Merge tag 'libnvdimm-fixes-5.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/apic.h>
22 #include <asm/cpu_device_id.h>
23 #include <asm/hypervisor.h>
24
25 #include "../perf_event.h"
26
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
33         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
34         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
35         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
36         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
37         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
38         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
39         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
40 };
41
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50         EVENT_CONSTRAINT_END
51 };
52
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68         EVENT_CONSTRAINT_END
69 };
70
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84         EVENT_CONSTRAINT_END
85 };
86
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92         EVENT_EXTRA_END
93 };
94
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104         EVENT_CONSTRAINT_END
105 };
106
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121
122         /*
123          * When HT is off these events can only run on the bottom 4 counters
124          * When HT is on, they are impacted by the HT bug and require EXCL access
125          */
126         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130
131         EVENT_CONSTRAINT_END
132 };
133
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
141         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149
150         /*
151          * When HT is off these events can only run on the bottom 4 counters
152          * When HT is on, they are impacted by the HT bug and require EXCL access
153          */
154         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158
159         EVENT_CONSTRAINT_END
160 };
161
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168         EVENT_EXTRA_END
169 };
170
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173         EVENT_CONSTRAINT_END
174 };
175
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181         EVENT_CONSTRAINT_END
182 };
183
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189         EVENT_CONSTRAINT_END
190 };
191
192 static struct event_constraint intel_skl_event_constraints[] = {
193         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
194         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
195         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
196         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
197
198         /*
199          * when HT is off, these can only run on the bottom 4 counters
200          */
201         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
203         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
204         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
205         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
206
207         EVENT_CONSTRAINT_END
208 };
209
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213         EVENT_EXTRA_END
214 };
215
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221         EVENT_EXTRA_END
222 };
223
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229         EVENT_EXTRA_END
230 };
231
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236         /*
237          * Note the low 8 bits eventsel code is not a continuous field, containing
238          * some #GPing bits. These are masked out.
239          */
240         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241         EVENT_EXTRA_END
242 };
243
244 static struct event_constraint intel_icl_event_constraints[] = {
245         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
246         INTEL_UEVENT_CONSTRAINT(0x1c0, 0),      /* INST_RETIRED.PREC_DIST */
247         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
248         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
249         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
250         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
251         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
252         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
253         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
254         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
255         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
256         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
257         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
258         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
259         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
260         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
261         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
262         EVENT_CONSTRAINT_END
263 };
264
265 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
266         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff9fffull, RSP_0),
267         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff9fffull, RSP_1),
268         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
269         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
270         EVENT_EXTRA_END
271 };
272
273 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
274 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
275 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
276
277 static struct attribute *nhm_mem_events_attrs[] = {
278         EVENT_PTR(mem_ld_nhm),
279         NULL,
280 };
281
282 /*
283  * topdown events for Intel Core CPUs.
284  *
285  * The events are all in slots, which is a free slot in a 4 wide
286  * pipeline. Some events are already reported in slots, for cycle
287  * events we multiply by the pipeline width (4).
288  *
289  * With Hyper Threading on, topdown metrics are either summed or averaged
290  * between the threads of a core: (count_t0 + count_t1).
291  *
292  * For the average case the metric is always scaled to pipeline width,
293  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
294  */
295
296 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
297         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
298         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
299 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
300 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
301         "event=0xe,umask=0x1");                 /* uops_issued.any */
302 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
303         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
304 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
305         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
306 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
307         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
308         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
309 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
310         "4", "2");
311
312 static struct attribute *snb_events_attrs[] = {
313         EVENT_PTR(td_slots_issued),
314         EVENT_PTR(td_slots_retired),
315         EVENT_PTR(td_fetch_bubbles),
316         EVENT_PTR(td_total_slots),
317         EVENT_PTR(td_total_slots_scale),
318         EVENT_PTR(td_recovery_bubbles),
319         EVENT_PTR(td_recovery_bubbles_scale),
320         NULL,
321 };
322
323 static struct attribute *snb_mem_events_attrs[] = {
324         EVENT_PTR(mem_ld_snb),
325         EVENT_PTR(mem_st_snb),
326         NULL,
327 };
328
329 static struct event_constraint intel_hsw_event_constraints[] = {
330         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
331         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
332         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
333         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
334         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
335         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
336         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
337         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
338         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
339         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
340         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
341         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
342
343         /*
344          * When HT is off these events can only run on the bottom 4 counters
345          * When HT is on, they are impacted by the HT bug and require EXCL access
346          */
347         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
348         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
349         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
350         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
351
352         EVENT_CONSTRAINT_END
353 };
354
355 static struct event_constraint intel_bdw_event_constraints[] = {
356         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
357         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
358         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
359         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
360         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
361         /*
362          * when HT is off, these can only run on the bottom 4 counters
363          */
364         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
365         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
366         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
367         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
368         EVENT_CONSTRAINT_END
369 };
370
371 static u64 intel_pmu_event_map(int hw_event)
372 {
373         return intel_perfmon_event_map[hw_event];
374 }
375
376 /*
377  * Notes on the events:
378  * - data reads do not include code reads (comparable to earlier tables)
379  * - data counts include speculative execution (except L1 write, dtlb, bpu)
380  * - remote node access includes remote memory, remote cache, remote mmio.
381  * - prefetches are not included in the counts.
382  * - icache miss does not include decoded icache
383  */
384
385 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
386 #define SKL_DEMAND_RFO                  BIT_ULL(1)
387 #define SKL_ANY_RESPONSE                BIT_ULL(16)
388 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
389 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
390 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
391 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
392 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
393 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
394                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
395                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
396                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
397 #define SKL_SPL_HIT                     BIT_ULL(30)
398 #define SKL_SNOOP_NONE                  BIT_ULL(31)
399 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
400 #define SKL_SNOOP_MISS                  BIT_ULL(33)
401 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
402 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
403 #define SKL_SNOOP_HITM                  BIT_ULL(36)
404 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
405 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
406                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
407                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
408                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
409 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
410 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
411                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
412                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
413                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
414 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
415 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
416 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
417                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
418                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
419
420 static __initconst const u64 skl_hw_cache_event_ids
421                                 [PERF_COUNT_HW_CACHE_MAX]
422                                 [PERF_COUNT_HW_CACHE_OP_MAX]
423                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
424 {
425  [ C(L1D ) ] = {
426         [ C(OP_READ) ] = {
427                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
428                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
429         },
430         [ C(OP_WRITE) ] = {
431                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
432                 [ C(RESULT_MISS)   ] = 0x0,
433         },
434         [ C(OP_PREFETCH) ] = {
435                 [ C(RESULT_ACCESS) ] = 0x0,
436                 [ C(RESULT_MISS)   ] = 0x0,
437         },
438  },
439  [ C(L1I ) ] = {
440         [ C(OP_READ) ] = {
441                 [ C(RESULT_ACCESS) ] = 0x0,
442                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
443         },
444         [ C(OP_WRITE) ] = {
445                 [ C(RESULT_ACCESS) ] = -1,
446                 [ C(RESULT_MISS)   ] = -1,
447         },
448         [ C(OP_PREFETCH) ] = {
449                 [ C(RESULT_ACCESS) ] = 0x0,
450                 [ C(RESULT_MISS)   ] = 0x0,
451         },
452  },
453  [ C(LL  ) ] = {
454         [ C(OP_READ) ] = {
455                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
456                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
457         },
458         [ C(OP_WRITE) ] = {
459                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
460                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
461         },
462         [ C(OP_PREFETCH) ] = {
463                 [ C(RESULT_ACCESS) ] = 0x0,
464                 [ C(RESULT_MISS)   ] = 0x0,
465         },
466  },
467  [ C(DTLB) ] = {
468         [ C(OP_READ) ] = {
469                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
470                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
471         },
472         [ C(OP_WRITE) ] = {
473                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
474                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
475         },
476         [ C(OP_PREFETCH) ] = {
477                 [ C(RESULT_ACCESS) ] = 0x0,
478                 [ C(RESULT_MISS)   ] = 0x0,
479         },
480  },
481  [ C(ITLB) ] = {
482         [ C(OP_READ) ] = {
483                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
484                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
485         },
486         [ C(OP_WRITE) ] = {
487                 [ C(RESULT_ACCESS) ] = -1,
488                 [ C(RESULT_MISS)   ] = -1,
489         },
490         [ C(OP_PREFETCH) ] = {
491                 [ C(RESULT_ACCESS) ] = -1,
492                 [ C(RESULT_MISS)   ] = -1,
493         },
494  },
495  [ C(BPU ) ] = {
496         [ C(OP_READ) ] = {
497                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
498                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
499         },
500         [ C(OP_WRITE) ] = {
501                 [ C(RESULT_ACCESS) ] = -1,
502                 [ C(RESULT_MISS)   ] = -1,
503         },
504         [ C(OP_PREFETCH) ] = {
505                 [ C(RESULT_ACCESS) ] = -1,
506                 [ C(RESULT_MISS)   ] = -1,
507         },
508  },
509  [ C(NODE) ] = {
510         [ C(OP_READ) ] = {
511                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
512                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
513         },
514         [ C(OP_WRITE) ] = {
515                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
516                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
517         },
518         [ C(OP_PREFETCH) ] = {
519                 [ C(RESULT_ACCESS) ] = 0x0,
520                 [ C(RESULT_MISS)   ] = 0x0,
521         },
522  },
523 };
524
525 static __initconst const u64 skl_hw_cache_extra_regs
526                                 [PERF_COUNT_HW_CACHE_MAX]
527                                 [PERF_COUNT_HW_CACHE_OP_MAX]
528                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
529 {
530  [ C(LL  ) ] = {
531         [ C(OP_READ) ] = {
532                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
533                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
534                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
535                                        SKL_L3_MISS|SKL_ANY_SNOOP|
536                                        SKL_SUPPLIER_NONE,
537         },
538         [ C(OP_WRITE) ] = {
539                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
540                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
541                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
542                                        SKL_L3_MISS|SKL_ANY_SNOOP|
543                                        SKL_SUPPLIER_NONE,
544         },
545         [ C(OP_PREFETCH) ] = {
546                 [ C(RESULT_ACCESS) ] = 0x0,
547                 [ C(RESULT_MISS)   ] = 0x0,
548         },
549  },
550  [ C(NODE) ] = {
551         [ C(OP_READ) ] = {
552                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
553                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
554                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
555                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
556         },
557         [ C(OP_WRITE) ] = {
558                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
559                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
560                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
561                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
562         },
563         [ C(OP_PREFETCH) ] = {
564                 [ C(RESULT_ACCESS) ] = 0x0,
565                 [ C(RESULT_MISS)   ] = 0x0,
566         },
567  },
568 };
569
570 #define SNB_DMND_DATA_RD        (1ULL << 0)
571 #define SNB_DMND_RFO            (1ULL << 1)
572 #define SNB_DMND_IFETCH         (1ULL << 2)
573 #define SNB_DMND_WB             (1ULL << 3)
574 #define SNB_PF_DATA_RD          (1ULL << 4)
575 #define SNB_PF_RFO              (1ULL << 5)
576 #define SNB_PF_IFETCH           (1ULL << 6)
577 #define SNB_LLC_DATA_RD         (1ULL << 7)
578 #define SNB_LLC_RFO             (1ULL << 8)
579 #define SNB_LLC_IFETCH          (1ULL << 9)
580 #define SNB_BUS_LOCKS           (1ULL << 10)
581 #define SNB_STRM_ST             (1ULL << 11)
582 #define SNB_OTHER               (1ULL << 15)
583 #define SNB_RESP_ANY            (1ULL << 16)
584 #define SNB_NO_SUPP             (1ULL << 17)
585 #define SNB_LLC_HITM            (1ULL << 18)
586 #define SNB_LLC_HITE            (1ULL << 19)
587 #define SNB_LLC_HITS            (1ULL << 20)
588 #define SNB_LLC_HITF            (1ULL << 21)
589 #define SNB_LOCAL               (1ULL << 22)
590 #define SNB_REMOTE              (0xffULL << 23)
591 #define SNB_SNP_NONE            (1ULL << 31)
592 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
593 #define SNB_SNP_MISS            (1ULL << 33)
594 #define SNB_NO_FWD              (1ULL << 34)
595 #define SNB_SNP_FWD             (1ULL << 35)
596 #define SNB_HITM                (1ULL << 36)
597 #define SNB_NON_DRAM            (1ULL << 37)
598
599 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
600 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
601 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
602
603 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
604                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
605                                  SNB_HITM)
606
607 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
608 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
609
610 #define SNB_L3_ACCESS           SNB_RESP_ANY
611 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
612
613 static __initconst const u64 snb_hw_cache_extra_regs
614                                 [PERF_COUNT_HW_CACHE_MAX]
615                                 [PERF_COUNT_HW_CACHE_OP_MAX]
616                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
617 {
618  [ C(LL  ) ] = {
619         [ C(OP_READ) ] = {
620                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
621                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
622         },
623         [ C(OP_WRITE) ] = {
624                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
625                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
626         },
627         [ C(OP_PREFETCH) ] = {
628                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
629                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
630         },
631  },
632  [ C(NODE) ] = {
633         [ C(OP_READ) ] = {
634                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
635                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
636         },
637         [ C(OP_WRITE) ] = {
638                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
639                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
640         },
641         [ C(OP_PREFETCH) ] = {
642                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
643                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
644         },
645  },
646 };
647
648 static __initconst const u64 snb_hw_cache_event_ids
649                                 [PERF_COUNT_HW_CACHE_MAX]
650                                 [PERF_COUNT_HW_CACHE_OP_MAX]
651                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
652 {
653  [ C(L1D) ] = {
654         [ C(OP_READ) ] = {
655                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
656                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
657         },
658         [ C(OP_WRITE) ] = {
659                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
660                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
661         },
662         [ C(OP_PREFETCH) ] = {
663                 [ C(RESULT_ACCESS) ] = 0x0,
664                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
665         },
666  },
667  [ C(L1I ) ] = {
668         [ C(OP_READ) ] = {
669                 [ C(RESULT_ACCESS) ] = 0x0,
670                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
671         },
672         [ C(OP_WRITE) ] = {
673                 [ C(RESULT_ACCESS) ] = -1,
674                 [ C(RESULT_MISS)   ] = -1,
675         },
676         [ C(OP_PREFETCH) ] = {
677                 [ C(RESULT_ACCESS) ] = 0x0,
678                 [ C(RESULT_MISS)   ] = 0x0,
679         },
680  },
681  [ C(LL  ) ] = {
682         [ C(OP_READ) ] = {
683                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
684                 [ C(RESULT_ACCESS) ] = 0x01b7,
685                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
686                 [ C(RESULT_MISS)   ] = 0x01b7,
687         },
688         [ C(OP_WRITE) ] = {
689                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
690                 [ C(RESULT_ACCESS) ] = 0x01b7,
691                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
692                 [ C(RESULT_MISS)   ] = 0x01b7,
693         },
694         [ C(OP_PREFETCH) ] = {
695                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
696                 [ C(RESULT_ACCESS) ] = 0x01b7,
697                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
698                 [ C(RESULT_MISS)   ] = 0x01b7,
699         },
700  },
701  [ C(DTLB) ] = {
702         [ C(OP_READ) ] = {
703                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
704                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
705         },
706         [ C(OP_WRITE) ] = {
707                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
708                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
709         },
710         [ C(OP_PREFETCH) ] = {
711                 [ C(RESULT_ACCESS) ] = 0x0,
712                 [ C(RESULT_MISS)   ] = 0x0,
713         },
714  },
715  [ C(ITLB) ] = {
716         [ C(OP_READ) ] = {
717                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
718                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
719         },
720         [ C(OP_WRITE) ] = {
721                 [ C(RESULT_ACCESS) ] = -1,
722                 [ C(RESULT_MISS)   ] = -1,
723         },
724         [ C(OP_PREFETCH) ] = {
725                 [ C(RESULT_ACCESS) ] = -1,
726                 [ C(RESULT_MISS)   ] = -1,
727         },
728  },
729  [ C(BPU ) ] = {
730         [ C(OP_READ) ] = {
731                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
732                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
733         },
734         [ C(OP_WRITE) ] = {
735                 [ C(RESULT_ACCESS) ] = -1,
736                 [ C(RESULT_MISS)   ] = -1,
737         },
738         [ C(OP_PREFETCH) ] = {
739                 [ C(RESULT_ACCESS) ] = -1,
740                 [ C(RESULT_MISS)   ] = -1,
741         },
742  },
743  [ C(NODE) ] = {
744         [ C(OP_READ) ] = {
745                 [ C(RESULT_ACCESS) ] = 0x01b7,
746                 [ C(RESULT_MISS)   ] = 0x01b7,
747         },
748         [ C(OP_WRITE) ] = {
749                 [ C(RESULT_ACCESS) ] = 0x01b7,
750                 [ C(RESULT_MISS)   ] = 0x01b7,
751         },
752         [ C(OP_PREFETCH) ] = {
753                 [ C(RESULT_ACCESS) ] = 0x01b7,
754                 [ C(RESULT_MISS)   ] = 0x01b7,
755         },
756  },
757
758 };
759
760 /*
761  * Notes on the events:
762  * - data reads do not include code reads (comparable to earlier tables)
763  * - data counts include speculative execution (except L1 write, dtlb, bpu)
764  * - remote node access includes remote memory, remote cache, remote mmio.
765  * - prefetches are not included in the counts because they are not
766  *   reliably counted.
