Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-microblaze.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24
25 #include "../perf_event.h"
26
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
33         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
34         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
35         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
36         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
37         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
38         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
39         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
40 };
41
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50         EVENT_CONSTRAINT_END
51 };
52
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68         EVENT_CONSTRAINT_END
69 };
70
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84         EVENT_CONSTRAINT_END
85 };
86
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92         EVENT_EXTRA_END
93 };
94
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104         EVENT_CONSTRAINT_END
105 };
106
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121
122         /*
123          * When HT is off these events can only run on the bottom 4 counters
124          * When HT is on, they are impacted by the HT bug and require EXCL access
125          */
126         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130
131         EVENT_CONSTRAINT_END
132 };
133
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
141         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149
150         /*
151          * When HT is off these events can only run on the bottom 4 counters
152          * When HT is on, they are impacted by the HT bug and require EXCL access
153          */
154         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158
159         EVENT_CONSTRAINT_END
160 };
161
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168         EVENT_EXTRA_END
169 };
170
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173         EVENT_CONSTRAINT_END
174 };
175
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181         EVENT_CONSTRAINT_END
182 };
183
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189         EVENT_CONSTRAINT_END
190 };
191
192 static struct event_constraint intel_skl_event_constraints[] = {
193         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
194         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
195         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
196         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
197
198         /*
199          * when HT is off, these can only run on the bottom 4 counters
200          */
201         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
203         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
204         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
205         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
206
207         EVENT_CONSTRAINT_END
208 };
209
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213         EVENT_EXTRA_END
214 };
215
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221         EVENT_EXTRA_END
222 };
223
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229         EVENT_EXTRA_END
230 };
231
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236         /*
237          * Note the low 8 bits eventsel code is not a continuous field, containing
238          * some #GPing bits. These are masked out.
239          */
240         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241         EVENT_EXTRA_END
242 };
243
244 static struct event_constraint intel_icl_event_constraints[] = {
245         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
246         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* INST_RETIRED.PREC_DIST */
247         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
248         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
249         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
250         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
251         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
252         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
253         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
254         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
255         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
256         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
257         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
258         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
259         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
260         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
261         INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
262         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
263         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
264         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
265         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
266         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
267         EVENT_CONSTRAINT_END
268 };
269
270 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
271         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
272         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
273         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
274         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
275         EVENT_EXTRA_END
276 };
277
278 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
279         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
280         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
281         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
282         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
283         EVENT_EXTRA_END
284 };
285
286 static struct event_constraint intel_spr_event_constraints[] = {
287         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
288         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* INST_RETIRED.PREC_DIST */
289         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
290         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
291         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
292         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
293         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
294         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
295         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
296         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
297         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
298         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
299         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
300
301         INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
302         INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
303         /*
304          * Generally event codes < 0x90 are restricted to counters 0-3.
305          * The 0x2E and 0x3C are exception, which has no restriction.
306          */
307         INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
308
309         INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
310         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
311         INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
312         INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
313         INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
314         INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
315         INTEL_EVENT_CONSTRAINT(0xce, 0x1),
316         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
317         /*
318          * Generally event codes >= 0x90 are likely to have no restrictions.
319          * The exception are defined as above.
320          */
321         INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
322
323         EVENT_CONSTRAINT_END
324 };
325
326
327 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
328 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
329 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
330
331 static struct attribute *nhm_mem_events_attrs[] = {
332         EVENT_PTR(mem_ld_nhm),
333         NULL,
334 };
335
336 /*
337  * topdown events for Intel Core CPUs.
338  *
339  * The events are all in slots, which is a free slot in a 4 wide
340  * pipeline. Some events are already reported in slots, for cycle
341  * events we multiply by the pipeline width (4).
342  *
343  * With Hyper Threading on, topdown metrics are either summed or averaged
344  * between the threads of a core: (count_t0 + count_t1).
345  *
346  * For the average case the metric is always scaled to pipeline width,
347  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
348  */
349
350 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
351         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
352         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
353 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
354 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
355         "event=0xe,umask=0x1");                 /* uops_issued.any */
356 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
357         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
358 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
359         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
360 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
361         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
362         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
363 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
364         "4", "2");
365
366 EVENT_ATTR_STR(slots,                   slots,                  "event=0x00,umask=0x4");
367 EVENT_ATTR_STR(topdown-retiring,        td_retiring,            "event=0x00,umask=0x80");
368 EVENT_ATTR_STR(topdown-bad-spec,        td_bad_spec,            "event=0x00,umask=0x81");
369 EVENT_ATTR_STR(topdown-fe-bound,        td_fe_bound,            "event=0x00,umask=0x82");
370 EVENT_ATTR_STR(topdown-be-bound,        td_be_bound,            "event=0x00,umask=0x83");
371 EVENT_ATTR_STR(topdown-heavy-ops,       td_heavy_ops,           "event=0x00,umask=0x84");
372 EVENT_ATTR_STR(topdown-br-mispredict,   td_br_mispredict,       "event=0x00,umask=0x85");
373 EVENT_ATTR_STR(topdown-fetch-lat,       td_fetch_lat,           "event=0x00,umask=0x86");
374 EVENT_ATTR_STR(topdown-mem-bound,       td_mem_bound,           "event=0x00,umask=0x87");
375
376 static struct attribute *snb_events_attrs[] = {
377         EVENT_PTR(td_slots_issued),
378         EVENT_PTR(td_slots_retired),
379         EVENT_PTR(td_fetch_bubbles),
380         EVENT_PTR(td_total_slots),
381         EVENT_PTR(td_total_slots_scale),
382         EVENT_PTR(td_recovery_bubbles),
383         EVENT_PTR(td_recovery_bubbles_scale),
384         NULL,
385 };
386
387 static struct attribute *snb_mem_events_attrs[] = {
388         EVENT_PTR(mem_ld_snb),
389         EVENT_PTR(mem_st_snb),
390         NULL,
391 };
392
393 static struct event_constraint intel_hsw_event_constraints[] = {
394         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
395         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
396         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
397         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
398         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
399         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
400         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
401         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
402         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
403         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
404         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
405         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
406
407         /*
408          * When HT is off these events can only run on the bottom 4 counters
409          * When HT is on, they are impacted by the HT bug and require EXCL access
410          */
411         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
412         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
413         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
414         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
415
416         EVENT_CONSTRAINT_END
417 };
418
419 static struct event_constraint intel_bdw_event_constraints[] = {
420         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
421         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
422         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
423         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
424         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
425         /*
426          * when HT is off, these can only run on the bottom 4 counters
427          */
428         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
429         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
430         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
431         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
432         EVENT_CONSTRAINT_END
433 };
434
435 static u64 intel_pmu_event_map(int hw_event)
436 {
437         return intel_perfmon_event_map[hw_event];
438 }
439
440 static __initconst const u64 spr_hw_cache_event_ids
441                                 [PERF_COUNT_HW_CACHE_MAX]
442                                 [PERF_COUNT_HW_CACHE_OP_MAX]
443                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
444 {
445  [ C(L1D ) ] = {
446         [ C(OP_READ) ] = {
447                 [ C(RESULT_ACCESS) ] = 0x81d0,
448                 [ C(RESULT_MISS)   ] = 0xe124,
449         },
450         [ C(OP_WRITE) ] = {
451                 [ C(RESULT_ACCESS) ] = 0x82d0,
452         },
453  },
454  [ C(L1I ) ] = {
455         [ C(OP_READ) ] = {
456                 [ C(RESULT_MISS)   ] = 0xe424,
457         },
458         [ C(OP_WRITE) ] = {
459                 [ C(RESULT_ACCESS) ] = -1,
460                 [ C(RESULT_MISS)   ] = -1,
461         },
462  },
463  [ C(LL  ) ] = {
464         [ C(OP_READ) ] = {
465                 [ C(RESULT_ACCESS) ] = 0x12a,
466                 [ C(RESULT_MISS)   ] = 0x12a,
467         },
468         [ C(OP_WRITE) ] = {
469                 [ C(RESULT_ACCESS) ] = 0x12a,
470                 [ C(RESULT_MISS)   ] = 0x12a,
471         },
472  },
473  [ C(DTLB) ] = {
474         [ C(OP_READ) ] = {
475                 [ C(RESULT_ACCESS) ] = 0x81d0,
476                 [ C(RESULT_MISS)   ] = 0xe12,
477         },
478         [ C(OP_WRITE) ] = {
479                 [ C(RESULT_ACCESS) ] = 0x82d0,
480                 [ C(RESULT_MISS)   ] = 0xe13,
481         },
482  },
483  [ C(ITLB) ] = {
484         [ C(OP_READ) ] = {
485                 [ C(RESULT_ACCESS) ] = -1,
486                 [ C(RESULT_MISS)   ] = 0xe11,
487         },
488         [ C(OP_WRITE) ] = {
489                 [ C(RESULT_ACCESS) ] = -1,
490                 [ C(RESULT_MISS)   ] = -1,
491         },
492         [ C(OP_PREFETCH) ] = {
493                 [ C(RESULT_ACCESS) ] = -1,
494                 [ C(RESULT_MISS)   ] = -1,
495         },
496  },
497  [ C(BPU ) ] = {
498         [ C(OP_READ) ] = {
499                 [ C(RESULT_ACCESS) ] = 0x4c4,
500                 [ C(RESULT_MISS)   ] = 0x4c5,
501         },
502         [ C(OP_WRITE) ] = {
503                 [ C(RESULT_ACCESS) ] = -1,
504                 [ C(RESULT_MISS)   ] = -1,
505         },
506         [ C(OP_PREFETCH) ] = {
507                 [ C(RESULT_ACCESS) ] = -1,
508                 [ C(RESULT_MISS)   ] = -1,
509         },
510  },
511  [ C(NODE) ] = {
512         [ C(OP_READ) ] = {
513                 [ C(RESULT_ACCESS) ] = 0x12a,
514                 [ C(RESULT_MISS)   ] = 0x12a,
515         },
516  },
517 };
518
519 static __initconst const u64 spr_hw_cache_extra_regs
520                                 [PERF_COUNT_HW_CACHE_MAX]
521                                 [PERF_COUNT_HW_CACHE_OP_MAX]
522                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
523 {
524  [ C(LL  ) ] = {
525         [ C(OP_READ) ] = {
526                 [ C(RESULT_ACCESS) ] = 0x10001,
527                 [ C(RESULT_MISS)   ] = 0x3fbfc00001,
528         },
529         [ C(OP_WRITE) ] = {
530                 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
531                 [ C(RESULT_MISS)   ] = 0x3f3fc00002,
532         },
533  },
534  [ C(NODE) ] = {
535         [ C(OP_READ) ] = {
536                 [ C(RESULT_ACCESS) ] = 0x10c000001,
537                 [ C(RESULT_MISS)   ] = 0x3fb3000001,
538         },
539  },
540 };
541
542 /*
543  * Notes on the events:
544  * - data reads do not include code reads (comparable to earlier tables)
545  * - data counts include speculative execution (except L1 write, dtlb, bpu)
546  * - remote node access includes remote memory, remote cache, remote mmio.
547  * - prefetches are not included in the counts.
