_record;
1673                 next_record = meminfo + 1;
1674         }
1675
1676         if (format_size & PEBS_DATACFG_GP) {
1677                 gprs = next_record;
1678                 next_record = gprs + 1;
1679
1680                 if (event->attr.precise_ip < 2) {
1681                         set_linear_ip(regs, gprs->ip);
1682                         regs->flags &= ~PERF_EFLAGS_EXACT;
1683                 }
1684
1685                 if (sample_type & PERF_SAMPLE_REGS_INTR)
1686                         adaptive_pebs_save_regs(regs, gprs);
1687         }
1688
1689         if (format_size & PEBS_DATACFG_MEMINFO) {
1690                 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1691                         u64 weight = meminfo->latency;
1692
1693                         if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
1694                                 data->weight.var2_w = weight & PEBS_LATENCY_MASK;
1695                                 weight >>= PEBS_CACHE_LATENCY_OFFSET;
1696                         }
1697
1698                         /*
1699                          * Although meminfo::latency is defined as a u64,
1700                          * only the lower 32 bits include the valid data
1701                          * in practice on Ice Lake and earlier platforms.
1702                          */
1703                         if (sample_type & PERF_SAMPLE_WEIGHT) {
1704                                 data->weight.full = weight ?:
1705                                         intel_get_tsx_weight(meminfo->tsx_tuning);
1706                         } else {
1707                                 data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
1708                                         intel_get_tsx_weight(meminfo->tsx_tuning);
1709                         }
1710                 }
1711
1712                 if (sample_type & PERF_SAMPLE_DATA_SRC)
1713                         data->data_src.val = get_data_src(event, meminfo->aux);
1714
1715                 if (sample_type & PERF_SAMPLE_ADDR_TYPE)
1716                         data->addr = meminfo->address;
1717
1718                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1719                         data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1720                                                           gprs ? gprs->ax : 0);
1721         }
1722
1723         if (format_size & PEBS_DATACFG_XMMS) {
1724                 struct pebs_xmm *xmm = next_record;
1725
1726                 next_record = xmm + 1;
1727                 perf_regs->xmm_regs = xmm->xmm;
1728         }
1729
1730         if (format_size & PEBS_DATACFG_LBRS) {
1731                 struct lbr_entry *lbr = next_record;
1732                 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1733                                         & 0xff) + 1;
1734                 next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1735
1736                 if (has_branch_stack(event)) {
1737                         intel_pmu_store_pebs_lbrs(lbr);
1738                         data->br_stack = &cpuc->lbr_stack;
1739                 }
1740         }
1741
1742         WARN_ONCE(next_record != __pebs + (format_size >> 48),
1743                         "PEBS record size %llu, expected %llu, config %llx\n",
1744                         format_size >> 48,
1745                         (u64)(next_record - __pebs),
1746                         basic->format_size);
1747 }
1748
1749 static inline void *
1750 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1751 {
1752         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1753         void *at;
1754         u64 pebs_status;
1755
1756         /*
1757          * fmt0 does not have a status bitfield (does not use
1758          * perf_record_nhm format)
1759          */
1760         if (x86_pmu.intel_cap.pebs_format < 1)
1761                 return base;
1762
1763         if (base == NULL)
1764                 return NULL;
1765
1766         for (at = base; at < top; at += cpuc->pebs_record_size) {
1767                 unsigned long status = get_pebs_status(at);
1768
1769                 if (test_bit(bit, (unsigned long *)&status)) {
1770                         /* PEBS v3 has accurate status bits */
1771                         if (x86_pmu.intel_cap.pebs_format >= 3)
1772                                 return at;
1773
1774                         if (status == (1 << bit))
1775                                 return at;
1776
1777                         /* clear non-PEBS bit and re-check */
1778                         pebs_status = status & cpuc->pebs_enabled;
1779                         pebs_status &= PEBS_COUNTER_MASK;
1780                         if (pebs_status == (1 << bit))
1781                                 return at;
1782                 }
1783         }
1784         return NULL;
1785 }
1786
1787 void intel_pmu_auto_reload_read(struct perf_event *event)
1788 {
1789         WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1790
1791         perf_pmu_disable(event->pmu);
1792         intel_pmu_drain_pebs_buffer();
1793         perf_pmu_enable(event->pmu);
1794 }
1795
1796 /*
1797  * Special variant of intel_pmu_save_and_restart() for auto-reload.