767  */
768
769 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
770 #define HSW_DEMAND_RFO                  BIT_ULL(1)
771 #define HSW_ANY_RESPONSE                BIT_ULL(16)
772 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
773 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
774 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
775 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
776 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
777 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
778                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
779                                          HSW_L3_MISS_REMOTE_HOP2P)
780 #define HSW_SNOOP_NONE                  BIT_ULL(31)
781 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
782 #define HSW_SNOOP_MISS                  BIT_ULL(33)
783 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
784 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
785 #define HSW_SNOOP_HITM                  BIT_ULL(36)
786 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
787 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
788                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
789                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
790                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
791 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
792 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
793 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
794 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
795                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
796 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
797
798 #define BDW_L3_MISS_LOCAL               BIT(26)
799 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
800                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
801                                          HSW_L3_MISS_REMOTE_HOP2P)
802
803
804 static __initconst const u64 hsw_hw_cache_event_ids
805                                 [PERF_COUNT_HW_CACHE_MAX]
806                                 [PERF_COUNT_HW_CACHE_OP_MAX]
807                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
808 {
809  [ C(L1D ) ] = {
810         [ C(OP_READ) ] = {
811                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
812                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
813         },
814         [ C(OP_WRITE) ] = {
815                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
816                 [ C(RESULT_MISS)   ] = 0x0,
817         },
818         [ C(OP_PREFETCH) ] = {
819                 [ C(RESULT_ACCESS) ] = 0x0,
820                 [ C(RESULT_MISS)   ] = 0x0,
821         },
822  },
823  [ C(L1I ) ] = {
824         [ C(OP_READ) ] = {
825                 [ C(RESULT_ACCESS) ] = 0x0,
826                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
827         },
828         [ C(OP_WRITE) ] = {
829                 [ C(RESULT_ACCESS) ] = -1,
830                 [ C(RESULT_MISS)   ] = -1,
831         },
832         [ C(OP_PREFETCH) ] = {
833                 [ C(RESULT_ACCESS) ] = 0x0,
834                 [ C(RESULT_MISS)   ] = 0x0,
835         },
836  },
837  [ C(LL  ) ] = {
838         [ C(OP_READ) ] = {
839                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
840                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
841         },
842         [ C(OP_WRITE) ] = {
843                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
844                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
845         },
846         [ C(OP_PREFETCH) ] = {
847                 [ C(RESULT_ACCESS) ] = 0x0,
848                 [ C(RESULT_MISS)   ] = 0x0,
849         },
850  },
851  [ C(DTLB) ] = {
852         [ C(OP_READ) ] = {
853                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
854                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
855         },
856         [ C(OP_WRITE) ] = {
857                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
858                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
859         },
860         [ C(OP_PREFETCH) ] = {
861                 [ C(RESULT_ACCESS) ] = 0x0,
862                 [ C(RESULT_MISS)   ] = 0x0,
863         },
864  },
865  [ C(ITLB) ] = {
866         [ C(OP_READ) ] = {
867                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
868                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
869         },
870         [ C(OP_WRITE) ] = {
871                 [ C(RESULT_ACCESS) ] = -1,
872                 [ C(RESULT_MISS)   ] = -1,
873         },
874         [ C(OP_PREFETCH) ] = {
875                 [ C(RESULT_ACCESS) ] = -1,
876                 [ C(RESULT_MISS)   ] = -1,
877         },
878  },
879  [ C(BPU ) ] = {
880         [ C(OP_READ) ] = {
881                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
882                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
883         },
884         [ C(OP_WRITE) ] = {
885                 [ C(RESULT_ACCESS) ] = -1,
886                 [ C(RESULT_MISS)   ] = -1,
887         },
888         [ C(OP_PREFETCH) ] = {
889                 [ C(RESULT_ACCESS) ] = -1,
890                 [ C(RESULT_MISS)   ] = -1,
891         },
892  },
893  [ C(NODE) ] = {
894         [ C(OP_READ) ] = {
895                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
896                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
897         },
898         [ C(OP_WRITE) ] = {
899                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
900                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
901         },
902         [ C(OP_PREFETCH) ] = {
903                 [ C(RESULT_ACCESS) ] = 0x0,
904                 [ C(RESULT_MISS)   ] = 0x0,
905         },
906  },
907 };
908
909 static __initconst const u64 hsw_hw_cache_extra_regs
910                                 [PERF_COUNT_HW_CACHE_MAX]
911                                 [PERF_COUNT_HW_CACHE_OP_MAX]
912                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
913 {
914  [ C(LL  ) ] = {
915         [ C(OP_READ) ] = {
916                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
917                                        HSW_LLC_ACCESS,
918                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
919                                        HSW_L3_MISS|HSW_ANY_SNOOP,
920         },
921         [ C(OP_WRITE) ] = {
922                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
923                                        HSW_LLC_ACCESS,
924                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
925                                        HSW_L3_MISS|HSW_ANY_SNOOP,
926         },
927         [ C(OP_PREFETCH) ] = {
928                 [ C(RESULT_ACCESS) ] = 0x0,
929                 [ C(RESULT_MISS)   ] = 0x0,
930         },
931  },
932  [ C(NODE) ] = {
933         [ C(OP_READ) ] = {
934                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
935                                        HSW_L3_MISS_LOCAL_DRAM|
936                                        HSW_SNOOP_DRAM,
937                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
938                                        HSW_L3_MISS_REMOTE|
939                                        HSW_SNOOP_DRAM,
940         },
941         [ C(OP_WRITE) ] = {
942                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
943                                        HSW_L3_MISS_LOCAL_DRAM|
944                                        HSW_SNOOP_DRAM,
945                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
946                                        HSW_L3_MISS_REMOTE|
947                                        HSW_SNOOP_DRAM,
948         },
949         [ C(OP_PREFETCH) ] = {
950                 [ C(RESULT_ACCESS) ] = 0x0,
951                 [ C(RESULT_MISS)   ] = 0x0,
952         },
953  },
954 };
955
956 static __initconst const u64 westmere_hw_cache_event_ids
957                                 [PERF_COUNT_HW_CACHE_MAX]
958                                 [PERF_COUNT_HW_CACHE_OP_MAX]
959                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
960 {
961  [ C(L1D) ] = {
962         [ C(OP_READ) ] = {
963                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
964                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
965         },
966         [ C(OP_WRITE) ] = {
967                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
968                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
969         },
970         [ C(OP_PREFETCH) ] = {
971                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
972                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
973         },
974  },
975  [ C(L1I ) ] = {
976         [ C(OP_READ) ] = {
977                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
978                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
979         },
980         [ C(OP_WRITE) ] = {
981                 [ C(RESULT_ACCESS) ] = -1,
982                 [ C(RESULT_MISS)   ] = -1,
983         },
984         [ C(OP_PREFETCH) ] = {
985                 [ C(RESULT_ACCESS) ] = 0x0,
986                 [ C(RESULT_MISS)   ] = 0x0,
987         },
988  },
989  [ C(LL  ) ] = {
990         [ C(OP_READ) ] = {
991                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
992                 [ C(RESULT_ACCESS) ] = 0x01b7,
993                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
994                 [ C(RESULT_MISS)   ] = 0x01b7,
995         },
996         /*
997          * Use RFO, not WRITEBACK, because a write miss would typically occur
998          * on RFO.
999          */
1000         [ C(OP_WRITE) ] = {
1001                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1002                 [ C(RESULT_ACCESS) ] = 0x01b7,
1003                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1004                 [ C(RESULT_MISS)   ] = 0x01b7,
1005         },
1006         [ C(OP_PREFETCH) ] = {
1007                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1008                 [ C(RESULT_ACCESS) ] = 0x01b7,
1009                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1010                 [ C(RESULT_MISS)   ] = 0x01b7,
1011         },
1012  },
1013  [ C(DTLB) ] = {
1014         [ C(OP_READ) ] = {
1015                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1016                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1017         },
1018         [ C(OP_WRITE) ] = {
1019                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1020                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1021         },
1022         [ C(OP_PREFETCH) ] = {
1023                 [ C(RESULT_ACCESS) ] = 0x0,
1024                 [ C(RESULT_MISS)   ] = 0x0,
1025         },
1026  },
1027  [ C(ITLB) ] = {
1028         [ C(OP_READ) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1030                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1031         },
1032         [ C(OP_WRITE) ] = {
1033                 [ C(RESULT_ACCESS) ] = -1,
1034                 [ C(RESULT_MISS)   ] = -1,
1035         },
1036         [ C(OP_PREFETCH) ] = {
1037                 [ C(RESULT_ACCESS) ] = -1,
1038                 [ C(RESULT_MISS)   ] = -1,
1039         },
1040  },
1041  [ C(BPU ) ] = {
1042         [ C(OP_READ) ] = {
1043                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1044                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1045         },
1046         [ C(OP_WRITE) ] = {
1047                 [ C(RESULT_ACCESS) ] = -1,
1048                 [ C(RESULT_MISS)   ] = -1,
1049         },
1050         [ C(OP_PREFETCH) ] = {
1051                 [ C(RESULT_ACCESS) ] = -1,
1052                 [ C(RESULT_MISS)   ] = -1,
1053         },
1054  },
1055  [ C(NODE) ] = {
1056         [ C(OP_READ) ] = {
1057                 [ C(RESULT_ACCESS) ] = 0x01b7,
1058                 [ C(RESULT_MISS)   ] = 0x01b7,
1059         },
1060         [ C(OP_WRITE) ] = {
1061                 [ C(RESULT_ACCESS) ] = 0x01b7,
1062                 [ C(RESULT_MISS)   ] = 0x01b7,
1063         },
1064         [ C(OP_PREFETCH) ] = {
1065                 [ C(RESULT_ACCESS) ] = 0x01b7,
1066                 [ C(RESULT_MISS)   ] = 0x01b7,
1067         },
1068  },
1069 };
1070
1071 /*
1072  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1073  * See IA32 SDM Vol 3B 30.6.1.3
1074  */
1075
1076 #define NHM_DMND_DATA_RD        (1 << 0)
1077 #define NHM_DMND_RFO            (1 << 1)
1078 #define NHM_DMND_IFETCH         (1 << 2)
1079 #define NHM_DMND_WB             (1 << 3)
1080 #define NHM_PF_DATA_RD          (1 << 4)
1081 #define NHM_PF_DATA_RFO         (1 << 5)
1082 #define NHM_PF_IFETCH           (1 << 6)
1083 #define NHM_OFFCORE_OTHER       (1 << 7)
1084 #define NHM_UNCORE_HIT          (1 << 8)
1085 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1086 #define NHM_OTHER_CORE_HITM     (1 << 10)
1087                                 /* reserved */
1088 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1089 #define NHM_REMOTE_DRAM         (1 << 13)
1090 #define NHM_LOCAL_DRAM          (1 << 14)
1091 #define NHM_NON_DRAM            (1 << 15)
1092
1093 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1094 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1095
1096 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1097 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1098 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1099
1100 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1101 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1102 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1103
1104 static __initconst const u64 nehalem_hw_cache_extra_regs
1105                                 [PERF_COUNT_HW_CACHE_MAX]
1106                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1107                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1108 {
1109  [ C(LL  ) ] = {
1110         [ C(OP_READ) ] = {
1111                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1112                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1113         },
1114         [ C(OP_WRITE) ] = {
1115                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1116                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1117         },
1118         [ C(OP_PREFETCH) ] = {
1119                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1120                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1121         },
1122  },
1123  [ C(NODE) ] = {
1124         [ C(OP_READ) ] = {
1125                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1126                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1127         },
1128         [ C(OP_WRITE) ] = {
1129                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1130                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1131         },
1132         [ C(OP_PREFETCH) ] = {
1133                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1134                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1135         },
1136  },
1137 };
1138
1139 static __initconst const u64 nehalem_hw_cache_event_ids
1140                                 [PERF_COUNT_HW_CACHE_MAX]
1141                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1142                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1143 {
1144  [ C(L1D) ] = {
1145         [ C(OP_READ) ] = {
1146                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1147                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1148         },
1149         [ C(OP_WRITE) ] = {
1150                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1151                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1152         },
1153         [ C(OP_PREFETCH) ] = {
1154                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1155                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1156         },
1157  },
1158  [ C(L1I ) ] = {
1159         [ C(OP_READ) ] = {
1160                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1161                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1162         },
1163         [ C(OP_WRITE) ] = {
1164                 [ C(RESULT_ACCESS) ] = -1,
1165                 [ C(RESULT_MISS)   ] = -1,
1166         },
1167         [ C(OP_PREFETCH) ] = {
1168                 [ C(RESULT_ACCESS) ] = 0x0,
1169                 [ C(RESULT_MISS)   ] = 0x0,
1170         },
1171  },
1172  [ C(LL  ) ] = {
1173         [ C(OP_READ) ] = {
1174                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1175                 [ C(RESULT_ACCESS) ] = 0x01b7,
1176                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1177                 [ C(RESULT_MISS)   ] = 0x01b7,
1178         },
1179         /*
1180          * Use RFO, not WRITEBACK, because a write miss would typically occur
1181          * on RFO.
1182          */
1183         [ C(OP_WRITE) ] = {
1184                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1185                 [ C(RESULT_ACCESS) ] = 0x01b7,
1186                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1187                 [ C(RESULT_MISS)   ] = 0x01b7,
1188         },
1189         [ C(OP_PREFETCH) ] = {
1190                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1191                 [ C(RESULT_ACCESS) ] = 0x01b7,
1192                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1193                 [ C(RESULT_MISS)   ] = 0x01b7,
1194         },
1195  },
1196  [ C(DTLB) ] = {
1197         [ C(OP_READ) ] = {
1198                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1199                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1200         },
1201         [ C(OP_WRITE) ] = {
1202                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1203                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1204         },
1205         [ C(OP_PREFETCH) ] = {
1206                 [ C(RESULT_ACCESS) ] = 0x0,
1207                 [ C(RESULT_MISS)   ] = 0x0,
1208         },
1209  },
1210  [ C(ITLB) ] = {
1211         [ C(OP_READ) ] = {
1212                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1213                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1214         },
1215         [ C(OP_WRITE) ] = {
1216                 [ C(RESULT_ACCESS) ] = -1,
1217                 [ C(RESULT_MISS)   ] = -1,
1218         },
1219         [ C(OP_PREFETCH) ] = {
1220                 [ C(RESULT_ACCESS) ] = -1,
1221                 [ C(RESULT_MISS)   ] = -1,
1222         },
1223  },
1224  [ C(BPU ) ] = {
1225         [ C(OP_READ) ] = {
1226                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1227                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1228         },
1229         [ C(OP_WRITE) ] = {
1230                 [ C(RESULT_ACCESS) ] = -1,
1231                 [ C(RESULT_MISS)   ] = -1,
1232         },
1233         [ C(OP_PREFETCH) ] = {
1234                 [ C(RESULT_ACCESS) ] = -1,
1235                 [ C(RESULT_MISS)   ] = -1,
1236         },
1237  },
1238  [ C(NODE) ] = {
1239         [ C(OP_READ) ] = {
1240                 [ C(RESULT_ACCESS) ] = 0x01b7,
1241                 [ C(RESULT_MISS)   ] = 0x01b7,
1242         },
1243         [ C(OP_WRITE) ] = {
1244                 [ C(RESULT_ACCESS) ] = 0x01b7,
1245                 [ C(RESULT_MISS)   ] = 0x01b7,
1246         },
1247         [ C(OP_PREFETCH) ] = {
1248                 [ C(RESULT_ACCESS) ] = 0x01b7,
1249                 [ C(RESULT_MISS)   ] = 0x01b7,
1250         },
1251  },
1252 };
1253
1254 static __initconst const u64 core2_hw_cache_event_ids
1255                                 [PERF_COUNT_HW_CACHE_MAX]
1256                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1257                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1258 {
1259  [ C(L1D) ] = {
1260         [ C(OP_READ) ] = {
1261                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1262                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1263         },
1264         [ C(OP_WRITE) ] = {
1265                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1266                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1267         },
1268         [ C(OP_PREFETCH) ] = {
1269                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1270                 [ C(RESULT_MISS)   ] = 0,
1271         },
1272  },
1273  [ C(L1I ) ] = {
1274         [ C(OP_READ) ] = {
1275                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1276                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1277         },
1278         [ C(OP_WRITE) ] = {
1279                 [ C(RESULT_ACCESS) ] = -1,
1280                 [ C(RESULT_MISS)   ] = -1,
1281         },
1282         [ C(OP_PREFETCH) ] = {
1283                 [ C(RESULT_ACCESS) ] = 0,
1284                 [ C(RESULT_MISS)   ] = 0,
1285         },
1286  },
1287  [ C(LL  ) ] = {
1288         [ C(OP_READ) ] = {
1289                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1290                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1291         },
1292         [ C(OP_WRITE) ] = {
1293                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1294                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1295         },
1296         [ C(OP_PREFETCH) ] = {
1297                 [ C(RESULT_ACCESS) ] = 0,
1298                 [ C(RESULT_MISS)   ] = 0,
1299         },
1300  },
1301  [ C(DTLB) ] = {
1302         [ C(OP_READ) ] = {
1303                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1304                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1305         },
1306         [ C(OP_WRITE) ] = {
1307                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1308                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1309         },
1310         [ C(OP_PREFETCH) ] = {
1311                 [ C(RESULT_ACCESS) ] = 0,
1312                 [ C(RESULT_MISS)   ] = 0,
1313         },
1314  },
1315  [ C(ITLB) ] = {
1316         [ C(OP_READ) ] = {
1317                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1318                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1319         },
1320         [ C(OP_WRITE) ] = {
1321                 [ C(RESULT_ACCESS) ] = -1,
1322                 [ C(RESULT_MISS)   ] = -1,
1323         },
1324         [ C(OP_PREFETCH) ] = {
1325                 [ C(RESULT_ACCESS) ] = -1,
1326                 [ C(RESULT_MISS)   ] = -1,
1327         },
1328  },
1329  [ C(BPU ) ] = {
1330         [ C(OP_READ) ] = {
1331                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1332                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1333         },
1334         [ C(OP_WRITE) ] = {
1335                 [ C(RESULT_ACCESS) ] = -1,
1336                 [ C(RESULT_MISS)   ] = -1,
1337         },
1338         [ C(OP_PREFETCH) ] = {
1339                 [ C(RESULT_ACCESS) ] = -1,
1340                 [ C(RESULT_MISS)   ] = -1,
1341         },
1342  },
1343 };
1344
1345 static __initconst const u64 atom_hw_cache_event_ids
1346                                 [PERF_COUNT_HW_CACHE_MAX]
1347                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1348                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1349 {
1350  [ C(L1D) ] = {
1351         [ C(OP_READ) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1353                 [ C(RESULT_MISS)   ] = 0,
1354         },
1355         [ C(OP_WRITE) ] = {
1356                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1357                 [ C(RESULT_MISS)   ] = 0,
1358         },
1359         [ C(OP_PREFETCH) ] = {
1360                 [ C(RESULT_ACCESS) ] = 0x0,
1361                 [ C(RESULT_MISS)   ] = 0,
1362         },
1363  },
1364  [ C(L1I ) ] = {
1365         [ C(OP_READ) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1367                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1368         },
1369         [ C(OP_WRITE) ] = {
1370                 [ C(RESULT_ACCESS) ] = -1,
1371                 [ C(RESULT_MISS)   ] = -1,
1372         },
1373         [ C(OP_PREFETCH) ] = {
1374                 [ C(RESULT_ACCESS) ] = 0,
1375                 [ C(RESULT_MISS)   ] = 0,
1376         },
1377  },
1378  [ C(LL  ) ] = {
1379         [ C(OP_READ) ] = {
1380                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1381                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1382         },
1383         [ C(OP_WRITE) ] = {
1384                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1385                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1386         },
1387         [ C(OP_PREFETCH) ] = {
1388                 [ C(RESULT_ACCESS) ] = 0,
1389                 [ C(RESULT_MISS)   ] = 0,
1390         },
1391  },
1392  [ C(DTLB) ] = {
1393         [ C(OP_READ) ] = {
1394                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1395                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1396         },
1397         [ C(OP_WRITE) ] = {
1398                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1399                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1400         },
1401         [ C(OP_PREFETCH) ] = {