548  * - icache miss does not include decoded icache
549  */
550
551 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
552 #define SKL_DEMAND_RFO                  BIT_ULL(1)
553 #define SKL_ANY_RESPONSE                BIT_ULL(16)
554 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
555 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
556 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
557 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
558 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
559 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
560                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
561                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
562                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
563 #define SKL_SPL_HIT                     BIT_ULL(30)
564 #define SKL_SNOOP_NONE                  BIT_ULL(31)
565 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
566 #define SKL_SNOOP_MISS                  BIT_ULL(33)
567 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
568 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
569 #define SKL_SNOOP_HITM                  BIT_ULL(36)
570 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
571 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
572                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
573                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
574                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
575 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
576 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
577                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
578                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
579                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
580 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
581 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
582 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
583                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
584                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
585
586 static __initconst const u64 skl_hw_cache_event_ids
587                                 [PERF_COUNT_HW_CACHE_MAX]
588                                 [PERF_COUNT_HW_CACHE_OP_MAX]
589                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
590 {
591  [ C(L1D ) ] = {
592         [ C(OP_READ) ] = {
593                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
594                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
595         },
596         [ C(OP_WRITE) ] = {
597                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
598                 [ C(RESULT_MISS)   ] = 0x0,
599         },
600         [ C(OP_PREFETCH) ] = {
601                 [ C(RESULT_ACCESS) ] = 0x0,
602                 [ C(RESULT_MISS)   ] = 0x0,
603         },
604  },
605  [ C(L1I ) ] = {
606         [ C(OP_READ) ] = {
607                 [ C(RESULT_ACCESS) ] = 0x0,
608                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
609         },
610         [ C(OP_WRITE) ] = {
611                 [ C(RESULT_ACCESS) ] = -1,
612                 [ C(RESULT_MISS)   ] = -1,
613         },
614         [ C(OP_PREFETCH) ] = {
615                 [ C(RESULT_ACCESS) ] = 0x0,
616                 [ C(RESULT_MISS)   ] = 0x0,
617         },
618  },
619  [ C(LL  ) ] = {
620         [ C(OP_READ) ] = {
621                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
622                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
623         },
624         [ C(OP_WRITE) ] = {
625                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
626                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
627         },
628         [ C(OP_PREFETCH) ] = {
629                 [ C(RESULT_ACCESS) ] = 0x0,
630                 [ C(RESULT_MISS)   ] = 0x0,
631         },
632  },
633  [ C(DTLB) ] = {
634         [ C(OP_READ) ] = {
635                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
636                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
637         },
638         [ C(OP_WRITE) ] = {
639                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
640                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
641         },
642         [ C(OP_PREFETCH) ] = {
643                 [ C(RESULT_ACCESS) ] = 0x0,
644                 [ C(RESULT_MISS)   ] = 0x0,
645         },
646  },
647  [ C(ITLB) ] = {
648         [ C(OP_READ) ] = {
649                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
650                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
651         },
652         [ C(OP_WRITE) ] = {
653                 [ C(RESULT_ACCESS) ] = -1,
654                 [ C(RESULT_MISS)   ] = -1,
655         },
656         [ C(OP_PREFETCH) ] = {
657                 [ C(RESULT_ACCESS) ] = -1,
658                 [ C(RESULT_MISS)   ] = -1,
659         },
660  },
661  [ C(BPU ) ] = {
662         [ C(OP_READ) ] = {
663                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
664                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
665         },
666         [ C(OP_WRITE) ] = {
667                 [ C(RESULT_ACCESS) ] = -1,
668                 [ C(RESULT_MISS)   ] = -1,
669         },
670         [ C(OP_PREFETCH) ] = {
671                 [ C(RESULT_ACCESS) ] = -1,
672                 [ C(RESULT_MISS)   ] = -1,
673         },
674  },
675  [ C(NODE) ] = {
676         [ C(OP_READ) ] = {
677                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
678                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
679         },
680         [ C(OP_WRITE) ] = {
681                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
682                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
683         },
684         [ C(OP_PREFETCH) ] = {
685                 [ C(RESULT_ACCESS) ] = 0x0,
686                 [ C(RESULT_MISS)   ] = 0x0,
687         },
688  },
689 };
690
691 static __initconst const u64 skl_hw_cache_extra_regs
692                                 [PERF_COUNT_HW_CACHE_MAX]
693                                 [PERF_COUNT_HW_CACHE_OP_MAX]
694                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
695 {
696  [ C(LL  ) ] = {
697         [ C(OP_READ) ] = {
698                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
699                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
700                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
701                                        SKL_L3_MISS|SKL_ANY_SNOOP|
702                                        SKL_SUPPLIER_NONE,
703         },
704         [ C(OP_WRITE) ] = {
705                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
706                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
707                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
708                                        SKL_L3_MISS|SKL_ANY_SNOOP|
709                                        SKL_SUPPLIER_NONE,
710         },
711         [ C(OP_PREFETCH) ] = {
712                 [ C(RESULT_ACCESS) ] = 0x0,
713                 [ C(RESULT_MISS)   ] = 0x0,
714         },
715  },
716  [ C(NODE) ] = {
717         [ C(OP_READ) ] = {
718                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
719                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
720                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
721                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
722         },
723         [ C(OP_WRITE) ] = {
724                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
725                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
726                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
727                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
728         },
729         [ C(OP_PREFETCH) ] = {
730                 [ C(RESULT_ACCESS) ] = 0x0,
731                 [ C(RESULT_MISS)   ] = 0x0,
732         },
733  },
734 };
735
736 #define SNB_DMND_DATA_RD        (1ULL << 0)
737 #define SNB_DMND_RFO            (1ULL << 1)
738 #define SNB_DMND_IFETCH         (1ULL << 2)
739 #define SNB_DMND_WB             (1ULL << 3)
740 #define SNB_PF_DATA_RD          (1ULL << 4)
741 #define SNB_PF_RFO              (1ULL << 5)
742 #define SNB_PF_IFETCH           (1ULL << 6)
743 #define SNB_LLC_DATA_RD         (1ULL << 7)
744 #define SNB_LLC_RFO             (1ULL << 8)
745 #define SNB_LLC_IFETCH          (1ULL << 9)
746 #define SNB_BUS_LOCKS           (1ULL << 10)
747 #define SNB_STRM_ST             (1ULL << 11)
748 #define SNB_OTHER               (1ULL << 15)
749 #define SNB_RESP_ANY            (1ULL << 16)
750 #define SNB_NO_SUPP             (1ULL << 17)
751 #define SNB_LLC_HITM            (1ULL << 18)
752 #define SNB_LLC_HITE            (1ULL << 19)
753 #define SNB_LLC_HITS            (1ULL << 20)
754 #define SNB_LLC_HITF            (1ULL << 21)
755 #define SNB_LOCAL               (1ULL << 22)
756 #define SNB_REMOTE              (0xffULL << 23)
757 #define SNB_SNP_NONE            (1ULL << 31)
758 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
759 #define SNB_SNP_MISS            (1ULL << 33)
760 #define SNB_NO_FWD              (1ULL << 34)
761 #define SNB_SNP_FWD             (1ULL << 35)
762 #define SNB_HITM                (1ULL << 36)
763 #define SNB_NON_DRAM            (1ULL << 37)
764
765 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
766 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
767 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
768
769 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
770                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
771                                  SNB_HITM)
772
773 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
774 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
775
776 #define SNB_L3_ACCESS           SNB_RESP_ANY
777 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
778
779 static __initconst const u64 snb_hw_cache_extra_regs
780                                 [PERF_COUNT_HW_CACHE_MAX]
781                                 [PERF_COUNT_HW_CACHE_OP_MAX]
782                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
783 {
784  [ C(LL  ) ] = {
785         [ C(OP_READ) ] = {
786                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
787                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
788         },
789         [ C(OP_WRITE) ] = {
790                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
791                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
792         },
793         [ C(OP_PREFETCH) ] = {
794                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
795                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
796         },
797  },
798  [ C(NODE) ] = {
799         [ C(OP_READ) ] = {
800                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
801                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
802         },
803         [ C(OP_WRITE) ] = {
804                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
805                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
806         },
807         [ C(OP_PREFETCH) ] = {
808                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
809                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
810         },
811  },
812 };
813
814 static __initconst const u64 snb_hw_cache_event_ids
815                                 [PERF_COUNT_HW_CACHE_MAX]
816                                 [PERF_COUNT_HW_CACHE_OP_MAX]
817                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
818 {
819  [ C(L1D) ] = {
820         [ C(OP_READ) ] = {
821                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
822                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
823         },
824         [ C(OP_WRITE) ] = {
825                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
826                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
827         },
828         [ C(OP_PREFETCH) ] = {
829                 [ C(RESULT_ACCESS) ] = 0x0,
830                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
831         },
832  },
833  [ C(L1I ) ] = {
834         [ C(OP_READ) ] = {
835                 [ C(RESULT_ACCESS) ] = 0x0,
836                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
837         },
838         [ C(OP_WRITE) ] = {
839                 [ C(RESULT_ACCESS) ] = -1,
840                 [ C(RESULT_MISS)   ] = -1,
841         },
842         [ C(OP_PREFETCH) ] = {
843                 [ C(RESULT_ACCESS) ] = 0x0,
844                 [ C(RESULT_MISS)   ] = 0x0,
845         },
846  },
847  [ C(LL  ) ] = {
848         [ C(OP_READ) ] = {
849                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
850                 [ C(RESULT_ACCESS) ] = 0x01b7,
851                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
852                 [ C(RESULT_MISS)   ] = 0x01b7,
853         },
854         [ C(OP_WRITE) ] = {
855                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
856                 [ C(RESULT_ACCESS) ] = 0x01b7,
857                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
858                 [ C(RESULT_MISS)   ] = 0x01b7,
859         },
860         [ C(OP_PREFETCH) ] = {
861                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
862                 [ C(RESULT_ACCESS) ] = 0x01b7,
863                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
864                 [ C(RESULT_MISS)   ] = 0x01b7,
865         },
866  },
867  [ C(DTLB) ] = {
868         [ C(OP_READ) ] = {
869                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
870                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
871         },
872         [ C(OP_WRITE) ] = {
873                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
874                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
875         },
876         [ C(OP_PREFETCH) ] = {
877                 [ C(RESULT_ACCESS) ] = 0x0,
878                 [ C(RESULT_MISS)   ] = 0x0,
879         },
880  },
881  [ C(ITLB) ] = {
882         [ C(OP_READ) ] = {
883                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
884                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
885         },
886         [ C(OP_WRITE) ] = {
887                 [ C(RESULT_ACCESS) ] = -1,
888                 [ C(RESULT_MISS)   ] = -1,
889         },
890         [ C(OP_PREFETCH) ] = {
891                 [ C(RESULT_ACCESS) ] = -1,
892                 [ C(RESULT_MISS)   ] = -1,
893         },
894  },
895  [ C(BPU ) ] = {
896         [ C(OP_READ) ] = {
897                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
898                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
899         },
900         [ C(OP_WRITE) ] = {
901                 [ C(RESULT_ACCESS) ] = -1,
902                 [ C(RESULT_MISS)   ] = -1,
903         },
904         [ C(OP_PREFETCH) ] = {
905                 [ C(RESULT_ACCESS) ] = -1,
906                 [ C(RESULT_MISS)   ] = -1,
907         },
908  },
909  [ C(NODE) ] = {
910         [ C(OP_READ) ] = {
911                 [ C(RESULT_ACCESS) ] = 0x01b7,
912                 [ C(RESULT_MISS)   ] = 0x01b7,
913         },
914         [ C(OP_WRITE) ] = {
915                 [ C(RESULT_ACCESS) ] = 0x01b7,
916                 [ C(RESULT_MISS)   ] = 0x01b7,
917         },
918         [ C(OP_PREFETCH) ] = {
919                 [ C(RESULT_ACCESS) ] = 0x01b7,
920                 [ C(RESULT_MISS)   ] = 0x01b7,
921         },
922  },
923
924 };
925
926 /*
927  * Notes on the events:
928  * - data reads do not include code reads (comparable to earlier tables)
929  * - data counts include speculative execution (except L1 write, dtlb, bpu)
930  * - remote node access includes remote memory, remote cache, remote mmio.
931  * - prefetches are not included in the counts because they are not
932  *   reliably counted.
933  */
934
935 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
936 #define HSW_DEMAND_RFO                  BIT_ULL(1)
937 #define HSW_ANY_RESPONSE                BIT_ULL(16)
938 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
939 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
940 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
941 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
942 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
943 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
944                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
945                                          HSW_L3_MISS_REMOTE_HOP2P)
946 #define HSW_SNOOP_NONE                  BIT_ULL(31)
947 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
948 #define HSW_SNOOP_MISS                  BIT_ULL(33)
949 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
950 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
951 #define HSW_SNOOP_HITM                  BIT_ULL(36)
952 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
953 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
954                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
955                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
956                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
957 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
958 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
959 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
960 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
961                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
962 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
963
964 #define BDW_L3_MISS_LOCAL               BIT(26)
965 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
966                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
967                                          HSW_L3_MISS_REMOTE_HOP2P)
968
969
970 static __initconst const u64 hsw_hw_cache_event_ids
971                                 [PERF_COUNT_HW_CACHE_MAX]
972                                 [PERF_COUNT_HW_CACHE_OP_MAX]
973                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
974 {
975  [ C(L1D ) ] = {
976         [ C(OP_READ) ] = {
977                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
978                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
979         },
980         [ C(OP_WRITE) ] = {
981                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
982                 [ C(RESULT_MISS)   ] = 0x0,
983         },
984         [ C(OP_PREFETCH) ] = {
985                 [ C(RESULT_ACCESS) ] = 0x0,
986                 [ C(RESULT_MISS)   ] = 0x0,
987         },
988  },
989  [ C(L1I ) ] = {
990         [ C(OP_READ) ] = {
991                 [ C(RESULT_ACCESS) ] = 0x0,
992                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
993         },
994         [ C(OP_WRITE) ] = {
995                 [ C(RESULT_ACCESS) ] = -1,
996                 [ C(RESULT_MISS)   ] = -1,
997         },
998         [ C(OP_PREFETCH) ] = {
999                 [ C(RESULT_ACCESS) ] = 0x0,
1000                 [ C(RESULT_MISS)   ] = 0x0,
1001         },
1002  },
1003  [ C(LL  ) ] = {
1004         [ C(OP_READ) ] = {
1005                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1006                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1007         },
1008         [ C(OP_WRITE) ] = {
1009                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1010                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1011         },
1012         [ C(OP_PREFETCH) ] = {
1013                 [ C(RESULT_ACCESS) ] = 0x0,
1014                 [ C(RESULT_MISS)   ] = 0x0,
1015         },
1016  },
1017  [ C(DTLB) ] = {
1018         [ C(OP_READ) ] = {
1019                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1020                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1021         },
1022         [ C(OP_WRITE) ] = {
1023                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1024                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1025         },
1026         [ C(OP_PREFETCH) ] = {
1027                 [ C(RESULT_ACCESS) ] = 0x0,
1028                 [ C(RESULT_MISS)   ] = 0x0,
1029         },
1030  },
1031  [ C(ITLB) ] = {
1032         [ C(OP_READ) ] = {
1033                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
1034                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1035         },
1036         [ C(OP_WRITE) ] = {
1037                 [ C(RESULT_ACCESS) ] = -1,
1038                 [ C(RESULT_MISS)   ] = -1,
1039         },
1040         [ C(OP_PREFETCH) ] = {
1041                 [ C(RESULT_ACCESS) ] = -1,
1042                 [ C(RESULT_MISS)   ] = -1,
1043         },
1044  },
1045  [ C(BPU ) ] = {
1046         [ C(OP_READ) ] = {
1047                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
1048                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
1049         },
1050         [ C(OP_WRITE) ] = {
1051                 [ C(RESULT_ACCESS) ] = -1,
1052                 [ C(RESULT_MISS)   ] = -1,
1053         },
1054         [ C(OP_PREFETCH) ] = {
1055                 [ C(RESULT_ACCESS) ] = -1,
1056                 [ C(RESULT_MISS)   ] = -1,
1057         },
1058  },
1059  [ C(NODE) ] = {
1060         [ C(OP_READ) ] = {
1061                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1062                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1063         },
1064         [ C(OP_WRITE) ] = {
1065                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1066                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1067         },
1068         [ C(OP_PREFETCH) ] = {
1069                 [ C(RESULT_ACCESS) ] = 0x0,
1070                 [ C(RESULT_MISS)   ] = 0x0,
1071         },
1072  },
1073 };
1074
1075 static __initconst const u64 hsw_hw_cache_extra_regs
1076                                 [PERF_COUNT_HW_CACHE_MAX]
1077                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1078                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1079 {
1080  [ C(LL  ) ] = {
1081         [ C(OP_READ) ] = {
1082                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1083                                        HSW_LLC_ACCESS,
1084                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1085                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1086         },
1087         [ C(OP_WRITE) ] = {
1088                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1089                                        HSW_LLC_ACCESS,
1090                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1091                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1092         },
1093         [ C(OP_PREFETCH) ] = {
1094                 [ C(RESULT_ACCESS) ] = 0x0,
1095                 [ C(RESULT_MISS)   ] = 0x0,
1096         },
1097  },
1098  [ C(NODE) ] = {
1099         [ C(OP_READ) ] = {
1100                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1101                                        HSW_L3_MISS_LOCAL_DRAM|
1102                                        HSW_SNOOP_DRAM,
1103                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1104                                        HSW_L3_MISS_REMOTE|
1105                                        HSW_SNOOP_DRAM,
1106         },
1107         [ C(OP_WRITE) ] = {
1108                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1109                                        HSW_L3_MISS_LOCAL_DRAM|
1110                                        HSW_SNOOP_DRAM,
1111                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1112                                        HSW_L3_MISS_REMOTE|
1113                                        HSW_SNOOP_DRAM,
1114         },
1115         [ C(OP_PREFETCH) ] = {
1116                 [ C(RESULT_ACCESS) ] = 0x0,
1117                 [ C(RESULT_MISS)   ] = 0x0,
1118         },
1119  },
1120 };
1121
1122 static __initconst const u64 westmere_hw_cache_event_ids
1123                                 [PERF_COUNT_HW_CACHE_MAX]
1124                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1125                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1126 {
1127  [ C(L1D) ] = {
1128         [ C(OP_READ) ] = {
1129                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1130                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1131         },
1132         [ C(OP_WRITE) ] = {
1133                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1134                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1135         },
1136         [ C(OP_PREFETCH) ] = {
1137                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1138                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1139         },
1140  },
1141  [ C(L1I ) ] = {
1142         [ C(OP_READ) ] = {
1143                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1144                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1145         },
1146         [ C(OP_WRITE) ] = {
1147                 [ C(RESULT_ACCESS) ] = -1,
1148                 [ C(RESULT_MISS)   ] = -1,
1149         },
1150         [ C(OP_PREFETCH) ] = {
1151                 [ C(RESULT_ACCESS) ] = 0x0,
1152                 [ C(RESULT_MISS)   ] = 0x0,
1153         },
1154  },
1155  [ C(LL  ) ] = {
1156         [ C(OP_READ) ] = {
1157                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1158                 [ C(RESULT_ACCESS) ] = 0x01b7,
1159                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1160                 [ C(RESULT_MISS)   ] = 0x01b7,
1161         },
1162         /*
1163          * Use RFO, not WRITEBACK, because a write miss would typically occur
1164          * on RFO.
