perf/x86/intel: Fix unwind errors from PEBS entries (mk-II)
[linux-2.6-microblaze.git] / arch / x86 / events / intel / ds.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
9 #include <asm/insn.h>
10
11 #include "../perf_event.h"
12
13 /* Waste a full page so it can be mapped into the cpu_entry_area */
14 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
15
16 /* The size of a BTS record in bytes: */
17 #define BTS_RECORD_SIZE         24
18
19 #define PEBS_FIXUP_SIZE         PAGE_SIZE
20
21 /*
22  * pebs_record_32 for p4 and core not supported
23
24 struct pebs_record_32 {
25         u32 flags, ip;
26         u32 ax, bc, cx, dx;
27         u32 si, di, bp, sp;
28 };
29
30  */
31
32 union intel_x86_pebs_dse {
33         u64 val;
34         struct {
35                 unsigned int ld_dse:4;
36                 unsigned int ld_stlb_miss:1;
37                 unsigned int ld_locked:1;
38                 unsigned int ld_reserved:26;
39         };
40         struct {
41                 unsigned int st_l1d_hit:1;
42                 unsigned int st_reserved1:3;
43                 unsigned int st_stlb_miss:1;
44                 unsigned int st_locked:1;
45                 unsigned int st_reserved2:26;
46         };
47 };
48
49
50 /*
51  * Map PEBS Load Latency Data Source encodings to generic
52  * memory data source information
53  */
54 #define P(a, b) PERF_MEM_S(a, b)
55 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
56 #define LEVEL(x) P(LVLNUM, x)
57 #define REM P(REMOTE, REMOTE)
58 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
59
60 /* Version for Sandy Bridge and later */
61 static u64 pebs_data_source[] = {
62         P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
63         OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
64         OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
65         OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
66         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
67         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
68         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
69         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
70         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
71         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
72         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
73         OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
74         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
75         OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
76         OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
77         OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
78 };
79
80 /* Patch up minor differences in the bits */
81 void __init intel_pmu_pebs_data_source_nhm(void)
82 {
83         pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
84         pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
85         pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
86 }
87
88 void __init intel_pmu_pebs_data_source_skl(bool pmem)
89 {
90         u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
91
92         pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
93         pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
94         pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
95         pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
96         pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
97 }
98
99 static u64 precise_store_data(u64 status)
100 {
101         union intel_x86_pebs_dse dse;
102         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
103
104         dse.val = status;
105
106         /*
107          * bit 4: TLB access
108          * 1 = stored missed 2nd level TLB
109          *
110          * so it either hit the walker or the OS
111          * otherwise hit 2nd level TLB
112          */
113         if (dse.st_stlb_miss)
114                 val |= P(TLB, MISS);
115         else
116                 val |= P(TLB, HIT);
117
118         /*
119          * bit 0: hit L1 data cache
120          * if not set, then all we know is that
121          * it missed L1D
122          */
123         if (dse.st_l1d_hit)
124                 val |= P(LVL, HIT);
125         else
126                 val |= P(LVL, MISS);
127
128         /*
129          * bit 5: Locked prefix
130          */
131         if (dse.st_locked)
132                 val |= P(LOCK, LOCKED);
133
134         return val;
135 }
136
137 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
138 {
139         union perf_mem_data_src dse;
140
141         dse.val = PERF_MEM_NA;
142
143         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
144                 dse.mem_op = PERF_MEM_OP_STORE;
145         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
146                 dse.mem_op = PERF_MEM_OP_LOAD;
147
148         /*
149          * L1 info only valid for following events:
150          *
151          * MEM_UOPS_RETIRED.STLB_MISS_STORES
152          * MEM_UOPS_RETIRED.LOCK_STORES
153          * MEM_UOPS_RETIRED.SPLIT_STORES
154          * MEM_UOPS_RETIRED.ALL_STORES
155          */
156         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
157                 if (status & 1)
158                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
159                 else
160                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
161         }
162         return dse.val;
163 }
164
165 static u64 load_latency_data(u64 status)
166 {
167         union intel_x86_pebs_dse dse;
168         u64 val;
169
170         dse.val = status;
171
172         /*
173          * use the mapping table for bit 0-3
174          */
175         val = pebs_data_source[dse.ld_dse];
176
177         /*
178          * Nehalem models do not support TLB, Lock infos
179          */
180         if (x86_pmu.pebs_no_tlb) {
181                 val |= P(TLB, NA) | P(LOCK, NA);
182                 return val;
183         }
184         /*
185          * bit 4: TLB access
186          * 0 = did not miss 2nd level TLB
187          * 1 = missed 2nd level TLB
188          */
189         if (dse.ld_stlb_miss)
190                 val |= P(TLB, MISS) | P(TLB, L2);
191         else
192                 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
193
194         /*
195          * bit 5: locked prefix
196          */
197         if (dse.ld_locked)
198                 val |= P(LOCK, LOCKED);
199
200         return val;
201 }
202
203 struct pebs_record_core {
204         u64 flags, ip;
205         u64 ax, bx, cx, dx;
206         u64 si, di, bp, sp;
207         u64 r8,  r9,  r10, r11;
208         u64 r12, r13, r14, r15;
209 };
210
211 struct pebs_record_nhm {
212         u64 flags, ip;
213         u64 ax, bx, cx, dx;
214         u64 si, di, bp, sp;
215         u64 r8,  r9,  r10, r11;
216         u64 r12, r13, r14, r15;
217         u64 status, dla, dse, lat;
218 };
219
220 /*
221  * Same as pebs_record_nhm, with two additional fields.