1402                 [ C(RESULT_ACCESS) ] = 0,
1403                 [ C(RESULT_MISS)   ] = 0,
1404         },
1405  },
1406  [ C(ITLB) ] = {
1407         [ C(OP_READ) ] = {
1408                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1409                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1410         },
1411         [ C(OP_WRITE) ] = {
1412                 [ C(RESULT_ACCESS) ] = -1,
1413                 [ C(RESULT_MISS)   ] = -1,
1414         },
1415         [ C(OP_PREFETCH) ] = {
1416                 [ C(RESULT_ACCESS) ] = -1,
1417                 [ C(RESULT_MISS)   ] = -1,
1418         },
1419  },
1420  [ C(BPU ) ] = {
1421         [ C(OP_READ) ] = {
1422                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1423                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1424         },
1425         [ C(OP_WRITE) ] = {
1426                 [ C(RESULT_ACCESS) ] = -1,
1427                 [ C(RESULT_MISS)   ] = -1,
1428         },
1429         [ C(OP_PREFETCH) ] = {
1430                 [ C(RESULT_ACCESS) ] = -1,
1431                 [ C(RESULT_MISS)   ] = -1,
1432         },
1433  },
1434 };
1435
1436 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1437 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1438 /* no_alloc_cycles.not_delivered */
1439 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1440                "event=0xca,umask=0x50");
1441 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1442 /* uops_retired.all */
1443 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1444                "event=0xc2,umask=0x10");
1445 /* uops_retired.all */
1446 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1447                "event=0xc2,umask=0x10");
1448
1449 static struct attribute *slm_events_attrs[] = {
1450         EVENT_PTR(td_total_slots_slm),
1451         EVENT_PTR(td_total_slots_scale_slm),
1452         EVENT_PTR(td_fetch_bubbles_slm),
1453         EVENT_PTR(td_fetch_bubbles_scale_slm),
1454         EVENT_PTR(td_slots_issued_slm),
1455         EVENT_PTR(td_slots_retired_slm),
1456         NULL
1457 };
1458
1459 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1460 {
1461         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1462         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1463         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1464         EVENT_EXTRA_END
1465 };
1466
1467 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1468 #define SLM_DMND_WRITE          SNB_DMND_RFO
1469 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1470
1471 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1472 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1473 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1474
1475 static __initconst const u64 slm_hw_cache_extra_regs
1476                                 [PERF_COUNT_HW_CACHE_MAX]
1477                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1478                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1479 {
1480  [ C(LL  ) ] = {
1481         [ C(OP_READ) ] = {
1482                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1483                 [ C(RESULT_MISS)   ] = 0,
1484         },
1485         [ C(OP_WRITE) ] = {
1486                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1487                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1488         },
1489         [ C(OP_PREFETCH) ] = {
1490                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1491                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1492         },
1493  },
1494 };
1495
1496 static __initconst const u64 slm_hw_cache_event_ids
1497                                 [PERF_COUNT_HW_CACHE_MAX]
1498                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1499                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1500 {
1501  [ C(L1D) ] = {
1502         [ C(OP_READ) ] = {
1503                 [ C(RESULT_ACCESS) ] = 0,
1504                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1505         },
1506         [ C(OP_WRITE) ] = {
1507                 [ C(RESULT_ACCESS) ] = 0,
1508                 [ C(RESULT_MISS)   ] = 0,
1509         },
1510         [ C(OP_PREFETCH) ] = {
1511                 [ C(RESULT_ACCESS) ] = 0,
1512                 [ C(RESULT_MISS)   ] = 0,
1513         },
1514  },
1515  [ C(L1I ) ] = {
1516         [ C(OP_READ) ] = {
1517                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1518                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1519         },
1520         [ C(OP_WRITE) ] = {
1521                 [ C(RESULT_ACCESS) ] = -1,
1522                 [ C(RESULT_MISS)   ] = -1,
1523         },
1524         [ C(OP_PREFETCH) ] = {
1525                 [ C(RESULT_ACCESS) ] = 0,
1526                 [ C(RESULT_MISS)   ] = 0,
1527         },
1528  },
1529  [ C(LL  ) ] = {
1530         [ C(OP_READ) ] = {
1531                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1532                 [ C(RESULT_ACCESS) ] = 0x01b7,
1533                 [ C(RESULT_MISS)   ] = 0,
1534         },
1535         [ C(OP_WRITE) ] = {
1536                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1537                 [ C(RESULT_ACCESS) ] = 0x01b7,
1538                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1539                 [ C(RESULT_MISS)   ] = 0x01b7,
1540         },
1541         [ C(OP_PREFETCH) ] = {
1542                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1543                 [ C(RESULT_ACCESS) ] = 0x01b7,
1544                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1545                 [ C(RESULT_MISS)   ] = 0x01b7,
1546         },
1547  },
1548  [ C(DTLB) ] = {
1549         [ C(OP_READ) ] = {
1550                 [ C(RESULT_ACCESS) ] = 0,
1551                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1552         },
1553         [ C(OP_WRITE) ] = {
1554                 [ C(RESULT_ACCESS) ] = 0,
1555                 [ C(RESULT_MISS)   ] = 0,
1556         },
1557         [ C(OP_PREFETCH) ] = {
1558                 [ C(RESULT_ACCESS) ] = 0,
1559                 [ C(RESULT_MISS)   ] = 0,
1560         },
1561  },
1562  [ C(ITLB) ] = {
1563         [ C(OP_READ) ] = {
1564                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1565                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1566         },
1567         [ C(OP_WRITE) ] = {
1568                 [ C(RESULT_ACCESS) ] = -1,
1569                 [ C(RESULT_MISS)   ] = -1,
1570         },
1571         [ C(OP_PREFETCH) ] = {
1572                 [ C(RESULT_ACCESS) ] = -1,
1573                 [ C(RESULT_MISS)   ] = -1,
1574         },
1575  },
1576  [ C(BPU ) ] = {
1577         [ C(OP_READ) ] = {
1578                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1579                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1580         },
1581         [ C(OP_WRITE) ] = {
1582                 [ C(RESULT_ACCESS) ] = -1,
1583                 [ C(RESULT_MISS)   ] = -1,
1584         },
1585         [ C(OP_PREFETCH) ] = {
1586                 [ C(RESULT_ACCESS) ] = -1,
1587                 [ C(RESULT_MISS)   ] = -1,
1588         },
1589  },
1590 };
1591
1592 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1593 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1594 /* UOPS_NOT_DELIVERED.ANY */
1595 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1596 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1597 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1598 /* UOPS_RETIRED.ANY */
1599 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1600 /* UOPS_ISSUED.ANY */
1601 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1602
1603 static struct attribute *glm_events_attrs[] = {
1604         EVENT_PTR(td_total_slots_glm),
1605         EVENT_PTR(td_total_slots_scale_glm),
1606         EVENT_PTR(td_fetch_bubbles_glm),
1607         EVENT_PTR(td_recovery_bubbles_glm),
1608         EVENT_PTR(td_slots_issued_glm),
1609         EVENT_PTR(td_slots_retired_glm),
1610         NULL
1611 };
1612
1613 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1614         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1615         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1616         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1617         EVENT_EXTRA_END
1618 };
1619
1620 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1621 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1622 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1623 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1624 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1625 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1626 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1627 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1628 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1629 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1630
1631 static __initconst const u64 glm_hw_cache_event_ids
1632                                 [PERF_COUNT_HW_CACHE_MAX]
1633                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1634                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1635         [C(L1D)] = {
1636                 [C(OP_READ)] = {
1637                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1638                         [C(RESULT_MISS)]        = 0x0,
1639                 },
1640                 [C(OP_WRITE)] = {
1641                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1642                         [C(RESULT_MISS)]        = 0x0,
1643                 },
1644                 [C(OP_PREFETCH)] = {
1645                         [C(RESULT_ACCESS)]      = 0x0,
1646                         [C(RESULT_MISS)]        = 0x0,
1647                 },
1648         },
1649         [C(L1I)] = {
1650                 [C(OP_READ)] = {
1651                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1652                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1653                 },
1654                 [C(OP_WRITE)] = {
1655                         [C(RESULT_ACCESS)]      = -1,
1656                         [C(RESULT_MISS)]        = -1,
1657                 },
1658                 [C(OP_PREFETCH)] = {
1659                         [C(RESULT_ACCESS)]      = 0x0,
1660                         [C(RESULT_MISS)]        = 0x0,
1661                 },
1662         },
1663         [C(LL)] = {
1664                 [C(OP_READ)] = {
1665                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1666                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1667                 },
1668                 [C(OP_WRITE)] = {
1669                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1670                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1671                 },
1672                 [C(OP_PREFETCH)] = {
1673                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1674                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1675                 },
1676         },
1677         [C(DTLB)] = {
1678                 [C(OP_READ)] = {
1679                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1680                         [C(RESULT_MISS)]        = 0x0,
1681                 },
1682                 [C(OP_WRITE)] = {
1683                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1684                         [C(RESULT_MISS)]        = 0x0,
1685                 },
1686                 [C(OP_PREFETCH)] = {
1687                         [C(RESULT_ACCESS)]      = 0x0,
1688                         [C(RESULT_MISS)]        = 0x0,
1689                 },
1690         },
1691         [C(ITLB)] = {
1692                 [C(OP_READ)] = {
1693                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1694                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1695                 },
1696                 [C(OP_WRITE)] = {
1697                         [C(RESULT_ACCESS)]      = -1,
1698                         [C(RESULT_MISS)]        = -1,
1699                 },
1700                 [C(OP_PREFETCH)] = {
1701                         [C(RESULT_ACCESS)]      = -1,
1702                         [C(RESULT_MISS)]        = -1,
1703                 },
1704         },
1705         [C(BPU)] = {
1706                 [C(OP_READ)] = {
1707                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1708                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1709                 },
1710                 [C(OP_WRITE)] = {
1711                         [C(RESULT_ACCESS)]      = -1,
1712                         [C(RESULT_MISS)]        = -1,
1713                 },
1714                 [C(OP_PREFETCH)] = {
1715                         [C(RESULT_ACCESS)]      = -1,
1716                         [C(RESULT_MISS)]        = -1,
1717                 },
1718         },
1719 };
1720
1721 static __initconst const u64 glm_hw_cache_extra_regs
1722                                 [PERF_COUNT_HW_CACHE_MAX]
1723                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1724                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1725         [C(LL)] = {
1726                 [C(OP_READ)] = {
1727                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1728                                                   GLM_LLC_ACCESS,
1729                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1730                                                   GLM_LLC_MISS,
1731                 },
1732                 [C(OP_WRITE)] = {
1733                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1734                                                   GLM_LLC_ACCESS,
1735                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1736                                                   GLM_LLC_MISS,
1737                 },
1738                 [C(OP_PREFETCH)] = {
1739                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1740                                                   GLM_LLC_ACCESS,
1741                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1742                                                   GLM_LLC_MISS,
1743                 },
1744         },
1745 };
1746
1747 static __initconst const u64 glp_hw_cache_event_ids
1748                                 [PERF_COUNT_HW_CACHE_MAX]
1749                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1750                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1751         [C(L1D)] = {
1752                 [C(OP_READ)] = {
1753                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1754                         [C(RESULT_MISS)]        = 0x0,
1755                 },
1756                 [C(OP_WRITE)] = {
1757                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1758                         [C(RESULT_MISS)]        = 0x0,
1759                 },
1760                 [C(OP_PREFETCH)] = {
1761                         [C(RESULT_ACCESS)]      = 0x0,
1762                         [C(RESULT_MISS)]        = 0x0,
1763                 },
1764         },
1765         [C(L1I)] = {
1766                 [C(OP_READ)] = {
1767                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1768                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1769                 },
1770                 [C(OP_WRITE)] = {
1771                         [C(RESULT_ACCESS)]      = -1,
1772                         [C(RESULT_MISS)]        = -1,
1773                 },
1774                 [C(OP_PREFETCH)] = {
1775                         [C(RESULT_ACCESS)]      = 0x0,
1776                         [C(RESULT_MISS)]        = 0x0,
1777                 },
1778         },
1779         [C(LL)] = {
1780                 [C(OP_READ)] = {
1781                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1782                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1783                 },
1784                 [C(OP_WRITE)] = {
1785                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1786                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1787                 },
1788                 [C(OP_PREFETCH)] = {
1789                         [C(RESULT_ACCESS)]      = 0x0,
1790                         [C(RESULT_MISS)]        = 0x0,
1791                 },
1792         },
1793         [C(DTLB)] = {
1794                 [C(OP_READ)] = {
1795                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1796                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1797                 },
1798                 [C(OP_WRITE)] = {
1799                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1800                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1801                 },
1802                 [C(OP_PREFETCH)] = {
1803                         [C(RESULT_ACCESS)]      = 0x0,
1804                         [C(RESULT_MISS)]        = 0x0,
1805                 },
1806         },
1807         [C(ITLB)] = {
1808                 [C(OP_READ)] = {
1809                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1810                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1811                 },
1812                 [C(OP_WRITE)] = {
1813                         [C(RESULT_ACCESS)]      = -1,
1814                         [C(RESULT_MISS)]        = -1,
1815                 },
1816                 [C(OP_PREFETCH)] = {
1817                         [C(RESULT_ACCESS)]      = -1,
1818                         [C(RESULT_MISS)]        = -1,
1819                 },
1820         },
1821         [C(BPU)] = {
1822                 [C(OP_READ)] = {
1823                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1824                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1825                 },
1826                 [C(OP_WRITE)] = {
1827                         [C(RESULT_ACCESS)]      = -1,
1828                         [C(RESULT_MISS)]        = -1,
1829                 },
1830                 [C(OP_PREFETCH)] = {
1831                         [C(RESULT_ACCESS)]      = -1,
1832                         [C(RESULT_MISS)]        = -1,
1833                 },
1834         },
1835 };
1836
1837 static __initconst const u64 glp_hw_cache_extra_regs
1838                                 [PERF_COUNT_HW_CACHE_MAX]
1839                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1840                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1841         [C(LL)] = {
1842                 [C(OP_READ)] = {
1843                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1844                                                   GLM_LLC_ACCESS,
1845                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1846                                                   GLM_LLC_MISS,
1847                 },
1848                 [C(OP_WRITE)] = {
1849                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1850                                                   GLM_LLC_ACCESS,
1851                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1852                                                   GLM_LLC_MISS,
1853                 },
1854                 [C(OP_PREFETCH)] = {
1855                         [C(RESULT_ACCESS)]      = 0x0,
1856                         [C(RESULT_MISS)]        = 0x0,
1857                 },
1858         },
1859 };
1860
1861 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
1862 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
1863 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
1864 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
1865 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
1866                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
1867 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
1868
1869 static __initconst const u64 tnt_hw_cache_extra_regs
1870                                 [PERF_COUNT_HW_CACHE_MAX]
1871                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1872                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1873         [C(LL)] = {
1874                 [C(OP_READ)] = {
1875                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
1876                                                   TNT_LLC_ACCESS,
1877                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
1878                                                   TNT_LLC_MISS,
1879                 },
1880                 [C(OP_WRITE)] = {
1881                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
1882                                                   TNT_LLC_ACCESS,
1883                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
1884                                                   TNT_LLC_MISS,
1885                 },
1886                 [C(OP_PREFETCH)] = {
1887                         [C(RESULT_ACCESS)]      = 0x0,
1888                         [C(RESULT_MISS)]        = 0x0,
1889                 },
1890         },
1891 };
1892
1893 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
1894         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1895         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffffff9fffull, RSP_0),
1896         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xffffff9fffull, RSP_1),
1897         EVENT_EXTRA_END
1898 };
1899
1900 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1901 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1902 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1903 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1904 #define KNL_DDR_LOCAL           BIT_ULL(23)
1905 #define KNL_DDR_FAR             BIT_ULL(24)
1906 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1907                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1908 #define KNL_L2_READ             SLM_DMND_READ
1909 #define KNL_L2_WRITE            SLM_DMND_WRITE
1910 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1911 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1912 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1913                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1914                                                   SNB_NON_DRAM)
1915
1916 static __initconst const u64 knl_hw_cache_extra_regs
1917                                 [PERF_COUNT_HW_CACHE_MAX]
1918                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1919                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1920         [C(LL)] = {
1921                 [C(OP_READ)] = {
1922                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1923                         [C(RESULT_MISS)]   = 0,
1924                 },
1925                 [C(OP_WRITE)] = {
1926                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1927                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1928                 },
1929                 [C(OP_PREFETCH)] = {
1930                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1931                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1932                 },
1933         },
1934 };
1935
1936 /*
1937  * Used from PMIs where the LBRs are already disabled.
1938  *
1939  * This function could be called consecutively. It is required to remain in
1940  * disabled state if called consecutively.
1941  *
1942  * During consecutive calls, the same disable value will be written to related
1943  * registers, so the PMU state remains unchanged.
1944  *
1945  * intel_bts events don't coexist with intel PMU's BTS events because of
1946  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1947  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1948  */
1949 static void __intel_pmu_disable_all(void)
1950 {
1951         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1952
1953         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1954
1955         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1956                 intel_pmu_disable_bts();
1957
1958         intel_pmu_pebs_disable_all();
1959 }
1960
1961 static void intel_pmu_disable_all(void)
1962 {
1963         __intel_pmu_disable_all();
1964         intel_pmu_lbr_disable_all();
1965 }
1966
1967 static void __intel_pmu_enable_all(int added, bool pmi)
1968 {
1969         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1970
1971         intel_pmu_pebs_enable_all();
1972         intel_pmu_lbr_enable_all(pmi);
1973         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1974                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1975
1976         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1977                 struct perf_event *event =
1978                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1979
1980                 if (WARN_ON_ONCE(!event))
1981                         return;
1982
1983                 intel_pmu_enable_bts(event->hw.config);
1984         }
1985 }
1986
1987 static void intel_pmu_enable_all(int added)
1988 {
1989         __intel_pmu_enable_all(added, false);
1990 }
1991
1992 /*
1993  * Workaround for:
1994  *   Intel Errata AAK100 (model 26)
1995  *   Intel Errata AAP53  (model 30)
1996  *   Intel Errata BD53   (model 44)
1997  *
1998  * The official story:
1999  *   These chips need to be 'reset' when adding counters by programming the
2000  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2001  *   in sequence on the same PMC or on different PMCs.
2002  *
2003  * In practise it appears some of these events do in fact count, and
2004  * we need to program all 4 events.
