Linux 6.9-rc1
[linux-2.6-microblaze.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18
19 #include <asm/cpufeature.h>
20 #include <asm/debugreg.h>
21 #include <asm/hardirq.h>
22 #include <asm/intel-family.h>
23 #include <asm/intel_pt.h>
24 #include <asm/apic.h>
25 #include <asm/cpu_device_id.h>
26
27 #include "../perf_event.h"
28
29 /*
30  * Intel PerfMon, used on Core and later.
31  */
32 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
33 {
34         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
35         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
36         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
37         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
38         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
39         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
40         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
41         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
42 };
43
44 static struct event_constraint intel_core_event_constraints[] __read_mostly =
45 {
46         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
47         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
48         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
49         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
50         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
51         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
52         EVENT_CONSTRAINT_END
53 };
54
55 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
56 {
57         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
58         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
59         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
60         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
61         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
62         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
63         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
64         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
65         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
66         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
67         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
68         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
69         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
70         EVENT_CONSTRAINT_END
71 };
72
73 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
74 {
75         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
76         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
77         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
78         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
79         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
80         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
81         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
82         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
83         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
84         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
85         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
86         EVENT_CONSTRAINT_END
87 };
88
89 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
90 {
91         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
92         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
93         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
94         EVENT_EXTRA_END
95 };
96
97 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
98 {
99         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
100         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
101         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
102         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
103         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
104         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
105         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
106         EVENT_CONSTRAINT_END
107 };
108
109 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
110 {
111         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
112         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
113         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
114         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
115         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
116         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
118         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
119         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
120         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
121         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
122         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
123
124         /*
125          * When HT is off these events can only run on the bottom 4 counters
126          * When HT is on, they are impacted by the HT bug and require EXCL access
127          */
128         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
130         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
131         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
132
133         EVENT_CONSTRAINT_END
134 };
135
136 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
137 {
138         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
139         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
140         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
141         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
142         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
143         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
144         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
146         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
149         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
150         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
151
152         /*
153          * When HT is off these events can only run on the bottom 4 counters
154          * When HT is on, they are impacted by the HT bug and require EXCL access
155          */
156         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
158         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
159         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
160
161         EVENT_CONSTRAINT_END
162 };
163
164 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
165 {
166         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
167         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
168         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
169         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
170         EVENT_EXTRA_END
171 };
172
173 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
174 {
175         EVENT_CONSTRAINT_END
176 };
177
178 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
179 {
180         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
181         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
182         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
183         EVENT_CONSTRAINT_END
184 };
185
186 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
187 {
188         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
189         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
190         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
191         FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
192         FIXED_EVENT_CONSTRAINT(0x0500, 4),
193         FIXED_EVENT_CONSTRAINT(0x0600, 5),
194         FIXED_EVENT_CONSTRAINT(0x0700, 6),
195         FIXED_EVENT_CONSTRAINT(0x0800, 7),
196         FIXED_EVENT_CONSTRAINT(0x0900, 8),
197         FIXED_EVENT_CONSTRAINT(0x0a00, 9),
198         FIXED_EVENT_CONSTRAINT(0x0b00, 10),
199         FIXED_EVENT_CONSTRAINT(0x0c00, 11),
200         FIXED_EVENT_CONSTRAINT(0x0d00, 12),
201         FIXED_EVENT_CONSTRAINT(0x0e00, 13),
202         FIXED_EVENT_CONSTRAINT(0x0f00, 14),
203         FIXED_EVENT_CONSTRAINT(0x1000, 15),
204         EVENT_CONSTRAINT_END
205 };
206
207 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
208 {
209         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
210         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
211         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
212         EVENT_CONSTRAINT_END
213 };
214
215 static struct event_constraint intel_grt_event_constraints[] __read_mostly = {
216         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
217         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
218         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
219         FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
220         EVENT_CONSTRAINT_END
221 };
222
223 static struct event_constraint intel_skl_event_constraints[] = {
224         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
225         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
226         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
227         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
228
229         /*
230          * when HT is off, these can only run on the bottom 4 counters
231          */
232         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
233         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
234         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
235         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
236         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
237
238         EVENT_CONSTRAINT_END
239 };
240
241 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
242         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
243         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
244         EVENT_EXTRA_END
245 };
246
247 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
248         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
249         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
250         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
251         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
252         EVENT_EXTRA_END
253 };
254
255 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
256         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
257         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
258         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
259         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
260         EVENT_EXTRA_END
261 };
262
263 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
264         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
265         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
266         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
267         /*
268          * Note the low 8 bits eventsel code is not a continuous field, containing
269          * some #GPing bits. These are masked out.
270          */
271         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
272         EVENT_EXTRA_END
273 };
274
275 static struct event_constraint intel_icl_event_constraints[] = {
276         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
277         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* old INST_RETIRED.PREC_DIST */
278         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
279         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
280         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
281         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
282         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
283         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
284         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
285         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
286         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
287         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
288         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
289         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
290         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
291         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
292         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
293         INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
294         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
295         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
296         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
297         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
298         INTEL_EVENT_CONSTRAINT(0xef, 0xf),
299         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
300         EVENT_CONSTRAINT_END
301 };
302
303 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
304         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
305         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
306         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
307         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
308         EVENT_EXTRA_END
309 };
310
311 static struct extra_reg intel_glc_extra_regs[] __read_mostly = {
312         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
313         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
314         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
315         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
316         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
317         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
318         EVENT_EXTRA_END
319 };
320
321 static struct event_constraint intel_glc_event_constraints[] = {
322         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
323         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
324         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
325         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
326         FIXED_EVENT_CONSTRAINT(0x013c, 2),      /* CPU_CLK_UNHALTED.REF_TSC_P */
327         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
328         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
329         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
330         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
331         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
332         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
333         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
334         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
335         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
336
337         INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
338         INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
339         /*
340          * Generally event codes < 0x90 are restricted to counters 0-3.
341          * The 0x2E and 0x3C are exception, which has no restriction.
342          */
343         INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
344
345         INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
346         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
347         INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
348         INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
349         INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
350         INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
351         INTEL_EVENT_CONSTRAINT(0xce, 0x1),
352         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
353         /*
354          * Generally event codes >= 0x90 are likely to have no restrictions.
355          * The exception are defined as above.
356          */
357         INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
358
359         EVENT_CONSTRAINT_END
360 };
361
362 static struct extra_reg intel_rwc_extra_regs[] __read_mostly = {
363         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
364         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
365         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
366         INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
367         INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
368         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
369         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
370         EVENT_EXTRA_END
371 };
372
373 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
374 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
375 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
376
377 static struct attribute *nhm_mem_events_attrs[] = {
378         EVENT_PTR(mem_ld_nhm),
379         NULL,
380 };
381
382 /*
383  * topdown events for Intel Core CPUs.
384  *
385  * The events are all in slots, which is a free slot in a 4 wide
386  * pipeline. Some events are already reported in slots, for cycle
387  * events we multiply by the pipeline width (4).
388  *
389  * With Hyper Threading on, topdown metrics are either summed or averaged
390  * between the threads of a core: (count_t0 + count_t1).
391  *
392  * For the average case the metric is always scaled to pipeline width,
393  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
394  */
395
396 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
397         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
398         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
399 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
400 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
401         "event=0xe,umask=0x1");                 /* uops_issued.any */
402 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
403         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
404 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
405         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
406 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
407         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
408         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
409 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
410         "4", "2");
411
412 EVENT_ATTR_STR(slots,                   slots,                  "event=0x00,umask=0x4");
413 EVENT_ATTR_STR(topdown-retiring,        td_retiring,            "event=0x00,umask=0x80");
414 EVENT_ATTR_STR(topdown-bad-spec,        td_bad_spec,            "event=0x00,umask=0x81");
415 EVENT_ATTR_STR(topdown-fe-bound,        td_fe_bound,            "event=0x00,umask=0x82");
416 EVENT_ATTR_STR(topdown-be-bound,        td_be_bound,            "event=0x00,umask=0x83");
417 EVENT_ATTR_STR(topdown-heavy-ops,       td_heavy_ops,           "event=0x00,umask=0x84");
418 EVENT_ATTR_STR(topdown-br-mispredict,   td_br_mispredict,       "event=0x00,umask=0x85");
419 EVENT_ATTR_STR(topdown-fetch-lat,       td_fetch_lat,           "event=0x00,umask=0x86");
420 EVENT_ATTR_STR(topdown-mem-bound,       td_mem_bound,           "event=0x00,umask=0x87");
421
422 static struct attribute *snb_events_attrs[] = {
423         EVENT_PTR(td_slots_issued),
424         EVENT_PTR(td_slots_retired),
425         EVENT_PTR(td_fetch_bubbles),
426         EVENT_PTR(td_total_slots),
427         EVENT_PTR(td_total_slots_scale),
428         EVENT_PTR(td_recovery_bubbles),
429         EVENT_PTR(td_recovery_bubbles_scale),
430         NULL,
431 };
432
433 static struct attribute *snb_mem_events_attrs[] = {
434         EVENT_PTR(mem_ld_snb),
435         EVENT_PTR(mem_st_snb),
436         NULL,
437 };
438
439 static struct event_constraint intel_hsw_event_constraints[] = {
440         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
441         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
442         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
443         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
444         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
445         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
446         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
447         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
448         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
449         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
450         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
451         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
452
453         /*
454          * When HT is off these events can only run on the bottom 4 counters
455          * When HT is on, they are impacted by the HT bug and require EXCL access
456          */
457         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
458         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
459         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
460         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
461
462         EVENT_CONSTRAINT_END
463 };
464
465 static struct event_constraint intel_bdw_event_constraints[] = {
466         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
467         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
468         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
469         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
470         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
471         /*
472          * when HT is off, these can only run on the bottom 4 counters
473          */
474         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
475         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
476         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
477         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
478         EVENT_CONSTRAINT_END
479 };
480
481 static u64 intel_pmu_event_map(int hw_event)
482 {
483         return intel_perfmon_event_map[hw_event];
484 }
485
486 static __initconst const u64 glc_hw_cache_event_ids
487                                 [PERF_COUNT_HW_CACHE_MAX]
488                                 [PERF_COUNT_HW_CACHE_OP_MAX]
489                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
490 {
491  [ C(L1D ) ] = {
492         [ C(OP_READ) ] = {
493                 [ C(RESULT_ACCESS) ] = 0x81d0,
494                 [ C(RESULT_MISS)   ] = 0xe124,
495         },
496         [ C(OP_WRITE) ] = {
497                 [ C(RESULT_ACCESS) ] = 0x82d0,
498         },
499  },
500  [ C(L1I ) ] = {
501         [ C(OP_READ) ] = {
502                 [ C(RESULT_MISS)   ] = 0xe424,
503         },
504         [ C(OP_WRITE) ] = {
505                 [ C(RESULT_ACCESS) ] = -1,
506                 [ C(RESULT_MISS)   ] = -1,
507         },
508  },
509  [ C(LL  ) ] = {
510         [ C(OP_READ) ] = {
511                 [ C(RESULT_ACCESS) ] = 0x12a,
512                 [ C(RESULT_MISS)   ] = 0x12a,
513         },
514         [ C(OP_WRITE) ] = {
515                 [ C(RESULT_ACCESS) ] = 0x12a,
516                 [ C(RESULT_MISS)   ] = 0x12a,
517         },
518  },
519  [ C(DTLB) ] = {
520         [ C(OP_READ) ] = {
521                 [ C(RESULT_ACCESS) ] = 0x81d0,
522                 [ C(RESULT_MISS)   ] = 0xe12,
523         },
524         [ C(OP_WRITE) ] = {
525                 [ C(RESULT_ACCESS) ] = 0x82d0,
526                 [ C(RESULT_MISS)   ] = 0xe13,
527         },
528  },
529  [ C(ITLB) ] = {
530         [ C(OP_READ) ] = {
531                 [ C(RESULT_ACCESS) ] = -1,
532                 [ C(RESULT_MISS)   ] = 0xe11,
533         },
534         [ C(OP_WRITE) ] = {
535                 [ C(RESULT_ACCESS) ] = -1,
536                 [ C(RESULT_MISS)   ] = -1,
537         },
538         [ C(OP_PREFETCH) ] = {
539                 [ C(RESULT_ACCESS) ] = -1,
540                 [ C(RESULT_MISS)   ] = -1,
541         },
542  },
543  [ C(BPU ) ] = {
544         [ C(OP_READ) ] = {
545                 [ C(RESULT_ACCESS) ] = 0x4c4,
546                 [ C(RESULT_MISS)   ] = 0x4c5,
547         },
548         [ C(OP_WRITE) ] = {
549                 [ C(RESULT_ACCESS) ] = -1,
550                 [ C(RESULT_MISS)   ] = -1,
551         },
552         [ C(OP_PREFETCH) ] = {
553                 [ C(RESULT_ACCESS) ] = -1,
554                 [ C(RESULT_MISS)   ] = -1,
555         },
556  },
557  [ C(NODE) ] = {
558         [ C(OP_READ) ] = {
559                 [ C(RESULT_ACCESS) ] = 0x12a,
560                 [ C(RESULT_MISS)   ] = 0x12a,
561         },
562  },
563 };
564
565 static __initconst const u64 glc_hw_cache_extra_regs
566                                 [PERF_COUNT_HW_CACHE_MAX]
567                                 [PERF_COUNT_HW_CACHE_OP_MAX]
568                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
569 {
570  [ C(LL  ) ] = {
571         [ C(OP_READ) ] = {
572                 [ C(RESULT_ACCESS) ] = 0x10001,
573                 [ C(RESULT_MISS)   ] = 0x3fbfc00001,
574         },
575         [ C(OP_WRITE) ] = {
576                 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
577                 [ C(RESULT_MISS)   ] = 0x3f3fc00002,
578         },
579  },
580  [ C(NODE) ] = {
581         [ C(OP_READ) ] = {
582                 [ C(RESULT_ACCESS) ] = 0x10c000001,
583                 [ C(RESULT_MISS)   ] = 0x3fb3000001,
584         },
585  },
586 };
587
588 /*
589  * Notes on the events:
590  * - data reads do not include code reads (comparable to earlier tables)
591  * - data counts include speculative execution (except L1 write, dtlb, bpu)
592  * - remote node access includes remote memory, remote cache, remote mmio.
593  * - prefetches are not included in the counts.
594  * - icache miss does not include decoded icache
595  */
596
597 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
598 #define SKL_DEMAND_RFO                  BIT_ULL(1)
599 #define SKL_ANY_RESPONSE                BIT_ULL(16)
600 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
601 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
602 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
603 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
604 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
605 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
606                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
607                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
608                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
609 #define SKL_SPL_HIT                     BIT_ULL(30)
610 #define SKL_SNOOP_NONE                  BIT_ULL(31)
611 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
612 #define SKL_SNOOP_MISS                  BIT_ULL(33)
613 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
614 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
615 #define SKL_SNOOP_HITM                  BIT_ULL(36)
616 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
617 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
618                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
619                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
620                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
621 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
622 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
623                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
624                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
625                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
626 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
627 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
628 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
629                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
630                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
631
632 static __initconst const u64 skl_hw_cache_event_ids
633                                 [PERF_COUNT_HW_CACHE_MAX]
634                                 [PERF_COUNT_HW_CACHE_OP_MAX]
635                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
636 {
637  [ C(L1D ) ] = {
638         [ C(OP_READ) ] = {
639                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
640                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
641         },
642         [ C(OP_WRITE) ] = {
643                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
644                 [ C(RESULT_MISS)   ] = 0x0,
645         },
646         [ C(OP_PREFETCH) ] = {
647                 [ C(RESULT_ACCESS) ] = 0x0,
648                 [ C(RESULT_MISS)   ] = 0x0,
649         },
650  },
651  [ C(L1I ) ] = {
652         [ C(OP_READ) ] = {
653                 [ C(RESULT_ACCESS) ] = 0x0,
654                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
655         },
656         [ C(OP_WRITE) ] = {
657                 [ C(RESULT_ACCESS) ] = -1,
658                 [ C(RESULT_MISS)   ] = -1,
659         },
660         [ C(OP_PREFETCH) ] = {
661                 [ C(RESULT_ACCESS) ] = 0x0,
662                 [ C(RESULT_MISS)   ] = 0x0,
663         },
664  },
665  [ C(LL  ) ] = {
666         [ C(OP_READ) ] = {
667                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
668                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
669         },
670         [ C(OP_WRITE) ] = {
671                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
672                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
673         },
674         [ C(OP_PREFETCH) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x0,
676                 [ C(RESULT_MISS)   ] = 0x0,
677         },
678  },
679  [ C(DTLB) ] = {
680         [ C(OP_READ) ] = {
681                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
682                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
683         },
684         [ C(OP_WRITE) ] = {
685                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
686                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
687         },
688         [ C(OP_PREFETCH) ] = {
689                 [ C(RESULT_ACCESS) ] = 0x0,
690                 [ C(RESULT_MISS)   ] = 0x0,
691         },
692  },
693  [ C(ITLB) ] = {
694         [ C(OP_READ) ] = {
695                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
696                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
697         },
698         [ C(OP_WRITE) ] = {
699                 [ C(RESULT_ACCESS) ] = -1,
700                 [ C(RESULT_MISS)   ] = -1,
701         },
702         [ C(OP_PREFETCH) ] = {
703                 [ C(RESULT_ACCESS) ] = -1,
704                 [ C(RESULT_MISS)   ] = -1,
705         },
706  },
707  [ C(BPU ) ] = {
708         [ C(OP_READ) ] = {
709                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
710                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
711         },
712         [ C(OP_WRITE) ] = {
713                 [ C(RESULT_ACCESS) ] = -1,
714                 [ C(RESULT_MISS)   ] = -1,
715         },
716         [ C(OP_PREFETCH) ] = {
717                 [ C(RESULT_ACCESS) ] = -1,
718                 [ C(RESULT_MISS)   ] = -1,
719         },
720  },
721  [ C(NODE) ] = {
722         [ C(OP_READ) ] = {
723                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
724                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
725         },
726         [ C(OP_WRITE) ] = {
727                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
728                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
729         },
730         [ C(OP_PREFETCH) ] = {
731                 [ C(RESULT_ACCESS) ] = 0x0,
732                 [ C(RESULT_MISS)   ] = 0x0,
733         },
734  },
735 };
736
737 static __initconst const u64 skl_hw_cache_extra_regs
738                                 [PERF_COUNT_HW_CACHE_MAX]
739                                 [PERF_COUNT_HW_CACHE_OP_MAX]
740                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
741 {
742  [ C(LL  ) ] = {
743         [ C(OP_READ) ] = {
744                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
745                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
746                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
747                                        SKL_L3_MISS|SKL_ANY_SNOOP|
748                                        SKL_SUPPLIER_NONE,
749         },
750         [ C(OP_WRITE) ] = {
751                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
752                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
753                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
754                                        SKL_L3_MISS|SKL_ANY_SNOOP|
755                                        SKL_SUPPLIER_NONE,
756         },
757         [ C(OP_PREFETCH) ] = {
758                 [ C(RESULT_ACCESS) ] = 0x0,
759                 [ C(RESULT_MISS)   ] = 0x0,
760         },
761  },
762  [ C(NODE) ] = {
763         [ C(OP_READ) ] = {
764                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
765                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
766                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
767                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
768         },
769         [ C(OP_WRITE) ] = {
770                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
771                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
772                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
773                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
774         },
775         [ C(OP_PREFETCH) ] = {
776                 [ C(RESULT_ACCESS) ] = 0x0,
777                 [ C(RESULT_MISS)   ] = 0x0,
778         },
779  },
780 };
781
782 #define SNB_DMND_DATA_RD        (1ULL << 0)
783 #define SNB_DMND_RFO            (1ULL << 1)
784 #define SNB_DMND_IFETCH         (1ULL << 2)
785 #define SNB_DMND_WB             (1ULL << 3)
786 #define SNB_PF_DATA_RD          (1ULL << 4)
787 #define SNB_PF_RFO              (1ULL << 5)
788 #define SNB_PF_IFETCH           (1ULL << 6)
789 #define SNB_LLC_DATA_RD         (1ULL << 7)
790 #define SNB_LLC_RFO             (1ULL << 8)
791 #define SNB_LLC_IFETCH          (1ULL << 9)
792 #define SNB_BUS_LOCKS           (1ULL << 10)
793 #define SNB_STRM_ST             (1ULL << 11)
794 #define SNB_OTHER               (1ULL << 15)
795 #define SNB_RESP_ANY            (1ULL << 16)
796 #define SNB_NO_SUPP             (1ULL << 17)
797 #define SNB_LLC_HITM            (1ULL << 18)
798 #define SNB_LLC_HITE            (1ULL << 19)
799 #define SNB_LLC_HITS            (1ULL << 20)
800 #define SNB_LLC_HITF            (1ULL << 21)
801 #define SNB_LOCAL               (1ULL << 22)
802 #define SNB_REMOTE              (0xffULL << 23)
803 #define SNB_SNP_NONE            (1ULL << 31)
804 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
805 #define SNB_SNP_MISS            (1ULL << 33)
806 #define SNB_NO_FWD              (1ULL << 34)
807 #define SNB_SNP_FWD             (1ULL << 35)
808 #define SNB_HITM                (1ULL << 36)
809 #define SNB_NON_DRAM            (1ULL << 37)
810
811 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
812 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
813 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
814
815 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
816                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
817                                  SNB_HITM)
818
819 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
820 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
821
822 #define SNB_L3_ACCESS           SNB_RESP_ANY
823 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
824
825 static __initconst const u64 snb_hw_cache_extra_regs
826                                 [PERF_COUNT_HW_CACHE_MAX]
827                                 [PERF_COUNT_HW_CACHE_OP_MAX]
828                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
829 {
830  [ C(LL  ) ] = {
831         [ C(OP_READ) ] = {
832                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
833                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
834         },
835         [ C(OP_WRITE) ] = {
836                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
837                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
838         },
839         [ C(OP_PREFETCH) ] = {
840                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
841                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
842         },
843  },
844  [ C(NODE) ] = {
845         [ C(OP_READ) ] = {
846                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
847                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
848         },
849         [ C(OP_WRITE) ] = {
850                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
851                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
852         },
853         [ C(OP_PREFETCH) ] = {
854                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
855                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
856         },
857  },
858 };
859
860 static __initconst const u64 snb_hw_cache_event_ids
861                                 [PERF_COUNT_HW_CACHE_MAX]
862                                 [PERF_COUNT_HW_CACHE_OP_MAX]
863                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
864 {
865  [ C(L1D) ] = {
866         [ C(OP_READ) ] = {
867                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
868                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
869         },
870         [ C(OP_WRITE) ] = {
871                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
872                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
873         },
874         [ C(OP_PREFETCH) ] = {
875                 [ C(RESULT_ACCESS) ] = 0x0,
876                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
877         },
878  },
879  [ C(L1I ) ] = {
880         [ C(OP_READ) ] = {
881                 [ C(RESULT_ACCESS) ] = 0x0,
882                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
883         },
884         [ C(OP_WRITE) ] = {
885                 [ C(RESULT_ACCESS) ] = -1,
886                 [ C(RESULT_MISS)   ] = -1,
887         },
888         [ C(OP_PREFETCH) ] = {
889                 [ C(RESULT_ACCESS) ] = 0x0,
890                 [ C(RESULT_MISS)   ] = 0x0,
891         },
892  },
893  [ C(LL  ) ] = {
894         [ C(OP_READ) ] = {
895                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
896                 [ C(RESULT_ACCESS) ] = 0x01b7,
897                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
898                 [ C(RESULT_MISS)   ] = 0x01b7,
899         },
900         [ C(OP_WRITE) ] = {
901                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
902                 [ C(RESULT_ACCESS) ] = 0x01b7,
903                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
904                 [ C(RESULT_MISS)   ] = 0x01b7,
905         },
906         [ C(OP_PREFETCH) ] = {
907                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
908                 [ C(RESULT_ACCESS) ] = 0x01b7,
909                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
910                 [ C(RESULT_MISS)   ] = 0x01b7,
911         },
912  },
913  [ C(DTLB) ] = {
914         [ C(OP_READ) ] = {
915                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
916                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
917         },
918         [ C(OP_WRITE) ] = {
919                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
920                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
921         },
922         [ C(OP_PREFETCH) ] = {
923                 [ C(RESULT_ACCESS) ] = 0x0,
924                 [ C(RESULT_MISS)   ] = 0x0,
925         },
926  },
927  [ C(ITLB) ] = {
928         [ C(OP_READ) ] = {
929                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
930                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
931         },
932         [ C(OP_WRITE) ] = {
933                 [ C(RESULT_ACCESS) ] = -1,
934                 [ C(RESULT_MISS)   ] = -1,
935         },
936         [ C(OP_PREFETCH) ] = {
937                 [ C(RESULT_ACCESS) ] = -1,
938                 [ C(RESULT_MISS)   ] = -1,
939         },
940  },
941  [ C(BPU ) ] = {
942         [ C(OP_READ) ] = {
943                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
944                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
945         },
946         [ C(OP_WRITE) ] = {
947                 [ C(RESULT_ACCESS) ] = -1,
948                 [ C(RESULT_MISS)   ] = -1,
949         },
950         [ C(OP_PREFETCH) ] = {
951                 [ C(RESULT_ACCESS) ] = -1,
952                 [ C(RESULT_MISS)   ] = -1,
953         },
954  },
955  [ C(NODE) ] = {
956         [ C(OP_READ) ] = {
957                 [ C(RESULT_ACCESS) ] = 0x01b7,
958                 [ C(RESULT_MISS)   ] = 0x01b7,
959         },
960         [ C(OP_WRITE) ] = {
961                 [ C(RESULT_ACCESS) ] = 0x01b7,
962                 [ C(RESULT_MISS)   ] = 0x01b7,
963         },
964         [ C(OP_PREFETCH) ] = {
965                 [ C(RESULT_ACCESS) ] = 0x01b7,
966                 [ C(RESULT_MISS)   ] = 0x01b7,
967         },
968  },
969
970 };
971
972 /*
973  * Notes on the events:
974  * - data reads do not include code reads (comparable to earlier tables)
975  * - data counts include speculative execution (except L1 write, dtlb, bpu)
976  * - remote node access includes remote memory, remote cache, remote mmio.
977  * - prefetches are not included in the counts because they are not
978  *   reliably counted.