222  */
223 struct pebs_record_hsw {
224         u64 flags, ip;
225         u64 ax, bx, cx, dx;
226         u64 si, di, bp, sp;
227         u64 r8,  r9,  r10, r11;
228         u64 r12, r13, r14, r15;
229         u64 status, dla, dse, lat;
230         u64 real_ip, tsx_tuning;
231 };
232
233 union hsw_tsx_tuning {
234         struct {
235                 u32 cycles_last_block     : 32,
236                     hle_abort             : 1,
237                     rtm_abort             : 1,
238                     instruction_abort     : 1,
239                     non_instruction_abort : 1,
240                     retry                 : 1,
241                     data_conflict         : 1,
242                     capacity_writes       : 1,
243                     capacity_reads        : 1;
244         };
245         u64         value;
246 };
247
248 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
249
250 /* Same as HSW, plus TSC */
251
252 struct pebs_record_skl {
253         u64 flags, ip;
254         u64 ax, bx, cx, dx;
255         u64 si, di, bp, sp;
256         u64 r8,  r9,  r10, r11;
257         u64 r12, r13, r14, r15;
258         u64 status, dla, dse, lat;
259         u64 real_ip, tsx_tuning;
260         u64 tsc;
261 };
262
263 void init_debug_store_on_cpu(int cpu)
264 {
265         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
266
267         if (!ds)
268                 return;
269
270         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
271                      (u32)((u64)(unsigned long)ds),
272                      (u32)((u64)(unsigned long)ds >> 32));
273 }
274
275 void fini_debug_store_on_cpu(int cpu)
276 {
277         if (!per_cpu(cpu_hw_events, cpu).ds)
278                 return;
279
280         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
281 }
282
283 static DEFINE_PER_CPU(void *, insn_buffer);
284
285 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
286 {
287         unsigned long start = (unsigned long)cea;
288         phys_addr_t pa;
289         size_t msz = 0;
290
291         pa = virt_to_phys(addr);
292
293         preempt_disable();
294         for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
295                 cea_set_pte(cea, pa, prot);
296
297         /*
298          * This is a cross-CPU update of the cpu_entry_area, we must shoot down
299          * all TLB entries for it.
300          */
301         flush_tlb_kernel_range(start, start + size);
302         preempt_enable();
303 }
304
305 static void ds_clear_cea(void *cea, size_t size)
306 {
307         unsigned long start = (unsigned long)cea;
308         size_t msz = 0;
309
310         preempt_disable();
311         for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
312                 cea_set_pte(cea, 0, PAGE_NONE);
313
314         flush_tlb_kernel_range(start, start + size);
315         preempt_enable();
316 }
317
318 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
319 {
320         unsigned int order = get_order(size);
321         int node = cpu_to_node(cpu);
322         struct page *page;
323
324         page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
325         return page ? page_address(page) : NULL;
326 }
327
328 static void dsfree_pages(const void *buffer, size_t size)
329 {
330         if (buffer)
331                 free_pages((unsigned long)buffer, get_order(size));
332 }
333
334 static int alloc_pebs_buffer(int cpu)
335 {
336         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
337         struct debug_store *ds = hwev->ds;
338         size_t bsiz = x86_pmu.pebs_buffer_size;
339         int max, node = cpu_to_node(cpu);
340         void *buffer, *ibuffer, *cea;
341
342         if (!x86_pmu.pebs)
343                 return 0;
344
345         buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
346         if (unlikely(!buffer))
347                 return -ENOMEM;
348
349         /*
350          * HSW+ already provides us the eventing ip; no need to allocate this
351          * buffer then.
352          */
353         if (x86_pmu.intel_cap.pebs_format < 2) {
354                 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
355                 if (!ibuffer) {
356                         dsfree_pages(buffer, bsiz);
357                         return -ENOMEM;
358                 }
359                 per_cpu(insn_buffer, cpu) = ibuffer;
360         }
361         hwev->ds_pebs_vaddr = buffer;
362         /* Update the cpu entry area mapping */
363         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
364         ds->pebs_buffer_base = (unsigned long) cea;
365         ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
366         ds->pebs_index = ds->pebs_buffer_base;
367         max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
368         ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
369         return 0;
370 }
371
372 static void release_pebs_buffer(int cpu)
373 {
374         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
375         void *cea;
376
377         if (!x86_pmu.pebs)
378                 return;
379
380         kfree(per_cpu(insn_buffer, cpu));
381         per_cpu(insn_buffer, cpu) = NULL;
382
383         /* Clear the fixmap */
384         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
385         ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
386         dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
387         hwev->ds_pebs_vaddr = NULL;
388 }
389
390 static int alloc_bts_buffer(int cpu)
391 {
392         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
393         struct debug_store *ds = hwev->ds;
394         void *buffer, *cea;
395         int max;
396
397         if (!x86_pmu.bts)
398                 return 0;
399
400         buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
401         if (unlikely(!buffer)) {
402                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
403                 return -ENOMEM;
404         }
405         hwev->ds_bts_vaddr = buffer;
406         /* Update the fixmap */
407         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
408         ds->bts_buffer_base = (unsigned long) cea;
409         ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
410         ds->bts_index = ds->bts_buffer_base;
411         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
412         ds->bts_absolute_maximum = ds->bts_buffer_base +
413                                         max * BTS_RECORD_SIZE;
414         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
415                                         (max / 16) * BTS_RECORD_SIZE;
416         return 0;
417 }
418
419 static void release_bts_buffer(int cpu)
420 {
421         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
422         void *cea;
423
424         if (!x86_pmu.bts)
425                 return;
426
427         /* Clear the fixmap */
428         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
429         ds_clear_cea(cea, BTS_BUFFER_SIZE);
430         dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
431         hwev->ds_bts_vaddr = NULL;
432 }
433
434 static int alloc_ds_buffer(int cpu)
435 {
436         struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
437
438         memset(ds, 0, sizeof(*ds));
439         per_cpu(cpu_hw_events, cpu).ds = ds;
440         return 0;
441 }
442
443 static void release_ds_buffer(int cpu)
444 {
445         per_cpu(cpu_hw_events, cpu).ds = NULL;
446 }
447
448 void release_ds_buffers(void)
449 {
450         int cpu;
451
452         if (!x86_pmu.bts && !x86_pmu.pebs)
453                 return;
454
455         for_each_possible_cpu(cpu)
456                 release_ds_buffer(cpu);
457
458         for_each_possible_cpu(cpu) {
459                 /*
460                  * Again, ignore errors from offline CPUs, they will no longer
461                  * observe cpu_hw_events.ds and not program the DS_AREA when
462                  * they come up.