2005  */
2006 static void intel_pmu_nhm_workaround(void)
2007 {
2008         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2009         static const unsigned long nhm_magic[4] = {
2010                 0x4300B5,
2011                 0x4300D2,
2012                 0x4300B1,
2013                 0x4300B1
2014         };
2015         struct perf_event *event;
2016         int i;
2017
2018         /*
2019          * The Errata requires below steps:
2020          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2021          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2022          *    the corresponding PMCx;
2023          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2024          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2025          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2026          */
2027
2028         /*
2029          * The real steps we choose are a little different from above.
2030          * A) To reduce MSR operations, we don't run step 1) as they
2031          *    are already cleared before this function is called;
2032          * B) Call x86_perf_event_update to save PMCx before configuring
2033          *    PERFEVTSELx with magic number;
2034          * C) With step 5), we do clear only when the PERFEVTSELx is
2035          *    not used currently.
2036          * D) Call x86_perf_event_set_period to restore PMCx;
2037          */
2038
2039         /* We always operate 4 pairs of PERF Counters */
2040         for (i = 0; i < 4; i++) {
2041                 event = cpuc->events[i];
2042                 if (event)
2043                         x86_perf_event_update(event);
2044         }
2045
2046         for (i = 0; i < 4; i++) {
2047                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2048                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2049         }
2050
2051         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2052         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2053
2054         for (i = 0; i < 4; i++) {
2055                 event = cpuc->events[i];
2056
2057                 if (event) {
2058                         x86_perf_event_set_period(event);
2059                         __x86_pmu_enable_event(&event->hw,
2060                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2061                 } else
2062                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2063         }
2064 }
2065
2066 static void intel_pmu_nhm_enable_all(int added)
2067 {
2068         if (added)
2069                 intel_pmu_nhm_workaround();
2070         intel_pmu_enable_all(added);
2071 }
2072
2073 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2074 {
2075         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2076
2077         if (cpuc->tfa_shadow != val) {
2078                 cpuc->tfa_shadow = val;
2079                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2080         }
2081 }
2082
2083 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2084 {
2085         /*
2086          * We're going to use PMC3, make sure TFA is set before we touch it.
2087          */
2088         if (cntr == 3)
2089                 intel_set_tfa(cpuc, true);
2090 }
2091
2092 static void intel_tfa_pmu_enable_all(int added)
2093 {
2094         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2095
2096         /*
2097          * If we find PMC3 is no longer used when we enable the PMU, we can
2098          * clear TFA.
2099          */
2100         if (!test_bit(3, cpuc->active_mask))
2101                 intel_set_tfa(cpuc, false);
2102
2103         intel_pmu_enable_all(added);
2104 }
2105
2106 static void enable_counter_freeze(void)
2107 {
2108         update_debugctlmsr(get_debugctlmsr() |
2109                         DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2110 }
2111
2112 static void disable_counter_freeze(void)
2113 {
2114         update_debugctlmsr(get_debugctlmsr() &
2115                         ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2116 }
2117
2118 static inline u64 intel_pmu_get_status(void)
2119 {
2120         u64 status;
2121
2122         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2123
2124         return status;
2125 }
2126
2127 static inline void intel_pmu_ack_status(u64 ack)
2128 {
2129         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2130 }
2131
2132 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2133 {
2134         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2135         u64 ctrl_val, mask;
2136
2137         mask = 0xfULL << (idx * 4);
2138
2139         rdmsrl(hwc->config_base, ctrl_val);
2140         ctrl_val &= ~mask;
2141         wrmsrl(hwc->config_base, ctrl_val);
2142 }
2143
2144 static inline bool event_is_checkpointed(struct perf_event *event)
2145 {
2146         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2147 }
2148
2149 static void intel_pmu_disable_event(struct perf_event *event)
2150 {
2151         struct hw_perf_event *hwc = &event->hw;
2152         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2153
2154         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2155                 intel_pmu_disable_bts();
2156                 intel_pmu_drain_bts_buffer();
2157                 return;
2158         }
2159
2160         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2161         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2162         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2163
2164         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL))
2165                 intel_pmu_disable_fixed(hwc);
2166         else
2167                 x86_pmu_disable_event(event);
2168
2169         /*
2170          * Needs to be called after x86_pmu_disable_event,
2171          * so we don't trigger the event without PEBS bit set.
2172          */
2173         if (unlikely(event->attr.precise_ip))
2174                 intel_pmu_pebs_disable(event);
2175 }
2176
2177 static void intel_pmu_del_event(struct perf_event *event)
2178 {
2179         if (needs_branch_stack(event))
2180                 intel_pmu_lbr_del(event);
2181         if (event->attr.precise_ip)
2182                 intel_pmu_pebs_del(event);
2183 }
2184
2185 static void intel_pmu_read_event(struct perf_event *event)
2186 {
2187         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2188                 intel_pmu_auto_reload_read(event);
2189         else
2190                 x86_perf_event_update(event);
2191 }
2192
2193 static void intel_pmu_enable_fixed(struct perf_event *event)
2194 {
2195         struct hw_perf_event *hwc = &event->hw;
2196         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2197         u64 ctrl_val, mask, bits = 0;
2198
2199         /*
2200          * Enable IRQ generation (0x8), if not PEBS,
2201          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2202          * if requested:
2203          */
2204         if (!event->attr.precise_ip)
2205                 bits |= 0x8;
2206         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2207                 bits |= 0x2;
2208         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2209                 bits |= 0x1;
2210
2211         /*
2212          * ANY bit is supported in v3 and up
2213          */
2214         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2215                 bits |= 0x4;
2216
2217         bits <<= (idx * 4);
2218         mask = 0xfULL << (idx * 4);
2219
2220         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2221                 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2222                 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2223         }
2224
2225         rdmsrl(hwc->config_base, ctrl_val);
2226         ctrl_val &= ~mask;
2227         ctrl_val |= bits;
2228         wrmsrl(hwc->config_base, ctrl_val);
2229 }
2230
2231 static void intel_pmu_enable_event(struct perf_event *event)
2232 {
2233         struct hw_perf_event *hwc = &event->hw;
2234         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2235
2236         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2237                 if (!__this_cpu_read(cpu_hw_events.enabled))
2238                         return;
2239
2240                 intel_pmu_enable_bts(hwc->config);
2241                 return;
2242         }
2243
2244         if (event->attr.exclude_host)
2245                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2246         if (event->attr.exclude_guest)
2247                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2248
2249         if (unlikely(event_is_checkpointed(event)))
2250                 cpuc->intel_cp_status |= (1ull << hwc->idx);
2251
2252         if (unlikely(event->attr.precise_ip))
2253                 intel_pmu_pebs_enable(event);
2254
2255         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2256                 intel_pmu_enable_fixed(event);
2257                 return;
2258         }
2259
2260         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2261 }
2262
2263 static void intel_pmu_add_event(struct perf_event *event)
2264 {
2265         if (event->attr.precise_ip)
2266                 intel_pmu_pebs_add(event);
2267         if (needs_branch_stack(event))
2268                 intel_pmu_lbr_add(event);
2269 }
2270
2271 /*
2272  * Save and restart an expired event. Called by NMI contexts,
2273  * so it has to be careful about preempting normal event ops:
2274  */
2275 int intel_pmu_save_and_restart(struct perf_event *event)
2276 {
2277         x86_perf_event_update(event);
2278         /*
2279          * For a checkpointed counter always reset back to 0.  This
2280          * avoids a situation where the counter overflows, aborts the
2281          * transaction and is then set back to shortly before the
2282          * overflow, and overflows and aborts again.
2283          */
2284         if (unlikely(event_is_checkpointed(event))) {
2285                 /* No race with NMIs because the counter should not be armed */
2286                 wrmsrl(event->hw.event_base, 0);
2287                 local64_set(&event->hw.prev_count, 0);
2288         }
2289         return x86_perf_event_set_period(event);
2290 }
2291
2292 static void intel_pmu_reset(void)
2293 {
2294         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2295         unsigned long flags;
2296         int idx;
2297
2298         if (!x86_pmu.num_counters)
2299                 return;
2300
2301         local_irq_save(flags);
2302
2303         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2304
2305         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2306                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2307                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2308         }
2309         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2310                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2311
2312         if (ds)
2313                 ds->bts_index = ds->bts_buffer_base;
2314
2315         /* Ack all overflows and disable fixed counters */
2316         if (x86_pmu.version >= 2) {
2317                 intel_pmu_ack_status(intel_pmu_get_status());
2318                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2319         }
2320
2321         /* Reset LBRs and LBR freezing */
2322         if (x86_pmu.lbr_nr) {
2323                 update_debugctlmsr(get_debugctlmsr() &
2324                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2325         }
2326
2327         local_irq_restore(flags);
2328 }
2329
2330 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2331 {
2332         struct perf_sample_data data;
2333         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2334         int bit;
2335         int handled = 0;
2336
2337         inc_irq_stat(apic_perf_irqs);
2338
2339         /*
2340          * Ignore a range of extra bits in status that do not indicate
2341          * overflow by themselves.
2342          */
2343         status &= ~(GLOBAL_STATUS_COND_CHG |
2344                     GLOBAL_STATUS_ASIF |
2345                     GLOBAL_STATUS_LBRS_FROZEN);
2346         if (!status)
2347                 return 0;
2348         /*
2349          * In case multiple PEBS events are sampled at the same time,
2350          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2351          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2352          * having their bits set in the status register. This is a sign
2353          * that there was at least one PEBS record pending at the time
2354          * of the PMU interrupt. PEBS counters must only be processed
2355          * via the drain_pebs() calls and not via the regular sample
2356          * processing loop coming after that the function, otherwise
2357          * phony regular samples may be generated in the sampling buffer
2358          * not marked with the EXACT tag. Another possibility is to have
2359          * one PEBS event and at least one non-PEBS event whic hoverflows
2360          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2361          * not be set, yet the overflow status bit for the PEBS counter will
2362          * be on Skylake.
2363          *
2364          * To avoid this problem, we systematically ignore the PEBS-enabled
2365          * counters from the GLOBAL_STATUS mask and we always process PEBS
2366          * events via drain_pebs().
2367          */
2368         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2369                 status &= ~cpuc->pebs_enabled;
2370         else
2371                 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2372
2373         /*
2374          * PEBS overflow sets bit 62 in the global status register
2375          */
2376         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2377                 handled++;
2378                 x86_pmu.drain_pebs(regs);
2379                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2380         }
2381
2382         /*
2383          * Intel PT
2384          */
2385         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2386                 handled++;
2387                 if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2388                         perf_guest_cbs->handle_intel_pt_intr))
2389                         perf_guest_cbs->handle_intel_pt_intr();
2390                 else
2391                         intel_pt_interrupt();
2392         }
2393
2394         /*
2395          * Checkpointed counters can lead to 'spurious' PMIs because the
2396          * rollback caused by the PMI will have cleared the overflow status
2397          * bit. Therefore always force probe these counters.
2398          */
2399         status |= cpuc->intel_cp_status;
2400
2401         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2402                 struct perf_event *event = cpuc->events[bit];
2403
2404                 handled++;
2405
2406                 if (!test_bit(bit, cpuc->active_mask))
2407                         continue;
2408
2409                 if (!intel_pmu_save_and_restart(event))
2410                         continue;
2411
2412                 perf_sample_data_init(&data, 0, event->hw.last_period);
2413
2414                 if (has_branch_stack(event))
2415                         data.br_stack = &cpuc->lbr_stack;
2416
2417                 if (perf_event_overflow(event, &data, regs))
2418                         x86_pmu_stop(event, 0);
2419         }
2420
2421         return handled;
2422 }
2423
2424 static bool disable_counter_freezing = true;
2425 static int __init intel_perf_counter_freezing_setup(char *s)
2426 {
2427         bool res;
2428
2429         if (kstrtobool(s, &res))
2430                 return -EINVAL;
2431
2432         disable_counter_freezing = !res;
2433         return 1;
2434 }
2435 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2436
2437 /*
2438  * Simplified handler for Arch Perfmon v4:
2439  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2440  * This is done automatically on PMU ack.
2441  * - Ack the PMU only after the APIC.
2442  */
2443
2444 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2445 {
2446         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2447         int handled = 0;
2448         bool bts = false;
2449         u64 status;
2450         int pmu_enabled = cpuc->enabled;
2451         int loops = 0;
2452
2453         /* PMU has been disabled because of counter freezing */
2454         cpuc->enabled = 0;
2455         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2456                 bts = true;
2457                 intel_bts_disable_local();
2458                 handled = intel_pmu_drain_bts_buffer();
2459                 handled += intel_bts_interrupt();
2460         }
2461         status = intel_pmu_get_status();
2462         if (!status)
2463                 goto done;
2464 again:
2465         intel_pmu_lbr_read();
2466         if (++loops > 100) {
2467                 static bool warned;
2468
2469                 if (!warned) {
2470                         WARN(1, "perfevents: irq loop stuck!\n");
2471                         perf_event_print_debug();
2472                         warned = true;
2473                 }
2474                 intel_pmu_reset();
2475                 goto done;
2476         }
2477
2478
2479         handled += handle_pmi_common(regs, status);
2480 done:
2481         /* Ack the PMI in the APIC */
2482         apic_write(APIC_LVTPC, APIC_DM_NMI);
2483
2484         /*
2485          * The counters start counting immediately while ack the status.
2486          * Make it as close as possible to IRET. This avoids bogus
2487          * freezing on Skylake CPUs.
2488          */
2489         if (status) {
2490                 intel_pmu_ack_status(status);
2491         } else {
2492                 /*
2493                  * CPU may issues two PMIs very close to each other.
2494                  * When the PMI handler services the first one, the
2495                  * GLOBAL_STATUS is already updated to reflect both.
2496                  * When it IRETs, the second PMI is immediately
2497                  * handled and it sees clear status. At the meantime,
2498                  * there may be a third PMI, because the freezing bit
2499                  * isn't set since the ack in first PMI handlers.
2500                  * Double check if there is more work to be done.
2501                  */
2502                 status = intel_pmu_get_status();
2503                 if (status)
2504                         goto again;
2505         }
2506
2507         if (bts)
2508                 intel_bts_enable_local();
2509         cpuc->enabled = pmu_enabled;
2510         return handled;
2511 }
2512
2513 /*
2514  * This handler is triggered by the local APIC, so the APIC IRQ handling
2515  * rules apply:
2516  */
2517 static int intel_pmu_handle_irq(struct pt_regs *regs)
2518 {
2519         struct cpu_hw_events *cpuc;
2520         int loops;
2521         u64 status;
2522         int handled;
2523         int pmu_enabled;
2524
2525         cpuc = this_cpu_ptr(&cpu_hw_events);
2526
2527         /*
2528          * Save the PMU state.
2529          * It needs to be restored when leaving the handler.
2530          */
2531         pmu_enabled = cpuc->enabled;
2532         /*
2533          * No known reason to not always do late ACK,
2534          * but just in case do it opt-in.
2535          */
2536         if (!x86_pmu.late_ack)
2537                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2538         intel_bts_disable_local();
2539         cpuc->enabled = 0;
2540         __intel_pmu_disable_all();
2541         handled = intel_pmu_drain_bts_buffer();
2542         handled += intel_bts_interrupt();
2543         status = intel_pmu_get_status();
2544         if (!status)
2545                 goto done;
2546
2547         loops = 0;
2548 again:
2549         intel_pmu_lbr_read();
2550         intel_pmu_ack_status(status);
2551         if (++loops > 100) {
2552                 static bool warned;
2553
2554                 if (!warned) {
2555                         WARN(1, "perfevents: irq loop stuck!\n");
2556                         perf_event_print_debug();
2557                         warned = true;
2558                 }
2559                 intel_pmu_reset();
2560                 goto done;
2561         }
2562
2563         handled += handle_pmi_common(regs, status);
2564
2565         /*
2566          * Repeat if there is more work to be done:
2567          */
2568         status = intel_pmu_get_status();
2569         if (status)
2570                 goto again;
2571
2572 done:
2573         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2574         cpuc->enabled = pmu_enabled;
2575         if (pmu_enabled)
2576                 __intel_pmu_enable_all(0, true);
2577         intel_bts_enable_local();
2578
2579         /*
2580          * Only unmask the NMI after the overflow counters
2581          * have been reset. This avoids spurious NMIs on
2582          * Haswell CPUs.
2583          */
2584         if (x86_pmu.late_ack)
2585                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2586         return handled;
2587 }
2588
2589 static struct event_constraint *
2590 intel_bts_constraints(struct perf_event *event)
2591 {
2592         if (unlikely(intel_pmu_has_bts(event)))
2593                 return &bts_constraint;
2594
2595         return NULL;
2596 }
2597
2598 static int intel_alt_er(int idx, u64 config)
2599 {
2600         int alt_idx = idx;
2601
2602         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2603                 return idx;
2604
2605         if (idx == EXTRA_REG_RSP_0)
2606                 alt_idx = EXTRA_REG_RSP_1;
2607
2608         if (idx == EXTRA_REG_RSP_1)
2609                 alt_idx = EXTRA_REG_RSP_0;
2610
2611         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2612                 return idx;
2613
2614         return alt_idx;
2615 }
2616
2617 static void intel_fixup_er(struct perf_event *event, int idx)
2618 {
2619         event->hw.extra_reg.idx = idx;
2620
2621         if (idx == EXTRA_REG_RSP_0) {
2622                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2623                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2624                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2625         } else if (idx == EXTRA_REG_RSP_1) {
2626                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2627                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2628                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2629         }
2630 }
2631
2632 /*
2633  * manage allocation of shared extra msr for certain events
2634  *
2635  * sharing can be:
2636  * per-cpu: to be shared between the various events on a single PMU
2637  * per-core: per-cpu + shared by HT threads
2638  */
2639 static struct event_constraint *
2640 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2641                                    struct perf_event *event,
2642                                    struct hw_perf_event_extra *reg)
2643 {
2644         struct event_constraint *c = &emptyconstraint;
2645         struct er_account *era;
2646         unsigned long flags;
2647         int idx = reg->idx;
2648
2649         /*
2650          * reg->alloc can be set due to existing state, so for fake cpuc we
2651          * need to ignore this, otherwise we might fail to allocate proper fake
2652          * state for this extra reg constraint. Also see the comment below.