1798  */
1799 static int
1800 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1801 {
1802         struct hw_perf_event *hwc = &event->hw;
1803         int shift = 64 - x86_pmu.cntval_bits;
1804         u64 period = hwc->sample_period;
1805         u64 prev_raw_count, new_raw_count;
1806         s64 new, old;
1807
1808         WARN_ON(!period);
1809
1810         /*
1811          * drain_pebs() only happens when the PMU is disabled.
1812          */
1813         WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1814
1815         prev_raw_count = local64_read(&hwc->prev_count);
1816         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1817         local64_set(&hwc->prev_count, new_raw_count);
1818
1819         /*
1820          * Since the counter increments a negative counter value and
1821          * overflows on the sign switch, giving the interval:
1822          *
1823          *   [-period, 0]
1824          *
1825          * the difference between two consecutive reads is:
1826          *
1827          *   A) value2 - value1;
1828          *      when no overflows have happened in between,
1829          *
1830          *   B) (0 - value1) + (value2 - (-period));
1831          *      when one overflow happened in between,
1832          *
1833          *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1834          *      when @n overflows happened in between.
1835          *
1836          * Here A) is the obvious difference, B) is the extension to the
1837          * discrete interval, where the first term is to the top of the
1838          * interval and the second term is from the bottom of the next
1839          * interval and C) the extension to multiple intervals, where the
1840          * middle term is the whole intervals covered.
1841          *
1842          * An equivalent of C, by reduction, is:
1843          *
1844          *   value2 - value1 + n * period
1845          */
1846         new = ((s64)(new_raw_count << shift) >> shift);
1847         old = ((s64)(prev_raw_count << shift) >> shift);
1848         local64_add(new - old + count * period, &event->count);
1849
1850         local64_set(&hwc->period_left, -new);
1851
1852         perf_event_update_userpage(event);
1853
1854         return 0;
1855 }
1856
1857 static __always_inline void
1858 __intel_pmu_pebs_event(struct perf_event *event,
1859                        struct pt_regs *iregs,
1860                        struct perf_sample_data *data,
1861                        void *base, void *top,
1862                        int bit, int count,
1863                        void (*setup_sample)(struct perf_event *,
1864                                             struct pt_regs *,
1865                                             void *,
1866                                             struct perf_sample_data *,
1867                                             struct pt_regs *))
1868 {
1869         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1870         struct hw_perf_event *hwc = &event->hw;
1871         struct x86_perf_regs perf_regs;
1872         struct pt_regs *regs = &perf_regs.regs;
1873         void *at = get_next_pebs_record_by_bit(base, top, bit);
1874         static struct pt_regs dummy_iregs;
1875
1876         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1877                 /*
1878                  * Now, auto-reload is only enabled in fixed period mode.
1879                  * The reload value is always hwc->sample_period.
1880                  * May need to change it, if auto-reload is enabled in
1881                  * freq mode later.
1882                  */
1883                 intel_pmu_save_and_restart_reload(event, count);
1884         } else if (!intel_pmu_save_and_restart(event))
1885                 return;
1886
1887         if (!iregs)
1888                 iregs = &dummy_iregs;
1889
1890         while (count > 1) {
1891                 setup_sample(event, iregs, at, data, regs);
1892                 perf_event_output(event, data, regs);
1893                 at += cpuc->pebs_record_size;
1894                 at = get_next_pebs_record_by_bit(at, top, bit);
1895                 count--;
1896         }
1897
1898         setup_sample(event, iregs, at, data, regs);
1899         if (iregs == &dummy_iregs) {
1900                 /*
1901                  * The PEBS records may be drained in the non-overflow context,
1902                  * e.g., large PEBS + context switch. Perf should treat the
1903                  * last record the same as other PEBS records, and doesn't
1904                  * invoke the generic overflow handler.
1905                  */
1906                 perf_event_output(event, data, regs);
1907         } else {
1908                 /*
1909                  * All but the last records are processed.
1910                  * The last one is left to be able to call the overflow handler.
1911                  */
1912                 if (perf_event_overflow(event, data, regs))
1913                         x86_pmu_stop(event, 0);
1914         }
1915 }
1916
1917 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
1918 {
1919         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1920         struct debug_store *ds = cpuc->ds;
1921         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1922         struct pebs_record_core *at, *top;
1923         int n;
1924
1925         if (!x86_pmu.pebs_active)
1926                 return;
1927
1928         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1929         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1930
1931         /*
1932          * Whatever else happens, drain the thing
1933          */
1934         ds->pebs_index = ds->pebs_buffer_base;
1935
1936         if (!test_bit(0, cpuc->active_mask))
1937                 return;
1938
1939         WARN_ON_ONCE(!event);
1940
1941         if (!event->attr.precise_ip)
1942                 return;
1943
1944         n = top - at;
1945         if (n <= 0) {
1946                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1947                         intel_pmu_save_and_restart_reload(event, 0);
1948                 return;
1949         }
1950
1951         __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
1952                                setup_pebs_fixed_sample_data);
1953 }
1954
1955 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
1956 {
1957         struct perf_event *event;
1958         int bit;
1959
1960         /*
1961          * The drain_pebs() could be called twice in a short period
1962          * for auto-reload event in pmu::read(). There are no
1963          * overflows have happened in between.