463                  */
464                 fini_debug_store_on_cpu(cpu);
465         }
466
467         for_each_possible_cpu(cpu) {
468                 release_pebs_buffer(cpu);
469                 release_bts_buffer(cpu);
470         }
471 }
472
473 void reserve_ds_buffers(void)
474 {
475         int bts_err = 0, pebs_err = 0;
476         int cpu;
477
478         x86_pmu.bts_active = 0;
479         x86_pmu.pebs_active = 0;
480
481         if (!x86_pmu.bts && !x86_pmu.pebs)
482                 return;
483
484         if (!x86_pmu.bts)
485                 bts_err = 1;
486
487         if (!x86_pmu.pebs)
488                 pebs_err = 1;
489
490         for_each_possible_cpu(cpu) {
491                 if (alloc_ds_buffer(cpu)) {
492                         bts_err = 1;
493                         pebs_err = 1;
494                 }
495
496                 if (!bts_err && alloc_bts_buffer(cpu))
497                         bts_err = 1;
498
499                 if (!pebs_err && alloc_pebs_buffer(cpu))
500                         pebs_err = 1;
501
502                 if (bts_err && pebs_err)
503                         break;
504         }
505
506         if (bts_err) {
507                 for_each_possible_cpu(cpu)
508                         release_bts_buffer(cpu);
509         }
510
511         if (pebs_err) {
512                 for_each_possible_cpu(cpu)
513                         release_pebs_buffer(cpu);
514         }
515
516         if (bts_err && pebs_err) {
517                 for_each_possible_cpu(cpu)
518                         release_ds_buffer(cpu);
519         } else {
520                 if (x86_pmu.bts && !bts_err)
521                         x86_pmu.bts_active = 1;
522
523                 if (x86_pmu.pebs && !pebs_err)
524                         x86_pmu.pebs_active = 1;
525
526                 for_each_possible_cpu(cpu) {
527                         /*
528                          * Ignores wrmsr_on_cpu() errors for offline CPUs they
529                          * will get this call through intel_pmu_cpu_starting().
530                          */
531                         init_debug_store_on_cpu(cpu);
532                 }
533         }
534 }
535
536 /*
537  * BTS
538  */
539
540 struct event_constraint bts_constraint =
541         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
542
543 void intel_pmu_enable_bts(u64 config)
544 {
545         unsigned long debugctlmsr;
546
547         debugctlmsr = get_debugctlmsr();
548
549         debugctlmsr |= DEBUGCTLMSR_TR;
550         debugctlmsr |= DEBUGCTLMSR_BTS;
551         if (config & ARCH_PERFMON_EVENTSEL_INT)
552                 debugctlmsr |= DEBUGCTLMSR_BTINT;
553
554         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
555                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
556
557         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
558                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
559
560         update_debugctlmsr(debugctlmsr);
561 }
562
563 void intel_pmu_disable_bts(void)
564 {
565         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
566         unsigned long debugctlmsr;
567
568         if (!cpuc->ds)
569                 return;
570
571         debugctlmsr = get_debugctlmsr();
572
573         debugctlmsr &=
574                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
575                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
576
577         update_debugctlmsr(debugctlmsr);
578 }
579
580 int intel_pmu_drain_bts_buffer(void)
581 {
582         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
583         struct debug_store *ds = cpuc->ds;
584         struct bts_record {
585                 u64     from;
586                 u64     to;
587                 u64     flags;
588         };
589         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
590         struct bts_record *at, *base, *top;
591         struct perf_output_handle handle;
592         struct perf_event_header header;
593         struct perf_sample_data data;
594         unsigned long skip = 0;
595         struct pt_regs regs;
596
597         if (!event)
598                 return 0;
599
600         if (!x86_pmu.bts_active)
601                 return 0;
602
603         base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
604         top  = (struct bts_record *)(unsigned long)ds->bts_index;
605
606         if (top <= base)
607                 return 0;
608
609         memset(&regs, 0, sizeof(regs));
610
611         ds->bts_index = ds->bts_buffer_base;
612
613         perf_sample_data_init(&data, 0, event->hw.last_period);
614
615         /*
616          * BTS leaks kernel addresses in branches across the cpl boundary,
617          * such as traps or system calls, so unless the user is asking for
618          * kernel tracing (and right now it's not possible), we'd need to
619          * filter them out. But first we need to count how many of those we
620          * have in the current batch. This is an extra O(n) pass, however,
621          * it's much faster than the other one especially considering that
622          * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
623          * alloc_bts_buffer()).
624          */
625         for (at = base; at < top; at++) {
626                 /*
627                  * Note that right now *this* BTS code only works if
628                  * attr::exclude_kernel is set, but let's keep this extra
629                  * check here in case that changes.
630                  */
631                 if (event->attr.exclude_kernel &&
632                     (kernel_ip(at->from) || kernel_ip(at->to)))
633                         skip++;
634         }
635
636         /*
637          * Prepare a generic sample, i.e. fill in the invariant fields.