2653          */
2654         if (reg->alloc && !cpuc->is_fake)
2655                 return NULL; /* call x86_get_event_constraint() */
2656
2657 again:
2658         era = &cpuc->shared_regs->regs[idx];
2659         /*
2660          * we use spin_lock_irqsave() to avoid lockdep issues when
2661          * passing a fake cpuc
2662          */
2663         raw_spin_lock_irqsave(&era->lock, flags);
2664
2665         if (!atomic_read(&era->ref) || era->config == reg->config) {
2666
2667                 /*
2668                  * If its a fake cpuc -- as per validate_{group,event}() we
2669                  * shouldn't touch event state and we can avoid doing so
2670                  * since both will only call get_event_constraints() once
2671                  * on each event, this avoids the need for reg->alloc.
2672                  *
2673                  * Not doing the ER fixup will only result in era->reg being
2674                  * wrong, but since we won't actually try and program hardware
2675                  * this isn't a problem either.
2676                  */
2677                 if (!cpuc->is_fake) {
2678                         if (idx != reg->idx)
2679                                 intel_fixup_er(event, idx);
2680
2681                         /*
2682                          * x86_schedule_events() can call get_event_constraints()
2683                          * multiple times on events in the case of incremental
2684                          * scheduling(). reg->alloc ensures we only do the ER
2685                          * allocation once.
2686                          */
2687                         reg->alloc = 1;
2688                 }
2689
2690                 /* lock in msr value */
2691                 era->config = reg->config;
2692                 era->reg = reg->reg;
2693
2694                 /* one more user */
2695                 atomic_inc(&era->ref);
2696
2697                 /*
2698                  * need to call x86_get_event_constraint()
2699                  * to check if associated event has constraints
2700                  */
2701                 c = NULL;
2702         } else {
2703                 idx = intel_alt_er(idx, reg->config);
2704                 if (idx != reg->idx) {
2705                         raw_spin_unlock_irqrestore(&era->lock, flags);
2706                         goto again;
2707                 }
2708         }
2709         raw_spin_unlock_irqrestore(&era->lock, flags);
2710
2711         return c;
2712 }
2713
2714 static void
2715 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2716                                    struct hw_perf_event_extra *reg)
2717 {
2718         struct er_account *era;
2719
2720         /*
2721          * Only put constraint if extra reg was actually allocated. Also takes
2722          * care of event which do not use an extra shared reg.
2723          *
2724          * Also, if this is a fake cpuc we shouldn't touch any event state
2725          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2726          * either since it'll be thrown out.
2727          */
2728         if (!reg->alloc || cpuc->is_fake)
2729                 return;
2730
2731         era = &cpuc->shared_regs->regs[reg->idx];
2732
2733         /* one fewer user */
2734         atomic_dec(&era->ref);
2735
2736         /* allocate again next time */
2737         reg->alloc = 0;
2738 }
2739
2740 static struct event_constraint *
2741 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2742                               struct perf_event *event)
2743 {
2744         struct event_constraint *c = NULL, *d;
2745         struct hw_perf_event_extra *xreg, *breg;
2746
2747         xreg = &event->hw.extra_reg;
2748         if (xreg->idx != EXTRA_REG_NONE) {
2749                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2750                 if (c == &emptyconstraint)
2751                         return c;
2752         }
2753         breg = &event->hw.branch_reg;
2754         if (breg->idx != EXTRA_REG_NONE) {
2755                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2756                 if (d == &emptyconstraint) {
2757                         __intel_shared_reg_put_constraints(cpuc, xreg);
2758                         c = d;
2759                 }
2760         }
2761         return c;
2762 }
2763
2764 struct event_constraint *
2765 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2766                           struct perf_event *event)
2767 {
2768         struct event_constraint *c;
2769
2770         if (x86_pmu.event_constraints) {
2771                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2772                         if (constraint_match(c, event->hw.config)) {
2773                                 event->hw.flags |= c->flags;
2774                                 return c;
2775                         }
2776                 }
2777         }
2778
2779         return &unconstrained;
2780 }
2781
2782 static struct event_constraint *
2783 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2784                             struct perf_event *event)
2785 {
2786         struct event_constraint *c;
2787
2788         c = intel_bts_constraints(event);
2789         if (c)
2790                 return c;
2791
2792         c = intel_shared_regs_constraints(cpuc, event);
2793         if (c)
2794                 return c;
2795
2796         c = intel_pebs_constraints(event);
2797         if (c)
2798                 return c;
2799
2800         return x86_get_event_constraints(cpuc, idx, event);
2801 }
2802
2803 static void
2804 intel_start_scheduling(struct cpu_hw_events *cpuc)
2805 {
2806         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2807         struct intel_excl_states *xl;
2808         int tid = cpuc->excl_thread_id;
2809
2810         /*
2811          * nothing needed if in group validation mode
2812          */
2813         if (cpuc->is_fake || !is_ht_workaround_enabled())
2814                 return;
2815
2816         /*
2817          * no exclusion needed
2818          */
2819         if (WARN_ON_ONCE(!excl_cntrs))
2820                 return;
2821
2822         xl = &excl_cntrs->states[tid];
2823
2824         xl->sched_started = true;
2825         /*
2826          * lock shared state until we are done scheduling
2827          * in stop_event_scheduling()
2828          * makes scheduling appear as a transaction
2829          */
2830         raw_spin_lock(&excl_cntrs->lock);
2831 }
2832
2833 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2834 {
2835         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2836         struct event_constraint *c = cpuc->event_constraint[idx];
2837         struct intel_excl_states *xl;
2838         int tid = cpuc->excl_thread_id;
2839
2840         if (cpuc->is_fake || !is_ht_workaround_enabled())
2841                 return;
2842
2843         if (WARN_ON_ONCE(!excl_cntrs))
2844                 return;
2845
2846         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2847                 return;
2848
2849         xl = &excl_cntrs->states[tid];
2850
2851         lockdep_assert_held(&excl_cntrs->lock);
2852
2853         if (c->flags & PERF_X86_EVENT_EXCL)
2854                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2855         else
2856                 xl->state[cntr] = INTEL_EXCL_SHARED;
2857 }
2858
2859 static void
2860 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2861 {
2862         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2863         struct intel_excl_states *xl;
2864         int tid = cpuc->excl_thread_id;
2865
2866         /*
2867          * nothing needed if in group validation mode
2868          */
2869         if (cpuc->is_fake || !is_ht_workaround_enabled())
2870                 return;
2871         /*
2872          * no exclusion needed
2873          */
2874         if (WARN_ON_ONCE(!excl_cntrs))
2875                 return;
2876
2877         xl = &excl_cntrs->states[tid];
2878
2879         xl->sched_started = false;
2880         /*
2881          * release shared state lock (acquired in intel_start_scheduling())
2882          */
2883         raw_spin_unlock(&excl_cntrs->lock);
2884 }
2885
2886 static struct event_constraint *
2887 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
2888 {
2889         WARN_ON_ONCE(!cpuc->constraint_list);
2890
2891         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2892                 struct event_constraint *cx;
2893
2894                 /*
2895                  * grab pre-allocated constraint entry
2896                  */
2897                 cx = &cpuc->constraint_list[idx];
2898
2899                 /*
2900                  * initialize dynamic constraint
2901                  * with static constraint
2902                  */
2903                 *cx = *c;
2904
2905                 /*
2906                  * mark constraint as dynamic
2907                  */
2908                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2909                 c = cx;
2910         }
2911
2912         return c;
2913 }
2914
2915 static struct event_constraint *
2916 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2917                            int idx, struct event_constraint *c)
2918 {
2919         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2920         struct intel_excl_states *xlo;
2921         int tid = cpuc->excl_thread_id;
2922         int is_excl, i, w;
2923
2924         /*
2925          * validating a group does not require
2926          * enforcing cross-thread  exclusion
2927          */
2928         if (cpuc->is_fake || !is_ht_workaround_enabled())
2929                 return c;
2930
2931         /*
2932          * no exclusion needed
2933          */
2934         if (WARN_ON_ONCE(!excl_cntrs))
2935                 return c;
2936
2937         /*
2938          * because we modify the constraint, we need
2939          * to make a copy. Static constraints come
2940          * from static const tables.
2941          *
2942          * only needed when constraint has not yet
2943          * been cloned (marked dynamic)
2944          */
2945         c = dyn_constraint(cpuc, c, idx);
2946
2947         /*
2948          * From here on, the constraint is dynamic.
2949          * Either it was just allocated above, or it
2950          * was allocated during a earlier invocation
2951          * of this function
2952          */
2953
2954         /*
2955          * state of sibling HT
2956          */
2957         xlo = &excl_cntrs->states[tid ^ 1];
2958
2959         /*
2960          * event requires exclusive counter access
2961          * across HT threads
2962          */
2963         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2964         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2965                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2966                 if (!cpuc->n_excl++)
2967                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2968         }
2969
2970         /*
2971          * Modify static constraint with current dynamic
2972          * state of thread
2973          *
2974          * EXCLUSIVE: sibling counter measuring exclusive event
2975          * SHARED   : sibling counter measuring non-exclusive event
2976          * UNUSED   : sibling counter unused
2977          */
2978         w = c->weight;
2979         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2980                 /*
2981                  * exclusive event in sibling counter
2982                  * our corresponding counter cannot be used
2983                  * regardless of our event
2984                  */
2985                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
2986                         __clear_bit(i, c->idxmsk);
2987                         w--;
2988                         continue;
2989                 }
2990                 /*
2991                  * if measuring an exclusive event, sibling
2992                  * measuring non-exclusive, then counter cannot
2993                  * be used
2994                  */
2995                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
2996                         __clear_bit(i, c->idxmsk);
2997                         w--;
2998                         continue;
2999                 }
3000         }
3001
3002         /*
3003          * if we return an empty mask, then switch
3004          * back to static empty constraint to avoid
3005          * the cost of freeing later on
3006          */
3007         if (!w)
3008                 c = &emptyconstraint;
3009
3010         c->weight = w;
3011
3012         return c;
3013 }
3014
3015 static struct event_constraint *
3016 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3017                             struct perf_event *event)
3018 {
3019         struct event_constraint *c1, *c2;
3020
3021         c1 = cpuc->event_constraint[idx];
3022
3023         /*
3024          * first time only
3025          * - static constraint: no change across incremental scheduling calls
3026          * - dynamic constraint: handled by intel_get_excl_constraints()
3027          */
3028         c2 = __intel_get_event_constraints(cpuc, idx, event);
3029         if (c1) {
3030                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3031                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3032                 c1->weight = c2->weight;
3033                 c2 = c1;
3034         }
3035
3036         if (cpuc->excl_cntrs)
3037                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3038
3039         return c2;
3040 }
3041
3042 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3043                 struct perf_event *event)
3044 {
3045         struct hw_perf_event *hwc = &event->hw;
3046         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3047         int tid = cpuc->excl_thread_id;
3048         struct intel_excl_states *xl;
3049
3050         /*
3051          * nothing needed if in group validation mode
3052          */
3053         if (cpuc->is_fake)
3054                 return;
3055
3056         if (WARN_ON_ONCE(!excl_cntrs))
3057                 return;
3058
3059         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3060                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3061                 if (!--cpuc->n_excl)
3062                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3063         }
3064
3065         /*
3066          * If event was actually assigned, then mark the counter state as
3067          * unused now.
3068          */
3069         if (hwc->idx >= 0) {
3070                 xl = &excl_cntrs->states[tid];
3071
3072                 /*
3073                  * put_constraint may be called from x86_schedule_events()
3074                  * which already has the lock held so here make locking
3075                  * conditional.
3076                  */
3077                 if (!xl->sched_started)
3078                         raw_spin_lock(&excl_cntrs->lock);
3079
3080                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3081
3082                 if (!xl->sched_started)
3083                         raw_spin_unlock(&excl_cntrs->lock);
3084         }
3085 }
3086
3087 static void
3088 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3089                                         struct perf_event *event)
3090 {
3091         struct hw_perf_event_extra *reg;
3092
3093         reg = &event->hw.extra_reg;
3094         if (reg->idx != EXTRA_REG_NONE)
3095                 __intel_shared_reg_put_constraints(cpuc, reg);
3096
3097         reg = &event->hw.branch_reg;
3098         if (reg->idx != EXTRA_REG_NONE)
3099                 __intel_shared_reg_put_constraints(cpuc, reg);
3100 }
3101
3102 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3103                                         struct perf_event *event)
3104 {
3105         intel_put_shared_regs_event_constraints(cpuc, event);
3106
3107         /*
3108          * is PMU has exclusive counter restrictions, then
3109          * all events are subject to and must call the
3110          * put_excl_constraints() routine
3111          */
3112         if (cpuc->excl_cntrs)
3113                 intel_put_excl_constraints(cpuc, event);
3114 }
3115
3116 static void intel_pebs_aliases_core2(struct perf_event *event)
3117 {
3118         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3119                 /*
3120                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3121                  * (0x003c) so that we can use it with PEBS.
3122                  *
3123                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3124                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3125                  * (0x00c0), which is a PEBS capable event, to get the same
3126                  * count.
3127                  *
3128                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3129                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3130                  * larger than the maximum number of instructions that can be
3131                  * retired per cycle (4) and then inverting the condition, we
3132                  * count all cycles that retire 16 or less instructions, which
3133                  * is every cycle.
3134                  *
3135                  * Thereby we gain a PEBS capable cycle counter.
3136                  */
3137                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3138
3139                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3140                 event->hw.config = alt_config;
3141         }
3142 }
3143
3144 static void intel_pebs_aliases_snb(struct perf_event *event)
3145 {
3146         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3147                 /*
3148                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3149                  * (0x003c) so that we can use it with PEBS.
3150                  *
3151                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3152                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3153                  * (0x01c2), which is a PEBS capable event, to get the same
3154                  * count.
3155                  *
3156                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3157                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3158                  * larger than the maximum number of micro-ops that can be
3159                  * retired per cycle (4) and then inverting the condition, we
3160                  * count all cycles that retire 16 or less micro-ops, which
3161                  * is every cycle.
3162                  *
3163                  * Thereby we gain a PEBS capable cycle counter.
3164                  */
3165                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3166
3167                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3168                 event->hw.config = alt_config;
3169         }
3170 }
3171
3172 static void intel_pebs_aliases_precdist(struct perf_event *event)
3173 {
3174         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3175                 /*
3176                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3177                  * (0x003c) so that we can use it with PEBS.
3178                  *
3179                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3180                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3181                  * (0x01c0), which is a PEBS capable event, to get the same
3182                  * count.
3183                  *
3184                  * The PREC_DIST event has special support to minimize sample
3185                  * shadowing effects. One drawback is that it can be
3186                  * only programmed on counter 1, but that seems like an
3187                  * acceptable trade off.
3188                  */
3189                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3190
3191                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3192                 event->hw.config = alt_config;
3193         }
3194 }
3195
3196 static void intel_pebs_aliases_ivb(struct perf_event *event)
3197 {
3198         if (event->attr.precise_ip < 3)
3199                 return intel_pebs_aliases_snb(event);
3200         return intel_pebs_aliases_precdist(event);
3201 }
3202
3203 static void intel_pebs_aliases_skl(struct perf_event *event)
3204 {
3205         if (event->attr.precise_ip < 3)
3206                 return intel_pebs_aliases_core2(event);
3207         return intel_pebs_aliases_precdist(event);
3208 }
3209
3210 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3211 {
3212         unsigned long flags = x86_pmu.large_pebs_flags;
3213
3214         if (event->attr.use_clockid)
3215                 flags &= ~PERF_SAMPLE_TIME;
3216         if (!event->attr.exclude_kernel)
3217                 flags &= ~PERF_SAMPLE_REGS_USER;
3218         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3219                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3220         return flags;
3221 }
3222
3223 static int intel_pmu_bts_config(struct perf_event *event)
3224 {
3225         struct perf_event_attr *attr = &event->attr;
3226
3227         if (unlikely(intel_pmu_has_bts(event))) {
3228                 /* BTS is not supported by this architecture. */
3229                 if (!x86_pmu.bts_active)
3230                         return -EOPNOTSUPP;
3231
3232                 /* BTS is currently only allowed for user-mode. */
3233                 if (!attr->exclude_kernel)
3234                         return -EOPNOTSUPP;
3235
3236                 /* BTS is not allowed for precise events. */
3237                 if (attr->precise_ip)
3238                         return -EOPNOTSUPP;
3239
3240                 /* disallow bts if conflicting events are present */
3241                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3242                         return -EBUSY;
3243
3244                 event->destroy = hw_perf_lbr_event_destroy;
3245         }
3246
3247         return 0;
3248 }
3249
3250 static int core_pmu_hw_config(struct perf_event *event)
3251 {
3252         int ret = x86_pmu_hw_config(event);
3253
3254         if (ret)
3255                 return ret;
3256
3257         return intel_pmu_bts_config(event);
3258 }
3259
3260 static int intel_pmu_hw_config(struct perf_event *event)
3261 {
3262         int ret = x86_pmu_hw_config(event);
3263
3264         if (ret)
3265                 return ret;
3266
3267         ret = intel_pmu_bts_config(event);
3268         if (ret)
3269                 return ret;
3270
3271         if (event->attr.precise_ip) {
3272                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3273                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3274                         if (!(event->attr.sample_type &
3275                               ~intel_pmu_large_pebs_flags(event)))
3276                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3277                 }
3278                 if (x86_pmu.pebs_aliases)
3279                         x86_pmu.pebs_aliases(event);
3280
3281                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3282                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3283         }
3284
3285         if (needs_branch_stack(event)) {
3286                 ret = intel_pmu_setup_lbr_filter(event);
3287                 if (ret)
3288                         return ret;
3289
3290                 /*
3291                  * BTS is set up earlier in this path, so don't account twice
3292                  */
3293                 if (!unlikely(intel_pmu_has_bts(event))) {
3294                         /* disallow lbr if conflicting events are present */
3295                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3296                                 return -EBUSY;
3297
3298                         event->destroy = hw_perf_lbr_event_destroy;
3299                 }
3300         }
3301
3302         if (event->attr.type != PERF_TYPE_RAW)
3303                 return 0;
3304
3305         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3306                 return 0;
3307
3308         if (x86_pmu.version < 3)
3309                 return -EINVAL;
3310
3311         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3312                 return -EACCES;
3313
3314         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3315
3316         return 0;
3317 }
3318
3319 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3320 {
3321         if (x86_pmu.guest_get_msrs)
3322                 return x86_pmu.guest_get_msrs(nr);
3323         *nr = 0;
3324         return NULL;
3325 }
3326 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3327
3328 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3329 {
3330         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3331         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3332
3333         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3334         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3335         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3336         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3337                 arr[0].guest &= ~cpuc->pebs_enabled;
3338         else
3339                 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3340         *nr = 1;
3341
3342         if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3343                 /*
3344                  * If PMU counter has PEBS enabled it is not enough to
3345                  * disable counter on a guest entry since PEBS memory
3346                  * write can overshoot guest entry and corrupt guest
3347                  * memory. Disabling PEBS solves the problem.