1165          */
1166         [ C(OP_WRITE) ] = {
1167                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1168                 [ C(RESULT_ACCESS) ] = 0x01b7,
1169                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1170                 [ C(RESULT_MISS)   ] = 0x01b7,
1171         },
1172         [ C(OP_PREFETCH) ] = {
1173                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1174                 [ C(RESULT_ACCESS) ] = 0x01b7,
1175                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1176                 [ C(RESULT_MISS)   ] = 0x01b7,
1177         },
1178  },
1179  [ C(DTLB) ] = {
1180         [ C(OP_READ) ] = {
1181                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1182                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1183         },
1184         [ C(OP_WRITE) ] = {
1185                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1186                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1187         },
1188         [ C(OP_PREFETCH) ] = {
1189                 [ C(RESULT_ACCESS) ] = 0x0,
1190                 [ C(RESULT_MISS)   ] = 0x0,
1191         },
1192  },
1193  [ C(ITLB) ] = {
1194         [ C(OP_READ) ] = {
1195                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1196                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1197         },
1198         [ C(OP_WRITE) ] = {
1199                 [ C(RESULT_ACCESS) ] = -1,
1200                 [ C(RESULT_MISS)   ] = -1,
1201         },
1202         [ C(OP_PREFETCH) ] = {
1203                 [ C(RESULT_ACCESS) ] = -1,
1204                 [ C(RESULT_MISS)   ] = -1,
1205         },
1206  },
1207  [ C(BPU ) ] = {
1208         [ C(OP_READ) ] = {
1209                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1210                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1211         },
1212         [ C(OP_WRITE) ] = {
1213                 [ C(RESULT_ACCESS) ] = -1,
1214                 [ C(RESULT_MISS)   ] = -1,
1215         },
1216         [ C(OP_PREFETCH) ] = {
1217                 [ C(RESULT_ACCESS) ] = -1,
1218                 [ C(RESULT_MISS)   ] = -1,
1219         },
1220  },
1221  [ C(NODE) ] = {
1222         [ C(OP_READ) ] = {
1223                 [ C(RESULT_ACCESS) ] = 0x01b7,
1224                 [ C(RESULT_MISS)   ] = 0x01b7,
1225         },
1226         [ C(OP_WRITE) ] = {
1227                 [ C(RESULT_ACCESS) ] = 0x01b7,
1228                 [ C(RESULT_MISS)   ] = 0x01b7,
1229         },
1230         [ C(OP_PREFETCH) ] = {
1231                 [ C(RESULT_ACCESS) ] = 0x01b7,
1232                 [ C(RESULT_MISS)   ] = 0x01b7,
1233         },
1234  },
1235 };
1236
1237 /*
1238  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1239  * See IA32 SDM Vol 3B 30.6.1.3
1240  */
1241
1242 #define NHM_DMND_DATA_RD        (1 << 0)
1243 #define NHM_DMND_RFO            (1 << 1)
1244 #define NHM_DMND_IFETCH         (1 << 2)
1245 #define NHM_DMND_WB             (1 << 3)
1246 #define NHM_PF_DATA_RD          (1 << 4)
1247 #define NHM_PF_DATA_RFO         (1 << 5)
1248 #define NHM_PF_IFETCH           (1 << 6)
1249 #define NHM_OFFCORE_OTHER       (1 << 7)
1250 #define NHM_UNCORE_HIT          (1 << 8)
1251 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1252 #define NHM_OTHER_CORE_HITM     (1 << 10)
1253                                 /* reserved */
1254 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1255 #define NHM_REMOTE_DRAM         (1 << 13)
1256 #define NHM_LOCAL_DRAM          (1 << 14)
1257 #define NHM_NON_DRAM            (1 << 15)
1258
1259 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1260 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1261
1262 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1263 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1264 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1265
1266 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1267 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1268 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1269
1270 static __initconst const u64 nehalem_hw_cache_extra_regs
1271                                 [PERF_COUNT_HW_CACHE_MAX]
1272                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1273                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1274 {
1275  [ C(LL  ) ] = {
1276         [ C(OP_READ) ] = {
1277                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1278                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1279         },
1280         [ C(OP_WRITE) ] = {
1281                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1282                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1283         },
1284         [ C(OP_PREFETCH) ] = {
1285                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1286                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1287         },
1288  },
1289  [ C(NODE) ] = {
1290         [ C(OP_READ) ] = {
1291                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1292                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1293         },
1294         [ C(OP_WRITE) ] = {
1295                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1296                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1297         },
1298         [ C(OP_PREFETCH) ] = {
1299                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1300                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1301         },
1302  },
1303 };
1304
1305 static __initconst const u64 nehalem_hw_cache_event_ids
1306                                 [PERF_COUNT_HW_CACHE_MAX]
1307                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1308                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1309 {
1310  [ C(L1D) ] = {
1311         [ C(OP_READ) ] = {
1312                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1313                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1314         },
1315         [ C(OP_WRITE) ] = {
1316                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1317                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1318         },
1319         [ C(OP_PREFETCH) ] = {
1320                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1321                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1322         },
1323  },
1324  [ C(L1I ) ] = {
1325         [ C(OP_READ) ] = {
1326                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1327                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1328         },
1329         [ C(OP_WRITE) ] = {
1330                 [ C(RESULT_ACCESS) ] = -1,
1331                 [ C(RESULT_MISS)   ] = -1,
1332         },
1333         [ C(OP_PREFETCH) ] = {
1334                 [ C(RESULT_ACCESS) ] = 0x0,
1335                 [ C(RESULT_MISS)   ] = 0x0,
1336         },
1337  },
1338  [ C(LL  ) ] = {
1339         [ C(OP_READ) ] = {
1340                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1341                 [ C(RESULT_ACCESS) ] = 0x01b7,
1342                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1343                 [ C(RESULT_MISS)   ] = 0x01b7,
1344         },
1345         /*
1346          * Use RFO, not WRITEBACK, because a write miss would typically occur
1347          * on RFO.
1348          */
1349         [ C(OP_WRITE) ] = {
1350                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1351                 [ C(RESULT_ACCESS) ] = 0x01b7,
1352                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1353                 [ C(RESULT_MISS)   ] = 0x01b7,
1354         },
1355         [ C(OP_PREFETCH) ] = {
1356                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1357                 [ C(RESULT_ACCESS) ] = 0x01b7,
1358                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1359                 [ C(RESULT_MISS)   ] = 0x01b7,
1360         },
1361  },
1362  [ C(DTLB) ] = {
1363         [ C(OP_READ) ] = {
1364                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1365                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1366         },
1367         [ C(OP_WRITE) ] = {
1368                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1369                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1370         },
1371         [ C(OP_PREFETCH) ] = {
1372                 [ C(RESULT_ACCESS) ] = 0x0,
1373                 [ C(RESULT_MISS)   ] = 0x0,
1374         },
1375  },
1376  [ C(ITLB) ] = {
1377         [ C(OP_READ) ] = {
1378                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1379                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1380         },
1381         [ C(OP_WRITE) ] = {
1382                 [ C(RESULT_ACCESS) ] = -1,
1383                 [ C(RESULT_MISS)   ] = -1,
1384         },
1385         [ C(OP_PREFETCH) ] = {
1386                 [ C(RESULT_ACCESS) ] = -1,
1387                 [ C(RESULT_MISS)   ] = -1,
1388         },
1389  },
1390  [ C(BPU ) ] = {
1391         [ C(OP_READ) ] = {
1392                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1393                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1394         },
1395         [ C(OP_WRITE) ] = {
1396                 [ C(RESULT_ACCESS) ] = -1,
1397                 [ C(RESULT_MISS)   ] = -1,
1398         },
1399         [ C(OP_PREFETCH) ] = {
1400                 [ C(RESULT_ACCESS) ] = -1,
1401                 [ C(RESULT_MISS)   ] = -1,
1402         },
1403  },
1404  [ C(NODE) ] = {
1405         [ C(OP_READ) ] = {
1406                 [ C(RESULT_ACCESS) ] = 0x01b7,
1407                 [ C(RESULT_MISS)   ] = 0x01b7,
1408         },
1409         [ C(OP_WRITE) ] = {
1410                 [ C(RESULT_ACCESS) ] = 0x01b7,
1411                 [ C(RESULT_MISS)   ] = 0x01b7,
1412         },
1413         [ C(OP_PREFETCH) ] = {
1414                 [ C(RESULT_ACCESS) ] = 0x01b7,
1415                 [ C(RESULT_MISS)   ] = 0x01b7,
1416         },
1417  },
1418 };
1419
1420 static __initconst const u64 core2_hw_cache_event_ids
1421                                 [PERF_COUNT_HW_CACHE_MAX]
1422                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1423                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1424 {
1425  [ C(L1D) ] = {
1426         [ C(OP_READ) ] = {
1427                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1428                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1429         },
1430         [ C(OP_WRITE) ] = {
1431                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1432                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1433         },
1434         [ C(OP_PREFETCH) ] = {
1435                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1436                 [ C(RESULT_MISS)   ] = 0,
1437         },
1438  },
1439  [ C(L1I ) ] = {
1440         [ C(OP_READ) ] = {
1441                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1442                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1443         },
1444         [ C(OP_WRITE) ] = {
1445                 [ C(RESULT_ACCESS) ] = -1,
1446                 [ C(RESULT_MISS)   ] = -1,
1447         },
1448         [ C(OP_PREFETCH) ] = {
1449                 [ C(RESULT_ACCESS) ] = 0,
1450                 [ C(RESULT_MISS)   ] = 0,
1451         },
1452  },
1453  [ C(LL  ) ] = {
1454         [ C(OP_READ) ] = {
1455                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1456                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1457         },
1458         [ C(OP_WRITE) ] = {
1459                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1460                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1461         },
1462         [ C(OP_PREFETCH) ] = {
1463                 [ C(RESULT_ACCESS) ] = 0,
1464                 [ C(RESULT_MISS)   ] = 0,
1465         },
1466  },
1467  [ C(DTLB) ] = {
1468         [ C(OP_READ) ] = {
1469                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1470                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1471         },
1472         [ C(OP_WRITE) ] = {
1473                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1474                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1475         },
1476         [ C(OP_PREFETCH) ] = {
1477                 [ C(RESULT_ACCESS) ] = 0,
1478                 [ C(RESULT_MISS)   ] = 0,
1479         },
1480  },
1481  [ C(ITLB) ] = {
1482         [ C(OP_READ) ] = {
1483                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1484                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1485         },
1486         [ C(OP_WRITE) ] = {
1487                 [ C(RESULT_ACCESS) ] = -1,
1488                 [ C(RESULT_MISS)   ] = -1,
1489         },
1490         [ C(OP_PREFETCH) ] = {
1491                 [ C(RESULT_ACCESS) ] = -1,
1492                 [ C(RESULT_MISS)   ] = -1,
1493         },
1494  },
1495  [ C(BPU ) ] = {
1496         [ C(OP_READ) ] = {
1497                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1498                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1499         },
1500         [ C(OP_WRITE) ] = {
1501                 [ C(RESULT_ACCESS) ] = -1,
1502                 [ C(RESULT_MISS)   ] = -1,
1503         },
1504         [ C(OP_PREFETCH) ] = {
1505                 [ C(RESULT_ACCESS) ] = -1,
1506                 [ C(RESULT_MISS)   ] = -1,
1507         },
1508  },
1509 };
1510
1511 static __initconst const u64 atom_hw_cache_event_ids
1512                                 [PERF_COUNT_HW_CACHE_MAX]
1513                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1514                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1515 {
1516  [ C(L1D) ] = {
1517         [ C(OP_READ) ] = {
1518                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1519                 [ C(RESULT_MISS)   ] = 0,
1520         },
1521         [ C(OP_WRITE) ] = {
1522                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1523                 [ C(RESULT_MISS)   ] = 0,
1524         },
1525         [ C(OP_PREFETCH) ] = {
1526                 [ C(RESULT_ACCESS) ] = 0x0,
1527                 [ C(RESULT_MISS)   ] = 0,
1528         },
1529  },
1530  [ C(L1I ) ] = {
1531         [ C(OP_READ) ] = {
1532                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1533                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1534         },
1535         [ C(OP_WRITE) ] = {
1536                 [ C(RESULT_ACCESS) ] = -1,
1537                 [ C(RESULT_MISS)   ] = -1,
1538         },
1539         [ C(OP_PREFETCH) ] = {
1540                 [ C(RESULT_ACCESS) ] = 0,
1541                 [ C(RESULT_MISS)   ] = 0,
1542         },
1543  },
1544  [ C(LL  ) ] = {
1545         [ C(OP_READ) ] = {
1546                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1547                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1548         },
1549         [ C(OP_WRITE) ] = {
1550                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1551                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1552         },
1553         [ C(OP_PREFETCH) ] = {
1554                 [ C(RESULT_ACCESS) ] = 0,
1555                 [ C(RESULT_MISS)   ] = 0,
1556         },
1557  },
1558  [ C(DTLB) ] = {
1559         [ C(OP_READ) ] = {
1560                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1561                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1562         },
1563         [ C(OP_WRITE) ] = {
1564                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1565                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1566         },
1567         [ C(OP_PREFETCH) ] = {
1568                 [ C(RESULT_ACCESS) ] = 0,
1569                 [ C(RESULT_MISS)   ] = 0,
1570         },
1571  },
1572  [ C(ITLB) ] = {
1573         [ C(OP_READ) ] = {
1574                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1575                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1576         },
1577         [ C(OP_WRITE) ] = {
1578                 [ C(RESULT_ACCESS) ] = -1,
1579                 [ C(RESULT_MISS)   ] = -1,
1580         },
1581         [ C(OP_PREFETCH) ] = {
1582                 [ C(RESULT_ACCESS) ] = -1,
1583                 [ C(RESULT_MISS)   ] = -1,
1584         },
1585  },
1586  [ C(BPU ) ] = {
1587         [ C(OP_READ) ] = {
1588                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1589                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1590         },
1591         [ C(OP_WRITE) ] = {
1592                 [ C(RESULT_ACCESS) ] = -1,
1593                 [ C(RESULT_MISS)   ] = -1,
1594         },
1595         [ C(OP_PREFETCH) ] = {
1596                 [ C(RESULT_ACCESS) ] = -1,
1597                 [ C(RESULT_MISS)   ] = -1,
1598         },
1599  },
1600 };
1601
1602 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1603 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1604 /* no_alloc_cycles.not_delivered */
1605 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1606                "event=0xca,umask=0x50");
1607 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1608 /* uops_retired.all */
1609 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1610                "event=0xc2,umask=0x10");
1611 /* uops_retired.all */
1612 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1613                "event=0xc2,umask=0x10");
1614
1615 static struct attribute *slm_events_attrs[] = {
1616         EVENT_PTR(td_total_slots_slm),
1617         EVENT_PTR(td_total_slots_scale_slm),
1618         EVENT_PTR(td_fetch_bubbles_slm),
1619         EVENT_PTR(td_fetch_bubbles_scale_slm),
1620         EVENT_PTR(td_slots_issued_slm),
1621         EVENT_PTR(td_slots_retired_slm),
1622         NULL
1623 };
1624
1625 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1626 {
1627         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1628         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1629         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1630         EVENT_EXTRA_END
1631 };
1632
1633 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1634 #define SLM_DMND_WRITE          SNB_DMND_RFO
1635 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1636
1637 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1638 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1639 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1640
1641 static __initconst const u64 slm_hw_cache_extra_regs
1642                                 [PERF_COUNT_HW_CACHE_MAX]
1643                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1644                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1645 {
1646  [ C(LL  ) ] = {
1647         [ C(OP_READ) ] = {
1648                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1649                 [ C(RESULT_MISS)   ] = 0,
1650         },
1651         [ C(OP_WRITE) ] = {
1652                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1653                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1654         },
1655         [ C(OP_PREFETCH) ] = {
1656                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1657                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1658         },
1659  },
1660 };
1661
1662 static __initconst const u64 slm_hw_cache_event_ids
1663                                 [PERF_COUNT_HW_CACHE_MAX]
1664                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1665                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1666 {
1667  [ C(L1D) ] = {
1668         [ C(OP_READ) ] = {
1669                 [ C(RESULT_ACCESS) ] = 0,
1670                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1671         },
1672         [ C(OP_WRITE) ] = {
1673                 [ C(RESULT_ACCESS) ] = 0,
1674                 [ C(RESULT_MISS)   ] = 0,
1675         },
1676         [ C(OP_PREFETCH) ] = {
1677                 [ C(RESULT_ACCESS) ] = 0,
1678                 [ C(RESULT_MISS)   ] = 0,
1679         },
1680  },
1681  [ C(L1I ) ] = {
1682         [ C(OP_READ) ] = {
1683                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1684                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1685         },
1686         [ C(OP_WRITE) ] = {
1687                 [ C(RESULT_ACCESS) ] = -1,
1688                 [ C(RESULT_MISS)   ] = -1,
1689         },
1690         [ C(OP_PREFETCH) ] = {
1691                 [ C(RESULT_ACCESS) ] = 0,
1692                 [ C(RESULT_MISS)   ] = 0,
1693         },
1694  },
1695  [ C(LL  ) ] = {
1696         [ C(OP_READ) ] = {
1697                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1698                 [ C(RESULT_ACCESS) ] = 0x01b7,
1699                 [ C(RESULT_MISS)   ] = 0,
1700         },
1701         [ C(OP_WRITE) ] = {
1702                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1703                 [ C(RESULT_ACCESS) ] = 0x01b7,
1704                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1705                 [ C(RESULT_MISS)   ] = 0x01b7,
1706         },
1707         [ C(OP_PREFETCH) ] = {