979  */
980
981 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
982 #define HSW_DEMAND_RFO                  BIT_ULL(1)
983 #define HSW_ANY_RESPONSE                BIT_ULL(16)
984 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
985 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
986 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
987 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
988 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
989 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
990                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
991                                          HSW_L3_MISS_REMOTE_HOP2P)
992 #define HSW_SNOOP_NONE                  BIT_ULL(31)
993 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
994 #define HSW_SNOOP_MISS                  BIT_ULL(33)
995 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
996 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
997 #define HSW_SNOOP_HITM                  BIT_ULL(36)
998 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
999 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
1000                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
1001                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
1002                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
1003 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
1004 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
1005 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
1006 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
1007                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
1008 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
1009
1010 #define BDW_L3_MISS_LOCAL               BIT(26)
1011 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
1012                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1013                                          HSW_L3_MISS_REMOTE_HOP2P)
1014
1015
1016 static __initconst const u64 hsw_hw_cache_event_ids
1017                                 [PERF_COUNT_HW_CACHE_MAX]
1018                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1019                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1020 {
1021  [ C(L1D ) ] = {
1022         [ C(OP_READ) ] = {
1023                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1024                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
1025         },
1026         [ C(OP_WRITE) ] = {
1027                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1028                 [ C(RESULT_MISS)   ] = 0x0,
1029         },
1030         [ C(OP_PREFETCH) ] = {
1031                 [ C(RESULT_ACCESS) ] = 0x0,
1032                 [ C(RESULT_MISS)   ] = 0x0,
1033         },
1034  },
1035  [ C(L1I ) ] = {
1036         [ C(OP_READ) ] = {
1037                 [ C(RESULT_ACCESS) ] = 0x0,
1038                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
1039         },
1040         [ C(OP_WRITE) ] = {
1041                 [ C(RESULT_ACCESS) ] = -1,
1042                 [ C(RESULT_MISS)   ] = -1,
1043         },
1044         [ C(OP_PREFETCH) ] = {
1045                 [ C(RESULT_ACCESS) ] = 0x0,
1046                 [ C(RESULT_MISS)   ] = 0x0,
1047         },
1048  },
1049  [ C(LL  ) ] = {
1050         [ C(OP_READ) ] = {
1051                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1052                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1053         },
1054         [ C(OP_WRITE) ] = {
1055                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1056                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1057         },
1058         [ C(OP_PREFETCH) ] = {
1059                 [ C(RESULT_ACCESS) ] = 0x0,
1060                 [ C(RESULT_MISS)   ] = 0x0,
1061         },
1062  },
1063  [ C(DTLB) ] = {
1064         [ C(OP_READ) ] = {
1065                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1066                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1067         },
1068         [ C(OP_WRITE) ] = {
1069                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1070                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1071         },
1072         [ C(OP_PREFETCH) ] = {
1073                 [ C(RESULT_ACCESS) ] = 0x0,
1074                 [ C(RESULT_MISS)   ] = 0x0,
1075         },
1076  },
1077  [ C(ITLB) ] = {
1078         [ C(OP_READ) ] = {
1079                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
1080                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1081         },
1082         [ C(OP_WRITE) ] = {
1083                 [ C(RESULT_ACCESS) ] = -1,
1084                 [ C(RESULT_MISS)   ] = -1,
1085         },
1086         [ C(OP_PREFETCH) ] = {
1087                 [ C(RESULT_ACCESS) ] = -1,
1088                 [ C(RESULT_MISS)   ] = -1,
1089         },
1090  },
1091  [ C(BPU ) ] = {
1092         [ C(OP_READ) ] = {
1093                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
1094                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
1095         },
1096         [ C(OP_WRITE) ] = {
1097                 [ C(RESULT_ACCESS) ] = -1,
1098                 [ C(RESULT_MISS)   ] = -1,
1099         },
1100         [ C(OP_PREFETCH) ] = {
1101                 [ C(RESULT_ACCESS) ] = -1,
1102                 [ C(RESULT_MISS)   ] = -1,
1103         },
1104  },
1105  [ C(NODE) ] = {
1106         [ C(OP_READ) ] = {
1107                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1108                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1109         },
1110         [ C(OP_WRITE) ] = {
1111                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1112                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1113         },
1114         [ C(OP_PREFETCH) ] = {
1115                 [ C(RESULT_ACCESS) ] = 0x0,
1116                 [ C(RESULT_MISS)   ] = 0x0,
1117         },
1118  },
1119 };
1120
1121 static __initconst const u64 hsw_hw_cache_extra_regs
1122                                 [PERF_COUNT_HW_CACHE_MAX]
1123                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1124                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1125 {
1126  [ C(LL  ) ] = {
1127         [ C(OP_READ) ] = {
1128                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1129                                        HSW_LLC_ACCESS,
1130                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1131                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1132         },
1133         [ C(OP_WRITE) ] = {
1134                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1135                                        HSW_LLC_ACCESS,
1136                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1137                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1138         },
1139         [ C(OP_PREFETCH) ] = {
1140                 [ C(RESULT_ACCESS) ] = 0x0,
1141                 [ C(RESULT_MISS)   ] = 0x0,
1142         },
1143  },
1144  [ C(NODE) ] = {
1145         [ C(OP_READ) ] = {
1146                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1147                                        HSW_L3_MISS_LOCAL_DRAM|
1148                                        HSW_SNOOP_DRAM,
1149                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1150                                        HSW_L3_MISS_REMOTE|
1151                                        HSW_SNOOP_DRAM,
1152         },
1153         [ C(OP_WRITE) ] = {
1154                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1155                                        HSW_L3_MISS_LOCAL_DRAM|
1156                                        HSW_SNOOP_DRAM,
1157                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1158                                        HSW_L3_MISS_REMOTE|
1159                                        HSW_SNOOP_DRAM,
1160         },
1161         [ C(OP_PREFETCH) ] = {
1162                 [ C(RESULT_ACCESS) ] = 0x0,
1163                 [ C(RESULT_MISS)   ] = 0x0,
1164         },
1165  },
1166 };
1167
1168 static __initconst const u64 westmere_hw_cache_event_ids
1169                                 [PERF_COUNT_HW_CACHE_MAX]
1170                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1171                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1172 {
1173  [ C(L1D) ] = {
1174         [ C(OP_READ) ] = {
1175                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1176                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1177         },
1178         [ C(OP_WRITE) ] = {
1179                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1180                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1181         },
1182         [ C(OP_PREFETCH) ] = {
1183                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1184                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1185         },
1186  },
1187  [ C(L1I ) ] = {
1188         [ C(OP_READ) ] = {
1189                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1190                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1191         },
1192         [ C(OP_WRITE) ] = {
1193                 [ C(RESULT_ACCESS) ] = -1,
1194                 [ C(RESULT_MISS)   ] = -1,
1195         },
1196         [ C(OP_PREFETCH) ] = {
1197                 [ C(RESULT_ACCESS) ] = 0x0,
1198                 [ C(RESULT_MISS)   ] = 0x0,
1199         },
1200  },
1201  [ C(LL  ) ] = {
1202         [ C(OP_READ) ] = {
1203                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1204                 [ C(RESULT_ACCESS) ] = 0x01b7,
1205                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1206                 [ C(RESULT_MISS)   ] = 0x01b7,
1207         },
1208         /*
1209          * Use RFO, not WRITEBACK, because a write miss would typically occur
1210          * on RFO.
1211          */
1212         [ C(OP_WRITE) ] = {
1213                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1214                 [ C(RESULT_ACCESS) ] = 0x01b7,
1215                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1216                 [ C(RESULT_MISS)   ] = 0x01b7,
1217         },
1218         [ C(OP_PREFETCH) ] = {
1219                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1220                 [ C(RESULT_ACCESS) ] = 0x01b7,
1221                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1222                 [ C(RESULT_MISS)   ] = 0x01b7,
1223         },
1224  },
1225  [ C(DTLB) ] = {
1226         [ C(OP_READ) ] = {
1227                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1228                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1229         },
1230         [ C(OP_WRITE) ] = {
1231                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1232                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1233         },
1234         [ C(OP_PREFETCH) ] = {
1235                 [ C(RESULT_ACCESS) ] = 0x0,
1236                 [ C(RESULT_MISS)   ] = 0x0,
1237         },
1238  },
1239  [ C(ITLB) ] = {
1240         [ C(OP_READ) ] = {
1241                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1242                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1243         },
1244         [ C(OP_WRITE) ] = {
1245                 [ C(RESULT_ACCESS) ] = -1,
1246                 [ C(RESULT_MISS)   ] = -1,
1247         },
1248         [ C(OP_PREFETCH) ] = {
1249                 [ C(RESULT_ACCESS) ] = -1,
1250                 [ C(RESULT_MISS)   ] = -1,
1251         },
1252  },
1253  [ C(BPU ) ] = {
1254         [ C(OP_READ) ] = {
1255                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1256                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1257         },
1258         [ C(OP_WRITE) ] = {
1259                 [ C(RESULT_ACCESS) ] = -1,
1260                 [ C(RESULT_MISS)   ] = -1,
1261         },
1262         [ C(OP_PREFETCH) ] = {
1263                 [ C(RESULT_ACCESS) ] = -1,
1264                 [ C(RESULT_MISS)   ] = -1,
1265         },
1266  },
1267  [ C(NODE) ] = {
1268         [ C(OP_READ) ] = {
1269                 [ C(RESULT_ACCESS) ] = 0x01b7,
1270                 [ C(RESULT_MISS)   ] = 0x01b7,
1271         },
1272         [ C(OP_WRITE) ] = {
1273                 [ C(RESULT_ACCESS) ] = 0x01b7,
1274                 [ C(RESULT_MISS)   ] = 0x01b7,
1275         },
1276         [ C(OP_PREFETCH) ] = {
1277                 [ C(RESULT_ACCESS) ] = 0x01b7,
1278                 [ C(RESULT_MISS)   ] = 0x01b7,
1279         },
1280  },
1281 };
1282
1283 /*
1284  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1285  * See IA32 SDM Vol 3B 30.6.1.3
1286  */
1287
1288 #define NHM_DMND_DATA_RD        (1 << 0)
1289 #define NHM_DMND_RFO            (1 << 1)
1290 #define NHM_DMND_IFETCH         (1 << 2)
1291 #define NHM_DMND_WB             (1 << 3)
1292 #define NHM_PF_DATA_RD          (1 << 4)
1293 #define NHM_PF_DATA_RFO         (1 << 5)
1294 #define NHM_PF_IFETCH           (1 << 6)
1295 #define NHM_OFFCORE_OTHER       (1 << 7)
1296 #define NHM_UNCORE_HIT          (1 << 8)
1297 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1298 #define NHM_OTHER_CORE_HITM     (1 << 10)
1299                                 /* reserved */
1300 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1301 #define NHM_REMOTE_DRAM         (1 << 13)
1302 #define NHM_LOCAL_DRAM          (1 << 14)
1303 #define NHM_NON_DRAM            (1 << 15)
1304
1305 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1306 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1307
1308 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1309 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1310 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1311
1312 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1313 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1314 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1315
1316 static __initconst const u64 nehalem_hw_cache_extra_regs
1317                                 [PERF_COUNT_HW_CACHE_MAX]
1318                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1319                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1320 {
1321  [ C(LL  ) ] = {
1322         [ C(OP_READ) ] = {
1323                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1324                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1325         },
1326         [ C(OP_WRITE) ] = {
1327                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1328                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1329         },
1330         [ C(OP_PREFETCH) ] = {
1331                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1332                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1333         },
1334  },
1335  [ C(NODE) ] = {
1336         [ C(OP_READ) ] = {
1337                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1338                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1339         },
1340         [ C(OP_WRITE) ] = {
1341                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1342                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1343         },
1344         [ C(OP_PREFETCH) ] = {
1345                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1346                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1347         },
1348  },
1349 };
1350
1351 static __initconst const u64 nehalem_hw_cache_event_ids
1352                                 [PERF_COUNT_HW_CACHE_MAX]
1353                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1354                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1355 {
1356  [ C(L1D) ] = {
1357         [ C(OP_READ) ] = {
1358                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1359                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1360         },
1361         [ C(OP_WRITE) ] = {
1362                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1363                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1364         },
1365         [ C(OP_PREFETCH) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1367                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1368         },
1369  },
1370  [ C(L1I ) ] = {
1371         [ C(OP_READ) ] = {
1372                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1373                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1374         },
1375         [ C(OP_WRITE) ] = {
1376                 [ C(RESULT_ACCESS) ] = -1,
1377                 [ C(RESULT_MISS)   ] = -1,
1378         },
1379         [ C(OP_PREFETCH) ] = {
1380                 [ C(RESULT_ACCESS) ] = 0x0,
1381                 [ C(RESULT_MISS)   ] = 0x0,
1382         },
1383  },
1384  [ C(LL  ) ] = {
1385         [ C(OP_READ) ] = {
1386                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1387                 [ C(RESULT_ACCESS) ] = 0x01b7,
1388                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1389                 [ C(RESULT_MISS)   ] = 0x01b7,
1390         },
1391         /*
1392          * Use RFO, not WRITEBACK, because a write miss would typically occur
1393          * on RFO.
1394          */
1395         [ C(OP_WRITE) ] = {
1396                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1397                 [ C(RESULT_ACCESS) ] = 0x01b7,
1398                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1399                 [ C(RESULT_MISS)   ] = 0x01b7,
1400         },
1401         [ C(OP_PREFETCH) ] = {
1402                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1403                 [ C(RESULT_ACCESS) ] = 0x01b7,
1404                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1405                 [ C(RESULT_MISS)   ] = 0x01b7,
1406         },
1407  },
1408  [ C(DTLB) ] = {
1409         [ C(OP_READ) ] = {
1410                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1411                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1412         },
1413         [ C(OP_WRITE) ] = {
1414                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1415                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1416         },
1417         [ C(OP_PREFETCH) ] = {
1418                 [ C(RESULT_ACCESS) ] = 0x0,
1419                 [ C(RESULT_MISS)   ] = 0x0,
1420         },
1421  },
1422  [ C(ITLB) ] = {
1423         [ C(OP_READ) ] = {
1424                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1425                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1426         },
1427         [ C(OP_WRITE) ] = {
1428                 [ C(RESULT_ACCESS) ] = -1,
1429                 [ C(RESULT_MISS)   ] = -1,
1430         },
1431         [ C(OP_PREFETCH) ] = {
1432                 [ C(RESULT_ACCESS) ] = -1,
1433                 [ C(RESULT_MISS)   ] = -1,
1434         },
1435  },
1436  [ C(BPU ) ] = {
1437         [ C(OP_READ) ] = {
1438                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1439                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1440         },
1441         [ C(OP_WRITE) ] = {
1442                 [ C(RESULT_ACCESS) ] = -1,
1443                 [ C(RESULT_MISS)   ] = -1,
1444         },
1445         [ C(OP_PREFETCH) ] = {
1446                 [ C(RESULT_ACCESS) ] = -1,
1447                 [ C(RESULT_MISS)   ] = -1,
1448         },
1449  },
1450  [ C(NODE) ] = {
1451         [ C(OP_READ) ] = {
1452                 [ C(RESULT_ACCESS) ] = 0x01b7,
1453                 [ C(RESULT_MISS)   ] = 0x01b7,
1454         },
1455         [ C(OP_WRITE) ] = {
1456                 [ C(RESULT_ACCESS) ] = 0x01b7,
1457                 [ C(RESULT_MISS)   ] = 0x01b7,
1458         },
1459         [ C(OP_PREFETCH) ] = {
1460                 [ C(RESULT_ACCESS) ] = 0x01b7,
1461                 [ C(RESULT_MISS)   ] = 0x01b7,
1462         },
1463  },
1464 };
1465
1466 static __initconst const u64 core2_hw_cache_event_ids
1467                                 [PERF_COUNT_HW_CACHE_MAX]
1468                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1469                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1470 {
1471  [ C(L1D) ] = {
1472         [ C(OP_READ) ] = {
1473                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1474                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1475         },
1476         [ C(OP_WRITE) ] = {
1477                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1478                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1479         },
1480         [ C(OP_PREFETCH) ] = {
1481                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1482                 [ C(RESULT_MISS)   ] = 0,
1483         },
1484  },
1485  [ C(L1I ) ] = {
1486         [ C(OP_READ) ] = {
1487                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1488                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1489         },
1490         [ C(OP_WRITE) ] = {
1491                 [ C(RESULT_ACCESS) ] = -1,
1492                 [ C(RESULT_MISS)   ] = -1,
1493         },
1494         [ C(OP_PREFETCH) ] = {
1495                 [ C(RESULT_ACCESS) ] = 0,
1496                 [ C(RESULT_MISS)   ] = 0,
1497         },
1498  },
1499  [ C(LL  ) ] = {
1500         [ C(OP_READ) ] = {
1501                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1502                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1503         },
1504         [ C(OP_WRITE) ] = {
1505                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1506                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1507         },
1508         [ C(OP_PREFETCH) ] = {
1509                 [ C(RESULT_ACCESS) ] = 0,
1510                 [ C(RESULT_MISS)   ] = 0,
1511         },
1512  },
1513  [ C(DTLB) ] = {
1514         [ C(OP_READ) ] = {
1515                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1516                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1517         },
1518         [ C(OP_WRITE) ] = {
1519                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1520                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1521         },
1522         [ C(OP_PREFETCH) ] = {
1523                 [ C(RESULT_ACCESS) ] = 0,
1524                 [ C(RESULT_MISS)   ] = 0,
1525         },
1526  },
1527  [ C(ITLB) ] = {
1528         [ C(OP_READ) ] = {
1529                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1530                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1531         },
1532         [ C(OP_WRITE) ] = {
1533                 [ C(RESULT_ACCESS) ] = -1,
1534                 [ C(RESULT_MISS)   ] = -1,
1535         },
1536         [ C(OP_PREFETCH) ] = {
1537                 [ C(RESULT_ACCESS) ] = -1,
1538                 [ C(RESULT_MISS)   ] = -1,
1539         },
1540  },
1541  [ C(BPU ) ] = {
1542         [ C(OP_READ) ] = {
1543                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1544                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1545         },
1546         [ C(OP_WRITE) ] = {
1547                 [ C(RESULT_ACCESS) ] = -1,
1548                 [ C(RESULT_MISS)   ] = -1,
1549         },
1550         [ C(OP_PREFETCH) ] = {
1551                 [ C(RESULT_ACCESS) ] = -1,
1552                 [ C(RESULT_MISS)   ] = -1,
1553         },
1554  },
1555 };
1556
1557 static __initconst const u64 atom_hw_cache_event_ids
1558                                 [PERF_COUNT_HW_CACHE_MAX]
1559                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1560                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1561 {
1562  [ C(L1D) ] = {
1563         [ C(OP_READ) ] = {
1564                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1565                 [ C(RESULT_MISS)   ] = 0,
1566         },
1567         [ C(OP_WRITE) ] = {
1568                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1569                 [ C(RESULT_MISS)   ] = 0,
1570         },
1571         [ C(OP_PREFETCH) ] = {
1572                 [ C(RESULT_ACCESS) ] = 0x0,
1573                 [ C(RESULT_MISS)   ] = 0,
1574         },
1575  },
1576  [ C(L1I ) ] = {
1577         [ C(OP_READ) ] = {
1578                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1579                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1580         },
1581         [ C(OP_WRITE) ] = {
1582                 [ C(RESULT_ACCESS) ] = -1,
1583                 [ C(RESULT_MISS)   ] = -1,
1584         },
1585         [ C(OP_PREFETCH) ] = {
1586                 [ C(RESULT_ACCESS) ] = 0,
1587                 [ C(RESULT_MISS)   ] = 0,
1588         },
1589  },
1590  [ C(LL  ) ] = {
1591         [ C(OP_READ) ] = {
1592                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1593                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1594         },
1595         [ C(OP_WRITE) ] = {
1596                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1597                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1598         },
1599         [ C(OP_PREFETCH) ] = {
1600                 [ C(RESULT_ACCESS) ] = 0,
1601                 [ C(RESULT_MISS)   ] = 0,
1602         },
1603  },
1604  [ C(DTLB) ] = {
1605         [ C(OP_READ) ] = {
1606                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1607                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1608         },
1609         [ C(OP_WRITE) ] = {
1610                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1611                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1612         },
1613         [ C(OP_PREFETCH) ] = {
1614                 [ C(RESULT_ACCESS) ] = 0,
1615                 [ C(RESULT_MISS)   ] = 0,
1616         },
1617  },
1618  [ C(ITLB) ] = {
1619         [ C(OP_READ) ] = {
1620                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1621                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1622         },
1623         [ C(OP_WRITE) ] = {
1624                 [ C(RESULT_ACCESS) ] = -1,
1625                 [ C(RESULT_MISS)   ] = -1,
1626         },
1627         [ C(OP_PREFETCH) ] = {
1628                 [ C(RESULT_ACCESS) ] = -1,
1629                 [ C(RESULT_MISS)   ] = -1,
1630         },
1631  },
1632  [ C(BPU ) ] = {
1633         [ C(OP_READ) ] = {
1634                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1635                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1636         },
1637         [ C(OP_WRITE) ] = {
1638                 [ C(RESULT_ACCESS) ] = -1,
1639                 [ C(RESULT_MISS)   ] = -1,
1640         },
1641         [ C(OP_PREFETCH) ] = {
1642                 [ C(RESULT_ACCESS) ] = -1,
1643                 [ C(RESULT_MISS)   ] = -1,
1644         },
1645  },
1646 };
1647
1648 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1649 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1650 /* no_alloc_cycles.not_delivered */
1651 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1652                "event=0xca,umask=0x50");
1653 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1654 /* uops_retired.all */
1655 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1656                "event=0xc2,umask=0x10");
1657 /* uops_retired.all */
1658 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1659                "event=0xc2,umask=0x10");
1660
1661 static struct attribute *slm_events_attrs[] = {
1662         EVENT_PTR(td_total_slots_slm),
1663         EVENT_PTR(td_total_slots_scale_slm),
1664         EVENT_PTR(td_fetch_bubbles_slm),
1665         EVENT_PTR(td_fetch_bubbles_scale_slm),
1666         EVENT_PTR(td_slots_issued_slm),
1667         EVENT_PTR(td_slots_retired_slm),
1668         NULL
1669 };
1670
1671 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1672 {
1673         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1674         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1675         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1676         EVENT_EXTRA_END
1677 };
1678
1679 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1680 #define SLM_DMND_WRITE          SNB_DMND_RFO
1681 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1682
1683 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1684 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1685 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1686
1687 static __initconst const u64 slm_hw_cache_extra_regs
1688                                 [PERF_COUNT_HW_CACHE_MAX]
1689                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1690                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1691 {
1692  [ C(LL  ) ] = {
1693         [ C(OP_READ) ] = {
1694                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1695                 [ C(RESULT_MISS)   ] = 0,
1696         },
1697         [ C(OP_WRITE) ] = {
1698                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1699                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1700         },
1701         [ C(OP_PREFETCH) ] = {
1702                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1703                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1704         },
1705  },
1706 };
1707
1708 static __initconst const u64 slm_hw_cache_event_ids
1709                                 [PERF_COUNT_HW_CACHE_MAX]
1710                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1711                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1712 {
1713  [ C(L1D) ] = {
1714         [ C(OP_READ) ] = {
1715                 [ C(RESULT_ACCESS) ] = 0,
1716                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1717         },
1718         [ C(OP_WRITE) ] = {
1719                 [ C(RESULT_ACCESS) ] = 0,
1720                 [ C(RESULT_MISS)   ] = 0,
1721         },
1722         [ C(OP_PREFETCH) ] = {
1723                 [ C(RESULT_ACCESS) ] = 0,
1724                 [ C(RESULT_MISS)   ] = 0,
1725         },
1726  },
1727  [ C(L1I ) ] = {
1728         [ C(OP_READ) ] = {
1729                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1730                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1731         },
1732         [ C(OP_WRITE) ] = {
1733                 [ C(RESULT_ACCESS) ] = -1,
1734                 [ C(RESULT_MISS)   ] = -1,
1735         },
1736         [ C(OP_PREFETCH) ] = {
1737                 [ C(RESULT_ACCESS) ] = 0,
1738                 [ C(RESULT_MISS)   ] = 0,
1739         },
1740  },
1741  [ C(LL  ) ] = {
1742         [ C(OP_READ) ] = {
1743                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1744                 [ C(RESULT_ACCESS) ] = 0x01b7,
1745                 [ C(RESULT_MISS)   ] = 0,
1746         },
1747         [ C(OP_WRITE) ] = {
1748                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1749                 [ C(RESULT_ACCESS) ] = 0x01b7,
1750                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1751                 [ C(RESULT_MISS)   ] = 0x01b7,
1752         },
1753         [ C(OP_PREFETCH) ] = {
1754                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1755                 [ C(RESULT_ACCESS) ] = 0x01b7,
1756                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1757                 [ C(RESULT_MISS)   ] = 0x01b7,
1758         },
1759  },
1760  [ C(DTLB) ] = {
1761         [ C(OP_READ) ] = {
1762                 [ C(RESULT_ACCESS) ] = 0,
1763                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1764         },
1765         [ C(OP_WRITE) ] = {
1766                 [ C(RESULT_ACCESS) ] = 0,
1767                 [ C(RESULT_MISS)   ] = 0,
1768         },
1769         [ C(OP_PREFETCH) ] = {
1770                 [ C(RESULT_ACCESS) ] = 0,
1771                 [ C(RESULT_MISS)   ] = 0,
1772         },
1773  },
1774  [ C(ITLB) ] = {
1775         [ C(OP_READ) ] = {
1776                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1777                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1778         },
1779         [ C(OP_WRITE) ] = {
1780                 [ C(RESULT_ACCESS) ] = -1,
1781                 [ C(RESULT_MISS)   ] = -1,
1782         },
1783         [ C(OP_PREFETCH) ] = {
1784                 [ C(RESULT_ACCESS) ] = -1,
1785                 [ C(RESULT_MISS)   ] = -1,
1786         },
1787  },
1788  [ C(BPU ) ] = {
1789         [ C(OP_READ) ] = {
1790                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1791                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1792         },
1793         [ C(OP_WRITE) ] = {
1794                 [ C(RESULT_ACCESS) ] = -1,
1795                 [ C(RESULT_MISS)   ] = -1,
1796         },
1797         [ C(OP_PREFETCH) ] = {
1798                 [ C(RESULT_ACCESS) ] = -1,
1799                 [ C(RESULT_MISS)   ] = -1,
1800         },
1801  },
1802 };
1803
1804 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1805 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1806 /* UOPS_NOT_DELIVERED.ANY */
1807 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1808 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1809 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1810 /* UOPS_RETIRED.ANY */
1811 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1812 /* UOPS_ISSUED.ANY */
1813 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1814
1815 static struct attribute *glm_events_attrs[] = {
1816         EVENT_PTR(td_total_slots_glm),
1817         EVENT_PTR(td_total_slots_scale_glm),
1818         EVENT_PTR(td_fetch_bubbles_glm),
1819         EVENT_PTR(td_recovery_bubbles_glm),
1820         EVENT_PTR(td_slots_issued_glm),
1821         EVENT_PTR(td_slots_retired_glm),
1822         NULL
1823 };
1824
1825 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1826         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1827         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1828         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1829         EVENT_EXTRA_END
1830 };
1831
1832 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1833 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1834 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1835 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1836 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1837 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1838 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1839 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1840 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1841 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1842
1843 static __initconst const u64 glm_hw_cache_event_ids
1844                                 [PERF_COUNT_HW_CACHE_MAX]
1845                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1846                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1847         [C(L1D)] = {
1848                 [C(OP_READ)] = {
1849                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1850                         [C(RESULT_MISS)]        = 0x0,
1851                 },
1852                 [C(OP_WRITE)] = {
1853                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1854                         [C(RESULT_MISS)]        = 0x0,
1855                 },
1856                 [C(OP_PREFETCH)] = {
1857                         [C(RESULT_ACCESS)]      = 0x0,
1858                         [C(RESULT_MISS)]        = 0x0,
1859                 },
1860         },
1861         [C(L1I)] = {
1862                 [C(OP_READ)] = {
1863                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1864                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1865                 },