3348                  *
3349                  * Don't do this if the CPU already enforces it.
3350                  */
3351                 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3352                 arr[1].host = cpuc->pebs_enabled;
3353                 arr[1].guest = 0;
3354                 *nr = 2;
3355         }
3356
3357         return arr;
3358 }
3359
3360 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3361 {
3362         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3363         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3364         int idx;
3365
3366         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3367                 struct perf_event *event = cpuc->events[idx];
3368
3369                 arr[idx].msr = x86_pmu_config_addr(idx);
3370                 arr[idx].host = arr[idx].guest = 0;
3371
3372                 if (!test_bit(idx, cpuc->active_mask))
3373                         continue;
3374
3375                 arr[idx].host = arr[idx].guest =
3376                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3377
3378                 if (event->attr.exclude_host)
3379                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3380                 else if (event->attr.exclude_guest)
3381                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3382         }
3383
3384         *nr = x86_pmu.num_counters;
3385         return arr;
3386 }
3387
3388 static void core_pmu_enable_event(struct perf_event *event)
3389 {
3390         if (!event->attr.exclude_host)
3391                 x86_pmu_enable_event(event);
3392 }
3393
3394 static void core_pmu_enable_all(int added)
3395 {
3396         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3397         int idx;
3398
3399         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3400                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3401
3402                 if (!test_bit(idx, cpuc->active_mask) ||
3403                                 cpuc->events[idx]->attr.exclude_host)
3404                         continue;
3405
3406                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3407         }
3408 }
3409
3410 static int hsw_hw_config(struct perf_event *event)
3411 {
3412         int ret = intel_pmu_hw_config(event);
3413
3414         if (ret)
3415                 return ret;
3416         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3417                 return 0;
3418         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3419
3420         /*
3421          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3422          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3423          * this combination.
3424          */
3425         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3426              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3427               event->attr.precise_ip > 0))
3428                 return -EOPNOTSUPP;
3429
3430         if (event_is_checkpointed(event)) {
3431                 /*
3432                  * Sampling of checkpointed events can cause situations where
3433                  * the CPU constantly aborts because of a overflow, which is
3434                  * then checkpointed back and ignored. Forbid checkpointing
3435                  * for sampling.
3436                  *
3437                  * But still allow a long sampling period, so that perf stat
3438                  * from KVM works.
3439                  */
3440                 if (event->attr.sample_period > 0 &&
3441                     event->attr.sample_period < 0x7fffffff)
3442                         return -EOPNOTSUPP;
3443         }
3444         return 0;
3445 }
3446
3447 static struct event_constraint counter0_constraint =
3448                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3449
3450 static struct event_constraint counter2_constraint =
3451                         EVENT_CONSTRAINT(0, 0x4, 0);
3452
3453 static struct event_constraint fixed0_constraint =
3454                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3455
3456 static struct event_constraint fixed0_counter0_constraint =
3457                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3458
3459 static struct event_constraint *
3460 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3461                           struct perf_event *event)
3462 {
3463         struct event_constraint *c;
3464
3465         c = intel_get_event_constraints(cpuc, idx, event);
3466
3467         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3468         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3469                 if (c->idxmsk64 & (1U << 2))
3470                         return &counter2_constraint;
3471                 return &emptyconstraint;
3472         }
3473
3474         return c;
3475 }
3476
3477 static struct event_constraint *
3478 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3479                           struct perf_event *event)
3480 {
3481         /*
3482          * Fixed counter 0 has less skid.
3483          * Force instruction:ppp in Fixed counter 0
3484          */
3485         if ((event->attr.precise_ip == 3) &&
3486             constraint_match(&fixed0_constraint, event->hw.config))
3487                 return &fixed0_constraint;
3488
3489         return hsw_get_event_constraints(cpuc, idx, event);
3490 }
3491
3492 static struct event_constraint *
3493 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3494                           struct perf_event *event)
3495 {
3496         struct event_constraint *c;
3497
3498         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3499         if (event->attr.precise_ip == 3)
3500                 return &counter0_constraint;
3501
3502         c = intel_get_event_constraints(cpuc, idx, event);
3503
3504         return c;
3505 }
3506
3507 static struct event_constraint *
3508 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3509                           struct perf_event *event)
3510 {
3511         struct event_constraint *c;
3512
3513         /*
3514          * :ppp means to do reduced skid PEBS,
3515          * which is available on PMC0 and fixed counter 0.
3516          */
3517         if (event->attr.precise_ip == 3) {
3518                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
3519                 if (constraint_match(&fixed0_constraint, event->hw.config))
3520                         return &fixed0_counter0_constraint;
3521
3522                 return &counter0_constraint;
3523         }
3524
3525         c = intel_get_event_constraints(cpuc, idx, event);
3526
3527         return c;
3528 }
3529
3530 static bool allow_tsx_force_abort = true;
3531
3532 static struct event_constraint *
3533 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3534                           struct perf_event *event)
3535 {
3536         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3537
3538         /*
3539          * Without TFA we must not use PMC3.
3540          */
3541         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
3542                 c = dyn_constraint(cpuc, c, idx);
3543                 c->idxmsk64 &= ~(1ULL << 3);
3544                 c->weight--;
3545         }
3546
3547         return c;
3548 }
3549
3550 /*
3551  * Broadwell:
3552  *
3553  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3554  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3555  * the two to enforce a minimum period of 128 (the smallest value that has bits
3556  * 0-5 cleared and >= 100).
3557  *
3558  * Because of how the code in x86_perf_event_set_period() works, the truncation
3559  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3560  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3561  *
3562  * Therefore the effective (average) period matches the requested period,
3563  * despite coarser hardware granularity.
3564  */
3565 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3566 {
3567         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3568                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
3569                 if (left < 128)
3570                         left = 128;
3571                 left &= ~0x3fULL;
3572         }
3573         return left;
3574 }
3575
3576 PMU_FORMAT_ATTR(event,  "config:0-7"    );
3577 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3578 PMU_FORMAT_ATTR(edge,   "config:18"     );
3579 PMU_FORMAT_ATTR(pc,     "config:19"     );
3580 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3581 PMU_FORMAT_ATTR(inv,    "config:23"     );
3582 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3583 PMU_FORMAT_ATTR(in_tx,  "config:32");
3584 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3585
3586 static struct attribute *intel_arch_formats_attr[] = {
3587         &format_attr_event.attr,
3588         &format_attr_umask.attr,
3589         &format_attr_edge.attr,
3590         &format_attr_pc.attr,
3591         &format_attr_inv.attr,
3592         &format_attr_cmask.attr,
3593         NULL,
3594 };
3595
3596 ssize_t intel_event_sysfs_show(char *page, u64 config)
3597 {
3598         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3599
3600         return x86_event_sysfs_show(page, config, event);
3601 }
3602
3603 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3604 {
3605         struct intel_shared_regs *regs;
3606         int i;
3607
3608         regs = kzalloc_node(sizeof(struct intel_shared_regs),
3609                             GFP_KERNEL, cpu_to_node(cpu));
3610         if (regs) {
3611                 /*
3612                  * initialize the locks to keep lockdep happy
3613                  */
3614                 for (i = 0; i < EXTRA_REG_MAX; i++)
3615                         raw_spin_lock_init(&regs->regs[i].lock);
3616
3617                 regs->core_id = -1;
3618         }
3619         return regs;
3620 }
3621
3622 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3623 {
3624         struct intel_excl_cntrs *c;
3625
3626         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3627                          GFP_KERNEL, cpu_to_node(cpu));
3628         if (c) {
3629                 raw_spin_lock_init(&c->lock);
3630                 c->core_id = -1;
3631         }
3632         return c;
3633 }
3634
3635
3636 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
3637 {
3638         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
3639
3640         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3641                 cpuc->shared_regs = allocate_shared_regs(cpu);
3642                 if (!cpuc->shared_regs)
3643                         goto err;
3644         }
3645
3646         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
3647                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3648
3649                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
3650                 if (!cpuc->constraint_list)
3651                         goto err_shared_regs;
3652         }
3653
3654         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3655                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3656                 if (!cpuc->excl_cntrs)
3657                         goto err_constraint_list;
3658
3659                 cpuc->excl_thread_id = 0;
3660         }
3661
3662         return 0;
3663
3664 err_constraint_list:
3665         kfree(cpuc->constraint_list);
3666         cpuc->constraint_list = NULL;
3667
3668 err_shared_regs:
3669         kfree(cpuc->shared_regs);
3670         cpuc->shared_regs = NULL;
3671
3672 err:
3673         return -ENOMEM;
3674 }
3675
3676 static int intel_pmu_cpu_prepare(int cpu)
3677 {
3678         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
3679 }
3680
3681 static void flip_smm_bit(void *data)
3682 {
3683         unsigned long set = *(unsigned long *)data;
3684
3685         if (set > 0) {
3686                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3687                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3688         } else {
3689                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3690                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3691         }
3692 }
3693
3694 static void intel_pmu_cpu_starting(int cpu)
3695 {
3696         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3697         int core_id = topology_core_id(cpu);
3698         int i;
3699
3700         init_debug_store_on_cpu(cpu);
3701         /*
3702          * Deal with CPUs that don't clear their LBRs on power-up.
3703          */
3704         intel_pmu_lbr_reset();
3705
3706         cpuc->lbr_sel = NULL;
3707
3708         if (x86_pmu.flags & PMU_FL_TFA) {
3709                 WARN_ON_ONCE(cpuc->tfa_shadow);
3710                 cpuc->tfa_shadow = ~0ULL;
3711                 intel_set_tfa(cpuc, false);
3712         }
3713
3714         if (x86_pmu.version > 1)
3715                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3716
3717         if (x86_pmu.counter_freezing)
3718                 enable_counter_freeze();
3719
3720         if (!cpuc->shared_regs)
3721                 return;
3722
3723         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3724                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3725                         struct intel_shared_regs *pc;
3726
3727                         pc = per_cpu(cpu_hw_events, i).shared_regs;
3728                         if (pc && pc->core_id == core_id) {
3729                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3730                                 cpuc->shared_regs = pc;
3731                                 break;
3732                         }
3733                 }
3734                 cpuc->shared_regs->core_id = core_id;
3735                 cpuc->shared_regs->refcnt++;
3736         }
3737
3738         if (x86_pmu.lbr_sel_map)
3739                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3740
3741         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3742                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3743                         struct cpu_hw_events *sibling;
3744                         struct intel_excl_cntrs *c;
3745
3746                         sibling = &per_cpu(cpu_hw_events, i);
3747                         c = sibling->excl_cntrs;
3748                         if (c && c->core_id == core_id) {
3749                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3750                                 cpuc->excl_cntrs = c;
3751                                 if (!sibling->excl_thread_id)
3752                                         cpuc->excl_thread_id = 1;
3753                                 break;
3754                         }
3755                 }
3756                 cpuc->excl_cntrs->core_id = core_id;
3757                 cpuc->excl_cntrs->refcnt++;
3758         }
3759 }
3760
3761 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
3762 {
3763         struct intel_excl_cntrs *c;
3764
3765         c = cpuc->excl_cntrs;
3766         if (c) {
3767                 if (c->core_id == -1 || --c->refcnt == 0)
3768                         kfree(c);
3769                 cpuc->excl_cntrs = NULL;
3770         }
3771
3772         kfree(cpuc->constraint_list);
3773         cpuc->constraint_list = NULL;
3774 }
3775
3776 static void intel_pmu_cpu_dying(int cpu)
3777 {
3778         fini_debug_store_on_cpu(cpu);
3779
3780         if (x86_pmu.counter_freezing)
3781                 disable_counter_freeze();
3782 }
3783
3784 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
3785 {
3786         struct intel_shared_regs *pc;
3787
3788         pc = cpuc->shared_regs;
3789         if (pc) {
3790                 if (pc->core_id == -1 || --pc->refcnt == 0)
3791                         kfree(pc);
3792                 cpuc->shared_regs = NULL;
3793         }
3794
3795         free_excl_cntrs(cpuc);
3796 }
3797
3798 static void intel_pmu_cpu_dead(int cpu)
3799 {
3800         intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
3801 }
3802
3803 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3804                                  bool sched_in)
3805 {
3806         intel_pmu_pebs_sched_task(ctx, sched_in);
3807         intel_pmu_lbr_sched_task(ctx, sched_in);
3808 }
3809
3810 static int intel_pmu_check_period(struct perf_event *event, u64 value)
3811 {
3812         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
3813 }
3814
3815 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3816
3817 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3818
3819 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3820
3821 static struct attribute *intel_arch3_formats_attr[] = {
3822         &format_attr_event.attr,
3823         &format_attr_umask.attr,
3824         &format_attr_edge.attr,
3825         &format_attr_pc.attr,
3826         &format_attr_any.attr,
3827         &format_attr_inv.attr,
3828         &format_attr_cmask.attr,
3829         NULL,
3830 };
3831
3832 static struct attribute *hsw_format_attr[] = {
3833         &format_attr_in_tx.attr,
3834         &format_attr_in_tx_cp.attr,
3835         &format_attr_offcore_rsp.attr,
3836         &format_attr_ldlat.attr,
3837         NULL
3838 };
3839
3840 static struct attribute *nhm_format_attr[] = {
3841         &format_attr_offcore_rsp.attr,
3842         &format_attr_ldlat.attr,
3843         NULL
3844 };
3845
3846 static struct attribute *slm_format_attr[] = {
3847         &format_attr_offcore_rsp.attr,
3848         NULL
3849 };
3850
3851 static struct attribute *skl_format_attr[] = {
3852         &format_attr_frontend.attr,
3853         NULL,
3854 };
3855
3856 static __initconst const struct x86_pmu core_pmu = {
3857         .name                   = "core",
3858         .handle_irq             = x86_pmu_handle_irq,
3859         .disable_all            = x86_pmu_disable_all,
3860         .enable_all             = core_pmu_enable_all,
3861         .enable                 = core_pmu_enable_event,
3862         .disable                = x86_pmu_disable_event,
3863         .hw_config              = core_pmu_hw_config,
3864         .schedule_events        = x86_schedule_events,
3865         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3866         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3867         .event_map              = intel_pmu_event_map,
3868         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3869         .apic                   = 1,
3870         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3871
3872         /*
3873          * Intel PMCs cannot be accessed sanely above 32-bit width,
3874          * so we install an artificial 1<<31 period regardless of
3875          * the generic event period:
3876          */
3877         .max_period             = (1ULL<<31) - 1,
3878         .get_event_constraints  = intel_get_event_constraints,
3879         .put_event_constraints  = intel_put_event_constraints,
3880         .event_constraints      = intel_core_event_constraints,
3881         .guest_get_msrs         = core_guest_get_msrs,
3882         .format_attrs           = intel_arch_formats_attr,
3883         .events_sysfs_show      = intel_event_sysfs_show,
3884
3885         /*
3886          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3887          * together with PMU version 1 and thus be using core_pmu with
3888          * shared_regs. We need following callbacks here to allocate
3889          * it properly.
3890          */
3891         .cpu_prepare            = intel_pmu_cpu_prepare,
3892         .cpu_starting           = intel_pmu_cpu_starting,
3893         .cpu_dying              = intel_pmu_cpu_dying,
3894         .cpu_dead               = intel_pmu_cpu_dead,
3895
3896         .check_period           = intel_pmu_check_period,
3897 };
3898
3899 static __initconst const struct x86_pmu intel_pmu = {
3900         .name                   = "Intel",
3901         .handle_irq             = intel_pmu_handle_irq,
3902         .disable_all            = intel_pmu_disable_all,
3903         .enable_all             = intel_pmu_enable_all,
3904         .enable                 = intel_pmu_enable_event,
3905         .disable                = intel_pmu_disable_event,
3906         .add                    = intel_pmu_add_event,
3907         .del                    = intel_pmu_del_event,
3908         .read                   = intel_pmu_read_event,
3909         .hw_config              = intel_pmu_hw_config,
3910         .schedule_events        = x86_schedule_events,
3911         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3912         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3913         .event_map              = intel_pmu_event_map,
3914         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3915         .apic                   = 1,
3916         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3917         /*
3918          * Intel PMCs cannot be accessed sanely above 32 bit width,
3919          * so we install an artificial 1<<31 period regardless of
3920          * the generic event period:
3921          */
3922         .max_period             = (1ULL << 31) - 1,
3923         .get_event_constraints  = intel_get_event_constraints,
3924         .put_event_constraints  = intel_put_event_constraints,
3925         .pebs_aliases           = intel_pebs_aliases_core2,
3926
3927         .format_attrs           = intel_arch3_formats_attr,
3928         .events_sysfs_show      = intel_event_sysfs_show,
3929
3930         .cpu_prepare            = intel_pmu_cpu_prepare,
3931         .cpu_starting           = intel_pmu_cpu_starting,
3932         .cpu_dying              = intel_pmu_cpu_dying,
3933         .cpu_dead               = intel_pmu_cpu_dead,
3934
3935         .guest_get_msrs         = intel_guest_get_msrs,
3936         .sched_task             = intel_pmu_sched_task,
3937
3938         .check_period           = intel_pmu_check_period,
3939 };
3940
3941 static __init void intel_clovertown_quirk(void)
3942 {
3943         /*
3944          * PEBS is unreliable due to:
3945          *
3946          *   AJ67  - PEBS may experience CPL leaks
3947          *   AJ68  - PEBS PMI may be delayed by one event
3948          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3949          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3950          *
3951          * AJ67 could be worked around by restricting the OS/USR flags.
3952          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3953          *
3954          * AJ106 could possibly be worked around by not allowing LBR
3955          *       usage from PEBS, including the fixup.
3956          * AJ68  could possibly be worked around by always programming
3957          *       a pebs_event_reset[0] value and coping with the lost events.
3958          *
3959          * But taken together it might just make sense to not enable PEBS on
3960          * these chips.