1708                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1709                 [ C(RESULT_ACCESS) ] = 0x01b7,
1710                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1711                 [ C(RESULT_MISS)   ] = 0x01b7,
1712         },
1713  },
1714  [ C(DTLB) ] = {
1715         [ C(OP_READ) ] = {
1716                 [ C(RESULT_ACCESS) ] = 0,
1717                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1718         },
1719         [ C(OP_WRITE) ] = {
1720                 [ C(RESULT_ACCESS) ] = 0,
1721                 [ C(RESULT_MISS)   ] = 0,
1722         },
1723         [ C(OP_PREFETCH) ] = {
1724                 [ C(RESULT_ACCESS) ] = 0,
1725                 [ C(RESULT_MISS)   ] = 0,
1726         },
1727  },
1728  [ C(ITLB) ] = {
1729         [ C(OP_READ) ] = {
1730                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1731                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1732         },
1733         [ C(OP_WRITE) ] = {
1734                 [ C(RESULT_ACCESS) ] = -1,
1735                 [ C(RESULT_MISS)   ] = -1,
1736         },
1737         [ C(OP_PREFETCH) ] = {
1738                 [ C(RESULT_ACCESS) ] = -1,
1739                 [ C(RESULT_MISS)   ] = -1,
1740         },
1741  },
1742  [ C(BPU ) ] = {
1743         [ C(OP_READ) ] = {
1744                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1745                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1746         },
1747         [ C(OP_WRITE) ] = {
1748                 [ C(RESULT_ACCESS) ] = -1,
1749                 [ C(RESULT_MISS)   ] = -1,
1750         },
1751         [ C(OP_PREFETCH) ] = {
1752                 [ C(RESULT_ACCESS) ] = -1,
1753                 [ C(RESULT_MISS)   ] = -1,
1754         },
1755  },
1756 };
1757
1758 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1759 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1760 /* UOPS_NOT_DELIVERED.ANY */
1761 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1762 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1763 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1764 /* UOPS_RETIRED.ANY */
1765 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1766 /* UOPS_ISSUED.ANY */
1767 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1768
1769 static struct attribute *glm_events_attrs[] = {
1770         EVENT_PTR(td_total_slots_glm),
1771         EVENT_PTR(td_total_slots_scale_glm),
1772         EVENT_PTR(td_fetch_bubbles_glm),
1773         EVENT_PTR(td_recovery_bubbles_glm),
1774         EVENT_PTR(td_slots_issued_glm),
1775         EVENT_PTR(td_slots_retired_glm),
1776         NULL
1777 };
1778
1779 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1780         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1781         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1782         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1783         EVENT_EXTRA_END
1784 };
1785
1786 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1787 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1788 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1789 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1790 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1791 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1792 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1793 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1794 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1795 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1796
1797 static __initconst const u64 glm_hw_cache_event_ids
1798                                 [PERF_COUNT_HW_CACHE_MAX]
1799                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1800                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1801         [C(L1D)] = {
1802                 [C(OP_READ)] = {
1803                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1804                         [C(RESULT_MISS)]        = 0x0,
1805                 },
1806                 [C(OP_WRITE)] = {
1807                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1808                         [C(RESULT_MISS)]        = 0x0,
1809                 },
1810                 [C(OP_PREFETCH)] = {
1811                         [C(RESULT_ACCESS)]      = 0x0,
1812                         [C(RESULT_MISS)]        = 0x0,
1813                 },
1814         },
1815         [C(L1I)] = {
1816                 [C(OP_READ)] = {
1817                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1818                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1819                 },
1820                 [C(OP_WRITE)] = {
1821                         [C(RESULT_ACCESS)]      = -1,
1822                         [C(RESULT_MISS)]        = -1,
1823                 },
1824                 [C(OP_PREFETCH)] = {
1825                         [C(RESULT_ACCESS)]      = 0x0,
1826                         [C(RESULT_MISS)]        = 0x0,
1827                 },
1828         },
1829         [C(LL)] = {
1830                 [C(OP_READ)] = {
1831                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1832                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1833                 },
1834                 [C(OP_WRITE)] = {
1835                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1836                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1837                 },
1838                 [C(OP_PREFETCH)] = {
1839                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1840                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1841                 },
1842         },
1843         [C(DTLB)] = {
1844                 [C(OP_READ)] = {
1845                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1846                         [C(RESULT_MISS)]        = 0x0,
1847                 },
1848                 [C(OP_WRITE)] = {
1849                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1850                         [C(RESULT_MISS)]        = 0x0,
1851                 },
1852                 [C(OP_PREFETCH)] = {
1853                         [C(RESULT_ACCESS)]      = 0x0,
1854                         [C(RESULT_MISS)]        = 0x0,
1855                 },
1856         },
1857         [C(ITLB)] = {
1858                 [C(OP_READ)] = {
1859                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1860                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1861                 },
1862                 [C(OP_WRITE)] = {
1863                         [C(RESULT_ACCESS)]      = -1,
1864                         [C(RESULT_MISS)]        = -1,
1865                 },
1866                 [C(OP_PREFETCH)] = {
1867                         [C(RESULT_ACCESS)]      = -1,
1868                         [C(RESULT_MISS)]        = -1,
1869                 },
1870         },
1871         [C(BPU)] = {
1872                 [C(OP_READ)] = {
1873                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1874                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1875                 },
1876                 [C(OP_WRITE)] = {
1877                         [C(RESULT_ACCESS)]      = -1,
1878                         [C(RESULT_MISS)]        = -1,
1879                 },
1880                 [C(OP_PREFETCH)] = {
1881                         [C(RESULT_ACCESS)]      = -1,
1882                         [C(RESULT_MISS)]        = -1,
1883                 },
1884         },
1885 };
1886
1887 static __initconst const u64 glm_hw_cache_extra_regs
1888                                 [PERF_COUNT_HW_CACHE_MAX]
1889                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1890                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1891         [C(LL)] = {
1892                 [C(OP_READ)] = {
1893                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1894                                                   GLM_LLC_ACCESS,
1895                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1896                                                   GLM_LLC_MISS,
1897                 },
1898                 [C(OP_WRITE)] = {
1899                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1900                                                   GLM_LLC_ACCESS,
1901                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1902                                                   GLM_LLC_MISS,
1903                 },
1904                 [C(OP_PREFETCH)] = {
1905                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1906                                                   GLM_LLC_ACCESS,
1907                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1908                                                   GLM_LLC_MISS,
1909                 },
1910         },
1911 };
1912
1913 static __initconst const u64 glp_hw_cache_event_ids
1914                                 [PERF_COUNT_HW_CACHE_MAX]
1915                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1916                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1917         [C(L1D)] = {
1918                 [C(OP_READ)] = {
1919                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1920                         [C(RESULT_MISS)]        = 0x0,
1921                 },
1922                 [C(OP_WRITE)] = {
1923                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1924                         [C(RESULT_MISS)]        = 0x0,
1925                 },
1926                 [C(OP_PREFETCH)] = {
1927                         [C(RESULT_ACCESS)]      = 0x0,
1928                         [C(RESULT_MISS)]        = 0x0,
1929                 },
1930         },
1931         [C(L1I)] = {
1932                 [C(OP_READ)] = {
1933                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1934                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1935                 },
1936                 [C(OP_WRITE)] = {
1937                         [C(RESULT_ACCESS)]      = -1,
1938                         [C(RESULT_MISS)]        = -1,
1939                 },
1940                 [C(OP_PREFETCH)] = {
1941                         [C(RESULT_ACCESS)]      = 0x0,
1942                         [C(RESULT_MISS)]        = 0x0,
1943                 },
1944         },
1945         [C(LL)] = {
1946                 [C(OP_READ)] = {
1947                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1948                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1949                 },
1950                 [C(OP_WRITE)] = {
1951                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1952                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1953                 },
1954                 [C(OP_PREFETCH)] = {
1955                         [C(RESULT_ACCESS)]      = 0x0,
1956                         [C(RESULT_MISS)]        = 0x0,
1957                 },
1958         },
1959         [C(DTLB)] = {
1960                 [C(OP_READ)] = {
1961                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1962                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1963                 },
1964                 [C(OP_WRITE)] = {
1965                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1966                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1967                 },
1968                 [C(OP_PREFETCH)] = {
1969                         [C(RESULT_ACCESS)]      = 0x0,
1970                         [C(RESULT_MISS)]        = 0x0,
1971                 },
1972         },
1973         [C(ITLB)] = {
1974                 [C(OP_READ)] = {
1975                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1976                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1977                 },
1978                 [C(OP_WRITE)] = {
1979                         [C(RESULT_ACCESS)]      = -1,
1980                         [C(RESULT_MISS)]        = -1,
1981                 },
1982                 [C(OP_PREFETCH)] = {
1983                         [C(RESULT_ACCESS)]      = -1,
1984                         [C(RESULT_MISS)]        = -1,
1985                 },
1986         },
1987         [C(BPU)] = {
1988                 [C(OP_READ)] = {
1989                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1990                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1991                 },
1992                 [C(OP_WRITE)] = {
1993                         [C(RESULT_ACCESS)]      = -1,
1994                         [C(RESULT_MISS)]        = -1,
1995                 },
1996                 [C(OP_PREFETCH)] = {
1997                         [C(RESULT_ACCESS)]      = -1,
1998                         [C(RESULT_MISS)]        = -1,
1999                 },
2000         },
2001 };
2002
2003 static __initconst const u64 glp_hw_cache_extra_regs
2004                                 [PERF_COUNT_HW_CACHE_MAX]
2005                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2006                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2007         [C(LL)] = {
2008                 [C(OP_READ)] = {
2009                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
2010                                                   GLM_LLC_ACCESS,
2011                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
2012                                                   GLM_LLC_MISS,
2013                 },
2014                 [C(OP_WRITE)] = {
2015                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
2016                                                   GLM_LLC_ACCESS,
2017                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
2018                                                   GLM_LLC_MISS,
2019                 },
2020                 [C(OP_PREFETCH)] = {
2021                         [C(RESULT_ACCESS)]      = 0x0,
2022                         [C(RESULT_MISS)]        = 0x0,
2023                 },
2024         },
2025 };
2026
2027 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
2028 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
2029 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
2030 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
2031 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2032                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2033 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2034
2035 static __initconst const u64 tnt_hw_cache_extra_regs
2036                                 [PERF_COUNT_HW_CACHE_MAX]
2037                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2038                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2039         [C(LL)] = {
2040                 [C(OP_READ)] = {
2041                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
2042                                                   TNT_LLC_ACCESS,
2043                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
2044                                                   TNT_LLC_MISS,
2045                 },
2046                 [C(OP_WRITE)] = {
2047                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
2048                                                   TNT_LLC_ACCESS,
2049                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
2050                                                   TNT_LLC_MISS,
2051                 },
2052                 [C(OP_PREFETCH)] = {
2053                         [C(RESULT_ACCESS)]      = 0x0,
2054                         [C(RESULT_MISS)]        = 0x0,
2055                 },
2056         },
2057 };
2058
2059 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2060 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2061 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2062 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2063
2064 static struct attribute *tnt_events_attrs[] = {
2065         EVENT_PTR(td_fe_bound_tnt),
2066         EVENT_PTR(td_retiring_tnt),
2067         EVENT_PTR(td_bad_spec_tnt),
2068         EVENT_PTR(td_be_bound_tnt),
2069         NULL,
2070 };
2071
2072 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2073         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2074         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2075         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2076         EVENT_EXTRA_END
2077 };
2078
2079 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2080         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2081         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2082         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2083         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2084         EVENT_EXTRA_END
2085 };
2086
2087 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
2088 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
2089 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
2090 #define KNL_MCDRAM_FAR          BIT_ULL(22)
2091 #define KNL_DDR_LOCAL           BIT_ULL(23)
2092 #define KNL_DDR_FAR             BIT_ULL(24)
2093 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2094                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
2095 #define KNL_L2_READ             SLM_DMND_READ
2096 #define KNL_L2_WRITE            SLM_DMND_WRITE
2097 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
2098 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
2099 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2100                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
2101                                                   SNB_NON_DRAM)
2102
2103 static __initconst const u64 knl_hw_cache_extra_regs
2104                                 [PERF_COUNT_HW_CACHE_MAX]
2105                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2106                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2107         [C(LL)] = {
2108                 [C(OP_READ)] = {
2109                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2110                         [C(RESULT_MISS)]   = 0,
2111                 },
2112                 [C(OP_WRITE)] = {
2113                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2114                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2115                 },
2116                 [C(OP_PREFETCH)] = {
2117                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2118                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2119                 },
2120         },
2121 };
2122
2123 /*
2124  * Used from PMIs where the LBRs are already disabled.
2125  *
2126  * This function could be called consecutively. It is required to remain in
2127  * disabled state if called consecutively.
2128  *
2129  * During consecutive calls, the same disable value will be written to related
2130  * registers, so the PMU state remains unchanged.
2131  *
2132  * intel_bts events don't coexist with intel PMU's BTS events because of
2133  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2134  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2135  *
2136  * Avoid PEBS_ENABLE MSR access in PMIs.
2137  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2138  * It doesn't matter if the PEBS is enabled or not.
2139  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2140  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2141  * However, there are some cases which may change PEBS status, e.g. PMI
2142  * throttle. The PEBS_ENABLE should be updated where the status changes.
2143  */
2144 static void __intel_pmu_disable_all(void)
2145 {
2146         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2147
2148         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2149
2150         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2151                 intel_pmu_disable_bts();
2152 }
2153
2154 static void intel_pmu_disable_all(void)
2155 {
2156         __intel_pmu_disable_all();
2157         intel_pmu_pebs_disable_all();
2158         intel_pmu_lbr_disable_all();
2159 }
2160
2161 static void __intel_pmu_enable_all(int added, bool pmi)
2162 {
2163         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2164         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2165
2166         intel_pmu_lbr_enable_all(pmi);
2167         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2168                intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2169
2170         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2171                 struct perf_event *event =
2172                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2173
2174                 if (WARN_ON_ONCE(!event))
2175                         return;
2176
2177                 intel_pmu_enable_bts(event->hw.config);
2178         }
2179 }
2180
2181 static void intel_pmu_enable_all(int added)
2182 {
2183         intel_pmu_pebs_enable_all();
2184         __intel_pmu_enable_all(added, false);
2185 }
2186
2187 /*
2188  * Workaround for:
2189  *   Intel Errata AAK100 (model 26)
2190  *   Intel Errata AAP53  (model 30)
2191  *   Intel Errata BD53   (model 44)
2192  *
2193  * The official story:
2194  *   These chips need to be 'reset' when adding counters by programming the
2195  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2196  *   in sequence on the same PMC or on different PMCs.