638          * We will overwrite the from and to address before we output
639          * the sample.
640          */
641         rcu_read_lock();
642         perf_prepare_sample(&header, &data, event, &regs);
643
644         if (perf_output_begin(&handle, event, header.size *
645                               (top - base - skip)))
646                 goto unlock;
647
648         for (at = base; at < top; at++) {
649                 /* Filter out any records that contain kernel addresses. */
650                 if (event->attr.exclude_kernel &&
651                     (kernel_ip(at->from) || kernel_ip(at->to)))
652                         continue;
653
654                 data.ip         = at->from;
655                 data.addr       = at->to;
656
657                 perf_output_sample(&handle, &header, &data, event);
658         }
659
660         perf_output_end(&handle);
661
662         /* There's new data available. */
663         event->hw.interrupts++;
664         event->pending_kill = POLL_IN;
665 unlock:
666         rcu_read_unlock();
667         return 1;
668 }
669
670 static inline void intel_pmu_drain_pebs_buffer(void)
671 {
672         struct pt_regs regs;
673
674         x86_pmu.drain_pebs(&regs);
675 }
676
677 /*
678  * PEBS
679  */
680 struct event_constraint intel_core2_pebs_event_constraints[] = {
681         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
682         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
683         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
684         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
685         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
686         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
687         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
688         EVENT_CONSTRAINT_END
689 };
690
691 struct event_constraint intel_atom_pebs_event_constraints[] = {
692         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
693         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
694         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
695         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
696         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
697         /* Allow all events as PEBS with no flags */
698         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
699         EVENT_CONSTRAINT_END
700 };
701
702 struct event_constraint intel_slm_pebs_event_constraints[] = {
703         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
704         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
705         /* Allow all events as PEBS with no flags */
706         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
707         EVENT_CONSTRAINT_END
708 };
709
710 struct event_constraint intel_glm_pebs_event_constraints[] = {
711         /* Allow all events as PEBS with no flags */
712         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
713         EVENT_CONSTRAINT_END
714 };
715
716 struct event_constraint intel_glp_pebs_event_constraints[] = {
717         /* Allow all events as PEBS with no flags */
718         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
719         EVENT_CONSTRAINT_END
720 };
721
722 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
723         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
724         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
725         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
726         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
727         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
728         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
729         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
730         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
731         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
732         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
733         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
734         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
735         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
736         EVENT_CONSTRAINT_END
737 };
738
739 struct event_constraint intel_westmere_pebs_event_constraints[] = {
740         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
741         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
742         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
743         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
744         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
745         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
746         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
747         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
748         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
749         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
750         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
751         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
752         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
753         EVENT_CONSTRAINT_END
754 };
755
756 struct event_constraint intel_snb_pebs_event_constraints[] = {
757         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
758         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
759         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
760         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
761         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
762         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
763         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
764         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
765         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
766         /* Allow all events as PEBS with no flags */
767         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
768         EVENT_CONSTRAINT_END
769 };
770
771 struct event_constraint intel_ivb_pebs_event_constraints[] = {
772         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
773         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
774         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
775         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
776         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
777         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
778         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
779         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
780         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
781         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
782         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
783         /* Allow all events as PEBS with no flags */
784         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
785         EVENT_CONSTRAINT_END
786 };
787
788 struct event_constraint intel_hsw_pebs_event_constraints[] = {
789         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
790         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
791         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
792         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
793         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
794         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
795         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
796         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
797         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
798         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
799         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
800         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
801         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
802         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
803         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
804         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
805         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
806         /* Allow all events as PEBS with no flags */
807         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
808         EVENT_CONSTRAINT_END
809 };
810
811 struct event_constraint intel_bdw_pebs_event_constraints[] = {
812         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
813         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
814         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
815         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
816         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
817         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
818         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
819         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
820         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
821         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
822         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
823         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
824         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
825         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
826         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
827         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
828         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
829         /* Allow all events as PEBS with no flags */
830         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
831         EVENT_CONSTRAINT_END
832 };
833
834
835 struct event_constraint intel_skl_pebs_event_constraints[] = {
836         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),      /* INST_RETIRED.PREC_DIST */
837         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
838         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
839         /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
840         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
841         INTEL_PLD_CONSTRAINT(0x1cd, 0xf),                     /* MEM_TRANS_RETIRED.* */
842         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
843         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
844         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
845         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
846         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
847         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
848         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
849         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
850         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
851         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
852         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
853         /* Allow all events as PEBS with no flags */
854         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
855         EVENT_CONSTRAINT_END
856 };
857
858 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
859 {
860         struct event_constraint *c;
861
862         if (!event->attr.precise_ip)
863                 return NULL;
864
865         if (x86_pmu.pebs_constraints) {
866                 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
867                         if ((event->hw.config & c->cmask) == c->code) {
868                                 event->hw.flags |= c->flags;
869                                 return c;
870                         }
871                 }
872         }
873
874         return &emptyconstraint;
875 }
876
877 /*
878  * We need the sched_task callback even for per-cpu events when we use
879  * the large interrupt threshold, such that we can provide PID and TID
880  * to PEBS samples.