1866                 [C(OP_WRITE)] = {
1867                         [C(RESULT_ACCESS)]      = -1,
1868                         [C(RESULT_MISS)]        = -1,
1869                 },
1870                 [C(OP_PREFETCH)] = {
1871                         [C(RESULT_ACCESS)]      = 0x0,
1872                         [C(RESULT_MISS)]        = 0x0,
1873                 },
1874         },
1875         [C(LL)] = {
1876                 [C(OP_READ)] = {
1877                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1878                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1879                 },
1880                 [C(OP_WRITE)] = {
1881                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1882                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1883                 },
1884                 [C(OP_PREFETCH)] = {
1885                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1886                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1887                 },
1888         },
1889         [C(DTLB)] = {
1890                 [C(OP_READ)] = {
1891                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1892                         [C(RESULT_MISS)]        = 0x0,
1893                 },
1894                 [C(OP_WRITE)] = {
1895                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1896                         [C(RESULT_MISS)]        = 0x0,
1897                 },
1898                 [C(OP_PREFETCH)] = {
1899                         [C(RESULT_ACCESS)]      = 0x0,
1900                         [C(RESULT_MISS)]        = 0x0,
1901                 },
1902         },
1903         [C(ITLB)] = {
1904                 [C(OP_READ)] = {
1905                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1906                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1907                 },
1908                 [C(OP_WRITE)] = {
1909                         [C(RESULT_ACCESS)]      = -1,
1910                         [C(RESULT_MISS)]        = -1,
1911                 },
1912                 [C(OP_PREFETCH)] = {
1913                         [C(RESULT_ACCESS)]      = -1,
1914                         [C(RESULT_MISS)]        = -1,
1915                 },
1916         },
1917         [C(BPU)] = {
1918                 [C(OP_READ)] = {
1919                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1920                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1921                 },
1922                 [C(OP_WRITE)] = {
1923                         [C(RESULT_ACCESS)]      = -1,
1924                         [C(RESULT_MISS)]        = -1,
1925                 },
1926                 [C(OP_PREFETCH)] = {
1927                         [C(RESULT_ACCESS)]      = -1,
1928                         [C(RESULT_MISS)]        = -1,
1929                 },
1930         },
1931 };
1932
1933 static __initconst const u64 glm_hw_cache_extra_regs
1934                                 [PERF_COUNT_HW_CACHE_MAX]
1935                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1936                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1937         [C(LL)] = {
1938                 [C(OP_READ)] = {
1939                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1940                                                   GLM_LLC_ACCESS,
1941                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1942                                                   GLM_LLC_MISS,
1943                 },
1944                 [C(OP_WRITE)] = {
1945                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1946                                                   GLM_LLC_ACCESS,
1947                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1948                                                   GLM_LLC_MISS,
1949                 },
1950                 [C(OP_PREFETCH)] = {
1951                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1952                                                   GLM_LLC_ACCESS,
1953                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1954                                                   GLM_LLC_MISS,
1955                 },
1956         },
1957 };
1958
1959 static __initconst const u64 glp_hw_cache_event_ids
1960                                 [PERF_COUNT_HW_CACHE_MAX]
1961                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1962                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1963         [C(L1D)] = {
1964                 [C(OP_READ)] = {
1965                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1966                         [C(RESULT_MISS)]        = 0x0,
1967                 },
1968                 [C(OP_WRITE)] = {
1969                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1970                         [C(RESULT_MISS)]        = 0x0,
1971                 },
1972                 [C(OP_PREFETCH)] = {
1973                         [C(RESULT_ACCESS)]      = 0x0,
1974                         [C(RESULT_MISS)]        = 0x0,
1975                 },
1976         },
1977         [C(L1I)] = {
1978                 [C(OP_READ)] = {
1979                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1980                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1981                 },
1982                 [C(OP_WRITE)] = {
1983                         [C(RESULT_ACCESS)]      = -1,
1984                         [C(RESULT_MISS)]        = -1,
1985                 },
1986                 [C(OP_PREFETCH)] = {
1987                         [C(RESULT_ACCESS)]      = 0x0,
1988                         [C(RESULT_MISS)]        = 0x0,
1989                 },
1990         },
1991         [C(LL)] = {
1992                 [C(OP_READ)] = {
1993                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1994                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1995                 },
1996                 [C(OP_WRITE)] = {
1997                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1998                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1999                 },
2000                 [C(OP_PREFETCH)] = {
2001                         [C(RESULT_ACCESS)]      = 0x0,
2002                         [C(RESULT_MISS)]        = 0x0,
2003                 },
2004         },
2005         [C(DTLB)] = {
2006                 [C(OP_READ)] = {
2007                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
2008                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
2009                 },
2010                 [C(OP_WRITE)] = {
2011                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
2012                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
2013                 },
2014                 [C(OP_PREFETCH)] = {
2015                         [C(RESULT_ACCESS)]      = 0x0,
2016                         [C(RESULT_MISS)]        = 0x0,
2017                 },
2018         },
2019         [C(ITLB)] = {
2020                 [C(OP_READ)] = {
2021                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
2022                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
2023                 },
2024                 [C(OP_WRITE)] = {
2025                         [C(RESULT_ACCESS)]      = -1,
2026                         [C(RESULT_MISS)]        = -1,
2027                 },
2028                 [C(OP_PREFETCH)] = {
2029                         [C(RESULT_ACCESS)]      = -1,
2030                         [C(RESULT_MISS)]        = -1,
2031                 },
2032         },
2033         [C(BPU)] = {
2034                 [C(OP_READ)] = {
2035                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
2036                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
2037                 },
2038                 [C(OP_WRITE)] = {
2039                         [C(RESULT_ACCESS)]      = -1,
2040                         [C(RESULT_MISS)]        = -1,
2041                 },
2042                 [C(OP_PREFETCH)] = {
2043                         [C(RESULT_ACCESS)]      = -1,
2044                         [C(RESULT_MISS)]        = -1,
2045                 },
2046         },
2047 };
2048
2049 static __initconst const u64 glp_hw_cache_extra_regs
2050                                 [PERF_COUNT_HW_CACHE_MAX]
2051                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2052                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2053         [C(LL)] = {
2054                 [C(OP_READ)] = {
2055                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
2056                                                   GLM_LLC_ACCESS,
2057                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
2058                                                   GLM_LLC_MISS,
2059                 },
2060                 [C(OP_WRITE)] = {
2061                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
2062                                                   GLM_LLC_ACCESS,
2063                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
2064                                                   GLM_LLC_MISS,
2065                 },
2066                 [C(OP_PREFETCH)] = {
2067                         [C(RESULT_ACCESS)]      = 0x0,
2068                         [C(RESULT_MISS)]        = 0x0,
2069                 },
2070         },
2071 };
2072
2073 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
2074 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
2075 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
2076 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
2077 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2078                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2079 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2080
2081 static __initconst const u64 tnt_hw_cache_extra_regs
2082                                 [PERF_COUNT_HW_CACHE_MAX]
2083                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2084                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2085         [C(LL)] = {
2086                 [C(OP_READ)] = {
2087                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
2088                                                   TNT_LLC_ACCESS,
2089                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
2090                                                   TNT_LLC_MISS,
2091                 },
2092                 [C(OP_WRITE)] = {
2093                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
2094                                                   TNT_LLC_ACCESS,
2095                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
2096                                                   TNT_LLC_MISS,
2097                 },
2098                 [C(OP_PREFETCH)] = {
2099                         [C(RESULT_ACCESS)]      = 0x0,
2100                         [C(RESULT_MISS)]        = 0x0,
2101                 },
2102         },
2103 };
2104
2105 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2106 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2107 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2108 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2109
2110 static struct attribute *tnt_events_attrs[] = {
2111         EVENT_PTR(td_fe_bound_tnt),
2112         EVENT_PTR(td_retiring_tnt),
2113         EVENT_PTR(td_bad_spec_tnt),
2114         EVENT_PTR(td_be_bound_tnt),
2115         NULL,
2116 };
2117
2118 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2119         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2120         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2121         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2122         EVENT_EXTRA_END
2123 };
2124
2125 EVENT_ATTR_STR(mem-loads,       mem_ld_grt,     "event=0xd0,umask=0x5,ldlat=3");
2126 EVENT_ATTR_STR(mem-stores,      mem_st_grt,     "event=0xd0,umask=0x6");
2127
2128 static struct attribute *grt_mem_attrs[] = {
2129         EVENT_PTR(mem_ld_grt),
2130         EVENT_PTR(mem_st_grt),
2131         NULL
2132 };
2133
2134 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2135         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2136         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2137         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2138         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2139         EVENT_EXTRA_END
2140 };
2141
2142 EVENT_ATTR_STR(topdown-retiring,       td_retiring_cmt,        "event=0x72,umask=0x0");
2143 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_cmt,        "event=0x73,umask=0x0");
2144
2145 static struct attribute *cmt_events_attrs[] = {
2146         EVENT_PTR(td_fe_bound_tnt),
2147         EVENT_PTR(td_retiring_cmt),
2148         EVENT_PTR(td_bad_spec_cmt),
2149         EVENT_PTR(td_be_bound_tnt),
2150         NULL
2151 };
2152
2153 static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2154         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2155         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2156         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2157         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2158         INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2159         INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2160         EVENT_EXTRA_END
2161 };
2162
2163 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
2164 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
2165 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
2166 #define KNL_MCDRAM_FAR          BIT_ULL(22)
2167 #define KNL_DDR_LOCAL           BIT_ULL(23)
2168 #define KNL_DDR_FAR             BIT_ULL(24)
2169 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2170                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
2171 #define KNL_L2_READ             SLM_DMND_READ
2172 #define KNL_L2_WRITE            SLM_DMND_WRITE
2173 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
2174 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
2175 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2176                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
2177                                                   SNB_NON_DRAM)
2178
2179 static __initconst const u64 knl_hw_cache_extra_regs
2180                                 [PERF_COUNT_HW_CACHE_MAX]
2181                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2182                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2183         [C(LL)] = {
2184                 [C(OP_READ)] = {
2185                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2186                         [C(RESULT_MISS)]   = 0,
2187                 },
2188                 [C(OP_WRITE)] = {
2189                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2190                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2191                 },
2192                 [C(OP_PREFETCH)] = {
2193                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2194                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2195                 },
2196         },
2197 };
2198
2199 /*
2200  * Used from PMIs where the LBRs are already disabled.
2201  *
2202  * This function could be called consecutively. It is required to remain in
2203  * disabled state if called consecutively.
2204  *
2205  * During consecutive calls, the same disable value will be written to related
2206  * registers, so the PMU state remains unchanged.
2207  *
2208  * intel_bts events don't coexist with intel PMU's BTS events because of
2209  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2210  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2211  *
2212  * Avoid PEBS_ENABLE MSR access in PMIs.
2213  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2214  * It doesn't matter if the PEBS is enabled or not.
2215  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2216  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2217  * However, there are some cases which may change PEBS status, e.g. PMI
2218  * throttle. The PEBS_ENABLE should be updated where the status changes.
2219  */
2220 static __always_inline void __intel_pmu_disable_all(bool bts)
2221 {
2222         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2223
2224         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2225
2226         if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2227                 intel_pmu_disable_bts();
2228 }
2229
2230 static __always_inline void intel_pmu_disable_all(void)
2231 {
2232         __intel_pmu_disable_all(true);
2233         intel_pmu_pebs_disable_all();
2234         intel_pmu_lbr_disable_all();
2235 }
2236
2237 static void __intel_pmu_enable_all(int added, bool pmi)
2238 {
2239         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2240         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2241
2242         intel_pmu_lbr_enable_all(pmi);
2243
2244         if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2245                 wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2246                 cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2247         }
2248
2249         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2250                intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2251
2252         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2253                 struct perf_event *event =
2254                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2255
2256                 if (WARN_ON_ONCE(!event))
2257                         return;
2258
2259                 intel_pmu_enable_bts(event->hw.config);
2260         }
2261 }
2262
2263 static void intel_pmu_enable_all(int added)
2264 {
2265         intel_pmu_pebs_enable_all();
2266         __intel_pmu_enable_all(added, false);
2267 }
2268
2269 static noinline int
2270 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2271                                   unsigned int cnt, unsigned long flags)
2272 {
2273         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2274
2275         intel_pmu_lbr_read();
2276         cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2277
2278         memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2279         intel_pmu_enable_all(0);
2280         local_irq_restore(flags);
2281         return cnt;
2282 }
2283
2284 static int
2285 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2286 {
2287         unsigned long flags;
2288
2289         /* must not have branches... */
2290         local_irq_save(flags);
2291         __intel_pmu_disable_all(false); /* we don't care about BTS */
2292         __intel_pmu_lbr_disable();
2293         /*            ... until here */
2294         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2295 }
2296
2297 static int
2298 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2299 {
2300         unsigned long flags;
2301
2302         /* must not have branches... */
2303         local_irq_save(flags);
2304         __intel_pmu_disable_all(false); /* we don't care about BTS */
2305         __intel_pmu_arch_lbr_disable();
2306         /*            ... until here */
2307         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2308 }
2309
2310 /*
2311  * Workaround for:
2312  *   Intel Errata AAK100 (model 26)
2313  *   Intel Errata AAP53  (model 30)
2314  *   Intel Errata BD53   (model 44)
2315  *
2316  * The official story:
2317  *   These chips need to be 'reset' when adding counters by programming the
2318  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2319  *   in sequence on the same PMC or on different PMCs.
2320  *
2321  * In practice it appears some of these events do in fact count, and
2322  * we need to program all 4 events.
2323  */
2324 static void intel_pmu_nhm_workaround(void)
2325 {
2326         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2327         static const unsigned long nhm_magic[4] = {
2328                 0x4300B5,
2329                 0x4300D2,
2330                 0x4300B1,
2331                 0x4300B1
2332         };
2333         struct perf_event *event;
2334         int i;
2335
2336         /*
2337          * The Errata requires below steps:
2338          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2339          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2340          *    the corresponding PMCx;
2341          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2342          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2343          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2344          */
2345
2346         /*
2347          * The real steps we choose are a little different from above.
2348          * A) To reduce MSR operations, we don't run step 1) as they
2349          *    are already cleared before this function is called;
2350          * B) Call x86_perf_event_update to save PMCx before configuring
2351          *    PERFEVTSELx with magic number;
2352          * C) With step 5), we do clear only when the PERFEVTSELx is
2353          *    not used currently.
2354          * D) Call x86_perf_event_set_period to restore PMCx;
2355          */
2356
2357         /* We always operate 4 pairs of PERF Counters */
2358         for (i = 0; i < 4; i++) {
2359                 event = cpuc->events[i];
2360                 if (event)
2361                         static_call(x86_pmu_update)(event);
2362         }
2363
2364         for (i = 0; i < 4; i++) {
2365                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2366                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2367         }
2368
2369         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2370         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2371
2372         for (i = 0; i < 4; i++) {
2373                 event = cpuc->events[i];
2374
2375                 if (event) {
2376                         static_call(x86_pmu_set_period)(event);
2377                         __x86_pmu_enable_event(&event->hw,
2378                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2379                 } else
2380                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2381         }
2382 }
2383
2384 static void intel_pmu_nhm_enable_all(int added)
2385 {
2386         if (added)
2387                 intel_pmu_nhm_workaround();
2388         intel_pmu_enable_all(added);
2389 }
2390
2391 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2392 {
2393         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2394
2395         if (cpuc->tfa_shadow != val) {
2396                 cpuc->tfa_shadow = val;
2397                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2398         }
2399 }
2400
2401 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2402 {
2403         /*
2404          * We're going to use PMC3, make sure TFA is set before we touch it.
2405          */
2406         if (cntr == 3)
2407                 intel_set_tfa(cpuc, true);
2408 }
2409
2410 static void intel_tfa_pmu_enable_all(int added)
2411 {
2412         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2413
2414         /*
2415          * If we find PMC3 is no longer used when we enable the PMU, we can
2416          * clear TFA.
2417          */
2418         if (!test_bit(3, cpuc->active_mask))
2419                 intel_set_tfa(cpuc, false);
2420
2421         intel_pmu_enable_all(added);
2422 }
2423
2424 static inline u64 intel_pmu_get_status(void)
2425 {
2426         u64 status;
2427
2428         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2429
2430         return status;
2431 }
2432
2433 static inline void intel_pmu_ack_status(u64 ack)
2434 {
2435         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2436 }
2437
2438 static inline bool event_is_checkpointed(struct perf_event *event)
2439 {
2440         return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2441 }
2442
2443 static inline void intel_set_masks(struct perf_event *event, int idx)
2444 {
2445         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2446
2447         if (event->attr.exclude_host)
2448                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2449         if (event->attr.exclude_guest)
2450                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2451         if (event_is_checkpointed(event))
2452                 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2453 }
2454
2455 static inline void intel_clear_masks(struct perf_event *event, int idx)
2456 {
2457         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2458
2459         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2460         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2461         __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2462 }
2463
2464 static void intel_pmu_disable_fixed(struct perf_event *event)
2465 {
2466         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2467         struct hw_perf_event *hwc = &event->hw;
2468         int idx = hwc->idx;
2469         u64 mask;
2470
2471         if (is_topdown_idx(idx)) {
2472                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2473
2474                 /*
2475                  * When there are other active TopDown events,
2476                  * don't disable the fixed counter 3.
2477                  */
2478                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2479                         return;
2480                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2481         }
2482
2483         intel_clear_masks(event, idx);
2484
2485         mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2486         cpuc->fixed_ctrl_val &= ~mask;
2487 }
2488
2489 static void intel_pmu_disable_event(struct perf_event *event)
2490 {
2491         struct hw_perf_event *hwc = &event->hw;
2492         int idx = hwc->idx;
2493
2494         switch (idx) {
2495         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2496                 intel_clear_masks(event, idx);
2497                 x86_pmu_disable_event(event);
2498                 break;
2499         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2500         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2501                 intel_pmu_disable_fixed(event);
2502                 break;
2503         case INTEL_PMC_IDX_FIXED_BTS:
2504                 intel_pmu_disable_bts();
2505                 intel_pmu_drain_bts_buffer();
2506                 return;
2507         case INTEL_PMC_IDX_FIXED_VLBR:
2508                 intel_clear_masks(event, idx);
2509                 break;
2510         default:
2511                 intel_clear_masks(event, idx);
2512                 pr_warn("Failed to disable the event with invalid index %d\n",
2513                         idx);
2514                 return;
2515         }
2516
2517         /*
2518          * Needs to be called after x86_pmu_disable_event,
2519          * so we don't trigger the event without PEBS bit set.
2520          */
2521         if (unlikely(event->attr.precise_ip))
2522                 intel_pmu_pebs_disable(event);
2523 }
2524
2525 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2526 {
2527         if (is_pebs_pt(event))
2528                 perf_report_aux_output_id(event, idx);
2529 }
2530
2531 static __always_inline bool intel_pmu_needs_branch_stack(struct perf_event *event)
2532 {
2533         return event->hw.flags & PERF_X86_EVENT_NEEDS_BRANCH_STACK;
2534 }
2535
2536 static void intel_pmu_del_event(struct perf_event *event)
2537 {
2538         if (intel_pmu_needs_branch_stack(event))
2539                 intel_pmu_lbr_del(event);
2540         if (event->attr.precise_ip)
2541                 intel_pmu_pebs_del(event);
2542 }
2543
2544 static int icl_set_topdown_event_period(struct perf_event *event)
2545 {
2546         struct hw_perf_event *hwc = &event->hw;
2547         s64 left = local64_read(&hwc->period_left);
2548
2549         /*
2550          * The values in PERF_METRICS MSR are derived from fixed counter 3.
2551          * Software should start both registers, PERF_METRICS and fixed
2552          * counter 3, from zero.
2553          * Clear PERF_METRICS and Fixed counter 3 in initialization.
2554          * After that, both MSRs will be cleared for each read.
2555          * Don't need to clear them again.
2556          */
2557         if (left == x86_pmu.max_period) {
2558                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2559                 wrmsrl(MSR_PERF_METRICS, 0);
2560                 hwc->saved_slots = 0;
2561                 hwc->saved_metric = 0;
2562         }
2563
2564         if ((hwc->saved_slots) && is_slots_event(event)) {
2565                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2566                 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2567         }
2568
2569         perf_event_update_userpage(event);
2570
2571         return 0;
2572 }
2573
2574 DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2575
2576 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2577 {
2578         u32 val;
2579
2580         /*
2581          * The metric is reported as an 8bit integer fraction
2582          * summing up to 0xff.
2583          * slots-in-metric = (Metric / 0xff) * slots
2584          */
2585         val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2586         return  mul_u64_u32_div(slots, val, 0xff);
2587 }
2588
2589 static u64 icl_get_topdown_value(struct perf_event *event,
2590                                        u64 slots, u64 metrics)
2591 {
2592         int idx = event->hw.idx;
2593         u64 delta;
2594
2595         if (is_metric_idx(idx))
2596                 delta = icl_get_metrics_event_value(metrics, slots, idx);
2597         else
2598                 delta = slots;
2599
2600         return delta;
2601 }
2602
2603 static void __icl_update_topdown_event(struct perf_event *event,
2604                                        u64 slots, u64 metrics,
2605                                        u64 last_slots, u64 last_metrics)
2606 {
2607         u64 delta, last = 0;
2608
2609         delta = icl_get_topdown_value(event, slots, metrics);
2610         if (last_slots)
2611                 last = icl_get_topdown_value(event, last_slots, last_metrics);
2612
2613         /*
2614          * The 8bit integer fraction of metric may be not accurate,
2615          * especially when the changes is very small.
2616          * For example, if only a few bad_spec happens, the fraction
2617          * may be reduced from 1 to 0. If so, the bad_spec event value
2618          * will be 0 which is definitely less than the last value.
2619          * Avoid update event->count for this case.
2620          */
2621         if (delta > last) {
2622                 delta -= last;
2623                 local64_add(delta, &event->count);
2624         }
2625 }
2626
2627 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2628                                       u64 metrics, int metric_end)
2629 {
2630         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2631         struct perf_event *other;
2632         int idx;
2633
2634         event->hw.saved_slots = slots;
2635         event->hw.saved_metric = metrics;
2636
2637         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2638                 if (!is_topdown_idx(idx))
2639                         continue;
2640                 other = cpuc->events[idx];
2641                 other->hw.saved_slots = slots;
2642                 other->hw.saved_metric = metrics;
2643         }
2644 }
2645
2646 /*
2647  * Update all active Topdown events.
2648  *
2649  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2650  * modify by a NMI. PMU has to be disabled before calling this function.
2651  */
2652
2653 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2654 {
2655         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2656         struct perf_event *other;
2657         u64 slots, metrics;
2658         bool reset = true;
2659         int idx;
2660
2661         /* read Fixed counter 3 */
2662         rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2663         if (!slots)
2664                 return 0;
2665
2666         /* read PERF_METRICS */
2667         rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2668
2669         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2670                 if (!is_topdown_idx(idx))
2671                         continue;
2672                 other = cpuc->events[idx];
2673                 __icl_update_topdown_event(other, slots, metrics,
2674                                            event ? event->hw.saved_slots : 0,
2675                                            event ? event->hw.saved_metric : 0);
2676         }
2677
2678         /*
2679          * Check and update this event, which may have been cleared
2680          * in active_mask e.g. x86_pmu_stop()
2681          */
2682         if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2683                 __icl_update_topdown_event(event, slots, metrics,
2684                                            event->hw.saved_slots,
2685                                            event->hw.saved_metric);
2686
2687                 /*
2688                  * In x86_pmu_stop(), the event is cleared in active_mask first,
2689                  * then drain the delta, which indicates context switch for
2690                  * counting.
2691                  * Save metric and slots for context switch.
2692                  * Don't need to reset the PERF_METRICS and Fixed counter 3.
2693                  * Because the values will be restored in next schedule in.
2694                  */
2695                 update_saved_topdown_regs(event, slots, metrics, metric_end);
2696                 reset = false;
2697         }
2698
2699         if (reset) {
2700                 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2701                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2702                 wrmsrl(MSR_PERF_METRICS, 0);
2703                 if (event)
2704                         update_saved_topdown_regs(event, 0, 0, metric_end);
2705         }
2706
2707         return slots;
2708 }
2709
2710 static u64 icl_update_topdown_event(struct perf_event *event)
2711 {
2712         return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2713                                                  x86_pmu.num_topdown_events - 1);
2714 }
2715
2716 DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, x86_perf_event_update);
2717
2718 static void intel_pmu_read_topdown_event(struct perf_event *event)
2719 {
2720         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2721
2722         /* Only need to call update_topdown_event() once for group read. */
2723         if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2724             !is_slots_event(event))
2725                 return;
2726
2727         perf_pmu_disable(event->pmu);
2728         static_call(intel_pmu_update_topdown_event)(event);
2729         perf_pmu_enable(event->pmu);
2730 }
2731
2732 static void intel_pmu_read_event(struct perf_event *event)
2733 {
2734         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2735                 intel_pmu_auto_reload_read(event);
2736         else if (is_topdown_count(event))
2737                 intel_pmu_read_topdown_event(event);
2738         else
2739                 x86_perf_event_update(event);
2740 }
2741
2742 static void intel_pmu_enable_fixed(struct perf_event *event)
2743 {
2744         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2745         struct hw_perf_event *hwc = &event->hw;
2746         u64 mask, bits = 0;
2747         int idx = hwc->idx;
2748
2749         if (is_topdown_idx(idx)) {
2750                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2751                 /*
2752                  * When there are other active TopDown events,
2753                  * don't enable the fixed counter 3 again.