2197  *
2198  * In practice it appears some of these events do in fact count, and
2199  * we need to program all 4 events.
2200  */
2201 static void intel_pmu_nhm_workaround(void)
2202 {
2203         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2204         static const unsigned long nhm_magic[4] = {
2205                 0x4300B5,
2206                 0x4300D2,
2207                 0x4300B1,
2208                 0x4300B1
2209         };
2210         struct perf_event *event;
2211         int i;
2212
2213         /*
2214          * The Errata requires below steps:
2215          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2216          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2217          *    the corresponding PMCx;
2218          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2219          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2220          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2221          */
2222
2223         /*
2224          * The real steps we choose are a little different from above.
2225          * A) To reduce MSR operations, we don't run step 1) as they
2226          *    are already cleared before this function is called;
2227          * B) Call x86_perf_event_update to save PMCx before configuring
2228          *    PERFEVTSELx with magic number;
2229          * C) With step 5), we do clear only when the PERFEVTSELx is
2230          *    not used currently.
2231          * D) Call x86_perf_event_set_period to restore PMCx;
2232          */
2233
2234         /* We always operate 4 pairs of PERF Counters */
2235         for (i = 0; i < 4; i++) {
2236                 event = cpuc->events[i];
2237                 if (event)
2238                         x86_perf_event_update(event);
2239         }
2240
2241         for (i = 0; i < 4; i++) {
2242                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2243                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2244         }
2245
2246         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2247         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2248
2249         for (i = 0; i < 4; i++) {
2250                 event = cpuc->events[i];
2251
2252                 if (event) {
2253                         x86_perf_event_set_period(event);
2254                         __x86_pmu_enable_event(&event->hw,
2255                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2256                 } else
2257                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2258         }
2259 }
2260
2261 static void intel_pmu_nhm_enable_all(int added)
2262 {
2263         if (added)
2264                 intel_pmu_nhm_workaround();
2265         intel_pmu_enable_all(added);
2266 }
2267
2268 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2269 {
2270         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2271
2272         if (cpuc->tfa_shadow != val) {
2273                 cpuc->tfa_shadow = val;
2274                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2275         }
2276 }
2277
2278 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2279 {
2280         /*
2281          * We're going to use PMC3, make sure TFA is set before we touch it.
2282          */
2283         if (cntr == 3)
2284                 intel_set_tfa(cpuc, true);
2285 }
2286
2287 static void intel_tfa_pmu_enable_all(int added)
2288 {
2289         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2290
2291         /*
2292          * If we find PMC3 is no longer used when we enable the PMU, we can
2293          * clear TFA.
2294          */
2295         if (!test_bit(3, cpuc->active_mask))
2296                 intel_set_tfa(cpuc, false);
2297
2298         intel_pmu_enable_all(added);
2299 }
2300
2301 static inline u64 intel_pmu_get_status(void)
2302 {
2303         u64 status;
2304
2305         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2306
2307         return status;
2308 }
2309
2310 static inline void intel_pmu_ack_status(u64 ack)
2311 {
2312         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2313 }
2314
2315 static inline bool event_is_checkpointed(struct perf_event *event)
2316 {
2317         return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2318 }
2319
2320 static inline void intel_set_masks(struct perf_event *event, int idx)
2321 {
2322         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2323
2324         if (event->attr.exclude_host)
2325                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2326         if (event->attr.exclude_guest)
2327                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2328         if (event_is_checkpointed(event))
2329                 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2330 }
2331
2332 static inline void intel_clear_masks(struct perf_event *event, int idx)
2333 {
2334         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2335
2336         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2337         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2338         __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2339 }
2340
2341 static void intel_pmu_disable_fixed(struct perf_event *event)
2342 {
2343         struct hw_perf_event *hwc = &event->hw;
2344         u64 ctrl_val, mask;
2345         int idx = hwc->idx;
2346
2347         if (is_topdown_idx(idx)) {
2348                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2349
2350                 /*
2351                  * When there are other active TopDown events,
2352                  * don't disable the fixed counter 3.
2353                  */
2354                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2355                         return;
2356                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2357         }
2358
2359         intel_clear_masks(event, idx);
2360
2361         mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2362         rdmsrl(hwc->config_base, ctrl_val);
2363         ctrl_val &= ~mask;
2364         wrmsrl(hwc->config_base, ctrl_val);
2365 }
2366
2367 static void intel_pmu_disable_event(struct perf_event *event)
2368 {
2369         struct hw_perf_event *hwc = &event->hw;
2370         int idx = hwc->idx;
2371
2372         switch (idx) {
2373         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2374                 intel_clear_masks(event, idx);
2375                 x86_pmu_disable_event(event);
2376                 break;
2377         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2378         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2379                 intel_pmu_disable_fixed(event);
2380                 break;
2381         case INTEL_PMC_IDX_FIXED_BTS:
2382                 intel_pmu_disable_bts();
2383                 intel_pmu_drain_bts_buffer();
2384                 return;
2385         case INTEL_PMC_IDX_FIXED_VLBR:
2386                 intel_clear_masks(event, idx);
2387                 break;
2388         default:
2389                 intel_clear_masks(event, idx);
2390                 pr_warn("Failed to disable the event with invalid index %d\n",
2391                         idx);
2392                 return;
2393         }
2394
2395         /*
2396          * Needs to be called after x86_pmu_disable_event,
2397          * so we don't trigger the event without PEBS bit set.
2398          */
2399         if (unlikely(event->attr.precise_ip))
2400                 intel_pmu_pebs_disable(event);
2401 }
2402
2403 static void intel_pmu_del_event(struct perf_event *event)
2404 {
2405         if (needs_branch_stack(event))
2406                 intel_pmu_lbr_del(event);
2407         if (event->attr.precise_ip)
2408                 intel_pmu_pebs_del(event);
2409 }
2410
2411 static int icl_set_topdown_event_period(struct perf_event *event)
2412 {
2413         struct hw_perf_event *hwc = &event->hw;
2414         s64 left = local64_read(&hwc->period_left);
2415
2416         /*
2417          * The values in PERF_METRICS MSR are derived from fixed counter 3.
2418          * Software should start both registers, PERF_METRICS and fixed
2419          * counter 3, from zero.
2420          * Clear PERF_METRICS and Fixed counter 3 in initialization.
2421          * After that, both MSRs will be cleared for each read.
2422          * Don't need to clear them again.
2423          */
2424         if (left == x86_pmu.max_period) {
2425                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2426                 wrmsrl(MSR_PERF_METRICS, 0);
2427                 hwc->saved_slots = 0;
2428                 hwc->saved_metric = 0;
2429         }
2430
2431         if ((hwc->saved_slots) && is_slots_event(event)) {
2432                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2433                 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2434         }
2435
2436         perf_event_update_userpage(event);
2437
2438         return 0;
2439 }
2440
2441 static int adl_set_topdown_event_period(struct perf_event *event)
2442 {
2443         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2444
2445         if (pmu->cpu_type != hybrid_big)
2446                 return 0;
2447
2448         return icl_set_topdown_event_period(event);
2449 }
2450
2451 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2452 {
2453         u32 val;
2454
2455         /*
2456          * The metric is reported as an 8bit integer fraction
2457          * summing up to 0xff.
2458          * slots-in-metric = (Metric / 0xff) * slots
2459          */
2460         val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2461         return  mul_u64_u32_div(slots, val, 0xff);
2462 }
2463
2464 static u64 icl_get_topdown_value(struct perf_event *event,
2465                                        u64 slots, u64 metrics)
2466 {
2467         int idx = event->hw.idx;
2468         u64 delta;
2469
2470         if (is_metric_idx(idx))
2471                 delta = icl_get_metrics_event_value(metrics, slots, idx);
2472         else
2473                 delta = slots;
2474
2475         return delta;
2476 }
2477
2478 static void __icl_update_topdown_event(struct perf_event *event,
2479                                        u64 slots, u64 metrics,
2480                                        u64 last_slots, u64 last_metrics)
2481 {
2482         u64 delta, last = 0;
2483
2484         delta = icl_get_topdown_value(event, slots, metrics);
2485         if (last_slots)
2486                 last = icl_get_topdown_value(event, last_slots, last_metrics);
2487
2488         /*
2489          * The 8bit integer fraction of metric may be not accurate,
2490          * especially when the changes is very small.
2491          * For example, if only a few bad_spec happens, the fraction
2492          * may be reduced from 1 to 0. If so, the bad_spec event value
2493          * will be 0 which is definitely less than the last value.
2494          * Avoid update event->count for this case.
2495          */
2496         if (delta > last) {
2497                 delta -= last;
2498                 local64_add(delta, &event->count);
2499         }
2500 }
2501
2502 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2503                                       u64 metrics, int metric_end)
2504 {
2505         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2506         struct perf_event *other;
2507         int idx;
2508
2509         event->hw.saved_slots = slots;
2510         event->hw.saved_metric = metrics;
2511
2512         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2513                 if (!is_topdown_idx(idx))
2514                         continue;
2515                 other = cpuc->events[idx];
2516                 other->hw.saved_slots = slots;
2517                 other->hw.saved_metric = metrics;
2518         }
2519 }
2520
2521 /*
2522  * Update all active Topdown events.
2523  *
2524  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2525  * modify by a NMI. PMU has to be disabled before calling this function.
2526  */
2527
2528 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2529 {
2530         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2531         struct perf_event *other;
2532         u64 slots, metrics;
2533         bool reset = true;
2534         int idx;
2535
2536         /* read Fixed counter 3 */
2537         rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2538         if (!slots)
2539                 return 0;
2540
2541         /* read PERF_METRICS */
2542         rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2543
2544         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2545                 if (!is_topdown_idx(idx))
2546                         continue;
2547                 other = cpuc->events[idx];
2548                 __icl_update_topdown_event(other, slots, metrics,
2549                                            event ? event->hw.saved_slots : 0,
2550                                            event ? event->hw.saved_metric : 0);
2551         }
2552
2553         /*
2554          * Check and update this event, which may have been cleared
2555          * in active_mask e.g. x86_pmu_stop()
2556          */
2557         if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2558                 __icl_update_topdown_event(event, slots, metrics,
2559                                            event->hw.saved_slots,
2560                                            event->hw.saved_metric);
2561
2562                 /*
2563                  * In x86_pmu_stop(), the event is cleared in active_mask first,
2564                  * then drain the delta, which indicates context switch for
2565                  * counting.
2566                  * Save metric and slots for context switch.
2567                  * Don't need to reset the PERF_METRICS and Fixed counter 3.
2568                  * Because the values will be restored in next schedule in.
2569                  */
2570                 update_saved_topdown_regs(event, slots, metrics, metric_end);
2571                 reset = false;
2572         }
2573
2574         if (reset) {
2575                 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2576                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2577                 wrmsrl(MSR_PERF_METRICS, 0);
2578                 if (event)
2579                         update_saved_topdown_regs(event, 0, 0, metric_end);
2580         }
2581
2582         return slots;
2583 }
2584
2585 static u64 icl_update_topdown_event(struct perf_event *event)
2586 {
2587         return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2588                                                  x86_pmu.num_topdown_events - 1);
2589 }
2590
2591 static u64 adl_update_topdown_event(struct perf_event *event)
2592 {
2593         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2594
2595         if (pmu->cpu_type != hybrid_big)
2596                 return 0;
2597
2598         return icl_update_topdown_event(event);
2599 }
2600
2601
2602 static void intel_pmu_read_topdown_event(struct perf_event *event)
2603 {
2604         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2605
2606         /* Only need to call update_topdown_event() once for group read. */
2607         if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2608             !is_slots_event(event))
2609                 return;
2610
2611         perf_pmu_disable(event->pmu);
2612         x86_pmu.update_topdown_event(event);
2613         perf_pmu_enable(event->pmu);
2614 }
2615
2616 static void intel_pmu_read_event(struct perf_event *event)
2617 {
2618         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2619                 intel_pmu_auto_reload_read(event);
2620         else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2621                 intel_pmu_read_topdown_event(event);
2622         else
2623                 x86_perf_event_update(event);
2624 }
2625
2626 static void intel_pmu_enable_fixed(struct perf_event *event)
2627 {
2628         struct hw_perf_event *hwc = &event->hw;
2629         u64 ctrl_val, mask, bits = 0;
2630         int idx = hwc->idx;
2631
2632         if (is_topdown_idx(idx)) {
2633                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2634                 /*
2635                  * When there are other active TopDown events,
2636                  * don't enable the fixed counter 3 again.
2637                  */
2638                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2639                         return;
2640
2641                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2642         }
2643
2644         intel_set_masks(event, idx);
2645
2646         /*
2647          * Enable IRQ generation (0x8), if not PEBS,
2648          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2649          * if requested:
2650          */
2651         if (!event->attr.precise_ip)
2652                 bits |= 0x8;
2653         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2654                 bits |= 0x2;
2655         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2656                 bits |= 0x1;
2657
2658         /*
2659          * ANY bit is supported in v3 and up
2660          */
2661         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2662                 bits |= 0x4;
2663
2664         idx -= INTEL_PMC_IDX_FIXED;
2665         bits <<= (idx * 4);
2666         mask = 0xfULL << (idx * 4);
2667
2668         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2669                 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2670                 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2671         }
2672
2673         rdmsrl(hwc->config_base, ctrl_val);
2674         ctrl_val &= ~mask;
2675         ctrl_val |= bits;
2676         wrmsrl(hwc->config_base, ctrl_val);
2677 }
2678
2679 static void intel_pmu_enable_event(struct perf_event *event)
2680 {
2681         struct hw_perf_event *hwc = &event->hw;
2682         int idx = hwc->idx;
2683
2684         if (unlikely(event->attr.precise_ip))
2685                 intel_pmu_pebs_enable(event);
2686
2687         switch (idx) {
2688         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2689                 intel_set_masks(event, idx);
2690                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2691                 break;
2692         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2693         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2694                 intel_pmu_enable_fixed(event);
2695                 break;
2696         case INTEL_PMC_IDX_FIXED_BTS:
2697                 if (!__this_cpu_read(cpu_hw_events.enabled))
2698                         return;
2699                 intel_pmu_enable_bts(hwc->config);
2700                 break;
2701         case INTEL_PMC_IDX_FIXED_VLBR:
2702                 intel_set_masks(event, idx);
2703                 break;
2704         default:
2705                 pr_warn("Failed to enable the event with invalid index %d\n",
2706                         idx);
2707         }
2708 }
2709
2710 static void intel_pmu_add_event(struct perf_event *event)
2711 {
2712         if (event->attr.precise_ip)
2713                 intel_pmu_pebs_add(event);
2714         if (needs_branch_stack(event))
2715                 intel_pmu_lbr_add(event);
2716 }
2717
2718 /*
2719  * Save and restart an expired event. Called by NMI contexts,
2720  * so it has to be careful about preempting normal event ops:
2721  */
2722 int intel_pmu_save_and_restart(struct perf_event *event)
2723 {
2724         x86_perf_event_update(event);
2725         /*
2726          * For a checkpointed counter always reset back to 0.  This
2727          * avoids a situation where the counter overflows, aborts the
2728          * transaction and is then set back to shortly before the
2729          * overflow, and overflows and aborts again.