881  */
882 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
883 {
884         return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
885 }
886
887 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
888 {
889         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
890
891         if (!sched_in && pebs_needs_sched_cb(cpuc))
892                 intel_pmu_drain_pebs_buffer();
893 }
894
895 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
896 {
897         struct debug_store *ds = cpuc->ds;
898         u64 threshold;
899
900         if (cpuc->n_pebs == cpuc->n_large_pebs) {
901                 threshold = ds->pebs_absolute_maximum -
902                         x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
903         } else {
904                 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
905         }
906
907         ds->pebs_interrupt_threshold = threshold;
908 }
909
910 static void
911 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, struct pmu *pmu)
912 {
913         /*
914          * Make sure we get updated with the first PEBS
915          * event. It will trigger also during removal, but
916          * that does not hurt:
917          */
918         bool update = cpuc->n_pebs == 1;
919
920         if (needed_cb != pebs_needs_sched_cb(cpuc)) {
921                 if (!needed_cb)
922                         perf_sched_cb_inc(pmu);
923                 else
924                         perf_sched_cb_dec(pmu);
925
926                 update = true;
927         }
928
929         if (update)
930                 pebs_update_threshold(cpuc);
931 }
932
933 void intel_pmu_pebs_add(struct perf_event *event)
934 {
935         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
936         struct hw_perf_event *hwc = &event->hw;
937         bool needed_cb = pebs_needs_sched_cb(cpuc);
938
939         cpuc->n_pebs++;
940         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
941                 cpuc->n_large_pebs++;
942
943         pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
944 }
945
946 void intel_pmu_pebs_enable(struct perf_event *event)
947 {
948         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
949         struct hw_perf_event *hwc = &event->hw;
950         struct debug_store *ds = cpuc->ds;
951
952         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
953
954         cpuc->pebs_enabled |= 1ULL << hwc->idx;
955
956         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
957                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
958         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
959                 cpuc->pebs_enabled |= 1ULL << 63;
960
961         /*
962          * Use auto-reload if possible to save a MSR write in the PMI.
963          * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
964          */
965         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
966                 ds->pebs_event_reset[hwc->idx] =
967                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
968         } else {
969                 ds->pebs_event_reset[hwc->idx] = 0;
970         }
971 }
972
973 void intel_pmu_pebs_del(struct perf_event *event)
974 {
975         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
976         struct hw_perf_event *hwc = &event->hw;
977         bool needed_cb = pebs_needs_sched_cb(cpuc);
978
979         cpuc->n_pebs--;
980         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
981                 cpuc->n_large_pebs--;
982
983         pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
984 }
985
986 void intel_pmu_pebs_disable(struct perf_event *event)
987 {
988         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
989         struct hw_perf_event *hwc = &event->hw;
990
991         if (cpuc->n_pebs == cpuc->n_large_pebs)
992                 intel_pmu_drain_pebs_buffer();
993
994         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
995
996         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
997                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
998         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
999                 cpuc->pebs_enabled &= ~(1ULL << 63);
1000
1001         if (cpuc->enabled)
1002                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1003
1004         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1005 }
1006
1007 void intel_pmu_pebs_enable_all(void)
1008 {
1009         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1010
1011         if (cpuc->pebs_enabled)
1012                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1013 }
1014
1015 void intel_pmu_pebs_disable_all(void)
1016 {
1017         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1018
1019         if (cpuc->pebs_enabled)
1020                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1021 }
1022
1023 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1024 {
1025         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1026         unsigned long from = cpuc->lbr_entries[0].from;
1027         unsigned long old_to, to = cpuc->lbr_entries[0].to;
1028         unsigned long ip = regs->ip;
1029         int is_64bit = 0;
1030         void *kaddr;
1031         int size;
1032
1033         /*
1034          * We don't need to fixup if the PEBS assist is fault like
1035          */
1036         if (!x86_pmu.intel_cap.pebs_trap)
1037                 return 1;
1038
1039         /*
1040          * No LBR entry, no basic block, no rewinding
1041          */
1042         if (!cpuc->lbr_stack.nr || !from || !to)
1043                 return 0;
1044
1045         /*
1046          * Basic blocks should never cross user/kernel boundaries
1047          */
1048         if (kernel_ip(ip) != kernel_ip(to))
1049                 return 0;
1050
1051         /*
1052          * unsigned math, either ip is before the start (impossible) or
1053          * the basic block is larger than 1 page (sanity)
1054          */
1055         if ((ip - to) > PEBS_FIXUP_SIZE)
1056                 return 0;
1057
1058         /*
1059          * We sampled a branch insn, rewind using the LBR stack
1060          */
1061         if (ip == to) {
1062                 set_linear_ip(regs, from);
1063                 return 1;
1064         }
1065
1066         size = ip - to;
1067         if (!kernel_ip(ip)) {
1068                 int bytes;
1069                 u8 *buf = this_cpu_read(insn_buffer);
1070
1071                 /* 'size' must fit our buffer, see above */
1072                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1073                 if (bytes != 0)
1074                         return 0;
1075
1076                 kaddr = buf;
1077         } else {
1078                 kaddr = (void *)to;
1079         }
1080
1081         do {
1082                 struct insn insn;
1083
1084                 old_to = to;
1085
1086 #ifdef CONFIG_X86_64
1087                 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
1088 #endif
1089                 insn_init(&insn, kaddr, size, is_64bit);
1090                 insn_get_length(&insn);
1091                 /*
1092                  * Make sure there was not a problem decoding the
1093                  * instruction and getting the length.  This is
1094                  * doubly important because we have an infinite
1095                  * loop if insn.length=0.
1096                  */
1097                 if (!insn.length)
1098                         break;
1099
1100                 to += insn.length;
1101                 kaddr += insn.length;
1102                 size -= insn.length;
1103         } while (to < ip);
1104
1105         if (to == ip) {
1106                 set_linear_ip(regs, old_to);
1107                 return 1;
1108         }
1109
1110         /*
1111          * Even though we decoded the basic block, the instruction stream
1112          * never matched the given IP, either the TO or the IP got corrupted.