2754                  */
2755                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2756                         return;
2757
2758                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2759         }
2760
2761         intel_set_masks(event, idx);
2762
2763         /*
2764          * Enable IRQ generation (0x8), if not PEBS,
2765          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2766          * if requested:
2767          */
2768         if (!event->attr.precise_ip)
2769                 bits |= INTEL_FIXED_0_ENABLE_PMI;
2770         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2771                 bits |= INTEL_FIXED_0_USER;
2772         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2773                 bits |= INTEL_FIXED_0_KERNEL;
2774
2775         /*
2776          * ANY bit is supported in v3 and up
2777          */
2778         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2779                 bits |= INTEL_FIXED_0_ANYTHREAD;
2780
2781         idx -= INTEL_PMC_IDX_FIXED;
2782         bits = intel_fixed_bits_by_idx(idx, bits);
2783         mask = intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
2784
2785         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2786                 bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2787                 mask |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2788         }
2789
2790         cpuc->fixed_ctrl_val &= ~mask;
2791         cpuc->fixed_ctrl_val |= bits;
2792 }
2793
2794 static void intel_pmu_enable_event(struct perf_event *event)
2795 {
2796         u64 enable_mask = ARCH_PERFMON_EVENTSEL_ENABLE;
2797         struct hw_perf_event *hwc = &event->hw;
2798         int idx = hwc->idx;
2799
2800         if (unlikely(event->attr.precise_ip))
2801                 intel_pmu_pebs_enable(event);
2802
2803         switch (idx) {
2804         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2805                 if (branch_sample_counters(event))
2806                         enable_mask |= ARCH_PERFMON_EVENTSEL_BR_CNTR;
2807                 intel_set_masks(event, idx);
2808                 __x86_pmu_enable_event(hwc, enable_mask);
2809                 break;
2810         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2811         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2812                 intel_pmu_enable_fixed(event);
2813                 break;
2814         case INTEL_PMC_IDX_FIXED_BTS:
2815                 if (!__this_cpu_read(cpu_hw_events.enabled))
2816                         return;
2817                 intel_pmu_enable_bts(hwc->config);
2818                 break;
2819         case INTEL_PMC_IDX_FIXED_VLBR:
2820                 intel_set_masks(event, idx);
2821                 break;
2822         default:
2823                 pr_warn("Failed to enable the event with invalid index %d\n",
2824                         idx);
2825         }
2826 }
2827
2828 static void intel_pmu_add_event(struct perf_event *event)
2829 {
2830         if (event->attr.precise_ip)
2831                 intel_pmu_pebs_add(event);
2832         if (intel_pmu_needs_branch_stack(event))
2833                 intel_pmu_lbr_add(event);
2834 }
2835
2836 /*
2837  * Save and restart an expired event. Called by NMI contexts,
2838  * so it has to be careful about preempting normal event ops:
2839  */
2840 int intel_pmu_save_and_restart(struct perf_event *event)
2841 {
2842         static_call(x86_pmu_update)(event);
2843         /*
2844          * For a checkpointed counter always reset back to 0.  This
2845          * avoids a situation where the counter overflows, aborts the
2846          * transaction and is then set back to shortly before the
2847          * overflow, and overflows and aborts again.
2848          */
2849         if (unlikely(event_is_checkpointed(event))) {
2850                 /* No race with NMIs because the counter should not be armed */
2851                 wrmsrl(event->hw.event_base, 0);
2852                 local64_set(&event->hw.prev_count, 0);
2853         }
2854         return static_call(x86_pmu_set_period)(event);
2855 }
2856
2857 static int intel_pmu_set_period(struct perf_event *event)
2858 {
2859         if (unlikely(is_topdown_count(event)))
2860                 return static_call(intel_pmu_set_topdown_event_period)(event);
2861
2862         return x86_perf_event_set_period(event);
2863 }
2864
2865 static u64 intel_pmu_update(struct perf_event *event)
2866 {
2867         if (unlikely(is_topdown_count(event)))
2868                 return static_call(intel_pmu_update_topdown_event)(event);
2869
2870         return x86_perf_event_update(event);
2871 }
2872
2873 static void intel_pmu_reset(void)
2874 {
2875         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2876         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2877         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2878         int num_counters = hybrid(cpuc->pmu, num_counters);
2879         unsigned long flags;
2880         int idx;
2881
2882         if (!num_counters)
2883                 return;
2884
2885         local_irq_save(flags);
2886
2887         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2888
2889         for (idx = 0; idx < num_counters; idx++) {
2890                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2891                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2892         }
2893         for (idx = 0; idx < num_counters_fixed; idx++) {
2894                 if (fixed_counter_disabled(idx, cpuc->pmu))
2895                         continue;
2896                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2897         }
2898
2899         if (ds)
2900                 ds->bts_index = ds->bts_buffer_base;
2901
2902         /* Ack all overflows and disable fixed counters */
2903         if (x86_pmu.version >= 2) {
2904                 intel_pmu_ack_status(intel_pmu_get_status());
2905                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2906         }
2907
2908         /* Reset LBRs and LBR freezing */
2909         if (x86_pmu.lbr_nr) {
2910                 update_debugctlmsr(get_debugctlmsr() &
2911                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2912         }
2913
2914         local_irq_restore(flags);
2915 }
2916
2917 /*
2918  * We may be running with guest PEBS events created by KVM, and the
2919  * PEBS records are logged into the guest's DS and invisible to host.
2920  *
2921  * In the case of guest PEBS overflow, we only trigger a fake event
2922  * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2923  * The guest will then vm-entry and check the guest DS area to read
2924  * the guest PEBS records.
2925  *
2926  * The contents and other behavior of the guest event do not matter.
2927  */
2928 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2929                                       struct perf_sample_data *data)
2930 {
2931         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2932         u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
2933         struct perf_event *event = NULL;
2934         int bit;
2935
2936         if (!unlikely(perf_guest_state()))
2937                 return;
2938
2939         if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
2940             !guest_pebs_idxs)
2941                 return;
2942
2943         for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
2944                          INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
2945                 event = cpuc->events[bit];
2946                 if (!event->attr.precise_ip)
2947                         continue;
2948
2949                 perf_sample_data_init(data, 0, event->hw.last_period);
2950                 if (perf_event_overflow(event, data, regs))
2951                         x86_pmu_stop(event, 0);
2952
2953                 /* Inject one fake event is enough. */
2954                 break;
2955         }
2956 }
2957
2958 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2959 {
2960         struct perf_sample_data data;
2961         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2962         int bit;
2963         int handled = 0;
2964         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2965
2966         inc_irq_stat(apic_perf_irqs);
2967
2968         /*
2969          * Ignore a range of extra bits in status that do not indicate
2970          * overflow by themselves.
2971          */
2972         status &= ~(GLOBAL_STATUS_COND_CHG |
2973                     GLOBAL_STATUS_ASIF |
2974                     GLOBAL_STATUS_LBRS_FROZEN);
2975         if (!status)
2976                 return 0;
2977         /*
2978          * In case multiple PEBS events are sampled at the same time,
2979          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2980          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2981          * having their bits set in the status register. This is a sign
2982          * that there was at least one PEBS record pending at the time
2983          * of the PMU interrupt. PEBS counters must only be processed
2984          * via the drain_pebs() calls and not via the regular sample
2985          * processing loop coming after that the function, otherwise
2986          * phony regular samples may be generated in the sampling buffer
2987          * not marked with the EXACT tag. Another possibility is to have
2988          * one PEBS event and at least one non-PEBS event which overflows
2989          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2990          * not be set, yet the overflow status bit for the PEBS counter will
2991          * be on Skylake.
2992          *
2993          * To avoid this problem, we systematically ignore the PEBS-enabled
2994          * counters from the GLOBAL_STATUS mask and we always process PEBS
2995          * events via drain_pebs().
2996          */
2997         status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
2998
2999         /*
3000          * PEBS overflow sets bit 62 in the global status register
3001          */
3002         if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
3003                 u64 pebs_enabled = cpuc->pebs_enabled;
3004
3005                 handled++;
3006                 x86_pmu_handle_guest_pebs(regs, &data);
3007                 x86_pmu.drain_pebs(regs, &data);
3008                 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
3009
3010                 /*
3011                  * PMI throttle may be triggered, which stops the PEBS event.
3012                  * Although cpuc->pebs_enabled is updated accordingly, the
3013                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
3014                  * cpuc->enabled has been forced to 0 in PMI.
3015                  * Update the MSR if pebs_enabled is changed.
3016                  */
3017                 if (pebs_enabled != cpuc->pebs_enabled)
3018                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3019         }
3020
3021         /*
3022          * Intel PT
3023          */
3024         if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3025                 handled++;
3026                 if (!perf_guest_handle_intel_pt_intr())
3027                         intel_pt_interrupt();
3028         }
3029
3030         /*
3031          * Intel Perf metrics
3032          */
3033         if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3034                 handled++;
3035                 static_call(intel_pmu_update_topdown_event)(NULL);
3036         }
3037
3038         /*
3039          * Checkpointed counters can lead to 'spurious' PMIs because the
3040          * rollback caused by the PMI will have cleared the overflow status
3041          * bit. Therefore always force probe these counters.
3042          */
3043         status |= cpuc->intel_cp_status;
3044
3045         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3046                 struct perf_event *event = cpuc->events[bit];
3047
3048                 handled++;
3049
3050                 if (!test_bit(bit, cpuc->active_mask))
3051                         continue;
3052
3053                 if (!intel_pmu_save_and_restart(event))
3054                         continue;
3055
3056                 perf_sample_data_init(&data, 0, event->hw.last_period);
3057
3058                 if (has_branch_stack(event))
3059                         intel_pmu_lbr_save_brstack(&data, cpuc, event);
3060
3061                 if (perf_event_overflow(event, &data, regs))
3062                         x86_pmu_stop(event, 0);
3063         }
3064
3065         return handled;
3066 }
3067
3068 /*
3069  * This handler is triggered by the local APIC, so the APIC IRQ handling
3070  * rules apply:
3071  */
3072 static int intel_pmu_handle_irq(struct pt_regs *regs)
3073 {
3074         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3075         bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3076         bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3077         int loops;
3078         u64 status;
3079         int handled;
3080         int pmu_enabled;
3081
3082         /*
3083          * Save the PMU state.
3084          * It needs to be restored when leaving the handler.
3085          */
3086         pmu_enabled = cpuc->enabled;
3087         /*
3088          * In general, the early ACK is only applied for old platforms.
3089          * For the big core starts from Haswell, the late ACK should be
3090          * applied.
3091          * For the small core after Tremont, we have to do the ACK right
3092          * before re-enabling counters, which is in the middle of the
3093          * NMI handler.
3094          */
3095         if (!late_ack && !mid_ack)
3096                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3097         intel_bts_disable_local();
3098         cpuc->enabled = 0;
3099         __intel_pmu_disable_all(true);
3100         handled = intel_pmu_drain_bts_buffer();
3101         handled += intel_bts_interrupt();
3102         status = intel_pmu_get_status();
3103         if (!status)
3104                 goto done;
3105
3106         loops = 0;
3107 again:
3108         intel_pmu_lbr_read();
3109         intel_pmu_ack_status(status);
3110         if (++loops > 100) {
3111                 static bool warned;
3112
3113                 if (!warned) {
3114                         WARN(1, "perfevents: irq loop stuck!\n");
3115                         perf_event_print_debug();
3116                         warned = true;
3117                 }
3118                 intel_pmu_reset();
3119                 goto done;
3120         }
3121
3122         handled += handle_pmi_common(regs, status);
3123
3124         /*
3125          * Repeat if there is more work to be done:
3126          */
3127         status = intel_pmu_get_status();
3128         if (status)
3129                 goto again;
3130
3131 done:
3132         if (mid_ack)
3133                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3134         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3135         cpuc->enabled = pmu_enabled;
3136         if (pmu_enabled)
3137                 __intel_pmu_enable_all(0, true);
3138         intel_bts_enable_local();
3139
3140         /*
3141          * Only unmask the NMI after the overflow counters
3142          * have been reset. This avoids spurious NMIs on
3143          * Haswell CPUs.
3144          */
3145         if (late_ack)
3146                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3147         return handled;
3148 }
3149
3150 static struct event_constraint *
3151 intel_bts_constraints(struct perf_event *event)
3152 {
3153         if (unlikely(intel_pmu_has_bts(event)))
3154                 return &bts_constraint;
3155
3156         return NULL;
3157 }
3158
3159 /*
3160  * Note: matches a fake event, like Fixed2.
3161  */
3162 static struct event_constraint *
3163 intel_vlbr_constraints(struct perf_event *event)
3164 {
3165         struct event_constraint *c = &vlbr_constraint;
3166
3167         if (unlikely(constraint_match(c, event->hw.config))) {
3168                 event->hw.flags |= c->flags;
3169                 return c;
3170         }
3171
3172         return NULL;
3173 }
3174
3175 static int intel_alt_er(struct cpu_hw_events *cpuc,
3176                         int idx, u64 config)
3177 {
3178         struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3179         int alt_idx = idx;
3180
3181         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3182                 return idx;
3183
3184         if (idx == EXTRA_REG_RSP_0)
3185                 alt_idx = EXTRA_REG_RSP_1;
3186
3187         if (idx == EXTRA_REG_RSP_1)
3188                 alt_idx = EXTRA_REG_RSP_0;
3189
3190         if (config & ~extra_regs[alt_idx].valid_mask)
3191                 return idx;
3192
3193         return alt_idx;
3194 }
3195
3196 static void intel_fixup_er(struct perf_event *event, int idx)
3197 {
3198         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3199         event->hw.extra_reg.idx = idx;
3200
3201         if (idx == EXTRA_REG_RSP_0) {
3202                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3203                 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3204                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3205         } else if (idx == EXTRA_REG_RSP_1) {
3206                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3207                 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3208                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3209         }
3210 }
3211
3212 /*
3213  * manage allocation of shared extra msr for certain events
3214  *
3215  * sharing can be:
3216  * per-cpu: to be shared between the various events on a single PMU
3217  * per-core: per-cpu + shared by HT threads
3218  */
3219 static struct event_constraint *
3220 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3221                                    struct perf_event *event,
3222                                    struct hw_perf_event_extra *reg)
3223 {
3224         struct event_constraint *c = &emptyconstraint;
3225         struct er_account *era;
3226         unsigned long flags;
3227         int idx = reg->idx;
3228
3229         /*
3230          * reg->alloc can be set due to existing state, so for fake cpuc we
3231          * need to ignore this, otherwise we might fail to allocate proper fake
3232          * state for this extra reg constraint. Also see the comment below.
3233          */
3234         if (reg->alloc && !cpuc->is_fake)
3235                 return NULL; /* call x86_get_event_constraint() */
3236
3237 again:
3238         era = &cpuc->shared_regs->regs[idx];
3239         /*
3240          * we use spin_lock_irqsave() to avoid lockdep issues when
3241          * passing a fake cpuc
3242          */
3243         raw_spin_lock_irqsave(&era->lock, flags);
3244
3245         if (!atomic_read(&era->ref) || era->config == reg->config) {
3246
3247                 /*
3248                  * If its a fake cpuc -- as per validate_{group,event}() we
3249                  * shouldn't touch event state and we can avoid doing so
3250                  * since both will only call get_event_constraints() once
3251                  * on each event, this avoids the need for reg->alloc.
3252                  *
3253                  * Not doing the ER fixup will only result in era->reg being
3254                  * wrong, but since we won't actually try and program hardware
3255                  * this isn't a problem either.
3256                  */
3257                 if (!cpuc->is_fake) {
3258                         if (idx != reg->idx)
3259                                 intel_fixup_er(event, idx);
3260
3261                         /*
3262                          * x86_schedule_events() can call get_event_constraints()
3263                          * multiple times on events in the case of incremental
3264                          * scheduling(). reg->alloc ensures we only do the ER
3265                          * allocation once.
3266                          */
3267                         reg->alloc = 1;
3268                 }
3269
3270                 /* lock in msr value */
3271                 era->config = reg->config;
3272                 era->reg = reg->reg;
3273
3274                 /* one more user */
3275                 atomic_inc(&era->ref);
3276
3277                 /*
3278                  * need to call x86_get_event_constraint()
3279                  * to check if associated event has constraints
3280                  */
3281                 c = NULL;
3282         } else {
3283                 idx = intel_alt_er(cpuc, idx, reg->config);
3284                 if (idx != reg->idx) {
3285                         raw_spin_unlock_irqrestore(&era->lock, flags);
3286                         goto again;
3287                 }
3288         }
3289         raw_spin_unlock_irqrestore(&era->lock, flags);
3290
3291         return c;
3292 }
3293
3294 static void
3295 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3296                                    struct hw_perf_event_extra *reg)
3297 {
3298         struct er_account *era;
3299
3300         /*
3301          * Only put constraint if extra reg was actually allocated. Also takes
3302          * care of event which do not use an extra shared reg.
3303          *
3304          * Also, if this is a fake cpuc we shouldn't touch any event state
3305          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3306          * either since it'll be thrown out.
3307          */
3308         if (!reg->alloc || cpuc->is_fake)
3309                 return;
3310
3311         era = &cpuc->shared_regs->regs[reg->idx];
3312
3313         /* one fewer user */
3314         atomic_dec(&era->ref);
3315
3316         /* allocate again next time */
3317         reg->alloc = 0;
3318 }
3319
3320 static struct event_constraint *
3321 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3322                               struct perf_event *event)
3323 {
3324         struct event_constraint *c = NULL, *d;
3325         struct hw_perf_event_extra *xreg, *breg;
3326
3327         xreg = &event->hw.extra_reg;
3328         if (xreg->idx != EXTRA_REG_NONE) {
3329                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3330                 if (c == &emptyconstraint)
3331                         return c;
3332         }
3333         breg = &event->hw.branch_reg;
3334         if (breg->idx != EXTRA_REG_NONE) {
3335                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3336                 if (d == &emptyconstraint) {
3337                         __intel_shared_reg_put_constraints(cpuc, xreg);
3338                         c = d;
3339                 }
3340         }
3341         return c;
3342 }
3343
3344 struct event_constraint *
3345 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3346                           struct perf_event *event)
3347 {
3348         struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3349         struct event_constraint *c;
3350
3351         if (event_constraints) {
3352                 for_each_event_constraint(c, event_constraints) {
3353                         if (constraint_match(c, event->hw.config)) {
3354                                 event->hw.flags |= c->flags;
3355                                 return c;
3356                         }
3357                 }
3358         }
3359
3360         return &hybrid_var(cpuc->pmu, unconstrained);
3361 }
3362
3363 static struct event_constraint *
3364 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3365                             struct perf_event *event)
3366 {
3367         struct event_constraint *c;
3368
3369         c = intel_vlbr_constraints(event);
3370         if (c)
3371                 return c;
3372
3373         c = intel_bts_constraints(event);
3374         if (c)
3375                 return c;
3376
3377         c = intel_shared_regs_constraints(cpuc, event);
3378         if (c)
3379                 return c;
3380
3381         c = intel_pebs_constraints(event);
3382         if (c)
3383                 return c;
3384
3385         return x86_get_event_constraints(cpuc, idx, event);
3386 }
3387
3388 static void
3389 intel_start_scheduling(struct cpu_hw_events *cpuc)
3390 {
3391         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3392         struct intel_excl_states *xl;
3393         int tid = cpuc->excl_thread_id;
3394
3395         /*
3396          * nothing needed if in group validation mode
3397          */
3398         if (cpuc->is_fake || !is_ht_workaround_enabled())
3399                 return;
3400
3401         /*
3402          * no exclusion needed
3403          */
3404         if (WARN_ON_ONCE(!excl_cntrs))
3405                 return;
3406
3407         xl = &excl_cntrs->states[tid];
3408
3409         xl->sched_started = true;
3410         /*
3411          * lock shared state until we are done scheduling
3412          * in stop_event_scheduling()
3413          * makes scheduling appear as a transaction
3414          */
3415         raw_spin_lock(&excl_cntrs->lock);
3416 }
3417
3418 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3419 {
3420         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3421         struct event_constraint *c = cpuc->event_constraint[idx];
3422         struct intel_excl_states *xl;
3423         int tid = cpuc->excl_thread_id;
3424
3425         if (cpuc->is_fake || !is_ht_workaround_enabled())
3426                 return;
3427
3428         if (WARN_ON_ONCE(!excl_cntrs))
3429                 return;
3430
3431         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3432                 return;
3433
3434         xl = &excl_cntrs->states[tid];
3435
3436         lockdep_assert_held(&excl_cntrs->lock);
3437
3438         if (c->flags & PERF_X86_EVENT_EXCL)
3439                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3440         else
3441                 xl->state[cntr] = INTEL_EXCL_SHARED;
3442 }
3443
3444 static void
3445 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3446 {
3447         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3448         struct intel_excl_states *xl;
3449         int tid = cpuc->excl_thread_id;
3450
3451         /*
3452          * nothing needed if in group validation mode
3453          */
3454         if (cpuc->is_fake || !is_ht_workaround_enabled())
3455                 return;
3456         /*
3457          * no exclusion needed
3458          */
3459         if (WARN_ON_ONCE(!excl_cntrs))
3460                 return;
3461
3462         xl = &excl_cntrs->states[tid];
3463
3464         xl->sched_started = false;
3465         /*
3466          * release shared state lock (acquired in intel_start_scheduling())
3467          */
3468         raw_spin_unlock(&excl_cntrs->lock);
3469 }
3470
3471 static struct event_constraint *
3472 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3473 {
3474         WARN_ON_ONCE(!cpuc->constraint_list);
3475
3476         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3477                 struct event_constraint *cx;
3478
3479                 /*
3480                  * grab pre-allocated constraint entry
3481                  */
3482                 cx = &cpuc->constraint_list[idx];
3483
3484                 /*
3485                  * initialize dynamic constraint
3486                  * with static constraint
3487                  */
3488                 *cx = *c;
3489
3490                 /*
3491                  * mark constraint as dynamic
3492                  */
3493                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3494                 c = cx;
3495         }
3496
3497         return c;
3498 }
3499
3500 static struct event_constraint *
3501 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3502                            int idx, struct event_constraint *c)
3503 {
3504         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3505         struct intel_excl_states *xlo;
3506         int tid = cpuc->excl_thread_id;
3507         int is_excl, i, w;
3508
3509         /*
3510          * validating a group does not require
3511          * enforcing cross-thread  exclusion
3512          */
3513         if (cpuc->is_fake || !is_ht_workaround_enabled())
3514                 return c;
3515
3516         /*
3517          * no exclusion needed
3518          */
3519         if (WARN_ON_ONCE(!excl_cntrs))
3520                 return c;
3521
3522         /*
3523          * because we modify the constraint, we need
3524          * to make a copy. Static constraints come
3525          * from static const tables.
3526          *
3527          * only needed when constraint has not yet
3528          * been cloned (marked dynamic)
3529          */
3530         c = dyn_constraint(cpuc, c, idx);
3531
3532         /*
3533          * From here on, the constraint is dynamic.
3534          * Either it was just allocated above, or it
3535          * was allocated during a earlier invocation
3536          * of this function
3537          */
3538
3539         /*
3540          * state of sibling HT
3541          */
3542         xlo = &excl_cntrs->states[tid ^ 1];
3543
3544         /*
3545          * event requires exclusive counter access
3546          * across HT threads
3547          */
3548         is_excl = c->flags & PERF_X86_EVENT_EXCL;
3549         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3550                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3551                 if (!cpuc->n_excl++)
3552                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3553         }
3554
3555         /*
3556          * Modify static constraint with current dynamic
3557          * state of thread
3558          *
3559          * EXCLUSIVE: sibling counter measuring exclusive event
3560          * SHARED   : sibling counter measuring non-exclusive event
3561          * UNUSED   : sibling counter unused
3562          */
3563         w = c->weight;
3564         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3565                 /*
3566                  * exclusive event in sibling counter
3567                  * our corresponding counter cannot be used
3568                  * regardless of our event
3569                  */
3570                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3571                         __clear_bit(i, c->idxmsk);
3572                         w--;
3573                         continue;
3574                 }
3575                 /*
3576                  * if measuring an exclusive event, sibling
3577                  * measuring non-exclusive, then counter cannot
3578                  * be used
3579                  */
3580                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3581                         __clear_bit(i, c->idxmsk);
3582                         w--;
3583                         continue;
3584                 }
3585         }
3586
3587         /*
3588          * if we return an empty mask, then switch
3589          * back to static empty constraint to avoid
3590          * the cost of freeing later on
3591          */
3592         if (!w)
3593                 c = &emptyconstraint;
3594
3595         c->weight = w;
3596
3597         return c;
3598 }
3599
3600 static struct event_constraint *
3601 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3602                             struct perf_event *event)
3603 {
3604         struct event_constraint *c1, *c2;
3605
3606         c1 = cpuc->event_constraint[idx];
3607
3608         /*
3609          * first time only
3610          * - static constraint: no change across incremental scheduling calls
3611          * - dynamic constraint: handled by intel_get_excl_constraints()
3612          */
3613         c2 = __intel_get_event_constraints(cpuc, idx, event);
3614         if (c1) {
3615                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3616                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3617                 c1->weight = c2->weight;
3618                 c2 = c1;
3619         }
3620
3621         if (cpuc->excl_cntrs)
3622                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3623
3624         /* Not all counters support the branch counter feature. */
3625         if (branch_sample_counters(event)) {
3626                 c2 = dyn_constraint(cpuc, c2, idx);
3627                 c2->idxmsk64 &= x86_pmu.lbr_counters;
3628                 c2->weight = hweight64(c2->idxmsk64);
3629         }
3630
3631         return c2;
3632 }
3633
3634 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3635                 struct perf_event *event)
3636 {
3637         struct hw_perf_event *hwc = &event->hw;
3638         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3639         int tid = cpuc->excl_thread_id;
3640         struct intel_excl_states *xl;
3641
3642         /*
3643          * nothing needed if in group validation mode
3644          */
3645         if (cpuc->is_fake)
3646                 return;
3647
3648         if (WARN_ON_ONCE(!excl_cntrs))
3649                 return;
3650
3651         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3652                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3653                 if (!--cpuc->n_excl)
3654                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3655         }
3656
3657         /*
3658          * If event was actually assigned, then mark the counter state as
3659          * unused now.
3660          */
3661         if (hwc->idx >= 0) {
3662                 xl = &excl_cntrs->states[tid];
3663
3664                 /*
3665                  * put_constraint may be called from x86_schedule_events()
3666                  * which already has the lock held so here make locking
3667                  * conditional.