2730          */
2731         if (unlikely(event_is_checkpointed(event))) {
2732                 /* No race with NMIs because the counter should not be armed */
2733                 wrmsrl(event->hw.event_base, 0);
2734                 local64_set(&event->hw.prev_count, 0);
2735         }
2736         return x86_perf_event_set_period(event);
2737 }
2738
2739 static void intel_pmu_reset(void)
2740 {
2741         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2742         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2743         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2744         int num_counters = hybrid(cpuc->pmu, num_counters);
2745         unsigned long flags;
2746         int idx;
2747
2748         if (!num_counters)
2749                 return;
2750
2751         local_irq_save(flags);
2752
2753         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2754
2755         for (idx = 0; idx < num_counters; idx++) {
2756                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2757                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2758         }
2759         for (idx = 0; idx < num_counters_fixed; idx++) {
2760                 if (fixed_counter_disabled(idx, cpuc->pmu))
2761                         continue;
2762                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2763         }
2764
2765         if (ds)
2766                 ds->bts_index = ds->bts_buffer_base;
2767
2768         /* Ack all overflows and disable fixed counters */
2769         if (x86_pmu.version >= 2) {
2770                 intel_pmu_ack_status(intel_pmu_get_status());
2771                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2772         }
2773
2774         /* Reset LBRs and LBR freezing */
2775         if (x86_pmu.lbr_nr) {
2776                 update_debugctlmsr(get_debugctlmsr() &
2777                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2778         }
2779
2780         local_irq_restore(flags);
2781 }
2782
2783 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2784 {
2785         struct perf_sample_data data;
2786         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2787         int bit;
2788         int handled = 0;
2789         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2790
2791         inc_irq_stat(apic_perf_irqs);
2792
2793         /*
2794          * Ignore a range of extra bits in status that do not indicate
2795          * overflow by themselves.
2796          */
2797         status &= ~(GLOBAL_STATUS_COND_CHG |
2798                     GLOBAL_STATUS_ASIF |
2799                     GLOBAL_STATUS_LBRS_FROZEN);
2800         if (!status)
2801                 return 0;
2802         /*
2803          * In case multiple PEBS events are sampled at the same time,
2804          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2805          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2806          * having their bits set in the status register. This is a sign
2807          * that there was at least one PEBS record pending at the time
2808          * of the PMU interrupt. PEBS counters must only be processed
2809          * via the drain_pebs() calls and not via the regular sample
2810          * processing loop coming after that the function, otherwise
2811          * phony regular samples may be generated in the sampling buffer
2812          * not marked with the EXACT tag. Another possibility is to have
2813          * one PEBS event and at least one non-PEBS event which overflows
2814          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2815          * not be set, yet the overflow status bit for the PEBS counter will
2816          * be on Skylake.
2817          *
2818          * To avoid this problem, we systematically ignore the PEBS-enabled
2819          * counters from the GLOBAL_STATUS mask and we always process PEBS
2820          * events via drain_pebs().
2821          */
2822         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2823                 status &= ~cpuc->pebs_enabled;
2824         else
2825                 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2826
2827         /*
2828          * PEBS overflow sets bit 62 in the global status register
2829          */
2830         if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2831                 u64 pebs_enabled = cpuc->pebs_enabled;
2832
2833                 handled++;
2834                 x86_pmu.drain_pebs(regs, &data);
2835                 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2836
2837                 /*
2838                  * PMI throttle may be triggered, which stops the PEBS event.
2839                  * Although cpuc->pebs_enabled is updated accordingly, the
2840                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
2841                  * cpuc->enabled has been forced to 0 in PMI.
2842                  * Update the MSR if pebs_enabled is changed.
2843                  */
2844                 if (pebs_enabled != cpuc->pebs_enabled)
2845                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2846         }
2847
2848         /*
2849          * Intel PT
2850          */
2851         if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2852                 handled++;
2853                 if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2854                         perf_guest_cbs->handle_intel_pt_intr))
2855                         perf_guest_cbs->handle_intel_pt_intr();
2856                 else
2857                         intel_pt_interrupt();
2858         }
2859
2860         /*
2861          * Intel Perf metrics
2862          */
2863         if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2864                 handled++;
2865                 if (x86_pmu.update_topdown_event)
2866                         x86_pmu.update_topdown_event(NULL);
2867         }
2868
2869         /*
2870          * Checkpointed counters can lead to 'spurious' PMIs because the
2871          * rollback caused by the PMI will have cleared the overflow status
2872          * bit. Therefore always force probe these counters.
2873          */
2874         status |= cpuc->intel_cp_status;
2875
2876         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2877                 struct perf_event *event = cpuc->events[bit];
2878
2879                 handled++;
2880
2881                 if (!test_bit(bit, cpuc->active_mask))
2882                         continue;
2883
2884                 if (!intel_pmu_save_and_restart(event))
2885                         continue;
2886
2887                 perf_sample_data_init(&data, 0, event->hw.last_period);
2888
2889                 if (has_branch_stack(event))
2890                         data.br_stack = &cpuc->lbr_stack;
2891
2892                 if (perf_event_overflow(event, &data, regs))
2893                         x86_pmu_stop(event, 0);
2894         }
2895
2896         return handled;
2897 }
2898
2899 /*
2900  * This handler is triggered by the local APIC, so the APIC IRQ handling
2901  * rules apply:
2902  */
2903 static int intel_pmu_handle_irq(struct pt_regs *regs)
2904 {
2905         struct cpu_hw_events *cpuc;
2906         int loops;
2907         u64 status;
2908         int handled;
2909         int pmu_enabled;
2910
2911         cpuc = this_cpu_ptr(&cpu_hw_events);
2912
2913         /*
2914          * Save the PMU state.
2915          * It needs to be restored when leaving the handler.
2916          */
2917         pmu_enabled = cpuc->enabled;
2918         /*
2919          * No known reason to not always do late ACK,
2920          * but just in case do it opt-in.
2921          */
2922         if (!x86_pmu.late_ack)
2923                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2924         intel_bts_disable_local();
2925         cpuc->enabled = 0;
2926         __intel_pmu_disable_all();
2927         handled = intel_pmu_drain_bts_buffer();
2928         handled += intel_bts_interrupt();
2929         status = intel_pmu_get_status();
2930         if (!status)
2931                 goto done;
2932
2933         loops = 0;
2934 again:
2935         intel_pmu_lbr_read();
2936         intel_pmu_ack_status(status);
2937         if (++loops > 100) {
2938                 static bool warned;
2939
2940                 if (!warned) {
2941                         WARN(1, "perfevents: irq loop stuck!\n");
2942                         perf_event_print_debug();
2943                         warned = true;
2944                 }
2945                 intel_pmu_reset();
2946                 goto done;
2947         }
2948
2949         handled += handle_pmi_common(regs, status);
2950
2951         /*
2952          * Repeat if there is more work to be done:
2953          */
2954         status = intel_pmu_get_status();
2955         if (status)
2956                 goto again;
2957
2958 done:
2959         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2960         cpuc->enabled = pmu_enabled;
2961         if (pmu_enabled)
2962                 __intel_pmu_enable_all(0, true);
2963         intel_bts_enable_local();
2964
2965         /*
2966          * Only unmask the NMI after the overflow counters
2967          * have been reset. This avoids spurious NMIs on
2968          * Haswell CPUs.
2969          */
2970         if (x86_pmu.late_ack)
2971                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2972         return handled;
2973 }
2974
2975 static struct event_constraint *
2976 intel_bts_constraints(struct perf_event *event)
2977 {
2978         if (unlikely(intel_pmu_has_bts(event)))
2979                 return &bts_constraint;
2980
2981         return NULL;
2982 }
2983
2984 /*
2985  * Note: matches a fake event, like Fixed2.
2986  */
2987 static struct event_constraint *
2988 intel_vlbr_constraints(struct perf_event *event)
2989 {
2990         struct event_constraint *c = &vlbr_constraint;
2991
2992         if (unlikely(constraint_match(c, event->hw.config)))
2993                 return c;
2994
2995         return NULL;
2996 }
2997
2998 static int intel_alt_er(struct cpu_hw_events *cpuc,
2999                         int idx, u64 config)
3000 {
3001         struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3002         int alt_idx = idx;
3003
3004         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3005                 return idx;
3006
3007         if (idx == EXTRA_REG_RSP_0)
3008                 alt_idx = EXTRA_REG_RSP_1;
3009
3010         if (idx == EXTRA_REG_RSP_1)
3011                 alt_idx = EXTRA_REG_RSP_0;
3012
3013         if (config & ~extra_regs[alt_idx].valid_mask)
3014                 return idx;
3015
3016         return alt_idx;
3017 }
3018
3019 static void intel_fixup_er(struct perf_event *event, int idx)
3020 {
3021         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3022         event->hw.extra_reg.idx = idx;
3023
3024         if (idx == EXTRA_REG_RSP_0) {
3025                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3026                 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3027                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3028         } else if (idx == EXTRA_REG_RSP_1) {
3029                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3030                 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3031                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3032         }
3033 }
3034
3035 /*
3036  * manage allocation of shared extra msr for certain events
3037  *
3038  * sharing can be:
3039  * per-cpu: to be shared between the various events on a single PMU
3040  * per-core: per-cpu + shared by HT threads
3041  */
3042 static struct event_constraint *
3043 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3044                                    struct perf_event *event,
3045                                    struct hw_perf_event_extra *reg)
3046 {
3047         struct event_constraint *c = &emptyconstraint;
3048         struct er_account *era;
3049         unsigned long flags;
3050         int idx = reg->idx;
3051
3052         /*
3053          * reg->alloc can be set due to existing state, so for fake cpuc we
3054          * need to ignore this, otherwise we might fail to allocate proper fake
3055          * state for this extra reg constraint. Also see the comment below.
3056          */
3057         if (reg->alloc && !cpuc->is_fake)
3058                 return NULL; /* call x86_get_event_constraint() */
3059
3060 again:
3061         era = &cpuc->shared_regs->regs[idx];
3062         /*
3063          * we use spin_lock_irqsave() to avoid lockdep issues when
3064          * passing a fake cpuc
3065          */
3066         raw_spin_lock_irqsave(&era->lock, flags);
3067
3068         if (!atomic_read(&era->ref) || era->config == reg->config) {
3069
3070                 /*
3071                  * If its a fake cpuc -- as per validate_{group,event}() we
3072                  * shouldn't touch event state and we can avoid doing so
3073                  * since both will only call get_event_constraints() once
3074                  * on each event, this avoids the need for reg->alloc.
3075                  *
3076                  * Not doing the ER fixup will only result in era->reg being
3077                  * wrong, but since we won't actually try and program hardware
3078                  * this isn't a problem either.
3079                  */
3080                 if (!cpuc->is_fake) {
3081                         if (idx != reg->idx)
3082                                 intel_fixup_er(event, idx);
3083
3084                         /*
3085                          * x86_schedule_events() can call get_event_constraints()
3086                          * multiple times on events in the case of incremental
3087                          * scheduling(). reg->alloc ensures we only do the ER
3088                          * allocation once.
3089                          */
3090                         reg->alloc = 1;
3091                 }
3092
3093                 /* lock in msr value */
3094                 era->config = reg->config;
3095                 era->reg = reg->reg;
3096
3097                 /* one more user */
3098                 atomic_inc(&era->ref);
3099
3100                 /*
3101                  * need to call x86_get_event_constraint()
3102                  * to check if associated event has constraints
3103                  */
3104                 c = NULL;
3105         } else {
3106                 idx = intel_alt_er(cpuc, idx, reg->config);
3107                 if (idx != reg->idx) {
3108                         raw_spin_unlock_irqrestore(&era->lock, flags);
3109                         goto again;
3110                 }
3111         }
3112         raw_spin_unlock_irqrestore(&era->lock, flags);
3113
3114         return c;
3115 }
3116
3117 static void
3118 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3119                                    struct hw_perf_event_extra *reg)
3120 {
3121         struct er_account *era;
3122
3123         /*
3124          * Only put constraint if extra reg was actually allocated. Also takes
3125          * care of event which do not use an extra shared reg.
3126          *
3127          * Also, if this is a fake cpuc we shouldn't touch any event state
3128          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3129          * either since it'll be thrown out.
3130          */
3131         if (!reg->alloc || cpuc->is_fake)
3132                 return;
3133
3134         era = &cpuc->shared_regs->regs[reg->idx];
3135
3136         /* one fewer user */
3137         atomic_dec(&era->ref);
3138
3139         /* allocate again next time */
3140         reg->alloc = 0;
3141 }
3142
3143 static struct event_constraint *
3144 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3145                               struct perf_event *event)
3146 {
3147         struct event_constraint *c = NULL, *d;
3148         struct hw_perf_event_extra *xreg, *breg;
3149
3150         xreg = &event->hw.extra_reg;
3151         if (xreg->idx != EXTRA_REG_NONE) {
3152                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3153                 if (c == &emptyconstraint)
3154                         return c;
3155         }
3156         breg = &event->hw.branch_reg;
3157         if (breg->idx != EXTRA_REG_NONE) {
3158                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3159                 if (d == &emptyconstraint) {
3160                         __intel_shared_reg_put_constraints(cpuc, xreg);
3161                         c = d;
3162                 }
3163         }
3164         return c;
3165 }
3166
3167 struct event_constraint *
3168 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3169                           struct perf_event *event)
3170 {
3171         struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3172         struct event_constraint *c;
3173
3174         if (event_constraints) {
3175                 for_each_event_constraint(c, event_constraints) {
3176                         if (constraint_match(c, event->hw.config)) {
3177                                 event->hw.flags |= c->flags;
3178                                 return c;
3179                         }
3180                 }
3181         }
3182
3183         return &hybrid_var(cpuc->pmu, unconstrained);
3184 }
3185
3186 static struct event_constraint *
3187 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3188                             struct perf_event *event)
3189 {
3190         struct event_constraint *c;
3191
3192         c = intel_vlbr_constraints(event);
3193         if (c)
3194                 return c;
3195
3196         c = intel_bts_constraints(event);
3197         if (c)
3198                 return c;
3199
3200         c = intel_shared_regs_constraints(cpuc, event);
3201         if (c)
3202                 return c;
3203
3204         c = intel_pebs_constraints(event);
3205         if (c)
3206                 return c;
3207
3208         return x86_get_event_constraints(cpuc, idx, event);
3209 }
3210
3211 static void
3212 intel_start_scheduling(struct cpu_hw_events *cpuc)
3213 {
3214         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3215         struct intel_excl_states *xl;
3216         int tid = cpuc->excl_thread_id;
3217
3218         /*
3219          * nothing needed if in group validation mode
3220          */
3221         if (cpuc->is_fake || !is_ht_workaround_enabled())
3222                 return;
3223
3224         /*
3225          * no exclusion needed
3226          */
3227         if (WARN_ON_ONCE(!excl_cntrs))
3228                 return;
3229
3230         xl = &excl_cntrs->states[tid];
3231
3232         xl->sched_started = true;
3233         /*
3234          * lock shared state until we are done scheduling
3235          * in stop_event_scheduling()
3236          * makes scheduling appear as a transaction
3237          */
3238         raw_spin_lock(&excl_cntrs->lock);
3239 }
3240
3241 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3242 {
3243         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3244         struct event_constraint *c = cpuc->event_constraint[idx];
3245         struct intel_excl_states *xl;
3246         int tid = cpuc->excl_thread_id;
3247
3248         if (cpuc->is_fake || !is_ht_workaround_enabled())
3249                 return;
3250
3251         if (WARN_ON_ONCE(!excl_cntrs))
3252                 return;
3253
3254         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3255                 return;
3256
3257         xl = &excl_cntrs->states[tid];
3258
3259         lockdep_assert_held(&excl_cntrs->lock);
3260
3261         if (c->flags & PERF_X86_EVENT_EXCL)
3262                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3263         else
3264                 xl->state[cntr] = INTEL_EXCL_SHARED;
3265 }
3266
3267 static void
3268 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3269 {
3270         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3271         struct intel_excl_states *xl;
3272         int tid = cpuc->excl_thread_id;
3273
3274         /*
3275          * nothing needed if in group validation mode
3276          */
3277         if (cpuc->is_fake || !is_ht_workaround_enabled())
3278                 return;
3279         /*
3280          * no exclusion needed
3281          */
3282         if (WARN_ON_ONCE(!excl_cntrs))
3283                 return;
3284
3285         xl = &excl_cntrs->states[tid];
3286
3287         xl->sched_started = false;
3288         /*
3289          * release shared state lock (acquired in intel_start_scheduling())
3290          */
3291         raw_spin_unlock(&excl_cntrs->lock);
3292 }
3293
3294 static struct event_constraint *
3295 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3296 {
3297         WARN_ON_ONCE(!cpuc->constraint_list);
3298
3299         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3300                 struct event_constraint *cx;
3301
3302                 /*
3303                  * grab pre-allocated constraint entry
3304                  */
3305                 cx = &cpuc->constraint_list[idx];
3306
3307                 /*
3308                  * initialize dynamic constraint
3309                  * with static constraint
3310                  */
3311                 *cx = *c;
3312
3313                 /*
3314                  * mark constraint as dynamic
3315                  */
3316                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3317                 c = cx;
3318         }
3319
3320         return c;
3321 }
3322
3323 static struct event_constraint *
3324 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3325                            int idx, struct event_constraint *c)
3326 {
3327         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3328         struct intel_excl_states *xlo;
3329         int tid = cpuc->excl_thread_id;
3330         int is_excl, i, w;
3331
3332         /*
3333          * validating a group does not require
3334          * enforcing cross-thread  exclusion
3335          */
3336         if (cpuc->is_fake || !is_ht_workaround_enabled())
3337                 return c;
3338
3339         /*
3340          * no exclusion needed
3341          */
3342         if (WARN_ON_ONCE(!excl_cntrs))
3343                 return c;
3344
3345         /*
3346          * because we modify the constraint, we need
3347          * to make a copy. Static constraints come
3348          * from static const tables.