1113          */
1114         return 0;
1115 }
1116
1117 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
1118 {
1119         if (pebs->tsx_tuning) {
1120                 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
1121                 return tsx.cycles_last_block;
1122         }
1123         return 0;
1124 }
1125
1126 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
1127 {
1128         u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1129
1130         /* For RTM XABORTs also log the abort code from AX */
1131         if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
1132                 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1133         return txn;
1134 }
1135
1136 static void setup_pebs_sample_data(struct perf_event *event,
1137                                    struct pt_regs *iregs, void *__pebs,
1138                                    struct perf_sample_data *data,
1139                                    struct pt_regs *regs)
1140 {
1141 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1142                 (PERF_X86_EVENT_PEBS_ST_HSW | \
1143                  PERF_X86_EVENT_PEBS_LD_HSW | \
1144                  PERF_X86_EVENT_PEBS_NA_HSW)
1145         /*
1146          * We cast to the biggest pebs_record but are careful not to
1147          * unconditionally access the 'extra' entries.
1148          */
1149         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1150         struct pebs_record_skl *pebs = __pebs;
1151         u64 sample_type;
1152         int fll, fst, dsrc;
1153         int fl = event->hw.flags;
1154
1155         if (pebs == NULL)
1156                 return;
1157
1158         sample_type = event->attr.sample_type;
1159         dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
1160
1161         fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
1162         fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1163
1164         perf_sample_data_init(data, 0, event->hw.last_period);
1165
1166         data->period = event->hw.last_period;
1167
1168         /*
1169          * Use latency for weight (only avail with PEBS-LL)
1170          */
1171         if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1172                 data->weight = pebs->lat;
1173
1174         /*
1175          * data.data_src encodes the data source
1176          */
1177         if (dsrc) {
1178                 u64 val = PERF_MEM_NA;
1179                 if (fll)
1180                         val = load_latency_data(pebs->dse);
1181                 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1182                         val = precise_datala_hsw(event, pebs->dse);
1183                 else if (fst)
1184                         val = precise_store_data(pebs->dse);
1185                 data->data_src.val = val;
1186         }
1187
1188         /*
1189          * We must however always use iregs for the unwinder to stay sane; the
1190          * record BP,SP,IP can point into thin air when the record is from a
1191          * previous PMI context or an (I)RET happend between the record and
1192          * PMI.
1193          */
1194         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1195                 data->callchain = perf_callchain(event, iregs);
1196
1197         /*
1198          * We use the interrupt regs as a base because the PEBS record does not
1199          * contain a full regs set, specifically it seems to lack segment
1200          * descriptors, which get used by things like user_mode().
1201          *
1202          * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1203          */
1204         *regs = *iregs;
1205
1206         /*
1207          * Initialize regs_>flags from PEBS,
1208          * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1209          * i.e., do not rely on it being zero:
1210          */
1211         regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1212
1213         if (sample_type & PERF_SAMPLE_REGS_INTR) {
1214                 regs->ax = pebs->ax;
1215                 regs->bx = pebs->bx;
1216                 regs->cx = pebs->cx;
1217                 regs->dx = pebs->dx;
1218                 regs->si = pebs->si;
1219                 regs->di = pebs->di;
1220
1221                 regs->bp = pebs->bp;
1222                 regs->sp = pebs->sp;
1223
1224 #ifndef CONFIG_X86_32
1225                 regs->r8 = pebs->r8;
1226                 regs->r9 = pebs->r9;
1227                 regs->r10 = pebs->r10;
1228                 regs->r11 = pebs->r11;
1229                 regs->r12 = pebs->r12;
1230                 regs->r13 = pebs->r13;
1231                 regs->r14 = pebs->r14;
1232                 regs->r15 = pebs->r15;
1233 #endif
1234         }
1235
1236         if (event->attr.precise_ip > 1) {
1237                 /*
1238                  * Haswell and later processors have an 'eventing IP'
1239                  * (real IP) which fixes the off-by-1 skid in hardware.
1240                  * Use it when precise_ip >= 2 :
1241                  */
1242                 if (x86_pmu.intel_cap.pebs_format >= 2) {
1243                         set_linear_ip(regs, pebs->real_ip);
1244                         regs->flags |= PERF_EFLAGS_EXACT;
1245                 } else {
1246                         /* Otherwise, use PEBS off-by-1 IP: */
1247                         set_linear_ip(regs, pebs->ip);
1248
1249                         /*
1250                          * With precise_ip >= 2, try to fix up the off-by-1 IP
1251                          * using the LBR. If successful, the fixup function
1252                          * corrects regs->ip and calls set_linear_ip() on regs:
1253                          */
1254                         if (intel_pmu_pebs_fixup_ip(regs))
1255                                 regs->flags |= PERF_EFLAGS_EXACT;
1256                 }
1257         } else {
1258                 /*
1259                  * When precise_ip == 1, return the PEBS off-by-1 IP,
1260                  * no fixup attempted:
1261                  */
1262                 set_linear_ip(regs, pebs->ip);
1263         }
1264
1265
1266         if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1267             x86_pmu.intel_cap.pebs_format >= 1)
1268                 data->addr = pebs->dla;
1269
1270         if (x86_pmu.intel_cap.pebs_format >= 2) {
1271                 /* Only set the TSX weight when no memory weight. */
1272                 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1273                         data->weight = intel_hsw_weight(pebs);
1274
1275                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1276                         data->txn = intel_hsw_transaction(pebs);
1277         }
1278
1279         /*
1280          * v3 supplies an accurate time stamp, so we use that
1281          * for the time stamp.
1282          *
1283          * We can only do this for the default trace clock.