3668                  */
3669                 if (!xl->sched_started)
3670                         raw_spin_lock(&excl_cntrs->lock);
3671
3672                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3673
3674                 if (!xl->sched_started)
3675                         raw_spin_unlock(&excl_cntrs->lock);
3676         }
3677 }
3678
3679 static void
3680 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3681                                         struct perf_event *event)
3682 {
3683         struct hw_perf_event_extra *reg;
3684
3685         reg = &event->hw.extra_reg;
3686         if (reg->idx != EXTRA_REG_NONE)
3687                 __intel_shared_reg_put_constraints(cpuc, reg);
3688
3689         reg = &event->hw.branch_reg;
3690         if (reg->idx != EXTRA_REG_NONE)
3691                 __intel_shared_reg_put_constraints(cpuc, reg);
3692 }
3693
3694 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3695                                         struct perf_event *event)
3696 {
3697         intel_put_shared_regs_event_constraints(cpuc, event);
3698
3699         /*
3700          * is PMU has exclusive counter restrictions, then
3701          * all events are subject to and must call the
3702          * put_excl_constraints() routine
3703          */
3704         if (cpuc->excl_cntrs)
3705                 intel_put_excl_constraints(cpuc, event);
3706 }
3707
3708 static void intel_pebs_aliases_core2(struct perf_event *event)
3709 {
3710         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3711                 /*
3712                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3713                  * (0x003c) so that we can use it with PEBS.
3714                  *
3715                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3716                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3717                  * (0x00c0), which is a PEBS capable event, to get the same
3718                  * count.
3719                  *
3720                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3721                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3722                  * larger than the maximum number of instructions that can be
3723                  * retired per cycle (4) and then inverting the condition, we
3724                  * count all cycles that retire 16 or less instructions, which
3725                  * is every cycle.
3726                  *
3727                  * Thereby we gain a PEBS capable cycle counter.
3728                  */
3729                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3730
3731                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3732                 event->hw.config = alt_config;
3733         }
3734 }
3735
3736 static void intel_pebs_aliases_snb(struct perf_event *event)
3737 {
3738         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3739                 /*
3740                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3741                  * (0x003c) so that we can use it with PEBS.
3742                  *
3743                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3744                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3745                  * (0x01c2), which is a PEBS capable event, to get the same
3746                  * count.
3747                  *
3748                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3749                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3750                  * larger than the maximum number of micro-ops that can be
3751                  * retired per cycle (4) and then inverting the condition, we
3752                  * count all cycles that retire 16 or less micro-ops, which
3753                  * is every cycle.
3754                  *
3755                  * Thereby we gain a PEBS capable cycle counter.
3756                  */
3757                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3758
3759                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3760                 event->hw.config = alt_config;
3761         }
3762 }
3763
3764 static void intel_pebs_aliases_precdist(struct perf_event *event)
3765 {
3766         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3767                 /*
3768                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3769                  * (0x003c) so that we can use it with PEBS.
3770                  *
3771                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3772                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3773                  * (0x01c0), which is a PEBS capable event, to get the same
3774                  * count.
3775                  *
3776                  * The PREC_DIST event has special support to minimize sample
3777                  * shadowing effects. One drawback is that it can be
3778                  * only programmed on counter 1, but that seems like an
3779                  * acceptable trade off.
3780                  */
3781                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3782
3783                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3784                 event->hw.config = alt_config;
3785         }
3786 }
3787
3788 static void intel_pebs_aliases_ivb(struct perf_event *event)
3789 {
3790         if (event->attr.precise_ip < 3)
3791                 return intel_pebs_aliases_snb(event);
3792         return intel_pebs_aliases_precdist(event);
3793 }
3794
3795 static void intel_pebs_aliases_skl(struct perf_event *event)
3796 {
3797         if (event->attr.precise_ip < 3)
3798                 return intel_pebs_aliases_core2(event);
3799         return intel_pebs_aliases_precdist(event);
3800 }
3801
3802 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3803 {
3804         unsigned long flags = x86_pmu.large_pebs_flags;
3805
3806         if (event->attr.use_clockid)
3807                 flags &= ~PERF_SAMPLE_TIME;
3808         if (!event->attr.exclude_kernel)
3809                 flags &= ~PERF_SAMPLE_REGS_USER;
3810         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3811                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3812         return flags;
3813 }
3814
3815 static int intel_pmu_bts_config(struct perf_event *event)
3816 {
3817         struct perf_event_attr *attr = &event->attr;
3818
3819         if (unlikely(intel_pmu_has_bts(event))) {
3820                 /* BTS is not supported by this architecture. */
3821                 if (!x86_pmu.bts_active)
3822                         return -EOPNOTSUPP;
3823
3824                 /* BTS is currently only allowed for user-mode. */
3825                 if (!attr->exclude_kernel)
3826                         return -EOPNOTSUPP;
3827
3828                 /* BTS is not allowed for precise events. */
3829                 if (attr->precise_ip)
3830                         return -EOPNOTSUPP;
3831
3832                 /* disallow bts if conflicting events are present */
3833                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3834                         return -EBUSY;
3835
3836                 event->destroy = hw_perf_lbr_event_destroy;
3837         }
3838
3839         return 0;
3840 }
3841
3842 static int core_pmu_hw_config(struct perf_event *event)
3843 {
3844         int ret = x86_pmu_hw_config(event);
3845
3846         if (ret)
3847                 return ret;
3848
3849         return intel_pmu_bts_config(event);
3850 }
3851
3852 #define INTEL_TD_METRIC_AVAILABLE_MAX   (INTEL_TD_METRIC_RETIRING + \
3853                                          ((x86_pmu.num_topdown_events - 1) << 8))
3854
3855 static bool is_available_metric_event(struct perf_event *event)
3856 {
3857         return is_metric_event(event) &&
3858                 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3859 }
3860
3861 static inline bool is_mem_loads_event(struct perf_event *event)
3862 {
3863         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3864 }
3865
3866 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3867 {
3868         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3869 }
3870
3871 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3872 {
3873         if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3874                 return false;
3875
3876         if (is_hybrid())
3877                 return hybrid_pmu(event->pmu)->pmu_type == hybrid_big;
3878
3879         return true;
3880 }
3881
3882 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3883 {
3884         union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3885
3886         return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3887 }
3888
3889 static int intel_pmu_hw_config(struct perf_event *event)
3890 {
3891         int ret = x86_pmu_hw_config(event);
3892
3893         if (ret)
3894                 return ret;
3895
3896         ret = intel_pmu_bts_config(event);
3897         if (ret)
3898                 return ret;
3899
3900         if (event->attr.precise_ip) {
3901                 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3902                         return -EINVAL;
3903
3904                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3905                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3906                         if (!(event->attr.sample_type &
3907                               ~intel_pmu_large_pebs_flags(event))) {
3908                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3909                                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3910                         }
3911                 }
3912                 if (x86_pmu.pebs_aliases)
3913                         x86_pmu.pebs_aliases(event);
3914         }
3915
3916         if (needs_branch_stack(event) && is_sampling_event(event))
3917                 event->hw.flags  |= PERF_X86_EVENT_NEEDS_BRANCH_STACK;
3918
3919         if (branch_sample_counters(event)) {
3920                 struct perf_event *leader, *sibling;
3921                 int num = 0;
3922
3923                 if (!(x86_pmu.flags & PMU_FL_BR_CNTR) ||
3924                     (event->attr.config & ~INTEL_ARCH_EVENT_MASK))
3925                         return -EINVAL;
3926
3927                 /*
3928                  * The branch counter logging is not supported in the call stack
3929                  * mode yet, since we cannot simply flush the LBR during e.g.,
3930                  * multiplexing. Also, there is no obvious usage with the call
3931                  * stack mode. Simply forbids it for now.
3932                  *
3933                  * If any events in the group enable the branch counter logging
3934                  * feature, the group is treated as a branch counter logging
3935                  * group, which requires the extra space to store the counters.
3936                  */
3937                 leader = event->group_leader;
3938                 if (branch_sample_call_stack(leader))
3939                         return -EINVAL;
3940                 if (branch_sample_counters(leader))
3941                         num++;
3942                 leader->hw.flags |= PERF_X86_EVENT_BRANCH_COUNTERS;
3943
3944                 for_each_sibling_event(sibling, leader) {
3945                         if (branch_sample_call_stack(sibling))
3946                                 return -EINVAL;
3947                         if (branch_sample_counters(sibling))
3948                                 num++;
3949                 }
3950
3951                 if (num > fls(x86_pmu.lbr_counters))
3952                         return -EINVAL;
3953                 /*
3954                  * Only applying the PERF_SAMPLE_BRANCH_COUNTERS doesn't
3955                  * require any branch stack setup.
3956                  * Clear the bit to avoid unnecessary branch stack setup.
3957                  */
3958                 if (0 == (event->attr.branch_sample_type &
3959                           ~(PERF_SAMPLE_BRANCH_PLM_ALL |
3960                             PERF_SAMPLE_BRANCH_COUNTERS)))
3961                         event->hw.flags  &= ~PERF_X86_EVENT_NEEDS_BRANCH_STACK;
3962
3963                 /*
3964                  * Force the leader to be a LBR event. So LBRs can be reset
3965                  * with the leader event. See intel_pmu_lbr_del() for details.
3966                  */
3967                 if (!intel_pmu_needs_branch_stack(leader))
3968                         return -EINVAL;
3969         }
3970
3971         if (intel_pmu_needs_branch_stack(event)) {
3972                 ret = intel_pmu_setup_lbr_filter(event);
3973                 if (ret)
3974                         return ret;
3975                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3976
3977                 /*
3978                  * BTS is set up earlier in this path, so don't account twice
3979                  */
3980                 if (!unlikely(intel_pmu_has_bts(event))) {
3981                         /* disallow lbr if conflicting events are present */
3982                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3983                                 return -EBUSY;
3984
3985                         event->destroy = hw_perf_lbr_event_destroy;
3986                 }
3987         }
3988
3989         if (event->attr.aux_output) {
3990                 if (!event->attr.precise_ip)
3991                         return -EINVAL;
3992
3993                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3994         }
3995
3996         if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3997             (event->attr.type == PERF_TYPE_HW_CACHE))
3998                 return 0;
3999
4000         /*
4001          * Config Topdown slots and metric events
4002          *
4003          * The slots event on Fixed Counter 3 can support sampling,
4004          * which will be handled normally in x86_perf_event_update().
4005          *
4006          * Metric events don't support sampling and require being paired
4007          * with a slots event as group leader. When the slots event
4008          * is used in a metrics group, it too cannot support sampling.
4009          */
4010         if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
4011                 if (event->attr.config1 || event->attr.config2)
4012                         return -EINVAL;
4013
4014                 /*
4015                  * The TopDown metrics events and slots event don't
4016                  * support any filters.
4017                  */
4018                 if (event->attr.config & X86_ALL_EVENT_FLAGS)
4019                         return -EINVAL;
4020
4021                 if (is_available_metric_event(event)) {
4022                         struct perf_event *leader = event->group_leader;
4023
4024                         /* The metric events don't support sampling. */
4025                         if (is_sampling_event(event))
4026                                 return -EINVAL;
4027
4028                         /* The metric events require a slots group leader. */
4029                         if (!is_slots_event(leader))
4030                                 return -EINVAL;
4031
4032                         /*
4033                          * The leader/SLOTS must not be a sampling event for
4034                          * metric use; hardware requires it starts at 0 when used
4035                          * in conjunction with MSR_PERF_METRICS.
4036                          */
4037                         if (is_sampling_event(leader))
4038                                 return -EINVAL;
4039
4040                         event->event_caps |= PERF_EV_CAP_SIBLING;
4041                         /*
4042                          * Only once we have a METRICs sibling do we
4043                          * need TopDown magic.
4044                          */
4045                         leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4046                         event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
4047                 }
4048         }
4049
4050         /*
4051          * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
4052          * doesn't function quite right. As a work-around it needs to always be
4053          * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
4054          * The actual count of this second event is irrelevant it just needs
4055          * to be active to make the first event function correctly.
4056          *
4057          * In a group, the auxiliary event must be in front of the load latency
4058          * event. The rule is to simplify the implementation of the check.
4059          * That's because perf cannot have a complete group at the moment.
4060          */
4061         if (require_mem_loads_aux_event(event) &&
4062             (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
4063             is_mem_loads_event(event)) {
4064                 struct perf_event *leader = event->group_leader;
4065                 struct perf_event *sibling = NULL;
4066
4067                 /*
4068                  * When this memload event is also the first event (no group
4069                  * exists yet), then there is no aux event before it.
4070                  */
4071                 if (leader == event)
4072                         return -ENODATA;
4073
4074                 if (!is_mem_loads_aux_event(leader)) {
4075                         for_each_sibling_event(sibling, leader) {
4076                                 if (is_mem_loads_aux_event(sibling))
4077                                         break;
4078                         }
4079                         if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4080                                 return -ENODATA;
4081                 }
4082         }
4083
4084         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4085                 return 0;
4086
4087         if (x86_pmu.version < 3)
4088                 return -EINVAL;
4089
4090         ret = perf_allow_cpu(&event->attr);
4091         if (ret)
4092                 return ret;
4093
4094         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4095
4096         return 0;
4097 }
4098
4099 /*
4100  * Currently, the only caller of this function is the atomic_switch_perf_msrs().
4101  * The host perf context helps to prepare the values of the real hardware for
4102  * a set of msrs that need to be switched atomically in a vmx transaction.
4103  *
4104  * For example, the pseudocode needed to add a new msr should look like:
4105  *
4106  * arr[(*nr)++] = (struct perf_guest_switch_msr){
4107  *      .msr = the hardware msr address,
4108  *      .host = the value the hardware has when it doesn't run a guest,
4109  *      .guest = the value the hardware has when it runs a guest,
4110  * };
4111  *
4112  * These values have nothing to do with the emulated values the guest sees
4113  * when it uses {RD,WR}MSR, which should be handled by the KVM context,
4114  * specifically in the intel_pmu_{get,set}_msr().
4115  */
4116 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4117 {
4118         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4119         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4120         struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4121         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4122         u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4123         int global_ctrl, pebs_enable;
4124
4125         /*
4126          * In addition to obeying exclude_guest/exclude_host, remove bits being
4127          * used for PEBS when running a guest, because PEBS writes to virtual
4128          * addresses (not physical addresses).
4129          */
4130         *nr = 0;
4131         global_ctrl = (*nr)++;
4132         arr[global_ctrl] = (struct perf_guest_switch_msr){
4133                 .msr = MSR_CORE_PERF_GLOBAL_CTRL,
4134                 .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4135                 .guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
4136         };
4137
4138         if (!x86_pmu.pebs)
4139                 return arr;
4140
4141         /*
4142          * If PMU counter has PEBS enabled it is not enough to
4143          * disable counter on a guest entry since PEBS memory
4144          * write can overshoot guest entry and corrupt guest
4145          * memory. Disabling PEBS solves the problem.
4146          *
4147          * Don't do this if the CPU already enforces it.
4148          */
4149         if (x86_pmu.pebs_no_isolation) {
4150                 arr[(*nr)++] = (struct perf_guest_switch_msr){
4151                         .msr = MSR_IA32_PEBS_ENABLE,
4152                         .host = cpuc->pebs_enabled,
4153                         .guest = 0,
4154                 };
4155                 return arr;
4156         }
4157
4158         if (!kvm_pmu || !x86_pmu.pebs_ept)
4159                 return arr;
4160
4161         arr[(*nr)++] = (struct perf_guest_switch_msr){
4162                 .msr = MSR_IA32_DS_AREA,
4163                 .host = (unsigned long)cpuc->ds,
4164                 .guest = kvm_pmu->ds_area,
4165         };
4166
4167         if (x86_pmu.intel_cap.pebs_baseline) {
4168                 arr[(*nr)++] = (struct perf_guest_switch_msr){
4169                         .msr = MSR_PEBS_DATA_CFG,
4170                         .host = cpuc->active_pebs_data_cfg,
4171                         .guest = kvm_pmu->pebs_data_cfg,
4172                 };
4173         }
4174
4175         pebs_enable = (*nr)++;
4176         arr[pebs_enable] = (struct perf_guest_switch_msr){
4177                 .msr = MSR_IA32_PEBS_ENABLE,
4178                 .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4179                 .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4180         };
4181
4182         if (arr[pebs_enable].host) {
4183                 /* Disable guest PEBS if host PEBS is enabled. */
4184                 arr[pebs_enable].guest = 0;
4185         } else {
4186                 /* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4187                 arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4188                 arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4189                 /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4190                 arr[global_ctrl].guest |= arr[pebs_enable].guest;
4191         }
4192
4193         return arr;
4194 }
4195
4196 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4197 {
4198         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4199         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4200         int idx;
4201
4202         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
4203                 struct perf_event *event = cpuc->events[idx];
4204
4205                 arr[idx].msr = x86_pmu_config_addr(idx);
4206                 arr[idx].host = arr[idx].guest = 0;
4207
4208                 if (!test_bit(idx, cpuc->active_mask))
4209                         continue;
4210
4211                 arr[idx].host = arr[idx].guest =
4212                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4213
4214                 if (event->attr.exclude_host)
4215                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4216                 else if (event->attr.exclude_guest)
4217                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4218         }
4219
4220         *nr = x86_pmu.num_counters;
4221         return arr;
4222 }
4223
4224 static void core_pmu_enable_event(struct perf_event *event)
4225 {
4226         if (!event->attr.exclude_host)
4227                 x86_pmu_enable_event(event);
4228 }
4229
4230 static void core_pmu_enable_all(int added)
4231 {
4232         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4233         int idx;
4234
4235         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4236                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4237
4238                 if (!test_bit(idx, cpuc->active_mask) ||
4239                                 cpuc->events[idx]->attr.exclude_host)
4240                         continue;
4241
4242                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4243         }
4244 }
4245
4246 static int hsw_hw_config(struct perf_event *event)
4247 {
4248         int ret = intel_pmu_hw_config(event);
4249
4250         if (ret)
4251                 return ret;
4252         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4253                 return 0;
4254         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4255
4256         /*
4257          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4258          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4259          * this combination.
4260          */
4261         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4262              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4263               event->attr.precise_ip > 0))
4264                 return -EOPNOTSUPP;
4265
4266         if (event_is_checkpointed(event)) {
4267                 /*
4268                  * Sampling of checkpointed events can cause situations where
4269                  * the CPU constantly aborts because of a overflow, which is
4270                  * then checkpointed back and ignored. Forbid checkpointing
4271                  * for sampling.
4272                  *
4273                  * But still allow a long sampling period, so that perf stat
4274                  * from KVM works.
4275                  */
4276                 if (event->attr.sample_period > 0 &&
4277                     event->attr.sample_period < 0x7fffffff)
4278                         return -EOPNOTSUPP;
4279         }
4280         return 0;
4281 }
4282
4283 static struct event_constraint counter0_constraint =
4284                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4285
4286 static struct event_constraint counter1_constraint =
4287                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
4288
4289 static struct event_constraint counter0_1_constraint =
4290                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
4291
4292 static struct event_constraint counter2_constraint =
4293                         EVENT_CONSTRAINT(0, 0x4, 0);
4294
4295 static struct event_constraint fixed0_constraint =
4296                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4297
4298 static struct event_constraint fixed0_counter0_constraint =
4299                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4300
4301 static struct event_constraint fixed0_counter0_1_constraint =
4302                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
4303
4304 static struct event_constraint counters_1_7_constraint =
4305                         INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
4306
4307 static struct event_constraint *
4308 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4309                           struct perf_event *event)
4310 {
4311         struct event_constraint *c;
4312
4313         c = intel_get_event_constraints(cpuc, idx, event);
4314
4315         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4316         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4317                 if (c->idxmsk64 & (1U << 2))
4318                         return &counter2_constraint;
4319                 return &emptyconstraint;
4320         }
4321
4322         return c;
4323 }
4324
4325 static struct event_constraint *
4326 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4327                           struct perf_event *event)
4328 {
4329         /*
4330          * Fixed counter 0 has less skid.
4331          * Force instruction:ppp in Fixed counter 0
4332          */
4333         if ((event->attr.precise_ip == 3) &&
4334             constraint_match(&fixed0_constraint, event->hw.config))
4335                 return &fixed0_constraint;
4336
4337         return hsw_get_event_constraints(cpuc, idx, event);
4338 }
4339
4340 static struct event_constraint *
4341 glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4342                           struct perf_event *event)
4343 {
4344         struct event_constraint *c;
4345
4346         c = icl_get_event_constraints(cpuc, idx, event);
4347
4348         /*
4349          * The :ppp indicates the Precise Distribution (PDist) facility, which
4350          * is only supported on the GP counter 0. If a :ppp event which is not
4351          * available on the GP counter 0, error out.
4352          * Exception: Instruction PDIR is only available on the fixed counter 0.
4353          */
4354         if ((event->attr.precise_ip == 3) &&
4355             !constraint_match(&fixed0_constraint, event->hw.config)) {
4356                 if (c->idxmsk64 & BIT_ULL(0))
4357                         return &counter0_constraint;
4358
4359                 return &emptyconstraint;
4360         }
4361
4362         return c;
4363 }
4364
4365 static struct event_constraint *
4366 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4367                           struct perf_event *event)
4368 {
4369         struct event_constraint *c;
4370
4371         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4372         if (event->attr.precise_ip == 3)
4373                 return &counter0_constraint;
4374
4375         c = intel_get_event_constraints(cpuc, idx, event);
4376
4377         return c;
4378 }
4379
4380 static struct event_constraint *
4381 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4382                           struct perf_event *event)
4383 {
4384         struct event_constraint *c;
4385
4386         c = intel_get_event_constraints(cpuc, idx, event);
4387
4388         /*
4389          * :ppp means to do reduced skid PEBS,
4390          * which is available on PMC0 and fixed counter 0.
4391          */
4392         if (event->attr.precise_ip == 3) {
4393                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4394                 if (constraint_match(&fixed0_constraint, event->hw.config))
4395                         return &fixed0_counter0_constraint;
4396
4397                 return &counter0_constraint;
4398         }
4399
4400         return c;
4401 }
4402
4403 static bool allow_tsx_force_abort = true;
4404
4405 static struct event_constraint *
4406 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4407                           struct perf_event *event)
4408 {
4409         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4410
4411         /*
4412          * Without TFA we must not use PMC3.
4413          */
4414         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4415                 c = dyn_constraint(cpuc, c, idx);
4416                 c->idxmsk64 &= ~(1ULL << 3);
4417                 c->weight--;
4418         }
4419
4420         return c;
4421 }
4422
4423 static struct event_constraint *
4424 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4425                           struct perf_event *event)
4426 {
4427         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4428
4429         if (pmu->pmu_type == hybrid_big)
4430                 return glc_get_event_constraints(cpuc, idx, event);
4431         else if (pmu->pmu_type == hybrid_small)
4432                 return tnt_get_event_constraints(cpuc, idx, event);
4433
4434         WARN_ON(1);
4435         return &emptyconstraint;
4436 }
4437
4438 static struct event_constraint *
4439 cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4440                           struct perf_event *event)
4441 {
4442         struct event_constraint *c;
4443
4444         c = intel_get_event_constraints(cpuc, idx, event);
4445
4446         /*
4447          * The :ppp indicates the Precise Distribution (PDist) facility, which
4448          * is only supported on the GP counter 0 & 1 and Fixed counter 0.
4449          * If a :ppp event which is not available on the above eligible counters,
4450          * error out.
4451          */
4452         if (event->attr.precise_ip == 3) {
4453                 /* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
4454                 if (constraint_match(&fixed0_constraint, event->hw.config)) {
4455                         /* The fixed counter 0 doesn't support LBR event logging. */
4456                         if (branch_sample_counters(event))
4457                                 return &counter0_1_constraint;
4458                         else
4459                                 return &fixed0_counter0_1_constraint;
4460                 }
4461
4462                 switch (c->idxmsk64 & 0x3ull) {
4463                 case 0x1:
4464                         return &counter0_constraint;
4465                 case 0x2:
4466                         return &counter1_constraint;
4467                 case 0x3:
4468                         return &counter0_1_constraint;
4469                 }
4470                 return &emptyconstraint;
4471         }
4472
4473         return c;
4474 }
4475
4476 static struct event_constraint *
4477 rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4478                           struct perf_event *event)
4479 {
4480         struct event_constraint *c;
4481
4482         c = glc_get_event_constraints(cpuc, idx, event);
4483
4484         /* The Retire Latency is not supported by the fixed counter 0. */
4485         if (event->attr.precise_ip &&
4486             (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
4487             constraint_match(&fixed0_constraint, event->hw.config)) {
4488                 /*
4489                  * The Instruction PDIR is only available
4490                  * on the fixed counter 0. Error out for this case.
4491                  */
4492                 if (event->attr.precise_ip == 3)
4493                         return &emptyconstraint;
4494                 return &counters_1_7_constraint;
4495         }
4496
4497         return c;
4498 }
4499
4500 static struct event_constraint *
4501 mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4502                           struct perf_event *event)
4503 {
4504         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4505
4506         if (pmu->pmu_type == hybrid_big)
4507                 return rwc_get_event_constraints(cpuc, idx, event);
4508         if (pmu->pmu_type == hybrid_small)
4509                 return cmt_get_event_constraints(cpuc, idx, event);
4510
4511         WARN_ON(1);
4512         return &emptyconstraint;
4513 }
4514
4515 static int adl_hw_config(struct perf_event *event)
4516 {
4517         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4518
4519         if (pmu->pmu_type == hybrid_big)
4520                 return hsw_hw_config(event);
4521         else if (pmu->pmu_type == hybrid_small)
4522                 return intel_pmu_hw_config(event);
4523
4524         WARN_ON(1);
4525         return -EOPNOTSUPP;
4526 }
4527
4528 static enum hybrid_cpu_type adl_get_hybrid_cpu_type(void)
4529 {
4530         return HYBRID_INTEL_CORE;
4531 }
4532
4533 /*
4534  * Broadwell:
4535  *
4536  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4537  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4538  * the two to enforce a minimum period of 128 (the smallest value that has bits
4539  * 0-5 cleared and >= 100).
4540  *
4541  * Because of how the code in x86_perf_event_set_period() works, the truncation
4542  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4543  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4544  *
4545  * Therefore the effective (average) period matches the requested period,
4546  * despite coarser hardware granularity.