1964          * It needs to call intel_pmu_save_and_restart_reload() to
1965          * update the event->count for this case.
1966          */
1967         for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
1968                 event = cpuc->events[bit];
1969                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1970                         intel_pmu_save_and_restart_reload(event, 0);
1971         }
1972 }
1973
1974 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
1975 {
1976         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1977         struct debug_store *ds = cpuc->ds;
1978         struct perf_event *event;
1979         void *base, *at, *top;
1980         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1981         short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1982         int bit, i, size;
1983         u64 mask;
1984
1985         if (!x86_pmu.pebs_active)
1986                 return;
1987
1988         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1989         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1990
1991         ds->pebs_index = ds->pebs_buffer_base;
1992
1993         mask = (1ULL << x86_pmu.max_pebs_events) - 1;
1994         size = x86_pmu.max_pebs_events;
1995         if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
1996                 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
1997                 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1998         }
1999
2000         if (unlikely(base >= top)) {
2001                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2002                 return;
2003         }
2004
2005         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2006                 struct pebs_record_nhm *p = at;
2007                 u64 pebs_status;
2008
2009                 pebs_status = p->status & cpuc->pebs_enabled;
2010                 pebs_status &= mask;
2011
2012                 /* PEBS v3 has more accurate status bits */
2013                 if (x86_pmu.intel_cap.pebs_format >= 3) {
2014                         for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2015                                 counts[bit]++;
2016
2017                         continue;
2018                 }
2019
2020                 /*
2021                  * On some CPUs the PEBS status can be zero when PEBS is
2022                  * racing with clearing of GLOBAL_STATUS.
2023                  *
2024                  * Normally we would drop that record, but in the
2025                  * case when there is only a single active PEBS event
2026                  * we can assume it's for that event.
2027                  */
2028                 if (!pebs_status && cpuc->pebs_enabled &&
2029                         !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2030                         pebs_status = p->status = cpuc->pebs_enabled;
2031
2032                 bit = find_first_bit((unsigned long *)&pebs_status,
2033                                         x86_pmu.max_pebs_events);
2034                 if (bit >= x86_pmu.max_pebs_events)
2035                         continue;
2036
2037                 /*
2038                  * The PEBS hardware does not deal well with the situation
2039                  * when events happen near to each other and multiple bits
2040                  * are set. But it should happen rarely.
2041                  *
2042                  * If these events include one PEBS and multiple non-PEBS
2043                  * events, it doesn't impact PEBS record. The record will
2044                  * be handled normally. (slow path)
2045                  *
2046                  * If these events include two or more PEBS events, the
2047                  * records for the events can be collapsed into a single
2048                  * one, and it's not possible to reconstruct all events
2049                  * that caused the PEBS record. It's called collision.
2050                  * If collision happened, the record will be dropped.