3961          */
3962         pr_warn("PEBS disabled due to CPU errata\n");
3963         x86_pmu.pebs = 0;
3964         x86_pmu.pebs_constraints = NULL;
3965 }
3966
3967 static const struct x86_cpu_desc isolation_ucodes[] = {
3968         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_CORE,          3, 0x0000001f),
3969         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_ULT,           1, 0x0000001e),
3970         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_GT3E,          1, 0x00000015),
3971         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
3972         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
3973         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_CORE,        4, 0x00000023),
3974         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_GT3E,        1, 0x00000014),
3975         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,      2, 0x00000010),
3976         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,      3, 0x07000009),
3977         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,      4, 0x0f000009),
3978         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,      5, 0x0e000002),
3979         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           2, 0x0b000014),
3980         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
3981         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
3982         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_MOBILE,        3, 0x0000007c),
3983         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_DESKTOP,       3, 0x0000007c),
3984         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,      9, 0x0000004e),
3985         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,       9, 0x0000004e),
3986         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,      10, 0x0000004e),
3987         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,      11, 0x0000004e),
3988         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,      12, 0x0000004e),
3989         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,     10, 0x0000004e),
3990         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,     11, 0x0000004e),
3991         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,     12, 0x0000004e),
3992         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,     13, 0x0000004e),
3993         {}
3994 };
3995
3996 static void intel_check_pebs_isolation(void)
3997 {
3998         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
3999 }
4000
4001 static __init void intel_pebs_isolation_quirk(void)
4002 {
4003         WARN_ON_ONCE(x86_pmu.check_microcode);
4004         x86_pmu.check_microcode = intel_check_pebs_isolation;
4005         intel_check_pebs_isolation();
4006 }
4007
4008 static const struct x86_cpu_desc pebs_ucodes[] = {
4009         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
4010         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
4011         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
4012         {}
4013 };
4014
4015 static bool intel_snb_pebs_broken(void)
4016 {
4017         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4018 }
4019
4020 static void intel_snb_check_microcode(void)
4021 {
4022         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4023                 return;
4024
4025         /*
4026          * Serialized by the microcode lock..
4027          */
4028         if (x86_pmu.pebs_broken) {
4029                 pr_info("PEBS enabled due to microcode update\n");
4030                 x86_pmu.pebs_broken = 0;
4031         } else {
4032                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4033                 x86_pmu.pebs_broken = 1;
4034         }
4035 }
4036
4037 static bool is_lbr_from(unsigned long msr)
4038 {
4039         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4040
4041         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4042 }
4043
4044 /*
4045  * Under certain circumstances, access certain MSR may cause #GP.
4046  * The function tests if the input MSR can be safely accessed.
4047  */
4048 static bool check_msr(unsigned long msr, u64 mask)
4049 {
4050         u64 val_old, val_new, val_tmp;
4051
4052         /*
4053          * Disable the check for real HW, so we don't
4054          * mess with potentionaly enabled registers:
4055          */
4056         if (hypervisor_is_type(X86_HYPER_NATIVE))
4057                 return true;
4058
4059         /*
4060          * Read the current value, change it and read it back to see if it
4061          * matches, this is needed to detect certain hardware emulators
4062          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4063          */
4064         if (rdmsrl_safe(msr, &val_old))
4065                 return false;
4066
4067         /*
4068          * Only change the bits which can be updated by wrmsrl.
4069          */
4070         val_tmp = val_old ^ mask;
4071
4072         if (is_lbr_from(msr))
4073                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4074
4075         if (wrmsrl_safe(msr, val_tmp) ||
4076             rdmsrl_safe(msr, &val_new))
4077                 return false;
4078
4079         /*
4080          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4081          * should equal rdmsrl()'s even with the quirk.
4082          */
4083         if (val_new != val_tmp)
4084                 return false;
4085
4086         if (is_lbr_from(msr))
4087                 val_old = lbr_from_signext_quirk_wr(val_old);
4088
4089         /* Here it's sure that the MSR can be safely accessed.
4090          * Restore the old value and return.
4091          */
4092         wrmsrl(msr, val_old);
4093
4094         return true;
4095 }
4096
4097 static __init void intel_sandybridge_quirk(void)
4098 {
4099         x86_pmu.check_microcode = intel_snb_check_microcode;
4100         cpus_read_lock();
4101         intel_snb_check_microcode();
4102         cpus_read_unlock();
4103 }
4104
4105 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4106         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4107         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4108         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4109         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4110         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4111         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4112         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4113 };
4114
4115 static __init void intel_arch_events_quirk(void)
4116 {
4117         int bit;
4118
4119         /* disable event that reported as not presend by cpuid */
4120         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4121                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4122                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4123                         intel_arch_events_map[bit].name);
4124         }
4125 }
4126
4127 static __init void intel_nehalem_quirk(void)
4128 {
4129         union cpuid10_ebx ebx;
4130
4131         ebx.full = x86_pmu.events_maskl;
4132         if (ebx.split.no_branch_misses_retired) {
4133                 /*
4134                  * Erratum AAJ80 detected, we work it around by using
4135                  * the BR_MISP_EXEC.ANY event. This will over-count
4136                  * branch-misses, but it's still much better than the
4137                  * architectural event which is often completely bogus:
4138                  */
4139                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4140                 ebx.split.no_branch_misses_retired = 0;
4141                 x86_pmu.events_maskl = ebx.full;
4142                 pr_info("CPU erratum AAJ80 worked around\n");
4143         }
4144 }
4145
4146 static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4147         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,         2, 0x0000000e),
4148         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,         9, 0x0000002e),
4149         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,        10, 0x00000008),
4150         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_X,       1, 0x00000028),
4151         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,    1, 0x00000028),
4152         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,    8, 0x00000006),
4153         {}
4154 };
4155
4156 static bool intel_counter_freezing_broken(void)
4157 {
4158         return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4159 }
4160
4161 static __init void intel_counter_freezing_quirk(void)
4162 {
4163         /* Check if it's already disabled */
4164         if (disable_counter_freezing)
4165                 return;
4166
4167         /*
4168          * If the system starts with the wrong ucode, leave the
4169          * counter-freezing feature permanently disabled.
4170          */
4171         if (intel_counter_freezing_broken()) {
4172                 pr_info("PMU counter freezing disabled due to CPU errata,"
4173                         "please upgrade microcode\n");
4174                 x86_pmu.counter_freezing = false;
4175                 x86_pmu.handle_irq = intel_pmu_handle_irq;
4176         }
4177 }
4178
4179 /*
4180  * enable software workaround for errata:
4181  * SNB: BJ122
4182  * IVB: BV98
4183  * HSW: HSD29
4184  *
4185  * Only needed when HT is enabled. However detecting
4186  * if HT is enabled is difficult (model specific). So instead,
4187  * we enable the workaround in the early boot, and verify if
4188  * it is needed in a later initcall phase once we have valid
4189  * topology information to check if HT is actually enabled
4190  */
4191 static __init void intel_ht_bug(void)
4192 {
4193         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4194
4195         x86_pmu.start_scheduling = intel_start_scheduling;
4196         x86_pmu.commit_scheduling = intel_commit_scheduling;
4197         x86_pmu.stop_scheduling = intel_stop_scheduling;
4198 }
4199
4200 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
4201 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
4202
4203 /* Haswell special events */
4204 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
4205 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
4206 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
4207 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
4208 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
4209 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
4210 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
4211 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
4212 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
4213 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
4214 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
4215 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
4216
4217 static struct attribute *hsw_events_attrs[] = {
4218         EVENT_PTR(td_slots_issued),
4219         EVENT_PTR(td_slots_retired),
4220         EVENT_PTR(td_fetch_bubbles),
4221         EVENT_PTR(td_total_slots),
4222         EVENT_PTR(td_total_slots_scale),
4223         EVENT_PTR(td_recovery_bubbles),
4224         EVENT_PTR(td_recovery_bubbles_scale),
4225         NULL
4226 };
4227
4228 static struct attribute *hsw_mem_events_attrs[] = {
4229         EVENT_PTR(mem_ld_hsw),
4230         EVENT_PTR(mem_st_hsw),
4231         NULL,
4232 };
4233
4234 static struct attribute *hsw_tsx_events_attrs[] = {
4235         EVENT_PTR(tx_start),
4236         EVENT_PTR(tx_commit),
4237         EVENT_PTR(tx_abort),
4238         EVENT_PTR(tx_capacity),
4239         EVENT_PTR(tx_conflict),
4240         EVENT_PTR(el_start),
4241         EVENT_PTR(el_commit),
4242         EVENT_PTR(el_abort),
4243         EVENT_PTR(el_capacity),
4244         EVENT_PTR(el_conflict),
4245         EVENT_PTR(cycles_t),
4246         EVENT_PTR(cycles_ct),
4247         NULL
4248 };
4249
4250 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4251 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4252 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4253 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4254
4255 static struct attribute *icl_events_attrs[] = {
4256         EVENT_PTR(mem_ld_hsw),
4257         EVENT_PTR(mem_st_hsw),
4258         NULL,
4259 };
4260
4261 static struct attribute *icl_tsx_events_attrs[] = {
4262         EVENT_PTR(tx_start),
4263         EVENT_PTR(tx_abort),
4264         EVENT_PTR(tx_commit),
4265         EVENT_PTR(tx_capacity_read),
4266         EVENT_PTR(tx_capacity_write),
4267         EVENT_PTR(tx_conflict),
4268         EVENT_PTR(el_start),
4269         EVENT_PTR(el_abort),
4270         EVENT_PTR(el_commit),
4271         EVENT_PTR(el_capacity_read),
4272         EVENT_PTR(el_capacity_write),
4273         EVENT_PTR(el_conflict),
4274         EVENT_PTR(cycles_t),
4275         EVENT_PTR(cycles_ct),
4276         NULL,
4277 };
4278
4279 static ssize_t freeze_on_smi_show(struct device *cdev,
4280                                   struct device_attribute *attr,
4281                                   char *buf)
4282 {
4283         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4284 }
4285
4286 static DEFINE_MUTEX(freeze_on_smi_mutex);
4287
4288 static ssize_t freeze_on_smi_store(struct device *cdev,
4289                                    struct device_attribute *attr,
4290                                    const char *buf, size_t count)
4291 {
4292         unsigned long val;
4293         ssize_t ret;
4294
4295         ret = kstrtoul(buf, 0, &val);
4296         if (ret)
4297                 return ret;
4298
4299         if (val > 1)
4300                 return -EINVAL;
4301
4302         mutex_lock(&freeze_on_smi_mutex);
4303
4304         if (x86_pmu.attr_freeze_on_smi == val)
4305                 goto done;
4306
4307         x86_pmu.attr_freeze_on_smi = val;
4308
4309         get_online_cpus();
4310         on_each_cpu(flip_smm_bit, &val, 1);
4311         put_online_cpus();
4312 done:
4313         mutex_unlock(&freeze_on_smi_mutex);
4314
4315         return count;
4316 }
4317
4318 static void update_tfa_sched(void *ignored)
4319 {
4320         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4321
4322         /*
4323          * check if PMC3 is used
4324          * and if so force schedule out for all event types all contexts
4325          */
4326         if (test_bit(3, cpuc->active_mask))
4327                 perf_pmu_resched(x86_get_pmu());
4328 }
4329
4330 static ssize_t show_sysctl_tfa(struct device *cdev,
4331                               struct device_attribute *attr,
4332                               char *buf)
4333 {
4334         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
4335 }
4336
4337 static ssize_t set_sysctl_tfa(struct device *cdev,
4338                               struct device_attribute *attr,
4339                               const char *buf, size_t count)
4340 {
4341         bool val;
4342         ssize_t ret;
4343
4344         ret = kstrtobool(buf, &val);
4345         if (ret)
4346                 return ret;
4347
4348         /* no change */
4349         if (val == allow_tsx_force_abort)
4350                 return count;
4351
4352         allow_tsx_force_abort = val;
4353
4354         get_online_cpus();
4355         on_each_cpu(update_tfa_sched, NULL, 1);
4356         put_online_cpus();
4357
4358         return count;
4359 }
4360
4361
4362 static DEVICE_ATTR_RW(freeze_on_smi);
4363
4364 static ssize_t branches_show(struct device *cdev,
4365                              struct device_attribute *attr,
4366                              char *buf)
4367 {
4368         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4369 }
4370
4371 static DEVICE_ATTR_RO(branches);
4372
4373 static struct attribute *lbr_attrs[] = {
4374         &dev_attr_branches.attr,
4375         NULL
4376 };
4377
4378 static char pmu_name_str[30];
4379
4380 static ssize_t pmu_name_show(struct device *cdev,
4381                              struct device_attribute *attr,
4382                              char *buf)
4383 {
4384         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4385 }
4386
4387 static DEVICE_ATTR_RO(pmu_name);
4388
4389 static struct attribute *intel_pmu_caps_attrs[] = {
4390        &dev_attr_pmu_name.attr,
4391        NULL
4392 };
4393
4394 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
4395                    show_sysctl_tfa,
4396                    set_sysctl_tfa);
4397
4398 static struct attribute *intel_pmu_attrs[] = {
4399         &dev_attr_freeze_on_smi.attr,
4400         &dev_attr_allow_tsx_force_abort.attr,
4401         NULL,
4402 };
4403
4404 static umode_t
4405 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4406 {
4407         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
4408 }
4409
4410 static umode_t
4411 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4412 {
4413         return x86_pmu.pebs ? attr->mode : 0;
4414 }
4415
4416 static umode_t
4417 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4418 {
4419         return x86_pmu.lbr_nr ? attr->mode : 0;
4420 }
4421
4422 static umode_t
4423 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4424 {
4425         return x86_pmu.version >= 2 ? attr->mode : 0;
4426 }
4427
4428 static umode_t
4429 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4430 {
4431         if (attr == &dev_attr_allow_tsx_force_abort.attr)
4432                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
4433
4434         return attr->mode;
4435 }
4436
4437 static struct attribute_group group_events_td  = {
4438         .name = "events",
4439 };
4440
4441 static struct attribute_group group_events_mem = {
4442         .name       = "events",
4443         .is_visible = pebs_is_visible,
4444 };
4445
4446 static struct attribute_group group_events_tsx = {
4447         .name       = "events",
4448         .is_visible = tsx_is_visible,
4449 };
4450
4451 static struct attribute_group group_caps_gen = {
4452         .name  = "caps",
4453         .attrs = intel_pmu_caps_attrs,
4454 };
4455
4456 static struct attribute_group group_caps_lbr = {
4457         .name       = "caps",
4458         .attrs      = lbr_attrs,
4459         .is_visible = lbr_is_visible,
4460 };
4461
4462 static struct attribute_group group_format_extra = {
4463         .name       = "format",
4464         .is_visible = exra_is_visible,
4465 };
4466
4467 static struct attribute_group group_format_extra_skl = {
4468         .name       = "format",
4469         .is_visible = exra_is_visible,
4470 };
4471
4472 static struct attribute_group group_default = {
4473         .attrs      = intel_pmu_attrs,
4474         .is_visible = default_is_visible,
4475 };
4476
4477 static const struct attribute_group *attr_update[] = {
4478         &group_events_td,
4479         &group_events_mem,
4480         &group_events_tsx,
4481         &group_caps_gen,
4482         &group_caps_lbr,
4483         &group_format_extra,
4484         &group_format_extra_skl,
4485         &group_default,
4486         NULL,
4487 };
4488
4489 static struct attribute *empty_attrs;
4490
4491 __init int intel_pmu_init(void)
4492 {
4493         struct attribute **extra_skl_attr = &empty_attrs;
4494         struct attribute **extra_attr = &empty_attrs;
4495         struct attribute **td_attr    = &empty_attrs;
4496         struct attribute **mem_attr   = &empty_attrs;
4497         struct attribute **tsx_attr   = &empty_attrs;
4498         union cpuid10_edx edx;
4499         union cpuid10_eax eax;
4500         union cpuid10_ebx ebx;
4501         struct event_constraint *c;
4502         unsigned int unused;
4503         struct extra_reg *er;
4504         bool pmem = false;
4505         int version, i;
4506         char *name;
4507
4508         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4509                 switch (boot_cpu_data.x86) {
4510                 case 0x6:
4511                         return p6_pmu_init();
4512                 case 0xb:
4513                         return knc_pmu_init();
4514                 case 0xf:
4515                         return p4_pmu_init();
4516                 }
4517                 return -ENODEV;
4518         }
4519
4520         /*
4521          * Check whether the Architectural PerfMon supports
4522          * Branch Misses Retired hw_event or not.
4523          */
4524         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4525         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4526                 return -ENODEV;
4527
4528         version = eax.split.version_id;
4529         if (version < 2)
4530                 x86_pmu = core_pmu;
4531         else
4532                 x86_pmu = intel_pmu;
4533
4534         x86_pmu.version                 = version;
4535         x86_pmu.num_counters            = eax.split.num_counters;
4536         x86_pmu.cntval_bits             = eax.split.bit_width;
4537         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
4538
4539         x86_pmu.events_maskl            = ebx.full;
4540         x86_pmu.events_mask_len         = eax.split.mask_length;
4541
4542         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4543
4544         /*
4545          * Quirk: v2 perfmon does not report fixed-purpose events, so
4546          * assume at least 3 events, when not running in a hypervisor:
4547          */
4548         if (version > 1) {
4549                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4550
4551                 x86_pmu.num_counters_fixed =
4552                         max((int)edx.split.num_counters_fixed, assume);
4553         }
4554
4555         if (version >= 4)
4556                 x86_pmu.counter_freezing = !disable_counter_freezing;
4557
4558         if (boot_cpu_has(X86_FEATURE_PDCM)) {
4559                 u64 capabilities;
4560
4561                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4562                 x86_pmu.intel_cap.capabilities = capabilities;
4563         }
4564
4565         intel_ds_init();
4566
4567         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4568
4569         /*
4570          * Install the hw-cache-events table:
4571          */
4572         switch (boot_cpu_data.x86_model) {
4573         case INTEL_FAM6_CORE_YONAH:
4574                 pr_cont("Core events, ");
4575                 name = "core";
4576                 break;
4577
4578         case INTEL_FAM6_CORE2_MEROM:
4579                 x86_add_quirk(intel_clovertown_quirk);
4580                 /* fall through */
4581
4582         case INTEL_FAM6_CORE2_MEROM_L:
4583         case INTEL_FAM6_CORE2_PENRYN:
4584         case INTEL_FAM6_CORE2_DUNNINGTON:
4585                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4586                        sizeof(hw_cache_event_ids));
4587
4588                 intel_pmu_lbr_init_core();
4589
4590                 x86_pmu.event_constraints = intel_core2_event_constraints;
4591                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4592                 pr_cont("Core2 events, ");
4593                 name = "core2";
4594                 break;
4595
4596         case INTEL_FAM6_NEHALEM:
4597         case INTEL_FAM6_NEHALEM_EP:
4598         case INTEL_FAM6_NEHALEM_EX:
4599                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4600                        sizeof(hw_cache_event_ids));
4601                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4602                        sizeof(hw_cache_extra_regs));
4603
4604                 intel_pmu_lbr_init_nhm();
4605
4606                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
4607                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4608                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4609                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
4610
4611                 mem_attr = nhm_mem_events_attrs;
4612
4613                 /* UOPS_ISSUED.STALLED_CYCLES */
4614                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4615                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4616                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4617                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4618                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4619
4620                 intel_pmu_pebs_data_source_nhm();
4621                 x86_add_quirk(intel_nehalem_quirk);
4622                 x86_pmu.pebs_no_tlb = 1;
4623                 extra_attr = nhm_format_attr;
4624
4625                 pr_cont("Nehalem events, ");
4626                 name = "nehalem";
4627                 break;
4628
4629         case INTEL_FAM6_ATOM_BONNELL:
4630         case INTEL_FAM6_ATOM_BONNELL_MID:
4631         case INTEL_FAM6_ATOM_SALTWELL:
4632         case INTEL_FAM6_ATOM_SALTWELL_MID:
4633         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4634                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4635                        sizeof(hw_cache_event_ids));
4636
4637                 intel_pmu_lbr_init_atom();
4638
4639                 x86_pmu.event_constraints = intel_gen_event_constraints;
4640                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4641                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4642                 pr_cont("Atom events, ");
4643                 name = "bonnell";
4644                 break;
4645
4646         case INTEL_FAM6_ATOM_SILVERMONT:
4647         case INTEL_FAM6_ATOM_SILVERMONT_X:
4648         case INTEL_FAM6_ATOM_SILVERMONT_MID:
4649         case INTEL_FAM6_ATOM_AIRMONT:
4650         case INTEL_FAM6_ATOM_AIRMONT_MID:
4651                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4652                         sizeof(hw_cache_event_ids));
4653                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4654                        sizeof(hw_cache_extra_regs));
4655
4656                 intel_pmu_lbr_init_slm();
4657
4658                 x86_pmu.event_constraints = intel_slm_event_constraints;
4659                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4660                 x86_pmu.extra_regs = intel_slm_extra_regs;
4661                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4662                 td_attr = slm_events_attrs;
4663                 extra_attr = slm_format_attr;
4664                 pr_cont("Silvermont events, ");
4665                 name = "silvermont";
4666                 break;
4667
4668         case INTEL_FAM6_ATOM_GOLDMONT:
4669         case INTEL_FAM6_ATOM_GOLDMONT_X:
4670                 x86_add_quirk(intel_counter_freezing_quirk);
4671                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4672                        sizeof(hw_cache_event_ids));
4673                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4674                        sizeof(hw_cache_extra_regs));
4675
4676                 intel_pmu_lbr_init_skl();
4677
4678                 x86_pmu.event_constraints = intel_slm_event_constraints;
4679                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4680                 x86_pmu.extra_regs = intel_glm_extra_regs;
4681                 /*
4682                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4683                  * for precise cycles.