1284          */
1285         if (x86_pmu.intel_cap.pebs_format >= 3 &&
1286                 event->attr.use_clockid == 0)
1287                 data->time = native_sched_clock_from_tsc(pebs->tsc);
1288
1289         if (has_branch_stack(event))
1290                 data->br_stack = &cpuc->lbr_stack;
1291 }
1292
1293 static inline void *
1294 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1295 {
1296         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1297         void *at;
1298         u64 pebs_status;
1299
1300         /*
1301          * fmt0 does not have a status bitfield (does not use
1302          * perf_record_nhm format)
1303          */
1304         if (x86_pmu.intel_cap.pebs_format < 1)
1305                 return base;
1306
1307         if (base == NULL)
1308                 return NULL;
1309
1310         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1311                 struct pebs_record_nhm *p = at;
1312
1313                 if (test_bit(bit, (unsigned long *)&p->status)) {
1314                         /* PEBS v3 has accurate status bits */
1315                         if (x86_pmu.intel_cap.pebs_format >= 3)
1316                                 return at;
1317
1318                         if (p->status == (1 << bit))
1319                                 return at;
1320
1321                         /* clear non-PEBS bit and re-check */
1322                         pebs_status = p->status & cpuc->pebs_enabled;
1323                         pebs_status &= PEBS_COUNTER_MASK;
1324                         if (pebs_status == (1 << bit))
1325                                 return at;
1326                 }
1327         }
1328         return NULL;
1329 }
1330
1331 void intel_pmu_auto_reload_read(struct perf_event *event)
1332 {
1333         WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1334
1335         perf_pmu_disable(event->pmu);
1336         intel_pmu_drain_pebs_buffer();
1337         perf_pmu_enable(event->pmu);
1338 }
1339
1340 /*
1341  * Special variant of intel_pmu_save_and_restart() for auto-reload.
1342  */
1343 static int
1344 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1345 {
1346         struct hw_perf_event *hwc = &event->hw;
1347         int shift = 64 - x86_pmu.cntval_bits;
1348         u64 period = hwc->sample_period;
1349         u64 prev_raw_count, new_raw_count;
1350         s64 new, old;
1351
1352         WARN_ON(!period);
1353
1354         /*
1355          * drain_pebs() only happens when the PMU is disabled.
1356          */
1357         WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1358
1359         prev_raw_count = local64_read(&hwc->prev_count);
1360         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1361         local64_set(&hwc->prev_count, new_raw_count);
1362
1363         /*
1364          * Since the counter increments a negative counter value and
1365          * overflows on the sign switch, giving the interval:
1366          *
1367          *   [-period, 0]
1368          *
1369          * the difference between two consequtive reads is:
1370          *
1371          *   A) value2 - value1;
1372          *      when no overflows have happened in between,
1373          *
1374          *   B) (0 - value1) + (value2 - (-period));
1375          *      when one overflow happened in between,
1376          *
1377          *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1378          *      when @n overflows happened in between.
1379          *
1380          * Here A) is the obvious difference, B) is the extension to the
1381          * discrete interval, where the first term is to the top of the
1382          * interval and the second term is from the bottom of the next
1383          * interval and C) the extension to multiple intervals, where the
1384          * middle term is the whole intervals covered.
1385          *
1386          * An equivalent of C, by reduction, is:
1387          *
1388          *   value2 - value1 + n * period
1389          */
1390         new = ((s64)(new_raw_count << shift) >> shift);
1391         old = ((s64)(prev_raw_count << shift) >> shift);
1392         local64_add(new - old + count * period, &event->count);
1393
1394         perf_event_update_userpage(event);
1395
1396         return 0;
1397 }
1398
1399 static void __intel_pmu_pebs_event(struct perf_event *event,
1400                                    struct pt_regs *iregs,
1401                                    void *base, void *top,
1402                                    int bit, int count)
1403 {
1404         struct hw_perf_event *hwc = &event->hw;
1405         struct perf_sample_data data;
1406         struct pt_regs regs;
1407         void *at = get_next_pebs_record_by_bit(base, top, bit);
1408
1409         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1410                 /*
1411                  * Now, auto-reload is only enabled in fixed period mode.
1412                  * The reload value is always hwc->sample_period.
1413                  * May need to change it, if auto-reload is enabled in
1414                  * freq mode later.
1415                  */
1416                 intel_pmu_save_and_restart_reload(event, count);
1417         } else if (!intel_pmu_save_and_restart(event))
1418                 return;
1419
1420         while (count > 1) {
1421                 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1422                 perf_event_output(event, &data, &regs);
1423                 at += x86_pmu.pebs_record_size;
1424                 at = get_next_pebs_record_by_bit(at, top, bit);
1425                 count--;
1426         }
1427
1428         setup_pebs_sample_data(event, iregs, at, &data, &regs);
1429
1430         /*
1431          * All but the last records are processed.
1432          * The last one is left to be able to call the overflow handler.
1433          */
1434         if (perf_event_overflow(event, &data, &regs)) {
1435                 x86_pmu_stop(event, 0);
1436                 return;
1437         }
1438
1439 }
1440
1441 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1442 {
1443         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1444         struct debug_store *ds = cpuc->ds;
1445         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1446         struct pebs_record_core *at, *top;
1447         int n;
1448
1449         if (!x86_pmu.pebs_active)
1450                 return;
1451
1452         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1453         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1454
1455         /*
1456          * Whatever else happens, drain the thing
1457          */
1458         ds->pebs_index = ds->pebs_buffer_base;
1459
1460         if (!test_bit(0, cpuc->active_mask))
1461                 return;
1462
1463         WARN_ON_ONCE(!event);
1464
1465         if (!event->attr.precise_ip)
1466                 return;
1467
1468         n = top - at;
1469         if (n <= 0) {
1470                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1471                         intel_pmu_save_and_restart_reload(event, 0);
1472                 return;
1473         }
1474
1475         __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1476 }
1477
1478 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1479 {
1480         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1481         struct debug_store *ds = cpuc->ds;
1482         struct perf_event *event;
1483         void *base, *at, *top;
1484         short counts[MAX_PEBS_EVENTS] = {};
1485         short error[MAX_PEBS_EVENTS] = {};
1486         int bit, i;
1487
1488         if (!x86_pmu.pebs_active)
1489                 return;
1490
1491         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1492         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1493
1494         ds->pebs_index = ds->pebs_buffer_base;
1495
1496         if (unlikely(base >= top)) {
1497                 /*
1498                  * The drain_pebs() could be called twice in a short period
1499                  * for auto-reload event in pmu::read(). There are no
1500                  * overflows have happened in between.