3349          *
3350          * only needed when constraint has not yet
3351          * been cloned (marked dynamic)
3352          */
3353         c = dyn_constraint(cpuc, c, idx);
3354
3355         /*
3356          * From here on, the constraint is dynamic.
3357          * Either it was just allocated above, or it
3358          * was allocated during a earlier invocation
3359          * of this function
3360          */
3361
3362         /*
3363          * state of sibling HT
3364          */
3365         xlo = &excl_cntrs->states[tid ^ 1];
3366
3367         /*
3368          * event requires exclusive counter access
3369          * across HT threads
3370          */
3371         is_excl = c->flags & PERF_X86_EVENT_EXCL;
3372         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3373                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3374                 if (!cpuc->n_excl++)
3375                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3376         }
3377
3378         /*
3379          * Modify static constraint with current dynamic
3380          * state of thread
3381          *
3382          * EXCLUSIVE: sibling counter measuring exclusive event
3383          * SHARED   : sibling counter measuring non-exclusive event
3384          * UNUSED   : sibling counter unused
3385          */
3386         w = c->weight;
3387         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3388                 /*
3389                  * exclusive event in sibling counter
3390                  * our corresponding counter cannot be used
3391                  * regardless of our event
3392                  */
3393                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3394                         __clear_bit(i, c->idxmsk);
3395                         w--;
3396                         continue;
3397                 }
3398                 /*
3399                  * if measuring an exclusive event, sibling
3400                  * measuring non-exclusive, then counter cannot
3401                  * be used
3402                  */
3403                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3404                         __clear_bit(i, c->idxmsk);
3405                         w--;
3406                         continue;
3407                 }
3408         }
3409
3410         /*
3411          * if we return an empty mask, then switch
3412          * back to static empty constraint to avoid
3413          * the cost of freeing later on
3414          */
3415         if (!w)
3416                 c = &emptyconstraint;
3417
3418         c->weight = w;
3419
3420         return c;
3421 }
3422
3423 static struct event_constraint *
3424 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3425                             struct perf_event *event)
3426 {
3427         struct event_constraint *c1, *c2;
3428
3429         c1 = cpuc->event_constraint[idx];
3430
3431         /*
3432          * first time only
3433          * - static constraint: no change across incremental scheduling calls
3434          * - dynamic constraint: handled by intel_get_excl_constraints()
3435          */
3436         c2 = __intel_get_event_constraints(cpuc, idx, event);
3437         if (c1) {
3438                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3439                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3440                 c1->weight = c2->weight;
3441                 c2 = c1;
3442         }
3443
3444         if (cpuc->excl_cntrs)
3445                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3446
3447         return c2;
3448 }
3449
3450 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3451                 struct perf_event *event)
3452 {
3453         struct hw_perf_event *hwc = &event->hw;
3454         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3455         int tid = cpuc->excl_thread_id;
3456         struct intel_excl_states *xl;
3457
3458         /*
3459          * nothing needed if in group validation mode
3460          */
3461         if (cpuc->is_fake)
3462                 return;
3463
3464         if (WARN_ON_ONCE(!excl_cntrs))
3465                 return;
3466
3467         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3468                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3469                 if (!--cpuc->n_excl)
3470                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3471         }
3472
3473         /*
3474          * If event was actually assigned, then mark the counter state as
3475          * unused now.
3476          */
3477         if (hwc->idx >= 0) {
3478                 xl = &excl_cntrs->states[tid];
3479
3480                 /*
3481                  * put_constraint may be called from x86_schedule_events()
3482                  * which already has the lock held so here make locking
3483                  * conditional.
3484                  */
3485                 if (!xl->sched_started)
3486                         raw_spin_lock(&excl_cntrs->lock);
3487
3488                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3489
3490                 if (!xl->sched_started)
3491                         raw_spin_unlock(&excl_cntrs->lock);
3492         }
3493 }
3494
3495 static void
3496 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3497                                         struct perf_event *event)
3498 {
3499         struct hw_perf_event_extra *reg;
3500
3501         reg = &event->hw.extra_reg;
3502         if (reg->idx != EXTRA_REG_NONE)
3503                 __intel_shared_reg_put_constraints(cpuc, reg);
3504
3505         reg = &event->hw.branch_reg;
3506         if (reg->idx != EXTRA_REG_NONE)
3507                 __intel_shared_reg_put_constraints(cpuc, reg);
3508 }
3509
3510 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3511                                         struct perf_event *event)
3512 {
3513         intel_put_shared_regs_event_constraints(cpuc, event);
3514
3515         /*
3516          * is PMU has exclusive counter restrictions, then
3517          * all events are subject to and must call the
3518          * put_excl_constraints() routine
3519          */
3520         if (cpuc->excl_cntrs)
3521                 intel_put_excl_constraints(cpuc, event);
3522 }
3523
3524 static void intel_pebs_aliases_core2(struct perf_event *event)
3525 {
3526         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3527                 /*
3528                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3529                  * (0x003c) so that we can use it with PEBS.
3530                  *
3531                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3532                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3533                  * (0x00c0), which is a PEBS capable event, to get the same
3534                  * count.
3535                  *
3536                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3537                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3538                  * larger than the maximum number of instructions that can be
3539                  * retired per cycle (4) and then inverting the condition, we
3540                  * count all cycles that retire 16 or less instructions, which
3541                  * is every cycle.
3542                  *
3543                  * Thereby we gain a PEBS capable cycle counter.
3544                  */
3545                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3546
3547                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3548                 event->hw.config = alt_config;
3549         }
3550 }
3551
3552 static void intel_pebs_aliases_snb(struct perf_event *event)
3553 {
3554         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3555                 /*
3556                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3557                  * (0x003c) so that we can use it with PEBS.
3558                  *
3559                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3560                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3561                  * (0x01c2), which is a PEBS capable event, to get the same
3562                  * count.
3563                  *
3564                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3565                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3566                  * larger than the maximum number of micro-ops that can be
3567                  * retired per cycle (4) and then inverting the condition, we
3568                  * count all cycles that retire 16 or less micro-ops, which
3569                  * is every cycle.
3570                  *
3571                  * Thereby we gain a PEBS capable cycle counter.
3572                  */
3573                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3574
3575                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3576                 event->hw.config = alt_config;
3577         }
3578 }
3579
3580 static void intel_pebs_aliases_precdist(struct perf_event *event)
3581 {
3582         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3583                 /*
3584                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3585                  * (0x003c) so that we can use it with PEBS.
3586                  *
3587                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3588                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3589                  * (0x01c0), which is a PEBS capable event, to get the same
3590                  * count.
3591                  *
3592                  * The PREC_DIST event has special support to minimize sample
3593                  * shadowing effects. One drawback is that it can be
3594                  * only programmed on counter 1, but that seems like an
3595                  * acceptable trade off.
3596                  */
3597                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3598
3599                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3600                 event->hw.config = alt_config;
3601         }
3602 }
3603
3604 static void intel_pebs_aliases_ivb(struct perf_event *event)
3605 {
3606         if (event->attr.precise_ip < 3)
3607                 return intel_pebs_aliases_snb(event);
3608         return intel_pebs_aliases_precdist(event);
3609 }
3610
3611 static void intel_pebs_aliases_skl(struct perf_event *event)
3612 {
3613         if (event->attr.precise_ip < 3)
3614                 return intel_pebs_aliases_core2(event);
3615         return intel_pebs_aliases_precdist(event);
3616 }
3617
3618 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3619 {
3620         unsigned long flags = x86_pmu.large_pebs_flags;
3621
3622         if (event->attr.use_clockid)
3623                 flags &= ~PERF_SAMPLE_TIME;
3624         if (!event->attr.exclude_kernel)
3625                 flags &= ~PERF_SAMPLE_REGS_USER;
3626         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3627                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3628         return flags;
3629 }
3630
3631 static int intel_pmu_bts_config(struct perf_event *event)
3632 {
3633         struct perf_event_attr *attr = &event->attr;
3634
3635         if (unlikely(intel_pmu_has_bts(event))) {
3636                 /* BTS is not supported by this architecture. */
3637                 if (!x86_pmu.bts_active)
3638                         return -EOPNOTSUPP;
3639
3640                 /* BTS is currently only allowed for user-mode. */
3641                 if (!attr->exclude_kernel)
3642                         return -EOPNOTSUPP;
3643
3644                 /* BTS is not allowed for precise events. */
3645                 if (attr->precise_ip)
3646                         return -EOPNOTSUPP;
3647
3648                 /* disallow bts if conflicting events are present */
3649                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3650                         return -EBUSY;
3651
3652                 event->destroy = hw_perf_lbr_event_destroy;
3653         }
3654
3655         return 0;
3656 }
3657
3658 static int core_pmu_hw_config(struct perf_event *event)
3659 {
3660         int ret = x86_pmu_hw_config(event);
3661
3662         if (ret)
3663                 return ret;
3664
3665         return intel_pmu_bts_config(event);
3666 }
3667
3668 #define INTEL_TD_METRIC_AVAILABLE_MAX   (INTEL_TD_METRIC_RETIRING + \
3669                                          ((x86_pmu.num_topdown_events - 1) << 8))
3670
3671 static bool is_available_metric_event(struct perf_event *event)
3672 {
3673         return is_metric_event(event) &&
3674                 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3675 }
3676
3677 static inline bool is_mem_loads_event(struct perf_event *event)
3678 {
3679         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3680 }
3681
3682 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3683 {
3684         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3685 }
3686
3687 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3688 {
3689         if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3690                 return false;
3691
3692         if (is_hybrid())
3693                 return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3694
3695         return true;
3696 }
3697
3698 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3699 {
3700         union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3701
3702         return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3703 }
3704
3705 static int intel_pmu_hw_config(struct perf_event *event)
3706 {
3707         int ret = x86_pmu_hw_config(event);
3708
3709         if (ret)
3710                 return ret;
3711
3712         ret = intel_pmu_bts_config(event);
3713         if (ret)
3714                 return ret;
3715
3716         if (event->attr.precise_ip) {
3717                 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3718                         return -EINVAL;
3719
3720                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3721                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3722                         if (!(event->attr.sample_type &
3723                               ~intel_pmu_large_pebs_flags(event))) {
3724                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3725                                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3726                         }
3727                 }
3728                 if (x86_pmu.pebs_aliases)
3729                         x86_pmu.pebs_aliases(event);
3730
3731                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3732                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3733         }
3734
3735         if (needs_branch_stack(event)) {
3736                 ret = intel_pmu_setup_lbr_filter(event);
3737                 if (ret)
3738                         return ret;
3739                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3740
3741                 /*
3742                  * BTS is set up earlier in this path, so don't account twice
3743                  */
3744                 if (!unlikely(intel_pmu_has_bts(event))) {
3745                         /* disallow lbr if conflicting events are present */
3746                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3747                                 return -EBUSY;
3748
3749                         event->destroy = hw_perf_lbr_event_destroy;
3750                 }
3751         }
3752
3753         if (event->attr.aux_output) {
3754                 if (!event->attr.precise_ip)
3755                         return -EINVAL;
3756
3757                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3758         }
3759
3760         if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3761             (event->attr.type == PERF_TYPE_HW_CACHE))
3762                 return 0;
3763
3764         /*
3765          * Config Topdown slots and metric events
3766          *
3767          * The slots event on Fixed Counter 3 can support sampling,
3768          * which will be handled normally in x86_perf_event_update().
3769          *
3770          * Metric events don't support sampling and require being paired
3771          * with a slots event as group leader. When the slots event
3772          * is used in a metrics group, it too cannot support sampling.
3773          */
3774         if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3775                 if (event->attr.config1 || event->attr.config2)
3776                         return -EINVAL;
3777
3778                 /*
3779                  * The TopDown metrics events and slots event don't
3780                  * support any filters.
3781                  */
3782                 if (event->attr.config & X86_ALL_EVENT_FLAGS)
3783                         return -EINVAL;
3784
3785                 if (is_available_metric_event(event)) {
3786                         struct perf_event *leader = event->group_leader;
3787
3788                         /* The metric events don't support sampling. */
3789                         if (is_sampling_event(event))
3790                                 return -EINVAL;
3791
3792                         /* The metric events require a slots group leader. */
3793                         if (!is_slots_event(leader))
3794                                 return -EINVAL;
3795
3796                         /*
3797                          * The leader/SLOTS must not be a sampling event for
3798                          * metric use; hardware requires it starts at 0 when used
3799                          * in conjunction with MSR_PERF_METRICS.
3800                          */
3801                         if (is_sampling_event(leader))
3802                                 return -EINVAL;
3803
3804                         event->event_caps |= PERF_EV_CAP_SIBLING;
3805                         /*
3806                          * Only once we have a METRICs sibling do we
3807                          * need TopDown magic.
3808                          */
3809                         leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3810                         event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3811                 }
3812         }
3813
3814         /*
3815          * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3816          * doesn't function quite right. As a work-around it needs to always be
3817          * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3818          * The actual count of this second event is irrelevant it just needs
3819          * to be active to make the first event function correctly.