4547  */
4548 static void bdw_limit_period(struct perf_event *event, s64 *left)
4549 {
4550         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4551                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
4552                 if (*left < 128)
4553                         *left = 128;
4554                 *left &= ~0x3fULL;
4555         }
4556 }
4557
4558 static void nhm_limit_period(struct perf_event *event, s64 *left)
4559 {
4560         *left = max(*left, 32LL);
4561 }
4562
4563 static void glc_limit_period(struct perf_event *event, s64 *left)
4564 {
4565         if (event->attr.precise_ip == 3)
4566                 *left = max(*left, 128LL);
4567 }
4568
4569 PMU_FORMAT_ATTR(event,  "config:0-7"    );
4570 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
4571 PMU_FORMAT_ATTR(edge,   "config:18"     );
4572 PMU_FORMAT_ATTR(pc,     "config:19"     );
4573 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
4574 PMU_FORMAT_ATTR(inv,    "config:23"     );
4575 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
4576 PMU_FORMAT_ATTR(in_tx,  "config:32");
4577 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4578
4579 static struct attribute *intel_arch_formats_attr[] = {
4580         &format_attr_event.attr,
4581         &format_attr_umask.attr,
4582         &format_attr_edge.attr,
4583         &format_attr_pc.attr,
4584         &format_attr_inv.attr,
4585         &format_attr_cmask.attr,
4586         NULL,
4587 };
4588
4589 ssize_t intel_event_sysfs_show(char *page, u64 config)
4590 {
4591         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4592
4593         return x86_event_sysfs_show(page, config, event);
4594 }
4595
4596 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4597 {
4598         struct intel_shared_regs *regs;
4599         int i;
4600
4601         regs = kzalloc_node(sizeof(struct intel_shared_regs),
4602                             GFP_KERNEL, cpu_to_node(cpu));
4603         if (regs) {
4604                 /*
4605                  * initialize the locks to keep lockdep happy
4606                  */
4607                 for (i = 0; i < EXTRA_REG_MAX; i++)
4608                         raw_spin_lock_init(&regs->regs[i].lock);
4609
4610                 regs->core_id = -1;
4611         }
4612         return regs;
4613 }
4614
4615 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4616 {
4617         struct intel_excl_cntrs *c;
4618
4619         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4620                          GFP_KERNEL, cpu_to_node(cpu));
4621         if (c) {
4622                 raw_spin_lock_init(&c->lock);
4623                 c->core_id = -1;
4624         }
4625         return c;
4626 }
4627
4628
4629 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4630 {
4631         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4632
4633         if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4634                 cpuc->shared_regs = allocate_shared_regs(cpu);
4635                 if (!cpuc->shared_regs)
4636                         goto err;
4637         }
4638
4639         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA | PMU_FL_BR_CNTR)) {
4640                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4641
4642                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4643                 if (!cpuc->constraint_list)
4644                         goto err_shared_regs;
4645         }
4646
4647         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4648                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4649                 if (!cpuc->excl_cntrs)
4650                         goto err_constraint_list;
4651
4652                 cpuc->excl_thread_id = 0;
4653         }
4654
4655         return 0;
4656
4657 err_constraint_list:
4658         kfree(cpuc->constraint_list);
4659         cpuc->constraint_list = NULL;
4660
4661 err_shared_regs:
4662         kfree(cpuc->shared_regs);
4663         cpuc->shared_regs = NULL;
4664
4665 err:
4666         return -ENOMEM;
4667 }
4668
4669 static int intel_pmu_cpu_prepare(int cpu)
4670 {
4671         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4672 }
4673
4674 static void flip_smm_bit(void *data)
4675 {
4676         unsigned long set = *(unsigned long *)data;
4677
4678         if (set > 0) {
4679                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4680                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4681         } else {
4682                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4683                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4684         }
4685 }
4686
4687 static void intel_pmu_check_num_counters(int *num_counters,
4688                                          int *num_counters_fixed,
4689                                          u64 *intel_ctrl, u64 fixed_mask);
4690
4691 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
4692                                               int num_counters,
4693                                               int num_counters_fixed,
4694                                               u64 intel_ctrl);
4695
4696 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs);
4697
4698 static inline bool intel_pmu_broken_perf_cap(void)
4699 {
4700         /* The Perf Metric (Bit 15) is always cleared */
4701         if ((boot_cpu_data.x86_model == INTEL_FAM6_METEORLAKE) ||
4702             (boot_cpu_data.x86_model == INTEL_FAM6_METEORLAKE_L))
4703                 return true;
4704
4705         return false;
4706 }
4707
4708 static void update_pmu_cap(struct x86_hybrid_pmu *pmu)
4709 {
4710         unsigned int sub_bitmaps = cpuid_eax(ARCH_PERFMON_EXT_LEAF);
4711         unsigned int eax, ebx, ecx, edx;
4712
4713         if (sub_bitmaps & ARCH_PERFMON_NUM_COUNTER_LEAF_BIT) {
4714                 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
4715                             &eax, &ebx, &ecx, &edx);
4716                 pmu->num_counters = fls(eax);
4717                 pmu->num_counters_fixed = fls(ebx);
4718         }
4719
4720
4721         if (!intel_pmu_broken_perf_cap()) {
4722                 /* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */
4723                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, pmu->intel_cap.capabilities);
4724         }
4725 }
4726
4727 static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu)
4728 {
4729         intel_pmu_check_num_counters(&pmu->num_counters, &pmu->num_counters_fixed,
4730                                      &pmu->intel_ctrl, (1ULL << pmu->num_counters_fixed) - 1);
4731         pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
4732         pmu->unconstrained = (struct event_constraint)
4733                              __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
4734                                                 0, pmu->num_counters, 0, 0);
4735
4736         if (pmu->intel_cap.perf_metrics)
4737                 pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
4738         else
4739                 pmu->intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4740
4741         if (pmu->intel_cap.pebs_output_pt_available)
4742                 pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
4743         else
4744                 pmu->pmu.capabilities &= ~PERF_PMU_CAP_AUX_OUTPUT;
4745
4746         intel_pmu_check_event_constraints(pmu->event_constraints,
4747                                           pmu->num_counters,
4748                                           pmu->num_counters_fixed,
4749                                           pmu->intel_ctrl);
4750
4751         intel_pmu_check_extra_regs(pmu->extra_regs);
4752 }
4753
4754 static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void)
4755 {
4756         u8 cpu_type = get_this_hybrid_cpu_type();
4757         int i;
4758
4759         /*
4760          * This is running on a CPU model that is known to have hybrid
4761          * configurations. But the CPU told us it is not hybrid, shame
4762          * on it. There should be a fixup function provided for these
4763          * troublesome CPUs (->get_hybrid_cpu_type).
4764          */
4765         if (cpu_type == HYBRID_INTEL_NONE) {
4766                 if (x86_pmu.get_hybrid_cpu_type)
4767                         cpu_type = x86_pmu.get_hybrid_cpu_type();
4768                 else
4769                         return NULL;
4770         }
4771
4772         /*
4773          * This essentially just maps between the 'hybrid_cpu_type'
4774          * and 'hybrid_pmu_type' enums:
4775          */
4776         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4777                 enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type;
4778
4779                 if (cpu_type == HYBRID_INTEL_CORE &&
4780                     pmu_type == hybrid_big)
4781                         return &x86_pmu.hybrid_pmu[i];
4782                 if (cpu_type == HYBRID_INTEL_ATOM &&
4783                     pmu_type == hybrid_small)
4784                         return &x86_pmu.hybrid_pmu[i];
4785         }
4786
4787         return NULL;
4788 }
4789
4790 static bool init_hybrid_pmu(int cpu)
4791 {
4792         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4793         struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu();
4794
4795         if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4796                 cpuc->pmu = NULL;
4797                 return false;
4798         }
4799
4800         /* Only check and dump the PMU information for the first CPU */
4801         if (!cpumask_empty(&pmu->supported_cpus))
4802                 goto end;
4803
4804         if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
4805                 update_pmu_cap(pmu);
4806
4807         intel_pmu_check_hybrid_pmus(pmu);
4808
4809         if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4810                 return false;
4811
4812         pr_info("%s PMU driver: ", pmu->name);
4813
4814         if (pmu->intel_cap.pebs_output_pt_available)
4815                 pr_cont("PEBS-via-PT ");
4816
4817         pr_cont("\n");
4818
4819         x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4820                              pmu->intel_ctrl);
4821
4822 end:
4823         cpumask_set_cpu(cpu, &pmu->supported_cpus);
4824         cpuc->pmu = &pmu->pmu;
4825
4826         return true;
4827 }
4828
4829 static void intel_pmu_cpu_starting(int cpu)
4830 {
4831         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4832         int core_id = topology_core_id(cpu);
4833         int i;
4834
4835         if (is_hybrid() && !init_hybrid_pmu(cpu))
4836                 return;
4837
4838         init_debug_store_on_cpu(cpu);
4839         /*
4840          * Deal with CPUs that don't clear their LBRs on power-up.
4841          */
4842         intel_pmu_lbr_reset();
4843
4844         cpuc->lbr_sel = NULL;
4845
4846         if (x86_pmu.flags & PMU_FL_TFA) {
4847                 WARN_ON_ONCE(cpuc->tfa_shadow);
4848                 cpuc->tfa_shadow = ~0ULL;
4849                 intel_set_tfa(cpuc, false);
4850         }
4851
4852         if (x86_pmu.version > 1)
4853                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4854
4855         /*
4856          * Disable perf metrics if any added CPU doesn't support it.
4857          *
4858          * Turn off the check for a hybrid architecture, because the
4859          * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4860          * the architecture features. The perf metrics is a model-specific
4861          * feature for now. The corresponding bit should always be 0 on
4862          * a hybrid platform, e.g., Alder Lake.
4863          */
4864         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4865                 union perf_capabilities perf_cap;
4866
4867                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4868                 if (!perf_cap.perf_metrics) {
4869                         x86_pmu.intel_cap.perf_metrics = 0;
4870                         x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4871                 }
4872         }
4873
4874         if (!cpuc->shared_regs)
4875                 return;
4876
4877         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4878                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4879                         struct intel_shared_regs *pc;
4880
4881                         pc = per_cpu(cpu_hw_events, i).shared_regs;
4882                         if (pc && pc->core_id == core_id) {
4883                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4884                                 cpuc->shared_regs = pc;
4885                                 break;
4886                         }
4887                 }
4888                 cpuc->shared_regs->core_id = core_id;
4889                 cpuc->shared_regs->refcnt++;
4890         }
4891
4892         if (x86_pmu.lbr_sel_map)
4893                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4894
4895         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4896                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4897                         struct cpu_hw_events *sibling;
4898                         struct intel_excl_cntrs *c;
4899
4900                         sibling = &per_cpu(cpu_hw_events, i);
4901                         c = sibling->excl_cntrs;
4902                         if (c && c->core_id == core_id) {
4903                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4904                                 cpuc->excl_cntrs = c;
4905                                 if (!sibling->excl_thread_id)
4906                                         cpuc->excl_thread_id = 1;
4907                                 break;
4908                         }
4909                 }
4910                 cpuc->excl_cntrs->core_id = core_id;
4911                 cpuc->excl_cntrs->refcnt++;
4912         }
4913 }
4914
4915 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4916 {
4917         struct intel_excl_cntrs *c;
4918
4919         c = cpuc->excl_cntrs;
4920         if (c) {
4921                 if (c->core_id == -1 || --c->refcnt == 0)
4922                         kfree(c);
4923                 cpuc->excl_cntrs = NULL;
4924         }
4925
4926         kfree(cpuc->constraint_list);
4927         cpuc->constraint_list = NULL;
4928 }
4929
4930 static void intel_pmu_cpu_dying(int cpu)
4931 {
4932         fini_debug_store_on_cpu(cpu);
4933 }
4934
4935 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4936 {
4937         struct intel_shared_regs *pc;
4938
4939         pc = cpuc->shared_regs;
4940         if (pc) {
4941                 if (pc->core_id == -1 || --pc->refcnt == 0)
4942                         kfree(pc);
4943                 cpuc->shared_regs = NULL;
4944         }
4945
4946         free_excl_cntrs(cpuc);
4947 }
4948
4949 static void intel_pmu_cpu_dead(int cpu)
4950 {
4951         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4952
4953         intel_cpuc_finish(cpuc);
4954
4955         if (is_hybrid() && cpuc->pmu)
4956                 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4957 }
4958
4959 static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
4960                                  bool sched_in)
4961 {
4962         intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
4963         intel_pmu_lbr_sched_task(pmu_ctx, sched_in);
4964 }
4965
4966 static void intel_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
4967                                     struct perf_event_pmu_context *next_epc)
4968 {
4969         intel_pmu_lbr_swap_task_ctx(prev_epc, next_epc);
4970 }
4971
4972 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4973 {
4974         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4975 }
4976
4977 static void intel_aux_output_init(void)
4978 {
4979         /* Refer also intel_pmu_aux_output_match() */
4980         if (x86_pmu.intel_cap.pebs_output_pt_available)
4981                 x86_pmu.assign = intel_pmu_assign_event;
4982 }
4983
4984 static int intel_pmu_aux_output_match(struct perf_event *event)
4985 {
4986         /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4987         if (!x86_pmu.intel_cap.pebs_output_pt_available)
4988                 return 0;
4989
4990         return is_intel_pt_event(event);
4991 }
4992
4993 static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
4994 {
4995         struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
4996
4997         *ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
4998 }
4999
5000 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
5001
5002 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
5003
5004 PMU_FORMAT_ATTR(frontend, "config1:0-23");
5005
5006 PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
5007
5008 static struct attribute *intel_arch3_formats_attr[] = {
5009         &format_attr_event.attr,
5010         &format_attr_umask.attr,
5011         &format_attr_edge.attr,
5012         &format_attr_pc.attr,
5013         &format_attr_any.attr,
5014         &format_attr_inv.attr,
5015         &format_attr_cmask.attr,
5016         NULL,
5017 };
5018
5019 static struct attribute *hsw_format_attr[] = {
5020         &format_attr_in_tx.attr,
5021         &format_attr_in_tx_cp.attr,
5022         &format_attr_offcore_rsp.attr,
5023         &format_attr_ldlat.attr,
5024         NULL
5025 };
5026
5027 static struct attribute *nhm_format_attr[] = {
5028         &format_attr_offcore_rsp.attr,
5029         &format_attr_ldlat.attr,
5030         NULL
5031 };
5032
5033 static struct attribute *slm_format_attr[] = {
5034         &format_attr_offcore_rsp.attr,
5035         NULL
5036 };
5037
5038 static struct attribute *cmt_format_attr[] = {
5039         &format_attr_offcore_rsp.attr,
5040         &format_attr_ldlat.attr,
5041         &format_attr_snoop_rsp.attr,
5042         NULL
5043 };
5044
5045 static struct attribute *skl_format_attr[] = {
5046         &format_attr_frontend.attr,
5047         NULL,
5048 };
5049
5050 static __initconst const struct x86_pmu core_pmu = {
5051         .name                   = "core",
5052         .handle_irq             = x86_pmu_handle_irq,
5053         .disable_all            = x86_pmu_disable_all,
5054         .enable_all             = core_pmu_enable_all,
5055         .enable                 = core_pmu_enable_event,
5056         .disable                = x86_pmu_disable_event,
5057         .hw_config              = core_pmu_hw_config,
5058         .schedule_events        = x86_schedule_events,
5059         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
5060         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
5061         .event_map              = intel_pmu_event_map,
5062         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
5063         .apic                   = 1,
5064         .large_pebs_flags       = LARGE_PEBS_FLAGS,
5065
5066         /*
5067          * Intel PMCs cannot be accessed sanely above 32-bit width,
5068          * so we install an artificial 1<<31 period regardless of
5069          * the generic event period:
5070          */
5071         .max_period             = (1ULL<<31) - 1,
5072         .get_event_constraints  = intel_get_event_constraints,
5073         .put_event_constraints  = intel_put_event_constraints,
5074         .event_constraints      = intel_core_event_constraints,
5075         .guest_get_msrs         = core_guest_get_msrs,
5076         .format_attrs           = intel_arch_formats_attr,
5077         .events_sysfs_show      = intel_event_sysfs_show,
5078
5079         /*
5080          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
5081          * together with PMU version 1 and thus be using core_pmu with
5082          * shared_regs. We need following callbacks here to allocate
5083          * it properly.
5084          */
5085         .cpu_prepare            = intel_pmu_cpu_prepare,
5086         .cpu_starting           = intel_pmu_cpu_starting,
5087         .cpu_dying              = intel_pmu_cpu_dying,
5088         .cpu_dead               = intel_pmu_cpu_dead,
5089
5090         .check_period           = intel_pmu_check_period,
5091
5092         .lbr_reset              = intel_pmu_lbr_reset_64,
5093         .lbr_read               = intel_pmu_lbr_read_64,
5094         .lbr_save               = intel_pmu_lbr_save,
5095         .lbr_restore            = intel_pmu_lbr_restore,
5096 };
5097
5098 static __initconst const struct x86_pmu intel_pmu = {
5099         .name                   = "Intel",
5100         .handle_irq             = intel_pmu_handle_irq,
5101         .disable_all            = intel_pmu_disable_all,
5102         .enable_all             = intel_pmu_enable_all,
5103         .enable                 = intel_pmu_enable_event,
5104         .disable                = intel_pmu_disable_event,
5105         .add                    = intel_pmu_add_event,
5106         .del                    = intel_pmu_del_event,
5107         .read                   = intel_pmu_read_event,
5108         .set_period             = intel_pmu_set_period,
5109         .update                 = intel_pmu_update,
5110         .hw_config              = intel_pmu_hw_config,
5111         .schedule_events        = x86_schedule_events,
5112         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
5113         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
5114         .event_map              = intel_pmu_event_map,
5115         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
5116         .apic                   = 1,
5117         .large_pebs_flags       = LARGE_PEBS_FLAGS,
5118         /*
5119          * Intel PMCs cannot be accessed sanely above 32 bit width,
5120          * so we install an artificial 1<<31 period regardless of
5121          * the generic event period:
5122          */
5123         .max_period             = (1ULL << 31) - 1,
5124         .get_event_constraints  = intel_get_event_constraints,
5125         .put_event_constraints  = intel_put_event_constraints,
5126         .pebs_aliases           = intel_pebs_aliases_core2,
5127
5128         .format_attrs           = intel_arch3_formats_attr,
5129         .events_sysfs_show      = intel_event_sysfs_show,
5130
5131         .cpu_prepare            = intel_pmu_cpu_prepare,
5132         .cpu_starting           = intel_pmu_cpu_starting,
5133         .cpu_dying              = intel_pmu_cpu_dying,
5134         .cpu_dead               = intel_pmu_cpu_dead,
5135
5136         .guest_get_msrs         = intel_guest_get_msrs,
5137         .sched_task             = intel_pmu_sched_task,
5138         .swap_task_ctx          = intel_pmu_swap_task_ctx,
5139
5140         .check_period           = intel_pmu_check_period,
5141
5142         .aux_output_match       = intel_pmu_aux_output_match,
5143
5144         .lbr_reset              = intel_pmu_lbr_reset_64,
5145         .lbr_read               = intel_pmu_lbr_read_64,
5146         .lbr_save               = intel_pmu_lbr_save,
5147         .lbr_restore            = intel_pmu_lbr_restore,
5148
5149         /*
5150          * SMM has access to all 4 rings and while traditionally SMM code only
5151          * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
5152          *
5153          * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
5154          * between SMM or not, this results in what should be pure userspace
5155          * counters including SMM data.
5156          *
5157          * This is a clear privilege issue, therefore globally disable
5158          * counting SMM by default.
5159          */
5160         .attr_freeze_on_smi     = 1,
5161 };
5162
5163 static __init void intel_clovertown_quirk(void)
5164 {
5165         /*
5166          * PEBS is unreliable due to:
5167          *
5168          *   AJ67  - PEBS may experience CPL leaks
5169          *   AJ68  - PEBS PMI may be delayed by one event
5170          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
5171          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
5172          *
5173          * AJ67 could be worked around by restricting the OS/USR flags.
5174          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
5175          *
5176          * AJ106 could possibly be worked around by not allowing LBR
5177          *       usage from PEBS, including the fixup.
5178          * AJ68  could possibly be worked around by always programming
5179          *       a pebs_event_reset[0] value and coping with the lost events.
5180          *
5181          * But taken together it might just make sense to not enable PEBS on
5182          * these chips.
5183          */
5184         pr_warn("PEBS disabled due to CPU errata\n");
5185         x86_pmu.pebs = 0;
5186         x86_pmu.pebs_constraints = NULL;
5187 }
5188
5189 static const struct x86_cpu_desc isolation_ucodes[] = {
5190         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
5191         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
5192         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
5193         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
5194         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
5195         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
5196         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
5197         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
5198         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
5199         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
5200         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
5201         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           1, 0x0b000014),
5202         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
5203         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
5204         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             5, 0x00000000),
5205         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             6, 0x00000000),
5206         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             7, 0x00000000),
5207         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,            11, 0x00000000),
5208         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
5209         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
5210         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
5211         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
5212         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
5213         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
5214         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
5215         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
5216         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
5217         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
5218         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
5219         {}
5220 };
5221
5222 static void intel_check_pebs_isolation(void)
5223 {
5224         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
5225 }
5226
5227 static __init void intel_pebs_isolation_quirk(void)
5228 {
5229         WARN_ON_ONCE(x86_pmu.check_microcode);
5230         x86_pmu.check_microcode = intel_check_pebs_isolation;
5231         intel_check_pebs_isolation();
5232 }
5233
5234 static const struct x86_cpu_desc pebs_ucodes[] = {
5235         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
5236         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
5237         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
5238         {}
5239 };
5240
5241 static bool intel_snb_pebs_broken(void)
5242 {
5243         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
5244 }
5245
5246 static void intel_snb_check_microcode(void)
5247 {
5248         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
5249                 return;
5250
5251         /*
5252          * Serialized by the microcode lock..
5253          */
5254         if (x86_pmu.pebs_broken) {
5255                 pr_info("PEBS enabled due to microcode update\n");
5256                 x86_pmu.pebs_broken = 0;
5257         } else {
5258                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
5259                 x86_pmu.pebs_broken = 1;
5260         }
5261 }
5262
5263 static bool is_lbr_from(unsigned long msr)
5264 {
5265         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
5266
5267         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
5268 }
5269
5270 /*
5271  * Under certain circumstances, access certain MSR may cause #GP.
5272  * The function tests if the input MSR can be safely accessed.
5273  */
5274 static bool check_msr(unsigned long msr, u64 mask)
5275 {
5276         u64 val_old, val_new, val_tmp;
5277
5278         /*
5279          * Disable the check for real HW, so we don't
5280          * mess with potentially enabled registers:
5281          */
5282         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
5283                 return true;
5284
5285         /*
5286          * Read the current value, change it and read it back to see if it
5287          * matches, this is needed to detect certain hardware emulators
5288          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
5289          */
5290         if (rdmsrl_safe(msr, &val_old))
5291                 return false;
5292
5293         /*
5294          * Only change the bits which can be updated by wrmsrl.
5295          */
5296         val_tmp = val_old ^ mask;
5297
5298         if (is_lbr_from(msr))
5299                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
5300
5301         if (wrmsrl_safe(msr, val_tmp) ||
5302             rdmsrl_safe(msr, &val_new))
5303                 return false;
5304
5305         /*
5306          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
5307          * should equal rdmsrl()'s even with the quirk.
5308          */
5309         if (val_new != val_tmp)
5310                 return false;
5311
5312         if (is_lbr_from(msr))
5313                 val_old = lbr_from_signext_quirk_wr(val_old);
5314
5315         /* Here it's sure that the MSR can be safely accessed.
5316          * Restore the old value and return.