1501                  * It needs to call intel_pmu_save_and_restart_reload() to
1502                  * update the event->count for this case.
1503                  */
1504                 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled,
1505                                  x86_pmu.max_pebs_events) {
1506                         event = cpuc->events[bit];
1507                         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1508                                 intel_pmu_save_and_restart_reload(event, 0);
1509                 }
1510                 return;
1511         }
1512
1513         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1514                 struct pebs_record_nhm *p = at;
1515                 u64 pebs_status;
1516
1517                 pebs_status = p->status & cpuc->pebs_enabled;
1518                 pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;
1519
1520                 /* PEBS v3 has more accurate status bits */
1521                 if (x86_pmu.intel_cap.pebs_format >= 3) {
1522                         for_each_set_bit(bit, (unsigned long *)&pebs_status,
1523                                          x86_pmu.max_pebs_events)
1524                                 counts[bit]++;
1525
1526                         continue;
1527                 }
1528
1529                 /*
1530                  * On some CPUs the PEBS status can be zero when PEBS is
1531                  * racing with clearing of GLOBAL_STATUS.
1532                  *
1533                  * Normally we would drop that record, but in the
1534                  * case when there is only a single active PEBS event
1535                  * we can assume it's for that event.
1536                  */
1537                 if (!pebs_status && cpuc->pebs_enabled &&
1538                         !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1539                         pebs_status = cpuc->pebs_enabled;
1540
1541                 bit = find_first_bit((unsigned long *)&pebs_status,
1542                                         x86_pmu.max_pebs_events);
1543                 if (bit >= x86_pmu.max_pebs_events)
1544                         continue;
1545
1546                 /*
1547                  * The PEBS hardware does not deal well with the situation
1548                  * when events happen near to each other and multiple bits
1549                  * are set. But it should happen rarely.
1550                  *
1551                  * If these events include one PEBS and multiple non-PEBS
1552                  * events, it doesn't impact PEBS record. The record will
1553                  * be handled normally. (slow path)
1554                  *
1555                  * If these events include two or more PEBS events, the
1556                  * records for the events can be collapsed into a single
1557                  * one, and it's not possible to reconstruct all events
1558                  * that caused the PEBS record. It's called collision.
1559                  * If collision happened, the record will be dropped.
1560                  */
1561                 if (p->status != (1ULL << bit)) {
1562                         for_each_set_bit(i, (unsigned long *)&pebs_status,
1563                                          x86_pmu.max_pebs_events)
1564                                 error[i]++;
1565                         continue;
1566                 }
1567
1568                 counts[bit]++;
1569         }
1570
1571         for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1572                 if ((counts[bit] == 0) && (error[bit] == 0))
1573                         continue;
1574
1575                 event = cpuc->events[bit];
1576                 if (WARN_ON_ONCE(!event))
1577                         continue;
1578
1579                 if (WARN_ON_ONCE(!event->attr.precise_ip))
1580                         continue;
1581
1582                 /* log dropped samples number */
1583                 if (error[bit]) {
1584                         perf_log_lost_samples(event, error[bit]);
1585
1586                         if (perf_event_account_interrupt(event))
1587                                 x86_pmu_stop(event, 0);
1588                 }
1589
1590                 if (counts[bit]) {
1591                         __intel_pmu_pebs_event(event, iregs, base,
1592                                                top, bit, counts[bit]);
1593                 }
1594         }
1595 }
1596
1597 /*
1598  * BTS, PEBS probe and setup
1599  */
1600
1601 void __init intel_ds_init(void)
1602 {
1603         /*
1604          * No support for 32bit formats
1605          */
1606         if (!boot_cpu_has(X86_FEATURE_DTES64))
1607                 return;
1608
1609         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
1610         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1611         x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
1612         if (x86_pmu.pebs) {
1613                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
1614                 int format = x86_pmu.intel_cap.pebs_format;
1615
1616                 switch (format) {
1617                 case 0:
1618                         pr_cont("PEBS fmt0%c, ", pebs_type);
1619                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1620                         /*
1621                          * Using >PAGE_SIZE buffers makes the WRMSR to
1622                          * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
1623                          * mysteriously hang on Core2.
1624                          *
1625                          * As a workaround, we don't do this.
1626                          */
1627                         x86_pmu.pebs_buffer_size = PAGE_SIZE;
1628                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1629                         break;
1630
1631                 case 1:
1632                         pr_cont("PEBS fmt1%c, ", pebs_type);
1633                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1634                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1635                         break;
1636
1637                 case 2:
1638                         pr_cont("PEBS fmt2%c, ", pebs_type);
1639                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1640                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1641                         break;
1642
1643                 case 3:
1644                         pr_cont("PEBS fmt3%c, ", pebs_type);
1645                         x86_pmu.pebs_record_size =
1646                                                 sizeof(struct pebs_record_skl);
1647                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1648                         x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
1649                         break;
1650
1651                 default:
1652                         pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
1653                         x86_pmu.pebs = 0;
1654                 }
1655         }
1656 }
1657
1658 void perf_restore_debug_store(void)
1659 {
1660         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1661
1662         if (!x86_pmu.bts && !x86_pmu.pebs)
1663                 return;
1664
1665         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1666 }