2051                  */
2052                 if (pebs_status != (1ULL << bit)) {
2053                         for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2054                                 error[i]++;
2055                         continue;
2056                 }
2057
2058                 counts[bit]++;
2059         }
2060
2061         for_each_set_bit(bit, (unsigned long *)&mask, size) {
2062                 if ((counts[bit] == 0) && (error[bit] == 0))
2063                         continue;
2064
2065                 event = cpuc->events[bit];
2066                 if (WARN_ON_ONCE(!event))
2067                         continue;
2068
2069                 if (WARN_ON_ONCE(!event->attr.precise_ip))
2070                         continue;
2071
2072                 /* log dropped samples number */
2073                 if (error[bit]) {
2074                         perf_log_lost_samples(event, error[bit]);
2075
2076                         if (iregs && perf_event_account_interrupt(event))
2077                                 x86_pmu_stop(event, 0);
2078                 }
2079
2080                 if (counts[bit]) {
2081                         __intel_pmu_pebs_event(event, iregs, data, base,
2082                                                top, bit, counts[bit],
2083                                                setup_pebs_fixed_sample_data);
2084                 }
2085         }
2086 }
2087
2088 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2089 {
2090         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2091         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2092         int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
2093         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2094         struct debug_store *ds = cpuc->ds;
2095         struct perf_event *event;
2096         void *base, *at, *top;
2097         int bit, size;
2098         u64 mask;
2099
2100         if (!x86_pmu.pebs_active)
2101                 return;
2102
2103         base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2104         top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2105
2106         ds->pebs_index = ds->pebs_buffer_base;
2107
2108         mask = ((1ULL << max_pebs_events) - 1) |
2109                (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
2110         size = INTEL_PMC_IDX_FIXED + num_counters_fixed;
2111
2112         if (unlikely(base >= top)) {
2113                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2114                 return;
2115         }
2116
2117         for (at = base; at < top; at += cpuc->pebs_record_size) {
2118                 u64 pebs_status;
2119
2120                 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2121                 pebs_status &= mask;
2122
2123                 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2124                         counts[bit]++;
2125         }
2126
2127         for_each_set_bit(bit, (unsigned long *)&mask, size) {
2128                 if (counts[bit] == 0)
2129                         continue;
2130
2131                 event = cpuc->events[bit];
2132                 if (WARN_ON_ONCE(!event))
2133                         continue;
2134
2135                 if (WARN_ON_ONCE(!event->attr.precise_ip))
2136                         continue;
2137
2138                 __intel_pmu_pebs_event(event, iregs, data, base,
2139                                        top, bit, counts[bit],
2140                                        setup_pebs_adaptive_sample_data);
2141         }
2142 }
2143
2144 /*
2145  * BTS, PEBS probe and setup
2146  */
2147
2148 void __init intel_ds_init(void)
2149 {
2150         /*
2151          * No support for 32bit formats
2152          */
2153         if (!boot_cpu_has(X86_FEATURE_DTES64))
2154                 return;
2155
2156         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
2157         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2158         x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2159         if (x86_pmu.version <= 4)
2160                 x86_pmu.pebs_no_isolation = 1;
2161
2162         if (x86_pmu.pebs) {
2163                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2164                 char *pebs_qual = "";
2165                 int format = x86_pmu.intel_cap.pebs_format;
2166
2167                 if (format < 4)
2168                         x86_pmu.intel_cap.pebs_baseline = 0;
2169
2170                 switch (format) {
2171                 case 0:
2172                         pr_cont("PEBS fmt0%c, ", pebs_type);
2173                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2174                         /*
2175                          * Using >PAGE_SIZE buffers makes the WRMSR to
2176                          * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2177                          * mysteriously hang on Core2.
2178                          *
2179                          * As a workaround, we don't do this.
2180                          */
2181                         x86_pmu.pebs_buffer_size = PAGE_SIZE;
2182                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2183                         break;
2184
2185                 case 1:
2186                         pr_cont("PEBS fmt1%c, ", pebs_type);
2187                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2188                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2189                         break;
2190
2191                 case 2:
2192                         pr_cont("PEBS fmt2%c, ", pebs_type);
2193                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2194                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2195                         break;
2196
2197                 case 3:
2198                         pr_cont("PEBS fmt3%c, ", pebs_type);
2199                         x86_pmu.pebs_record_size =
2200                                                 sizeof(struct pebs_record_skl);
2201                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2202                         x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2203                         break;
2204
2205                 case 4:
2206                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2207                         x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2208                         if (x86_pmu.intel_cap.pebs_baseline) {
2209                                 x86_pmu.large_pebs_flags |=
2210                                         PERF_SAMPLE_BRANCH_STACK |
2211                                         PERF_SAMPLE_TIME;
2212                                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2213                                 pebs_qual = "-baseline";
2214                                 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2215                         } else {
2216                                 /* Only basic record supported */
2217                                 x86_pmu.large_pebs_flags &=
2218                                         ~(PERF_SAMPLE_ADDR |
2219                                           PERF_SAMPLE_TIME |
2220                                           PERF_SAMPLE_DATA_SRC |
2221                                           PERF_SAMPLE_TRANSACTION |
2222                                           PERF_SAMPLE_REGS_USER |
2223                                           PERF_SAMPLE_REGS_INTR);
2224                         }
2225                         pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2226
2227                         if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
2228                                 pr_cont("PEBS-via-PT, ");
2229                                 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2230                         }
2231
2232                         break;
2233
2234                 default:
2235                         pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2236                         x86_pmu.pebs = 0;
2237                 }
2238         }
2239 }
2240
2241 void perf_restore_debug_store(void)
2242 {
2243         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2244
2245         if (!x86_pmu.bts && !x86_pmu.pebs)
2246                 return;
2247
2248         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2249 }