5317          */
5318         wrmsrl(msr, val_old);
5319
5320         return true;
5321 }
5322
5323 static __init void intel_sandybridge_quirk(void)
5324 {
5325         x86_pmu.check_microcode = intel_snb_check_microcode;
5326         cpus_read_lock();
5327         intel_snb_check_microcode();
5328         cpus_read_unlock();
5329 }
5330
5331 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5332         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5333         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5334         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5335         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5336         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5337         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5338         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5339 };
5340
5341 static __init void intel_arch_events_quirk(void)
5342 {
5343         int bit;
5344
5345         /* disable event that reported as not present by cpuid */
5346         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5347                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5348                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
5349                         intel_arch_events_map[bit].name);
5350         }
5351 }
5352
5353 static __init void intel_nehalem_quirk(void)
5354 {
5355         union cpuid10_ebx ebx;
5356
5357         ebx.full = x86_pmu.events_maskl;
5358         if (ebx.split.no_branch_misses_retired) {
5359                 /*
5360                  * Erratum AAJ80 detected, we work it around by using
5361                  * the BR_MISP_EXEC.ANY event. This will over-count
5362                  * branch-misses, but it's still much better than the
5363                  * architectural event which is often completely bogus:
5364                  */
5365                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5366                 ebx.split.no_branch_misses_retired = 0;
5367                 x86_pmu.events_maskl = ebx.full;
5368                 pr_info("CPU erratum AAJ80 worked around\n");
5369         }
5370 }
5371
5372 /*
5373  * enable software workaround for errata:
5374  * SNB: BJ122
5375  * IVB: BV98
5376  * HSW: HSD29
5377  *
5378  * Only needed when HT is enabled. However detecting
5379  * if HT is enabled is difficult (model specific). So instead,
5380  * we enable the workaround in the early boot, and verify if
5381  * it is needed in a later initcall phase once we have valid
5382  * topology information to check if HT is actually enabled
5383  */
5384 static __init void intel_ht_bug(void)
5385 {
5386         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5387
5388         x86_pmu.start_scheduling = intel_start_scheduling;
5389         x86_pmu.commit_scheduling = intel_commit_scheduling;
5390         x86_pmu.stop_scheduling = intel_stop_scheduling;
5391 }
5392
5393 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
5394 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
5395
5396 /* Haswell special events */
5397 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
5398 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
5399 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
5400 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
5401 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
5402 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
5403 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
5404 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
5405 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
5406 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
5407 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
5408 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
5409
5410 static struct attribute *hsw_events_attrs[] = {
5411         EVENT_PTR(td_slots_issued),
5412         EVENT_PTR(td_slots_retired),
5413         EVENT_PTR(td_fetch_bubbles),
5414         EVENT_PTR(td_total_slots),
5415         EVENT_PTR(td_total_slots_scale),
5416         EVENT_PTR(td_recovery_bubbles),
5417         EVENT_PTR(td_recovery_bubbles_scale),
5418         NULL
5419 };
5420
5421 static struct attribute *hsw_mem_events_attrs[] = {
5422         EVENT_PTR(mem_ld_hsw),
5423         EVENT_PTR(mem_st_hsw),
5424         NULL,
5425 };
5426
5427 static struct attribute *hsw_tsx_events_attrs[] = {
5428         EVENT_PTR(tx_start),
5429         EVENT_PTR(tx_commit),
5430         EVENT_PTR(tx_abort),
5431         EVENT_PTR(tx_capacity),
5432         EVENT_PTR(tx_conflict),
5433         EVENT_PTR(el_start),
5434         EVENT_PTR(el_commit),
5435         EVENT_PTR(el_abort),
5436         EVENT_PTR(el_capacity),
5437         EVENT_PTR(el_conflict),
5438         EVENT_PTR(cycles_t),
5439         EVENT_PTR(cycles_ct),
5440         NULL
5441 };
5442
5443 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5444 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5445 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5446 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5447
5448 static struct attribute *icl_events_attrs[] = {
5449         EVENT_PTR(mem_ld_hsw),
5450         EVENT_PTR(mem_st_hsw),
5451         NULL,
5452 };
5453
5454 static struct attribute *icl_td_events_attrs[] = {
5455         EVENT_PTR(slots),
5456         EVENT_PTR(td_retiring),
5457         EVENT_PTR(td_bad_spec),
5458         EVENT_PTR(td_fe_bound),
5459         EVENT_PTR(td_be_bound),
5460         NULL,
5461 };
5462
5463 static struct attribute *icl_tsx_events_attrs[] = {
5464         EVENT_PTR(tx_start),
5465         EVENT_PTR(tx_abort),
5466         EVENT_PTR(tx_commit),
5467         EVENT_PTR(tx_capacity_read),
5468         EVENT_PTR(tx_capacity_write),
5469         EVENT_PTR(tx_conflict),
5470         EVENT_PTR(el_start),
5471         EVENT_PTR(el_abort),
5472         EVENT_PTR(el_commit),
5473         EVENT_PTR(el_capacity_read),
5474         EVENT_PTR(el_capacity_write),
5475         EVENT_PTR(el_conflict),
5476         EVENT_PTR(cycles_t),
5477         EVENT_PTR(cycles_ct),
5478         NULL,
5479 };
5480
5481
5482 EVENT_ATTR_STR(mem-stores,      mem_st_spr,     "event=0xcd,umask=0x2");
5483 EVENT_ATTR_STR(mem-loads-aux,   mem_ld_aux,     "event=0x03,umask=0x82");
5484
5485 static struct attribute *glc_events_attrs[] = {
5486         EVENT_PTR(mem_ld_hsw),
5487         EVENT_PTR(mem_st_spr),
5488         EVENT_PTR(mem_ld_aux),
5489         NULL,
5490 };
5491
5492 static struct attribute *glc_td_events_attrs[] = {
5493         EVENT_PTR(slots),
5494         EVENT_PTR(td_retiring),
5495         EVENT_PTR(td_bad_spec),
5496         EVENT_PTR(td_fe_bound),
5497         EVENT_PTR(td_be_bound),
5498         EVENT_PTR(td_heavy_ops),
5499         EVENT_PTR(td_br_mispredict),
5500         EVENT_PTR(td_fetch_lat),
5501         EVENT_PTR(td_mem_bound),
5502         NULL,
5503 };
5504
5505 static struct attribute *glc_tsx_events_attrs[] = {
5506         EVENT_PTR(tx_start),
5507         EVENT_PTR(tx_abort),
5508         EVENT_PTR(tx_commit),
5509         EVENT_PTR(tx_capacity_read),
5510         EVENT_PTR(tx_capacity_write),
5511         EVENT_PTR(tx_conflict),
5512         EVENT_PTR(cycles_t),
5513         EVENT_PTR(cycles_ct),
5514         NULL,
5515 };
5516
5517 static ssize_t freeze_on_smi_show(struct device *cdev,
5518                                   struct device_attribute *attr,
5519                                   char *buf)
5520 {
5521         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5522 }
5523
5524 static DEFINE_MUTEX(freeze_on_smi_mutex);
5525
5526 static ssize_t freeze_on_smi_store(struct device *cdev,
5527                                    struct device_attribute *attr,
5528                                    const char *buf, size_t count)
5529 {
5530         unsigned long val;
5531         ssize_t ret;
5532
5533         ret = kstrtoul(buf, 0, &val);
5534         if (ret)
5535                 return ret;
5536
5537         if (val > 1)
5538                 return -EINVAL;
5539
5540         mutex_lock(&freeze_on_smi_mutex);
5541
5542         if (x86_pmu.attr_freeze_on_smi == val)
5543                 goto done;
5544
5545         x86_pmu.attr_freeze_on_smi = val;
5546
5547         cpus_read_lock();
5548         on_each_cpu(flip_smm_bit, &val, 1);
5549         cpus_read_unlock();
5550 done:
5551         mutex_unlock(&freeze_on_smi_mutex);
5552
5553         return count;
5554 }
5555
5556 static void update_tfa_sched(void *ignored)
5557 {
5558         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5559
5560         /*
5561          * check if PMC3 is used
5562          * and if so force schedule out for all event types all contexts
5563          */
5564         if (test_bit(3, cpuc->active_mask))
5565                 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5566 }
5567
5568 static ssize_t show_sysctl_tfa(struct device *cdev,
5569                               struct device_attribute *attr,
5570                               char *buf)
5571 {
5572         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5573 }
5574
5575 static ssize_t set_sysctl_tfa(struct device *cdev,
5576                               struct device_attribute *attr,
5577                               const char *buf, size_t count)
5578 {
5579         bool val;
5580         ssize_t ret;
5581
5582         ret = kstrtobool(buf, &val);
5583         if (ret)
5584                 return ret;
5585
5586         /* no change */
5587         if (val == allow_tsx_force_abort)
5588                 return count;
5589
5590         allow_tsx_force_abort = val;
5591
5592         cpus_read_lock();
5593         on_each_cpu(update_tfa_sched, NULL, 1);
5594         cpus_read_unlock();
5595
5596         return count;
5597 }
5598
5599
5600 static DEVICE_ATTR_RW(freeze_on_smi);
5601
5602 static ssize_t branches_show(struct device *cdev,
5603                              struct device_attribute *attr,
5604                              char *buf)
5605 {
5606         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5607 }
5608
5609 static DEVICE_ATTR_RO(branches);
5610
5611 static ssize_t branch_counter_nr_show(struct device *cdev,
5612                                       struct device_attribute *attr,
5613                                       char *buf)
5614 {
5615         return snprintf(buf, PAGE_SIZE, "%d\n", fls(x86_pmu.lbr_counters));
5616 }
5617
5618 static DEVICE_ATTR_RO(branch_counter_nr);
5619
5620 static ssize_t branch_counter_width_show(struct device *cdev,
5621                                          struct device_attribute *attr,
5622                                          char *buf)
5623 {
5624         return snprintf(buf, PAGE_SIZE, "%d\n", LBR_INFO_BR_CNTR_BITS);
5625 }
5626
5627 static DEVICE_ATTR_RO(branch_counter_width);
5628
5629 static struct attribute *lbr_attrs[] = {
5630         &dev_attr_branches.attr,
5631         &dev_attr_branch_counter_nr.attr,
5632         &dev_attr_branch_counter_width.attr,
5633         NULL
5634 };
5635
5636 static umode_t
5637 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5638 {
5639         /* branches */
5640         if (i == 0)
5641                 return x86_pmu.lbr_nr ? attr->mode : 0;
5642
5643         return (x86_pmu.flags & PMU_FL_BR_CNTR) ? attr->mode : 0;
5644 }
5645
5646 static char pmu_name_str[30];
5647
5648 static ssize_t pmu_name_show(struct device *cdev,
5649                              struct device_attribute *attr,
5650                              char *buf)
5651 {
5652         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5653 }
5654
5655 static DEVICE_ATTR_RO(pmu_name);
5656
5657 static struct attribute *intel_pmu_caps_attrs[] = {
5658        &dev_attr_pmu_name.attr,
5659        NULL
5660 };
5661
5662 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5663                    show_sysctl_tfa,
5664                    set_sysctl_tfa);
5665
5666 static struct attribute *intel_pmu_attrs[] = {
5667         &dev_attr_freeze_on_smi.attr,
5668         &dev_attr_allow_tsx_force_abort.attr,
5669         NULL,
5670 };
5671
5672 static umode_t
5673 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5674 {
5675         if (attr == &dev_attr_allow_tsx_force_abort.attr)
5676                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5677
5678         return attr->mode;
5679 }
5680
5681 static umode_t
5682 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5683 {
5684         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5685 }
5686
5687 static umode_t
5688 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5689 {
5690         return x86_pmu.pebs ? attr->mode : 0;
5691 }
5692
5693 static umode_t
5694 mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5695 {
5696         if (attr == &event_attr_mem_ld_aux.attr.attr)
5697                 return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
5698
5699         return pebs_is_visible(kobj, attr, i);
5700 }
5701
5702 static umode_t
5703 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5704 {
5705         return x86_pmu.version >= 2 ? attr->mode : 0;
5706 }
5707
5708 static struct attribute_group group_events_td  = {
5709         .name = "events",
5710 };
5711
5712 static struct attribute_group group_events_mem = {
5713         .name       = "events",
5714         .is_visible = mem_is_visible,
5715 };
5716
5717 static struct attribute_group group_events_tsx = {
5718         .name       = "events",
5719         .is_visible = tsx_is_visible,
5720 };
5721
5722 static struct attribute_group group_caps_gen = {
5723         .name  = "caps",
5724         .attrs = intel_pmu_caps_attrs,
5725 };
5726
5727 static struct attribute_group group_caps_lbr = {
5728         .name       = "caps",
5729         .attrs      = lbr_attrs,
5730         .is_visible = lbr_is_visible,
5731 };
5732
5733 static struct attribute_group group_format_extra = {
5734         .name       = "format",
5735         .is_visible = exra_is_visible,
5736 };
5737
5738 static struct attribute_group group_format_extra_skl = {
5739         .name       = "format",
5740         .is_visible = exra_is_visible,
5741 };
5742
5743 static struct attribute_group group_default = {
5744         .attrs      = intel_pmu_attrs,
5745         .is_visible = default_is_visible,
5746 };
5747
5748 static const struct attribute_group *attr_update[] = {
5749         &group_events_td,
5750         &group_events_mem,
5751         &group_events_tsx,
5752         &group_caps_gen,
5753         &group_caps_lbr,
5754         &group_format_extra,
5755         &group_format_extra_skl,
5756         &group_default,
5757         NULL,
5758 };
5759
5760 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5761 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5762 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5763 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5764 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5765 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5766 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5767 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5768 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5769
5770 static struct attribute *adl_hybrid_events_attrs[] = {
5771         EVENT_PTR(slots_adl),
5772         EVENT_PTR(td_retiring_adl),
5773         EVENT_PTR(td_bad_spec_adl),
5774         EVENT_PTR(td_fe_bound_adl),
5775         EVENT_PTR(td_be_bound_adl),
5776         EVENT_PTR(td_heavy_ops_adl),
5777         EVENT_PTR(td_br_mis_adl),
5778         EVENT_PTR(td_fetch_lat_adl),
5779         EVENT_PTR(td_mem_bound_adl),
5780         NULL,
5781 };
5782
5783 /* Must be in IDX order */
5784 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5785 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5786 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5787
5788 static struct attribute *adl_hybrid_mem_attrs[] = {
5789         EVENT_PTR(mem_ld_adl),
5790         EVENT_PTR(mem_st_adl),
5791         EVENT_PTR(mem_ld_aux_adl),
5792         NULL,
5793 };
5794
5795 static struct attribute *mtl_hybrid_mem_attrs[] = {
5796         EVENT_PTR(mem_ld_adl),
5797         EVENT_PTR(mem_st_adl),
5798         NULL
5799 };
5800
5801 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5802 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5803 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5804 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5805 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5806 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5807 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5808 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5809
5810 static struct attribute *adl_hybrid_tsx_attrs[] = {
5811         EVENT_PTR(tx_start_adl),
5812         EVENT_PTR(tx_abort_adl),
5813         EVENT_PTR(tx_commit_adl),
5814         EVENT_PTR(tx_capacity_read_adl),
5815         EVENT_PTR(tx_capacity_write_adl),
5816         EVENT_PTR(tx_conflict_adl),
5817         EVENT_PTR(cycles_t_adl),
5818         EVENT_PTR(cycles_ct_adl),
5819         NULL,
5820 };
5821
5822 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5823 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5824 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5825 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5826 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5827
5828 #define ADL_HYBRID_RTM_FORMAT_ATTR      \
5829         FORMAT_HYBRID_PTR(in_tx),       \
5830         FORMAT_HYBRID_PTR(in_tx_cp)
5831
5832 #define ADL_HYBRID_FORMAT_ATTR          \
5833         FORMAT_HYBRID_PTR(offcore_rsp), \
5834         FORMAT_HYBRID_PTR(ldlat),       \
5835         FORMAT_HYBRID_PTR(frontend)
5836
5837 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5838         ADL_HYBRID_RTM_FORMAT_ATTR,
5839         ADL_HYBRID_FORMAT_ATTR,
5840         NULL
5841 };
5842
5843 static struct attribute *adl_hybrid_extra_attr[] = {
5844         ADL_HYBRID_FORMAT_ATTR,
5845         NULL
5846 };
5847
5848 FORMAT_ATTR_HYBRID(snoop_rsp,   hybrid_small);
5849
5850 static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
5851         ADL_HYBRID_RTM_FORMAT_ATTR,
5852         ADL_HYBRID_FORMAT_ATTR,
5853         FORMAT_HYBRID_PTR(snoop_rsp),
5854         NULL
5855 };
5856
5857 static struct attribute *mtl_hybrid_extra_attr[] = {
5858         ADL_HYBRID_FORMAT_ATTR,
5859         FORMAT_HYBRID_PTR(snoop_rsp),
5860         NULL
5861 };
5862
5863 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5864 {
5865         struct device *dev = kobj_to_dev(kobj);
5866         struct x86_hybrid_pmu *pmu =
5867                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5868         struct perf_pmu_events_hybrid_attr *pmu_attr =
5869                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5870
5871         return pmu->pmu_type & pmu_attr->pmu_type;
5872 }
5873
5874 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5875                                         struct attribute *attr, int i)
5876 {
5877         return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5878 }
5879
5880 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5881 {
5882         int cpu = cpumask_first(&pmu->supported_cpus);
5883
5884         return (cpu >= nr_cpu_ids) ? -1 : cpu;
5885 }
5886
5887 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5888                                      struct attribute *attr, int i)
5889 {
5890         struct device *dev = kobj_to_dev(kobj);
5891         struct x86_hybrid_pmu *pmu =
5892                  container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5893         int cpu = hybrid_find_supported_cpu(pmu);
5894
5895         return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5896 }
5897
5898 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5899                                         struct attribute *attr, int i)
5900 {
5901         struct device *dev = kobj_to_dev(kobj);
5902         struct x86_hybrid_pmu *pmu =
5903                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5904         struct perf_pmu_format_hybrid_attr *pmu_attr =
5905                 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5906         int cpu = hybrid_find_supported_cpu(pmu);
5907
5908         return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5909 }
5910
5911 static struct attribute_group hybrid_group_events_td  = {
5912         .name           = "events",
5913         .is_visible     = hybrid_events_is_visible,
5914 };
5915
5916 static struct attribute_group hybrid_group_events_mem = {
5917         .name           = "events",
5918         .is_visible     = hybrid_events_is_visible,
5919 };
5920
5921 static struct attribute_group hybrid_group_events_tsx = {
5922         .name           = "events",
5923         .is_visible     = hybrid_tsx_is_visible,
5924 };
5925
5926 static struct attribute_group hybrid_group_format_extra = {
5927         .name           = "format",
5928         .is_visible     = hybrid_format_is_visible,
5929 };
5930
5931 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5932                                           struct device_attribute *attr,
5933                                           char *buf)
5934 {
5935         struct x86_hybrid_pmu *pmu =
5936                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5937
5938         return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5939 }
5940
5941 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5942 static struct attribute *intel_hybrid_cpus_attrs[] = {
5943         &dev_attr_cpus.attr,
5944         NULL,
5945 };
5946
5947 static struct attribute_group hybrid_group_cpus = {
5948         .attrs          = intel_hybrid_cpus_attrs,
5949 };
5950
5951 static const struct attribute_group *hybrid_attr_update[] = {
5952         &hybrid_group_events_td,
5953         &hybrid_group_events_mem,
5954         &hybrid_group_events_tsx,
5955         &group_caps_gen,
5956         &group_caps_lbr,
5957         &hybrid_group_format_extra,
5958         &group_default,
5959         &hybrid_group_cpus,
5960         NULL,
5961 };
5962
5963 static struct attribute *empty_attrs;
5964
5965 static void intel_pmu_check_num_counters(int *num_counters,
5966                                          int *num_counters_fixed,
5967                                          u64 *intel_ctrl, u64 fixed_mask)
5968 {
5969         if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5970                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5971                      *num_counters, INTEL_PMC_MAX_GENERIC);
5972                 *num_counters = INTEL_PMC_MAX_GENERIC;
5973         }
5974         *intel_ctrl = (1ULL << *num_counters) - 1;
5975
5976         if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5977                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5978                      *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5979                 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5980         }
5981
5982         *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5983 }
5984
5985 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5986                                               int num_counters,
5987                                               int num_counters_fixed,
5988                                               u64 intel_ctrl)
5989 {
5990         struct event_constraint *c;
5991
5992         if (!event_constraints)
5993                 return;
5994
5995         /*
5996          * event on fixed counter2 (REF_CYCLES) only works on this
5997          * counter, so do not extend mask to generic counters
5998          */
5999         for_each_event_constraint(c, event_constraints) {
6000                 /*
6001                  * Don't extend the topdown slots and metrics
6002                  * events to the generic counters.
6003                  */
6004                 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
6005                         /*
6006                          * Disable topdown slots and metrics events,
6007                          * if slots event is not in CPUID.
6008                          */
6009                         if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
6010                                 c->idxmsk64 = 0;
6011                         c->weight = hweight64(c->idxmsk64);
6012                         continue;
6013                 }
6014
6015                 if (c->cmask == FIXED_EVENT_FLAGS) {
6016                         /* Disabled fixed counters which are not in CPUID */
6017                         c->idxmsk64 &= intel_ctrl;
6018
6019                         /*
6020                          * Don't extend the pseudo-encoding to the
6021                          * generic counters
6022                          */
6023                         if (!use_fixed_pseudo_encoding(c->code))
6024                                 c->idxmsk64 |= (1ULL << num_counters) - 1;
6025                 }
6026                 c->idxmsk64 &=
6027                         ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
6028                 c->weight = hweight64(c->idxmsk64);
6029         }
6030 }
6031
6032 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
6033 {
6034         struct extra_reg *er;
6035
6036         /*
6037          * Access extra MSR may cause #GP under certain circumstances.
6038          * E.g. KVM doesn't support offcore event
6039          * Check all extra_regs here.
6040          */
6041         if (!extra_regs)
6042                 return;
6043
6044         for (er = extra_regs; er->msr; er++) {
6045                 er->extra_msr_access = check_msr(er->msr, 0x11UL);
6046                 /* Disable LBR select mapping */
6047                 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
6048                         x86_pmu.lbr_sel_map = NULL;
6049         }
6050 }
6051
6052 static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = {
6053         { hybrid_small, "cpu_atom" },
6054         { hybrid_big, "cpu_core" },
6055 };
6056
6057 static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)
6058 {
6059         unsigned long pmus_mask = pmus;
6060         struct x86_hybrid_pmu *pmu;
6061         int idx = 0, bit;
6062
6063         x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask);
6064         x86_pmu.hybrid_pmu = kcalloc(x86_pmu.num_hybrid_pmus,
6065                                      sizeof(struct x86_hybrid_pmu),
6066                                      GFP_KERNEL);
6067         if (!x86_pmu.hybrid_pmu)
6068                 return -ENOMEM;
6069
6070         static_branch_enable(&perf_is_hybrid);
6071         x86_pmu.filter = intel_pmu_filter;
6072
6073         for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) {
6074                 pmu = &x86_pmu.hybrid_pmu[idx++];
6075                 pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id;
6076                 pmu->name = intel_hybrid_pmu_type_map[bit].name;
6077
6078                 pmu->num_counters = x86_pmu.num_counters;
6079                 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6080                 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6081                 pmu->unconstrained = (struct event_constraint)
6082                                      __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6083                                                         0, pmu->num_counters, 0, 0);
6084
6085                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6086                 if (pmu->pmu_type & hybrid_small) {
6087                         pmu->intel_cap.perf_metrics = 0;
6088                         pmu->intel_cap.pebs_output_pt_available = 1;
6089                         pmu->mid_ack = true;
6090                 } else if (pmu->pmu_type & hybrid_big) {
6091                         pmu->intel_cap.perf_metrics = 1;
6092                         pmu->intel_cap.pebs_output_pt_available = 0;
6093                         pmu->late_ack = true;
6094                 }
6095         }
6096
6097         return 0;
6098 }
6099
6100 static __always_inline void intel_pmu_ref_cycles_ext(void)
6101 {
6102         if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED)))
6103                 intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c;
6104 }
6105
6106 static __always_inline void intel_pmu_init_glc(struct pmu *pmu)
6107 {
6108         x86_pmu.late_ack = true;
6109         x86_pmu.limit_period = glc_limit_period;
6110         x86_pmu.pebs_aliases = NULL;
6111         x86_pmu.pebs_prec_dist = true;
6112         x86_pmu.pebs_block = true;
6113         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6114         x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6115         x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6116         x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6117         x86_pmu.lbr_pt_coexist = true;
6118         x86_pmu.num_topdown_events = 8;
6119         static_call_update(intel_pmu_update_topdown_event,
6120                            &icl_update_topdown_event);
6121         static_call_update(intel_pmu_set_topdown_event_period,
6122                            &icl_set_topdown_event_period);
6123
6124         memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6125         memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6126         hybrid(pmu, event_constraints) = intel_glc_event_constraints;
6127         hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints;
6128
6129         intel_pmu_ref_cycles_ext();
6130 }
6131
6132 static __always_inline void intel_pmu_init_grt(struct pmu *pmu)
6133 {
6134         x86_pmu.mid_ack = true;
6135         x86_pmu.limit_period = glc_limit_period;
6136         x86_pmu.pebs_aliases = NULL;
6137         x86_pmu.pebs_prec_dist = true;
6138         x86_pmu.pebs_block = true;
6139         x86_pmu.lbr_pt_coexist = true;
6140         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6141         x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6142
6143         memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6144         memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6145         hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6146         hybrid(pmu, event_constraints) = intel_grt_event_constraints;
6147         hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints;
6148         hybrid(pmu, extra_regs) = intel_grt_extra_regs;
6149
6150         intel_pmu_ref_cycles_ext();
6151 }
6152
6153 __init int intel_pmu_init(void)
6154 {
6155         struct attribute **extra_skl_attr = &empty_attrs;
6156         struct attribute **extra_attr = &empty_attrs;
6157         struct attribute **td_attr    = &empty_attrs;
6158         struct attribute **mem_attr   = &empty_attrs;
6159         struct attribute **tsx_attr   = &empty_attrs;
6160         union cpuid10_edx edx;
6161         union cpuid10_eax eax;
6162         union cpuid10_ebx ebx;
6163         unsigned int fixed_mask;
6164         bool pmem = false;
6165         int version, i;
6166         char *name;
6167         struct x86_hybrid_pmu *pmu;
6168
6169         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
6170                 switch (boot_cpu_data.x86) {
6171                 case 0x6:
6172                         return p6_pmu_init();
6173                 case 0xb:
6174                         return knc_pmu_init();
6175                 case 0xf:
6176                         return p4_pmu_init();
6177                 }
6178                 return -ENODEV;
6179         }
6180
6181         /*
6182          * Check whether the Architectural PerfMon supports
6183          * Branch Misses Retired hw_event or not.
6184          */
6185         cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
6186         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
6187                 return -ENODEV;
6188
6189         version = eax.split.version_id;
6190         if (version < 2)
6191                 x86_pmu = core_pmu;
6192         else
6193                 x86_pmu = intel_pmu;
6194
6195         x86_pmu.version                 = version;
6196         x86_pmu.num_counters            = eax.split.num_counters;
6197         x86_pmu.cntval_bits             = eax.split.bit_width;
6198         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
6199
6200         x86_pmu.events_maskl            = ebx.full;
6201         x86_pmu.events_mask_len         = eax.split.mask_length;
6202
6203         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
6204         x86_pmu.pebs_capable            = PEBS_COUNTER_MASK;
6205
6206         /*
6207          * Quirk: v2 perfmon does not report fixed-purpose events, so
6208          * assume at least 3 events, when not running in a hypervisor:
6209          */
6210         if (version > 1 && version < 5) {
6211                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
6212
6213                 x86_pmu.num_counters_fixed =
6214                         max((int)edx.split.num_counters_fixed, assume);
6215
6216                 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
6217         } else if (version >= 5)
6218                 x86_pmu.num_counters_fixed = fls(fixed_mask);
6219
6220         if (boot_cpu_has(X86_FEATURE_PDCM)) {
6221                 u64 capabilities;
6222
6223                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
6224                 x86_pmu.intel_cap.capabilities = capabilities;
6225         }
6226
6227         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
6228                 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
6229                 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
6230         }
6231
6232         if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
6233                 intel_pmu_arch_lbr_init();
6234
6235         intel_ds_init();
6236
6237         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
6238
6239         if (version >= 5) {
6240                 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
6241                 if (x86_pmu.intel_cap.anythread_deprecated)
6242                         pr_cont(" AnyThread deprecated, ");
6243         }
6244
6245         /*
6246          * Install the hw-cache-events table:
6247          */
6248         switch (boot_cpu_data.x86_model) {
6249         case INTEL_FAM6_CORE_YONAH:
6250                 pr_cont("Core events, ");
6251                 name = "core";
6252                 break;
6253
6254         case INTEL_FAM6_CORE2_MEROM:
6255                 x86_add_quirk(intel_clovertown_quirk);
6256                 fallthrough;
6257
6258         case INTEL_FAM6_CORE2_MEROM_L:
6259         case INTEL_FAM6_CORE2_PENRYN:
6260         case INTEL_FAM6_CORE2_DUNNINGTON:
6261                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
6262                        sizeof(hw_cache_event_ids));
6263
6264                 intel_pmu_lbr_init_core();
6265
6266                 x86_pmu.event_constraints = intel_core2_event_constraints;
6267                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
6268                 pr_cont("Core2 events, ");
6269                 name = "core2";
6270                 break;
6271
6272         case INTEL_FAM6_NEHALEM:
6273         case INTEL_FAM6_NEHALEM_EP:
6274         case INTEL_FAM6_NEHALEM_EX:
6275                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
6276                        sizeof(hw_cache_event_ids));
6277                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6278                        sizeof(hw_cache_extra_regs));
6279
6280                 intel_pmu_lbr_init_nhm();
6281
6282                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
6283                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
6284                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6285                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
6286                 x86_pmu.limit_period = nhm_limit_period;
6287
6288                 mem_attr = nhm_mem_events_attrs;
6289
6290                 /* UOPS_ISSUED.STALLED_CYCLES */
6291                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6292                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6293                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6294                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6295                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6296
6297                 intel_pmu_pebs_data_source_nhm();
6298                 x86_add_quirk(intel_nehalem_quirk);
6299                 x86_pmu.pebs_no_tlb = 1;
6300                 extra_attr = nhm_format_attr;
6301
6302                 pr_cont("Nehalem events, ");
6303                 name = "nehalem";
6304                 break;
6305
6306         case INTEL_FAM6_ATOM_BONNELL:
6307         case INTEL_FAM6_ATOM_BONNELL_MID:
6308         case INTEL_FAM6_ATOM_SALTWELL:
6309         case INTEL_FAM6_ATOM_SALTWELL_MID:
6310         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
6311                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
6312                        sizeof(hw_cache_event_ids));
6313
6314                 intel_pmu_lbr_init_atom();
6315
6316                 x86_pmu.event_constraints = intel_gen_event_constraints;
6317                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
6318                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
6319                 pr_cont("Atom events, ");
6320                 name = "bonnell";
6321                 break;
6322
6323         case INTEL_FAM6_ATOM_SILVERMONT:
6324         case INTEL_FAM6_ATOM_SILVERMONT_D:
6325         case INTEL_FAM6_ATOM_SILVERMONT_MID:
6326         case INTEL_FAM6_ATOM_AIRMONT:
6327         case INTEL_FAM6_ATOM_AIRMONT_MID:
6328                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
6329                         sizeof(hw_cache_event_ids));
6330                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
6331                        sizeof(hw_cache_extra_regs));
6332
6333                 intel_pmu_lbr_init_slm();
6334
6335                 x86_pmu.event_constraints = intel_slm_event_constraints;
6336                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6337                 x86_pmu.extra_regs = intel_slm_extra_regs;
6338                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6339                 td_attr = slm_events_attrs;
6340                 extra_attr = slm_format_attr;
6341                 pr_cont("Silvermont events, ");
6342                 name = "silvermont";
6343                 break;
6344
6345         case INTEL_FAM6_ATOM_GOLDMONT:
6346         case INTEL_FAM6_ATOM_GOLDMONT_D:
6347                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
6348                        sizeof(hw_cache_event_ids));
6349                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
6350                        sizeof(hw_cache_extra_regs));
6351
6352                 intel_pmu_lbr_init_skl();
6353
6354                 x86_pmu.event_constraints = intel_slm_event_constraints;
6355                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
6356                 x86_pmu.extra_regs = intel_glm_extra_regs;
6357                 /*
6358                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6359                  * for precise cycles.