4684                  * :pp is identical to :ppp
4685                  */
4686                 x86_pmu.pebs_aliases = NULL;
4687                 x86_pmu.pebs_prec_dist = true;
4688                 x86_pmu.lbr_pt_coexist = true;
4689                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4690                 td_attr = glm_events_attrs;
4691                 extra_attr = slm_format_attr;
4692                 pr_cont("Goldmont events, ");
4693                 name = "goldmont";
4694                 break;
4695
4696         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4697                 x86_add_quirk(intel_counter_freezing_quirk);
4698                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4699                        sizeof(hw_cache_event_ids));
4700                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4701                        sizeof(hw_cache_extra_regs));
4702
4703                 intel_pmu_lbr_init_skl();
4704
4705                 x86_pmu.event_constraints = intel_slm_event_constraints;
4706                 x86_pmu.extra_regs = intel_glm_extra_regs;
4707                 /*
4708                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4709                  * for precise cycles.
4710                  */
4711                 x86_pmu.pebs_aliases = NULL;
4712                 x86_pmu.pebs_prec_dist = true;
4713                 x86_pmu.lbr_pt_coexist = true;
4714                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4715                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
4716                 x86_pmu.get_event_constraints = glp_get_event_constraints;
4717                 td_attr = glm_events_attrs;
4718                 /* Goldmont Plus has 4-wide pipeline */
4719                 event_attr_td_total_slots_scale_glm.event_str = "4";
4720                 extra_attr = slm_format_attr;
4721                 pr_cont("Goldmont plus events, ");
4722                 name = "goldmont_plus";
4723                 break;
4724
4725         case INTEL_FAM6_ATOM_TREMONT_X:
4726                 x86_pmu.late_ack = true;
4727                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4728                        sizeof(hw_cache_event_ids));
4729                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
4730                        sizeof(hw_cache_extra_regs));
4731                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
4732
4733                 intel_pmu_lbr_init_skl();
4734
4735                 x86_pmu.event_constraints = intel_slm_event_constraints;
4736                 x86_pmu.extra_regs = intel_tnt_extra_regs;
4737                 /*
4738                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4739                  * for precise cycles.
4740                  */
4741                 x86_pmu.pebs_aliases = NULL;
4742                 x86_pmu.pebs_prec_dist = true;
4743                 x86_pmu.lbr_pt_coexist = true;
4744                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4745                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
4746                 extra_attr = slm_format_attr;
4747                 pr_cont("Tremont events, ");
4748                 name = "Tremont";
4749                 break;
4750
4751         case INTEL_FAM6_WESTMERE:
4752         case INTEL_FAM6_WESTMERE_EP:
4753         case INTEL_FAM6_WESTMERE_EX:
4754                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4755                        sizeof(hw_cache_event_ids));
4756                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4757                        sizeof(hw_cache_extra_regs));
4758
4759                 intel_pmu_lbr_init_nhm();
4760
4761                 x86_pmu.event_constraints = intel_westmere_event_constraints;
4762                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4763                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4764                 x86_pmu.extra_regs = intel_westmere_extra_regs;
4765                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4766
4767                 mem_attr = nhm_mem_events_attrs;
4768
4769                 /* UOPS_ISSUED.STALLED_CYCLES */
4770                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4771                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4772                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4773                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4774                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4775
4776                 intel_pmu_pebs_data_source_nhm();
4777                 extra_attr = nhm_format_attr;
4778                 pr_cont("Westmere events, ");
4779                 name = "westmere";
4780                 break;
4781
4782         case INTEL_FAM6_SANDYBRIDGE:
4783         case INTEL_FAM6_SANDYBRIDGE_X:
4784                 x86_add_quirk(intel_sandybridge_quirk);
4785                 x86_add_quirk(intel_ht_bug);
4786                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4787                        sizeof(hw_cache_event_ids));
4788                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4789                        sizeof(hw_cache_extra_regs));
4790
4791                 intel_pmu_lbr_init_snb();
4792
4793                 x86_pmu.event_constraints = intel_snb_event_constraints;
4794                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4795                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4796                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4797                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4798                 else
4799                         x86_pmu.extra_regs = intel_snb_extra_regs;
4800
4801
4802                 /* all extra regs are per-cpu when HT is on */
4803                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4804                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4805
4806                 td_attr  = snb_events_attrs;
4807                 mem_attr = snb_mem_events_attrs;
4808
4809                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4810                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4811                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4812                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4813                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4814                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4815
4816                 extra_attr = nhm_format_attr;
4817
4818                 pr_cont("SandyBridge events, ");
4819                 name = "sandybridge";
4820                 break;
4821
4822         case INTEL_FAM6_IVYBRIDGE:
4823         case INTEL_FAM6_IVYBRIDGE_X:
4824                 x86_add_quirk(intel_ht_bug);
4825                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4826                        sizeof(hw_cache_event_ids));
4827                 /* dTLB-load-misses on IVB is different than SNB */
4828                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4829
4830                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4831                        sizeof(hw_cache_extra_regs));
4832
4833                 intel_pmu_lbr_init_snb();
4834
4835                 x86_pmu.event_constraints = intel_ivb_event_constraints;
4836                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4837                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4838                 x86_pmu.pebs_prec_dist = true;
4839                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4840                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4841                 else
4842                         x86_pmu.extra_regs = intel_snb_extra_regs;
4843                 /* all extra regs are per-cpu when HT is on */
4844                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4845                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4846
4847                 td_attr  = snb_events_attrs;
4848                 mem_attr = snb_mem_events_attrs;
4849
4850                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4851                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4852                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4853
4854                 extra_attr = nhm_format_attr;
4855
4856                 pr_cont("IvyBridge events, ");
4857                 name = "ivybridge";
4858                 break;
4859
4860
4861         case INTEL_FAM6_HASWELL_CORE:
4862         case INTEL_FAM6_HASWELL_X:
4863         case INTEL_FAM6_HASWELL_ULT:
4864         case INTEL_FAM6_HASWELL_GT3E:
4865                 x86_add_quirk(intel_ht_bug);
4866                 x86_add_quirk(intel_pebs_isolation_quirk);
4867                 x86_pmu.late_ack = true;
4868                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4869                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4870
4871                 intel_pmu_lbr_init_hsw();
4872
4873                 x86_pmu.event_constraints = intel_hsw_event_constraints;
4874                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4875                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4876                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4877                 x86_pmu.pebs_prec_dist = true;
4878                 /* all extra regs are per-cpu when HT is on */
4879                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4880                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4881
4882                 x86_pmu.hw_config = hsw_hw_config;
4883                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4884                 x86_pmu.lbr_double_abort = true;
4885                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4886                         hsw_format_attr : nhm_format_attr;
4887                 td_attr  = hsw_events_attrs;
4888                 mem_attr = hsw_mem_events_attrs;
4889                 tsx_attr = hsw_tsx_events_attrs;
4890                 pr_cont("Haswell events, ");
4891                 name = "haswell";
4892                 break;
4893
4894         case INTEL_FAM6_BROADWELL_CORE:
4895         case INTEL_FAM6_BROADWELL_XEON_D:
4896         case INTEL_FAM6_BROADWELL_GT3E:
4897         case INTEL_FAM6_BROADWELL_X:
4898                 x86_add_quirk(intel_pebs_isolation_quirk);
4899                 x86_pmu.late_ack = true;
4900                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4901                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4902
4903                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4904                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4905                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
4906                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4907                                                                           HSW_SNOOP_DRAM;
4908                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4909                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4910                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4911                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4912
4913                 intel_pmu_lbr_init_hsw();
4914
4915                 x86_pmu.event_constraints = intel_bdw_event_constraints;
4916                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4917                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4918                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4919                 x86_pmu.pebs_prec_dist = true;
4920                 /* all extra regs are per-cpu when HT is on */
4921                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4922                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4923
4924                 x86_pmu.hw_config = hsw_hw_config;
4925                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4926                 x86_pmu.limit_period = bdw_limit_period;
4927                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4928                         hsw_format_attr : nhm_format_attr;
4929                 td_attr  = hsw_events_attrs;
4930                 mem_attr = hsw_mem_events_attrs;
4931                 tsx_attr = hsw_tsx_events_attrs;
4932                 pr_cont("Broadwell events, ");
4933                 name = "broadwell";
4934                 break;
4935
4936         case INTEL_FAM6_XEON_PHI_KNL:
4937         case INTEL_FAM6_XEON_PHI_KNM:
4938                 memcpy(hw_cache_event_ids,
4939                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4940                 memcpy(hw_cache_extra_regs,
4941                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4942                 intel_pmu_lbr_init_knl();
4943
4944                 x86_pmu.event_constraints = intel_slm_event_constraints;
4945                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4946                 x86_pmu.extra_regs = intel_knl_extra_regs;
4947
4948                 /* all extra regs are per-cpu when HT is on */
4949                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4950                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4951                 extra_attr = slm_format_attr;
4952                 pr_cont("Knights Landing/Mill events, ");
4953                 name = "knights-landing";
4954                 break;
4955
4956         case INTEL_FAM6_SKYLAKE_X:
4957                 pmem = true;
4958         case INTEL_FAM6_SKYLAKE_MOBILE:
4959         case INTEL_FAM6_SKYLAKE_DESKTOP:
4960         case INTEL_FAM6_KABYLAKE_MOBILE:
4961         case INTEL_FAM6_KABYLAKE_DESKTOP:
4962                 x86_add_quirk(intel_pebs_isolation_quirk);
4963                 x86_pmu.late_ack = true;
4964                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4965                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4966                 intel_pmu_lbr_init_skl();
4967
4968                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4969                 event_attr_td_recovery_bubbles.event_str_noht =
4970                         "event=0xd,umask=0x1,cmask=1";
4971                 event_attr_td_recovery_bubbles.event_str_ht =
4972                         "event=0xd,umask=0x1,cmask=1,any=1";
4973
4974                 x86_pmu.event_constraints = intel_skl_event_constraints;
4975                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4976                 x86_pmu.extra_regs = intel_skl_extra_regs;
4977                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4978                 x86_pmu.pebs_prec_dist = true;
4979                 /* all extra regs are per-cpu when HT is on */
4980                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4981                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4982
4983                 x86_pmu.hw_config = hsw_hw_config;
4984                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4985                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4986                         hsw_format_attr : nhm_format_attr;
4987                 extra_skl_attr = skl_format_attr;
4988                 td_attr  = hsw_events_attrs;
4989                 mem_attr = hsw_mem_events_attrs;
4990                 tsx_attr = hsw_tsx_events_attrs;
4991                 intel_pmu_pebs_data_source_skl(pmem);
4992
4993                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
4994                         x86_pmu.flags |= PMU_FL_TFA;
4995                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
4996                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
4997                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
4998                 }
4999
5000                 pr_cont("Skylake events, ");
5001                 name = "skylake";
5002                 break;
5003
5004         case INTEL_FAM6_ICELAKE_X:
5005         case INTEL_FAM6_ICELAKE_XEON_D:
5006                 pmem = true;
5007         case INTEL_FAM6_ICELAKE_MOBILE:
5008         case INTEL_FAM6_ICELAKE_DESKTOP:
5009                 x86_pmu.late_ack = true;
5010                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5011                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5012                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5013                 intel_pmu_lbr_init_skl();
5014
5015                 x86_pmu.event_constraints = intel_icl_event_constraints;
5016                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
5017                 x86_pmu.extra_regs = intel_icl_extra_regs;
5018                 x86_pmu.pebs_aliases = NULL;
5019                 x86_pmu.pebs_prec_dist = true;
5020                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5021                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5022
5023                 x86_pmu.hw_config = hsw_hw_config;
5024                 x86_pmu.get_event_constraints = icl_get_event_constraints;
5025                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5026                         hsw_format_attr : nhm_format_attr;
5027                 extra_skl_attr = skl_format_attr;
5028                 mem_attr = icl_events_attrs;
5029                 tsx_attr = icl_tsx_events_attrs;
5030                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xca, .umask=0x02);
5031                 x86_pmu.lbr_pt_coexist = true;
5032                 intel_pmu_pebs_data_source_skl(pmem);
5033                 pr_cont("Icelake events, ");
5034                 name = "icelake";
5035                 break;
5036
5037         default:
5038                 switch (x86_pmu.version) {
5039                 case 1:
5040                         x86_pmu.event_constraints = intel_v1_event_constraints;
5041                         pr_cont("generic architected perfmon v1, ");
5042                         name = "generic_arch_v1";
5043                         break;
5044                 default:
5045                         /*
5046                          * default constraints for v2 and up
5047                          */
5048                         x86_pmu.event_constraints = intel_gen_event_constraints;
5049                         pr_cont("generic architected perfmon, ");
5050                         name = "generic_arch_v2+";
5051                         break;
5052                 }
5053         }
5054
5055         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
5056
5057
5058         group_events_td.attrs  = td_attr;
5059         group_events_mem.attrs = mem_attr;
5060         group_events_tsx.attrs = tsx_attr;
5061         group_format_extra.attrs = extra_attr;
5062         group_format_extra_skl.attrs = extra_skl_attr;
5063
5064         x86_pmu.attr_update = attr_update;
5065
5066         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
5067                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5068                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
5069                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
5070         }
5071         x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5072
5073         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5074                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5075                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
5076                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
5077         }
5078
5079         x86_pmu.intel_ctrl |=
5080                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
5081
5082         if (x86_pmu.event_constraints) {
5083                 /*
5084                  * event on fixed counter2 (REF_CYCLES) only works on this
5085                  * counter, so do not extend mask to generic counters
5086                  */
5087                 for_each_event_constraint(c, x86_pmu.event_constraints) {
5088                         if (c->cmask == FIXED_EVENT_FLAGS
5089                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
5090                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5091                         }
5092                         c->idxmsk64 &=
5093                                 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5094                         c->weight = hweight64(c->idxmsk64);
5095                 }
5096         }
5097
5098         /*
5099          * Access LBR MSR may cause #GP under certain circumstances.
5100          * E.g. KVM doesn't support LBR MSR
5101          * Check all LBT MSR here.
5102          * Disable LBR access if any LBR MSRs can not be accessed.
5103          */
5104         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
5105                 x86_pmu.lbr_nr = 0;
5106         for (i = 0; i < x86_pmu.lbr_nr; i++) {
5107                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
5108                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
5109                         x86_pmu.lbr_nr = 0;
5110         }
5111
5112         if (x86_pmu.lbr_nr)
5113                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5114
5115         /*
5116          * Access extra MSR may cause #GP under certain circumstances.
5117          * E.g. KVM doesn't support offcore event
5118          * Check all extra_regs here.
5119          */
5120         if (x86_pmu.extra_regs) {
5121                 for (er = x86_pmu.extra_regs; er->msr; er++) {
5122                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
5123                         /* Disable LBR select mapping */
5124                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5125                                 x86_pmu.lbr_sel_map = NULL;
5126                 }
5127         }
5128
5129         /* Support full width counters using alternative MSR range */
5130         if (x86_pmu.intel_cap.full_width_write) {
5131                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5132                 x86_pmu.perfctr = MSR_IA32_PMC0;
5133                 pr_cont("full-width counters, ");
5134         }
5135
5136         /*
5137          * For arch perfmon 4 use counter freezing to avoid
5138          * several MSR accesses in the PMI.
5139          */
5140         if (x86_pmu.counter_freezing)
5141                 x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
5142
5143         return 0;
5144 }
5145
5146 /*
5147  * HT bug: phase 2 init
5148  * Called once we have valid topology information to check
5149  * whether or not HT is enabled
5150  * If HT is off, then we disable the workaround
5151  */
5152 static __init int fixup_ht_bug(void)
5153 {
5154         int c;
5155         /*
5156          * problem not present on this CPU model, nothing to do
5157          */
5158         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
5159                 return 0;
5160
5161         if (topology_max_smt_threads() > 1) {
5162                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5163                 return 0;
5164         }
5165
5166         cpus_read_lock();
5167
5168         hardlockup_detector_perf_stop();
5169
5170         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
5171
5172         x86_pmu.start_scheduling = NULL;
5173         x86_pmu.commit_scheduling = NULL;
5174         x86_pmu.stop_scheduling = NULL;
5175
5176         hardlockup_detector_perf_restart();
5177
5178         for_each_online_cpu(c)
5179                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5180
5181         cpus_read_unlock();
5182         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5183         return 0;
5184 }
5185 subsys_initcall(fixup_ht_bug)