6360                  * :pp is identical to :ppp
6361                  */
6362                 x86_pmu.pebs_aliases = NULL;
6363                 x86_pmu.pebs_prec_dist = true;
6364                 x86_pmu.lbr_pt_coexist = true;
6365                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6366                 td_attr = glm_events_attrs;
6367                 extra_attr = slm_format_attr;
6368                 pr_cont("Goldmont events, ");
6369                 name = "goldmont";
6370                 break;
6371
6372         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
6373                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6374                        sizeof(hw_cache_event_ids));
6375                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
6376                        sizeof(hw_cache_extra_regs));
6377
6378                 intel_pmu_lbr_init_skl();
6379
6380                 x86_pmu.event_constraints = intel_slm_event_constraints;
6381                 x86_pmu.extra_regs = intel_glm_extra_regs;
6382                 /*
6383                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6384                  * for precise cycles.
6385                  */
6386                 x86_pmu.pebs_aliases = NULL;
6387                 x86_pmu.pebs_prec_dist = true;
6388                 x86_pmu.lbr_pt_coexist = true;
6389                 x86_pmu.pebs_capable = ~0ULL;
6390                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6391                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6392                 x86_pmu.get_event_constraints = glp_get_event_constraints;
6393                 td_attr = glm_events_attrs;
6394                 /* Goldmont Plus has 4-wide pipeline */
6395                 event_attr_td_total_slots_scale_glm.event_str = "4";
6396                 extra_attr = slm_format_attr;
6397                 pr_cont("Goldmont plus events, ");
6398                 name = "goldmont_plus";
6399                 break;
6400
6401         case INTEL_FAM6_ATOM_TREMONT_D:
6402         case INTEL_FAM6_ATOM_TREMONT:
6403         case INTEL_FAM6_ATOM_TREMONT_L:
6404                 x86_pmu.late_ack = true;
6405                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6406                        sizeof(hw_cache_event_ids));
6407                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6408                        sizeof(hw_cache_extra_regs));
6409                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6410
6411                 intel_pmu_lbr_init_skl();
6412
6413                 x86_pmu.event_constraints = intel_slm_event_constraints;
6414                 x86_pmu.extra_regs = intel_tnt_extra_regs;
6415                 /*
6416                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6417                  * for precise cycles.
6418                  */
6419                 x86_pmu.pebs_aliases = NULL;
6420                 x86_pmu.pebs_prec_dist = true;
6421                 x86_pmu.lbr_pt_coexist = true;
6422                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6423                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
6424                 td_attr = tnt_events_attrs;
6425                 extra_attr = slm_format_attr;
6426                 pr_cont("Tremont events, ");
6427                 name = "Tremont";
6428                 break;
6429
6430         case INTEL_FAM6_ATOM_GRACEMONT:
6431                 intel_pmu_init_grt(NULL);
6432                 intel_pmu_pebs_data_source_grt();
6433                 x86_pmu.pebs_latency_data = adl_latency_data_small;
6434                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
6435                 td_attr = tnt_events_attrs;
6436                 mem_attr = grt_mem_attrs;
6437                 extra_attr = nhm_format_attr;
6438                 pr_cont("Gracemont events, ");
6439                 name = "gracemont";
6440                 break;
6441
6442         case INTEL_FAM6_ATOM_CRESTMONT:
6443         case INTEL_FAM6_ATOM_CRESTMONT_X:
6444                 intel_pmu_init_grt(NULL);
6445                 x86_pmu.extra_regs = intel_cmt_extra_regs;
6446                 intel_pmu_pebs_data_source_cmt();
6447                 x86_pmu.pebs_latency_data = mtl_latency_data_small;
6448                 x86_pmu.get_event_constraints = cmt_get_event_constraints;
6449                 td_attr = cmt_events_attrs;
6450                 mem_attr = grt_mem_attrs;
6451                 extra_attr = cmt_format_attr;
6452                 pr_cont("Crestmont events, ");
6453                 name = "crestmont";
6454                 break;
6455
6456         case INTEL_FAM6_WESTMERE:
6457         case INTEL_FAM6_WESTMERE_EP:
6458         case INTEL_FAM6_WESTMERE_EX:
6459                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
6460                        sizeof(hw_cache_event_ids));
6461                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6462                        sizeof(hw_cache_extra_regs));
6463
6464                 intel_pmu_lbr_init_nhm();
6465
6466                 x86_pmu.event_constraints = intel_westmere_event_constraints;
6467                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6468                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
6469                 x86_pmu.extra_regs = intel_westmere_extra_regs;
6470                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6471
6472                 mem_attr = nhm_mem_events_attrs;
6473
6474                 /* UOPS_ISSUED.STALLED_CYCLES */
6475                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6476                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6477                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6478                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6479                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6480
6481                 intel_pmu_pebs_data_source_nhm();
6482                 extra_attr = nhm_format_attr;
6483                 pr_cont("Westmere events, ");
6484                 name = "westmere";
6485                 break;
6486
6487         case INTEL_FAM6_SANDYBRIDGE:
6488         case INTEL_FAM6_SANDYBRIDGE_X:
6489                 x86_add_quirk(intel_sandybridge_quirk);
6490                 x86_add_quirk(intel_ht_bug);
6491                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6492                        sizeof(hw_cache_event_ids));
6493                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6494                        sizeof(hw_cache_extra_regs));
6495
6496                 intel_pmu_lbr_init_snb();
6497
6498                 x86_pmu.event_constraints = intel_snb_event_constraints;
6499                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6500                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6501                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
6502                         x86_pmu.extra_regs = intel_snbep_extra_regs;
6503                 else
6504                         x86_pmu.extra_regs = intel_snb_extra_regs;
6505
6506
6507                 /* all extra regs are per-cpu when HT is on */
6508                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6509                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6510
6511                 td_attr  = snb_events_attrs;
6512                 mem_attr = snb_mem_events_attrs;
6513
6514                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6515                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6516                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6517                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6518                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6519                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6520
6521                 extra_attr = nhm_format_attr;
6522
6523                 pr_cont("SandyBridge events, ");
6524                 name = "sandybridge";
6525                 break;
6526
6527         case INTEL_FAM6_IVYBRIDGE:
6528         case INTEL_FAM6_IVYBRIDGE_X:
6529                 x86_add_quirk(intel_ht_bug);
6530                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6531                        sizeof(hw_cache_event_ids));
6532                 /* dTLB-load-misses on IVB is different than SNB */
6533                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6534
6535                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6536                        sizeof(hw_cache_extra_regs));
6537
6538                 intel_pmu_lbr_init_snb();
6539
6540                 x86_pmu.event_constraints = intel_ivb_event_constraints;
6541                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6542                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6543                 x86_pmu.pebs_prec_dist = true;
6544                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
6545                         x86_pmu.extra_regs = intel_snbep_extra_regs;
6546                 else
6547                         x86_pmu.extra_regs = intel_snb_extra_regs;
6548                 /* all extra regs are per-cpu when HT is on */
6549                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6550                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6551
6552                 td_attr  = snb_events_attrs;
6553                 mem_attr = snb_mem_events_attrs;
6554
6555                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6556                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6557                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6558
6559                 extra_attr = nhm_format_attr;
6560
6561                 pr_cont("IvyBridge events, ");
6562                 name = "ivybridge";
6563                 break;
6564
6565
6566         case INTEL_FAM6_HASWELL:
6567         case INTEL_FAM6_HASWELL_X:
6568         case INTEL_FAM6_HASWELL_L:
6569         case INTEL_FAM6_HASWELL_G:
6570                 x86_add_quirk(intel_ht_bug);
6571                 x86_add_quirk(intel_pebs_isolation_quirk);
6572                 x86_pmu.late_ack = true;
6573                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6574                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6575
6576                 intel_pmu_lbr_init_hsw();
6577
6578                 x86_pmu.event_constraints = intel_hsw_event_constraints;
6579                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6580                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6581                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6582                 x86_pmu.pebs_prec_dist = true;
6583                 /* all extra regs are per-cpu when HT is on */
6584                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6585                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6586
6587                 x86_pmu.hw_config = hsw_hw_config;
6588                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6589                 x86_pmu.lbr_double_abort = true;
6590                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6591                         hsw_format_attr : nhm_format_attr;
6592                 td_attr  = hsw_events_attrs;
6593                 mem_attr = hsw_mem_events_attrs;
6594                 tsx_attr = hsw_tsx_events_attrs;
6595                 pr_cont("Haswell events, ");
6596                 name = "haswell";
6597                 break;
6598
6599         case INTEL_FAM6_BROADWELL:
6600         case INTEL_FAM6_BROADWELL_D:
6601         case INTEL_FAM6_BROADWELL_G:
6602         case INTEL_FAM6_BROADWELL_X:
6603                 x86_add_quirk(intel_pebs_isolation_quirk);
6604                 x86_pmu.late_ack = true;
6605                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6606                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6607
6608                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6609                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6610                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
6611                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6612                                                                           HSW_SNOOP_DRAM;
6613                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6614                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6615                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6616                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6617
6618                 intel_pmu_lbr_init_hsw();
6619
6620                 x86_pmu.event_constraints = intel_bdw_event_constraints;
6621                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6622                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6623                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6624                 x86_pmu.pebs_prec_dist = true;
6625                 /* all extra regs are per-cpu when HT is on */
6626                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6627                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6628
6629                 x86_pmu.hw_config = hsw_hw_config;
6630                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6631                 x86_pmu.limit_period = bdw_limit_period;
6632                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6633                         hsw_format_attr : nhm_format_attr;
6634                 td_attr  = hsw_events_attrs;
6635                 mem_attr = hsw_mem_events_attrs;
6636                 tsx_attr = hsw_tsx_events_attrs;
6637                 pr_cont("Broadwell events, ");
6638                 name = "broadwell";
6639                 break;
6640
6641         case INTEL_FAM6_XEON_PHI_KNL:
6642         case INTEL_FAM6_XEON_PHI_KNM:
6643                 memcpy(hw_cache_event_ids,
6644                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6645                 memcpy(hw_cache_extra_regs,
6646                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6647                 intel_pmu_lbr_init_knl();
6648
6649                 x86_pmu.event_constraints = intel_slm_event_constraints;
6650                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6651                 x86_pmu.extra_regs = intel_knl_extra_regs;
6652
6653                 /* all extra regs are per-cpu when HT is on */
6654                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6655                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6656                 extra_attr = slm_format_attr;
6657                 pr_cont("Knights Landing/Mill events, ");
6658                 name = "knights-landing";
6659                 break;
6660
6661         case INTEL_FAM6_SKYLAKE_X:
6662                 pmem = true;
6663                 fallthrough;
6664         case INTEL_FAM6_SKYLAKE_L:
6665         case INTEL_FAM6_SKYLAKE:
6666         case INTEL_FAM6_KABYLAKE_L:
6667         case INTEL_FAM6_KABYLAKE:
6668         case INTEL_FAM6_COMETLAKE_L:
6669         case INTEL_FAM6_COMETLAKE:
6670                 x86_add_quirk(intel_pebs_isolation_quirk);
6671                 x86_pmu.late_ack = true;
6672                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6673                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6674                 intel_pmu_lbr_init_skl();
6675
6676                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6677                 event_attr_td_recovery_bubbles.event_str_noht =
6678                         "event=0xd,umask=0x1,cmask=1";
6679                 event_attr_td_recovery_bubbles.event_str_ht =
6680                         "event=0xd,umask=0x1,cmask=1,any=1";
6681
6682                 x86_pmu.event_constraints = intel_skl_event_constraints;
6683                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6684                 x86_pmu.extra_regs = intel_skl_extra_regs;
6685                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6686                 x86_pmu.pebs_prec_dist = true;
6687                 /* all extra regs are per-cpu when HT is on */
6688                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6689                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6690
6691                 x86_pmu.hw_config = hsw_hw_config;
6692                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6693                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6694                         hsw_format_attr : nhm_format_attr;
6695                 extra_skl_attr = skl_format_attr;
6696                 td_attr  = hsw_events_attrs;
6697                 mem_attr = hsw_mem_events_attrs;
6698                 tsx_attr = hsw_tsx_events_attrs;
6699                 intel_pmu_pebs_data_source_skl(pmem);
6700
6701                 /*
6702                  * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6703                  * TSX force abort hooks are not required on these systems. Only deploy
6704                  * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6705                  */
6706                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6707                    !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6708                         x86_pmu.flags |= PMU_FL_TFA;
6709                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
6710                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6711                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6712                 }
6713
6714                 pr_cont("Skylake events, ");
6715                 name = "skylake";
6716                 break;
6717
6718         case INTEL_FAM6_ICELAKE_X:
6719         case INTEL_FAM6_ICELAKE_D:
6720                 x86_pmu.pebs_ept = 1;
6721                 pmem = true;
6722                 fallthrough;
6723         case INTEL_FAM6_ICELAKE_L:
6724         case INTEL_FAM6_ICELAKE:
6725         case INTEL_FAM6_TIGERLAKE_L:
6726         case INTEL_FAM6_TIGERLAKE:
6727         case INTEL_FAM6_ROCKETLAKE:
6728                 x86_pmu.late_ack = true;
6729                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6730                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6731                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6732                 intel_pmu_lbr_init_skl();
6733
6734                 x86_pmu.event_constraints = intel_icl_event_constraints;
6735                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6736                 x86_pmu.extra_regs = intel_icl_extra_regs;
6737                 x86_pmu.pebs_aliases = NULL;
6738                 x86_pmu.pebs_prec_dist = true;
6739                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6740                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6741
6742                 x86_pmu.hw_config = hsw_hw_config;
6743                 x86_pmu.get_event_constraints = icl_get_event_constraints;
6744                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6745                         hsw_format_attr : nhm_format_attr;
6746                 extra_skl_attr = skl_format_attr;
6747                 mem_attr = icl_events_attrs;
6748                 td_attr = icl_td_events_attrs;
6749                 tsx_attr = icl_tsx_events_attrs;
6750                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6751                 x86_pmu.lbr_pt_coexist = true;
6752                 intel_pmu_pebs_data_source_skl(pmem);
6753                 x86_pmu.num_topdown_events = 4;
6754                 static_call_update(intel_pmu_update_topdown_event,
6755                                    &icl_update_topdown_event);
6756                 static_call_update(intel_pmu_set_topdown_event_period,
6757                                    &icl_set_topdown_event_period);
6758                 pr_cont("Icelake events, ");
6759                 name = "icelake";
6760                 break;
6761
6762         case INTEL_FAM6_SAPPHIRERAPIDS_X:
6763         case INTEL_FAM6_EMERALDRAPIDS_X:
6764                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6765                 x86_pmu.extra_regs = intel_glc_extra_regs;
6766                 fallthrough;
6767         case INTEL_FAM6_GRANITERAPIDS_X:
6768         case INTEL_FAM6_GRANITERAPIDS_D:
6769                 intel_pmu_init_glc(NULL);
6770                 if (!x86_pmu.extra_regs)
6771                         x86_pmu.extra_regs = intel_rwc_extra_regs;
6772                 x86_pmu.pebs_ept = 1;
6773                 x86_pmu.hw_config = hsw_hw_config;
6774                 x86_pmu.get_event_constraints = glc_get_event_constraints;
6775                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6776                         hsw_format_attr : nhm_format_attr;
6777                 extra_skl_attr = skl_format_attr;
6778                 mem_attr = glc_events_attrs;
6779                 td_attr = glc_td_events_attrs;
6780                 tsx_attr = glc_tsx_events_attrs;
6781                 intel_pmu_pebs_data_source_skl(true);
6782                 pr_cont("Sapphire Rapids events, ");
6783                 name = "sapphire_rapids";
6784                 break;
6785
6786         case INTEL_FAM6_ALDERLAKE:
6787         case INTEL_FAM6_ALDERLAKE_L:
6788         case INTEL_FAM6_RAPTORLAKE:
6789         case INTEL_FAM6_RAPTORLAKE_P:
6790         case INTEL_FAM6_RAPTORLAKE_S:
6791                 /*
6792                  * Alder Lake has 2 types of CPU, core and atom.
6793                  *
6794                  * Initialize the common PerfMon capabilities here.
6795                  */
6796                 intel_pmu_init_hybrid(hybrid_big_small);
6797
6798                 x86_pmu.pebs_latency_data = adl_latency_data_small;
6799                 x86_pmu.get_event_constraints = adl_get_event_constraints;
6800                 x86_pmu.hw_config = adl_hw_config;
6801                 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6802
6803                 td_attr = adl_hybrid_events_attrs;
6804                 mem_attr = adl_hybrid_mem_attrs;
6805                 tsx_attr = adl_hybrid_tsx_attrs;
6806                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6807                         adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6808
6809                 /* Initialize big core specific PerfMon capabilities.*/
6810                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6811                 intel_pmu_init_glc(&pmu->pmu);
6812                 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6813                         pmu->num_counters = x86_pmu.num_counters + 2;
6814                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6815                 } else {
6816                         pmu->num_counters = x86_pmu.num_counters;
6817                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6818                 }
6819
6820                 /*
6821                  * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6822                  * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6823                  * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6824                  * mistakenly add extra counters for P-cores. Correct the number of
6825                  * counters here.
6826                  */
6827                 if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6828                         pmu->num_counters = x86_pmu.num_counters;
6829                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6830                 }
6831
6832                 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6833                 pmu->unconstrained = (struct event_constraint)
6834                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6835                                                            0, pmu->num_counters, 0, 0);
6836                 pmu->extra_regs = intel_glc_extra_regs;
6837
6838                 /* Initialize Atom core specific PerfMon capabilities.*/
6839                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6840                 intel_pmu_init_grt(&pmu->pmu);
6841
6842                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6843                 intel_pmu_pebs_data_source_adl();
6844                 pr_cont("Alderlake Hybrid events, ");
6845                 name = "alderlake_hybrid";
6846                 break;
6847
6848         case INTEL_FAM6_METEORLAKE:
6849         case INTEL_FAM6_METEORLAKE_L:
6850                 intel_pmu_init_hybrid(hybrid_big_small);
6851
6852                 x86_pmu.pebs_latency_data = mtl_latency_data_small;
6853                 x86_pmu.get_event_constraints = mtl_get_event_constraints;
6854                 x86_pmu.hw_config = adl_hw_config;
6855
6856                 td_attr = adl_hybrid_events_attrs;
6857                 mem_attr = mtl_hybrid_mem_attrs;
6858                 tsx_attr = adl_hybrid_tsx_attrs;
6859                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6860                         mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
6861
6862                 /* Initialize big core specific PerfMon capabilities.*/
6863                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6864                 intel_pmu_init_glc(&pmu->pmu);
6865                 pmu->extra_regs = intel_rwc_extra_regs;
6866
6867                 /* Initialize Atom core specific PerfMon capabilities.*/
6868                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6869                 intel_pmu_init_grt(&pmu->pmu);
6870                 pmu->extra_regs = intel_cmt_extra_regs;
6871
6872                 intel_pmu_pebs_data_source_mtl();
6873                 pr_cont("Meteorlake Hybrid events, ");
6874                 name = "meteorlake_hybrid";
6875                 break;
6876
6877         default:
6878                 switch (x86_pmu.version) {
6879                 case 1:
6880                         x86_pmu.event_constraints = intel_v1_event_constraints;
6881                         pr_cont("generic architected perfmon v1, ");
6882                         name = "generic_arch_v1";
6883                         break;
6884                 case 2:
6885                 case 3:
6886                 case 4:
6887                         /*
6888                          * default constraints for v2 and up
6889                          */
6890                         x86_pmu.event_constraints = intel_gen_event_constraints;
6891                         pr_cont("generic architected perfmon, ");
6892                         name = "generic_arch_v2+";
6893                         break;
6894                 default:
6895                         /*
6896                          * The default constraints for v5 and up can support up to
6897                          * 16 fixed counters. For the fixed counters 4 and later,
6898                          * the pseudo-encoding is applied.
6899                          * The constraints may be cut according to the CPUID enumeration
6900                          * by inserting the EVENT_CONSTRAINT_END.
6901                          */
6902                         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
6903                                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
6904                         intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
6905                         x86_pmu.event_constraints = intel_v5_gen_event_constraints;
6906                         pr_cont("generic architected perfmon, ");
6907                         name = "generic_arch_v5+";
6908                         break;
6909                 }
6910         }
6911
6912         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6913
6914         if (!is_hybrid()) {
6915                 group_events_td.attrs  = td_attr;
6916                 group_events_mem.attrs = mem_attr;
6917                 group_events_tsx.attrs = tsx_attr;
6918                 group_format_extra.attrs = extra_attr;
6919                 group_format_extra_skl.attrs = extra_skl_attr;
6920
6921                 x86_pmu.attr_update = attr_update;
6922         } else {
6923                 hybrid_group_events_td.attrs  = td_attr;
6924                 hybrid_group_events_mem.attrs = mem_attr;
6925                 hybrid_group_events_tsx.attrs = tsx_attr;
6926                 hybrid_group_format_extra.attrs = extra_attr;
6927
6928                 x86_pmu.attr_update = hybrid_attr_update;
6929         }
6930
6931         intel_pmu_check_num_counters(&x86_pmu.num_counters,
6932                                      &x86_pmu.num_counters_fixed,
6933                                      &x86_pmu.intel_ctrl,
6934                                      (u64)fixed_mask);
6935
6936         /* AnyThread may be deprecated on arch perfmon v5 or later */
6937         if (x86_pmu.intel_cap.anythread_deprecated)
6938                 x86_pmu.format_attrs = intel_arch_formats_attr;
6939
6940         intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6941                                           x86_pmu.num_counters,
6942                                           x86_pmu.num_counters_fixed,
6943                                           x86_pmu.intel_ctrl);
6944         /*
6945          * Access LBR MSR may cause #GP under certain circumstances.
6946          * Check all LBR MSR here.
6947          * Disable LBR access if any LBR MSRs can not be accessed.
6948          */
6949         if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6950                 x86_pmu.lbr_nr = 0;
6951         for (i = 0; i < x86_pmu.lbr_nr; i++) {
6952                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6953                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6954                         x86_pmu.lbr_nr = 0;
6955         }
6956
6957         if (x86_pmu.lbr_nr) {
6958                 intel_pmu_lbr_init();
6959
6960                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6961
6962                 /* only support branch_stack snapshot for perfmon >= v2 */
6963                 if (x86_pmu.disable_all == intel_pmu_disable_all) {
6964                         if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6965                                 static_call_update(perf_snapshot_branch_stack,
6966                                                    intel_pmu_snapshot_arch_branch_stack);
6967                         } else {
6968                                 static_call_update(perf_snapshot_branch_stack,
6969                                                    intel_pmu_snapshot_branch_stack);
6970                         }
6971                 }
6972         }
6973
6974         intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6975
6976         /* Support full width counters using alternative MSR range */
6977         if (x86_pmu.intel_cap.full_width_write) {
6978                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6979                 x86_pmu.perfctr = MSR_IA32_PMC0;
6980                 pr_cont("full-width counters, ");
6981         }
6982
6983         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6984                 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6985
6986         if (x86_pmu.intel_cap.pebs_timing_info)
6987                 x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
6988
6989         intel_aux_output_init();
6990
6991         return 0;
6992 }
6993
6994 /*
6995  * HT bug: phase 2 init
6996  * Called once we have valid topology information to check
6997  * whether or not HT is enabled
6998  * If HT is off, then we disable the workaround
6999  */
7000 static __init int fixup_ht_bug(void)
7001 {
7002         int c;
7003         /*
7004          * problem not present on this CPU model, nothing to do
7005          */
7006         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
7007                 return 0;
7008
7009         if (topology_max_smt_threads() > 1) {
7010                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
7011                 return 0;
7012         }
7013
7014         cpus_read_lock();
7015
7016         hardlockup_detector_perf_stop();
7017
7018         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
7019
7020         x86_pmu.start_scheduling = NULL;
7021         x86_pmu.commit_scheduling = NULL;
7022         x86_pmu.stop_scheduling = NULL;
7023
7024         hardlockup_detector_perf_restart();
7025
7026         for_each_online_cpu(c)
7027                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
7028
7029         cpus_read_unlock();
7030         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
7031         return 0;
7032 }
7033 subsys_initcall(fixup_ht_bug)