3820          *
3821          * In a group, the auxiliary event must be in front of the load latency
3822          * event. The rule is to simplify the implementation of the check.
3823          * That's because perf cannot have a complete group at the moment.
3824          */
3825         if (require_mem_loads_aux_event(event) &&
3826             (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3827             is_mem_loads_event(event)) {
3828                 struct perf_event *leader = event->group_leader;
3829                 struct perf_event *sibling = NULL;
3830
3831                 if (!is_mem_loads_aux_event(leader)) {
3832                         for_each_sibling_event(sibling, leader) {
3833                                 if (is_mem_loads_aux_event(sibling))
3834                                         break;
3835                         }
3836                         if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3837                                 return -ENODATA;
3838                 }
3839         }
3840
3841         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3842                 return 0;
3843
3844         if (x86_pmu.version < 3)
3845                 return -EINVAL;
3846
3847         ret = perf_allow_cpu(&event->attr);
3848         if (ret)
3849                 return ret;
3850
3851         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3852
3853         return 0;
3854 }
3855
3856 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3857 {
3858         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3859         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3860         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3861
3862         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3863         arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3864         arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3865         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3866                 arr[0].guest &= ~cpuc->pebs_enabled;
3867         else
3868                 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3869         *nr = 1;
3870
3871         if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3872                 /*
3873                  * If PMU counter has PEBS enabled it is not enough to
3874                  * disable counter on a guest entry since PEBS memory
3875                  * write can overshoot guest entry and corrupt guest
3876                  * memory. Disabling PEBS solves the problem.
3877                  *
3878                  * Don't do this if the CPU already enforces it.
3879                  */
3880                 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3881                 arr[1].host = cpuc->pebs_enabled;
3882                 arr[1].guest = 0;
3883                 *nr = 2;
3884         }
3885
3886         return arr;
3887 }
3888
3889 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3890 {
3891         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3892         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3893         int idx;
3894
3895         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3896                 struct perf_event *event = cpuc->events[idx];
3897
3898                 arr[idx].msr = x86_pmu_config_addr(idx);
3899                 arr[idx].host = arr[idx].guest = 0;
3900
3901                 if (!test_bit(idx, cpuc->active_mask))
3902                         continue;
3903
3904                 arr[idx].host = arr[idx].guest =
3905                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3906
3907                 if (event->attr.exclude_host)
3908                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3909                 else if (event->attr.exclude_guest)
3910                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3911         }
3912
3913         *nr = x86_pmu.num_counters;
3914         return arr;
3915 }
3916
3917 static void core_pmu_enable_event(struct perf_event *event)
3918 {
3919         if (!event->attr.exclude_host)
3920                 x86_pmu_enable_event(event);
3921 }
3922
3923 static void core_pmu_enable_all(int added)
3924 {
3925         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3926         int idx;
3927
3928         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3929                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3930
3931                 if (!test_bit(idx, cpuc->active_mask) ||
3932                                 cpuc->events[idx]->attr.exclude_host)
3933                         continue;
3934
3935                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3936         }
3937 }
3938
3939 static int hsw_hw_config(struct perf_event *event)
3940 {
3941         int ret = intel_pmu_hw_config(event);
3942
3943         if (ret)
3944                 return ret;
3945         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3946                 return 0;
3947         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3948
3949         /*
3950          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3951          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3952          * this combination.
3953          */
3954         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3955              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3956               event->attr.precise_ip > 0))
3957                 return -EOPNOTSUPP;
3958
3959         if (event_is_checkpointed(event)) {
3960                 /*
3961                  * Sampling of checkpointed events can cause situations where
3962                  * the CPU constantly aborts because of a overflow, which is
3963                  * then checkpointed back and ignored. Forbid checkpointing
3964                  * for sampling.
3965                  *
3966                  * But still allow a long sampling period, so that perf stat
3967                  * from KVM works.
3968                  */
3969                 if (event->attr.sample_period > 0 &&
3970                     event->attr.sample_period < 0x7fffffff)
3971                         return -EOPNOTSUPP;
3972         }
3973         return 0;
3974 }
3975
3976 static struct event_constraint counter0_constraint =
3977                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3978
3979 static struct event_constraint counter2_constraint =
3980                         EVENT_CONSTRAINT(0, 0x4, 0);
3981
3982 static struct event_constraint fixed0_constraint =
3983                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3984
3985 static struct event_constraint fixed0_counter0_constraint =
3986                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3987
3988 static struct event_constraint *
3989 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3990                           struct perf_event *event)
3991 {
3992         struct event_constraint *c;
3993
3994         c = intel_get_event_constraints(cpuc, idx, event);
3995
3996         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3997         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3998                 if (c->idxmsk64 & (1U << 2))
3999                         return &counter2_constraint;
4000                 return &emptyconstraint;
4001         }
4002
4003         return c;
4004 }
4005
4006 static struct event_constraint *
4007 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4008                           struct perf_event *event)
4009 {
4010         /*
4011          * Fixed counter 0 has less skid.
4012          * Force instruction:ppp in Fixed counter 0
4013          */
4014         if ((event->attr.precise_ip == 3) &&
4015             constraint_match(&fixed0_constraint, event->hw.config))
4016                 return &fixed0_constraint;
4017
4018         return hsw_get_event_constraints(cpuc, idx, event);
4019 }
4020
4021 static struct event_constraint *
4022 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4023                           struct perf_event *event)
4024 {
4025         struct event_constraint *c;
4026
4027         c = icl_get_event_constraints(cpuc, idx, event);
4028
4029         /*
4030          * The :ppp indicates the Precise Distribution (PDist) facility, which
4031          * is only supported on the GP counter 0. If a :ppp event which is not
4032          * available on the GP counter 0, error out.
4033          */
4034         if (event->attr.precise_ip == 3) {
4035                 if (c->idxmsk64 & BIT_ULL(0))
4036                         return &counter0_constraint;
4037
4038                 return &emptyconstraint;
4039         }
4040
4041         return c;
4042 }
4043
4044 static struct event_constraint *
4045 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4046                           struct perf_event *event)
4047 {
4048         struct event_constraint *c;
4049
4050         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4051         if (event->attr.precise_ip == 3)
4052                 return &counter0_constraint;
4053
4054         c = intel_get_event_constraints(cpuc, idx, event);
4055
4056         return c;
4057 }
4058
4059 static struct event_constraint *
4060 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4061                           struct perf_event *event)
4062 {
4063         struct event_constraint *c;
4064
4065         /*
4066          * :ppp means to do reduced skid PEBS,
4067          * which is available on PMC0 and fixed counter 0.
4068          */
4069         if (event->attr.precise_ip == 3) {
4070                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4071                 if (constraint_match(&fixed0_constraint, event->hw.config))
4072                         return &fixed0_counter0_constraint;
4073
4074                 return &counter0_constraint;
4075         }
4076
4077         c = intel_get_event_constraints(cpuc, idx, event);
4078
4079         return c;
4080 }
4081
4082 static bool allow_tsx_force_abort = true;
4083
4084 static struct event_constraint *
4085 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4086                           struct perf_event *event)
4087 {
4088         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4089
4090         /*
4091          * Without TFA we must not use PMC3.
4092          */
4093         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4094                 c = dyn_constraint(cpuc, c, idx);
4095                 c->idxmsk64 &= ~(1ULL << 3);
4096                 c->weight--;
4097         }
4098
4099         return c;
4100 }
4101
4102 static struct event_constraint *
4103 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4104                           struct perf_event *event)
4105 {
4106         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4107
4108         if (pmu->cpu_type == hybrid_big)
4109                 return spr_get_event_constraints(cpuc, idx, event);
4110         else if (pmu->cpu_type == hybrid_small)
4111                 return tnt_get_event_constraints(cpuc, idx, event);
4112
4113         WARN_ON(1);
4114         return &emptyconstraint;
4115 }
4116
4117 static int adl_hw_config(struct perf_event *event)
4118 {
4119         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4120
4121         if (pmu->cpu_type == hybrid_big)
4122                 return hsw_hw_config(event);
4123         else if (pmu->cpu_type == hybrid_small)
4124                 return intel_pmu_hw_config(event);
4125
4126         WARN_ON(1);
4127         return -EOPNOTSUPP;
4128 }
4129
4130 static u8 adl_get_hybrid_cpu_type(void)
4131 {
4132         return hybrid_big;
4133 }
4134
4135 /*
4136  * Broadwell:
4137  *
4138  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4139  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4140  * the two to enforce a minimum period of 128 (the smallest value that has bits
4141  * 0-5 cleared and >= 100).
4142  *
4143  * Because of how the code in x86_perf_event_set_period() works, the truncation
4144  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4145  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4146  *
4147  * Therefore the effective (average) period matches the requested period,
4148  * despite coarser hardware granularity.
4149  */
4150 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4151 {
4152         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4153                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
4154                 if (left < 128)
4155                         left = 128;
4156                 left &= ~0x3fULL;
4157         }
4158         return left;
4159 }
4160
4161 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4162 {
4163         return max(left, 32ULL);
4164 }
4165
4166 static u64 spr_limit_period(struct perf_event *event, u64 left)
4167 {
4168         if (event->attr.precise_ip == 3)
4169                 return max(left, 128ULL);
4170
4171         return left;
4172 }
4173
4174 PMU_FORMAT_ATTR(event,  "config:0-7"    );
4175 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
4176 PMU_FORMAT_ATTR(edge,   "config:18"     );
4177 PMU_FORMAT_ATTR(pc,     "config:19"     );
4178 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
4179 PMU_FORMAT_ATTR(inv,    "config:23"     );
4180 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
4181 PMU_FORMAT_ATTR(in_tx,  "config:32");
4182 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4183
4184 static struct attribute *intel_arch_formats_attr[] = {
4185         &format_attr_event.attr,
4186         &format_attr_umask.attr,
4187         &format_attr_edge.attr,
4188         &format_attr_pc.attr,
4189         &format_attr_inv.attr,
4190         &format_attr_cmask.attr,
4191         NULL,
4192 };
4193
4194 ssize_t intel_event_sysfs_show(char *page, u64 config)
4195 {
4196         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4197
4198         return x86_event_sysfs_show(page, config, event);
4199 }
4200
4201 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4202 {
4203         struct intel_shared_regs *regs;
4204         int i;
4205
4206         regs = kzalloc_node(sizeof(struct intel_shared_regs),
4207                             GFP_KERNEL, cpu_to_node(cpu));
4208         if (regs) {
4209                 /*
4210                  * initialize the locks to keep lockdep happy
4211                  */
4212                 for (i = 0; i < EXTRA_REG_MAX; i++)
4213                         raw_spin_lock_init(&regs->regs[i].lock);
4214
4215                 regs->core_id = -1;
4216         }
4217         return regs;
4218 }
4219
4220 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4221 {
4222         struct intel_excl_cntrs *c;
4223
4224         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4225                          GFP_KERNEL, cpu_to_node(cpu));
4226         if (c) {
4227                 raw_spin_lock_init(&c->lock);
4228                 c->core_id = -1;
4229         }
4230         return c;
4231 }
4232
4233
4234 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4235 {
4236         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4237
4238         if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4239                 cpuc->shared_regs = allocate_shared_regs(cpu);
4240                 if (!cpuc->shared_regs)
4241                         goto err;
4242         }
4243
4244         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4245                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4246
4247                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4248                 if (!cpuc->constraint_list)
4249                         goto err_shared_regs;
4250         }
4251
4252         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4253                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4254                 if (!cpuc->excl_cntrs)
4255                         goto err_constraint_list;
4256
4257                 cpuc->excl_thread_id = 0;
4258         }
4259
4260         return 0;
4261
4262 err_constraint_list:
4263         kfree(cpuc->constraint_list);
4264         cpuc->constraint_list = NULL;
4265
4266 err_shared_regs:
4267         kfree(cpuc->shared_regs);
4268         cpuc->shared_regs = NULL;
4269
4270 err:
4271         return -ENOMEM;
4272 }
4273
4274 static int intel_pmu_cpu_prepare(int cpu)
4275 {
4276         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4277 }
4278
4279 static void flip_smm_bit(void *data)
4280 {
4281         unsigned long set = *(unsigned long *)data;
4282
4283         if (set > 0) {
4284                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4285                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4286         } else {
4287                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4288                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4289         }
4290 }
4291
4292 static bool init_hybrid_pmu(int cpu)
4293 {
4294         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4295         u8 cpu_type = get_this_hybrid_cpu_type();
4296         struct x86_hybrid_pmu *pmu = NULL;
4297         int i;
4298
4299         if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4300                 cpu_type = x86_pmu.get_hybrid_cpu_type();
4301
4302         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4303                 if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4304                         pmu = &x86_pmu.hybrid_pmu[i];
4305                         break;
4306                 }
4307         }
4308         if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4309                 cpuc->pmu = NULL;
4310                 return false;
4311         }
4312
4313         /* Only check and dump the PMU information for the first CPU */
4314         if (!cpumask_empty(&pmu->supported_cpus))
4315                 goto end;
4316
4317         if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4318                 return false;
4319
4320         pr_info("%s PMU driver: ", pmu->name);
4321
4322         if (pmu->intel_cap.pebs_output_pt_available)
4323                 pr_cont("PEBS-via-PT ");
4324
4325         pr_cont("\n");
4326
4327         x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4328                              pmu->intel_ctrl);
4329
4330 end:
4331         cpumask_set_cpu(cpu, &pmu->supported_cpus);
4332         cpuc->pmu = &pmu->pmu;
4333
4334         x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4335
4336         return true;
4337 }
4338
4339 static void intel_pmu_cpu_starting(int cpu)
4340 {
4341         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4342         int core_id = topology_core_id(cpu);
4343         int i;
4344
4345         if (is_hybrid() && !init_hybrid_pmu(cpu))
4346                 return;
4347
4348         init_debug_store_on_cpu(cpu);
4349         /*
4350          * Deal with CPUs that don't clear their LBRs on power-up.
4351          */
4352         intel_pmu_lbr_reset();
4353
4354         cpuc->lbr_sel = NULL;
4355
4356         if (x86_pmu.flags & PMU_FL_TFA) {
4357                 WARN_ON_ONCE(cpuc->tfa_shadow);
4358                 cpuc->tfa_shadow = ~0ULL;
4359                 intel_set_tfa(cpuc, false);
4360         }
4361
4362         if (x86_pmu.version > 1)
4363                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4364
4365         /*
4366          * Disable perf metrics if any added CPU doesn't support it.
4367          *
4368          * Turn off the check for a hybrid architecture, because the
4369          * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4370          * the architecture features. The perf metrics is a model-specific
4371          * feature for now. The corresponding bit should always be 0 on
4372          * a hybrid platform, e.g., Alder Lake.
4373          */
4374         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4375                 union perf_capabilities perf_cap;
4376
4377                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4378                 if (!perf_cap.perf_metrics) {
4379                         x86_pmu.intel_cap.perf_metrics = 0;
4380                         x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4381                 }
4382         }
4383
4384         if (!cpuc->shared_regs)
4385                 return;
4386
4387         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4388                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4389                         struct intel_shared_regs *pc;
4390
4391                         pc = per_cpu(cpu_hw_events, i).shared_regs;
4392                         if (pc && pc->core_id == core_id) {
4393                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4394                                 cpuc->shared_regs = pc;
4395                                 break;
4396                         }
4397                 }
4398                 cpuc->shared_regs->core_id = core_id;
4399                 cpuc->shared_regs->refcnt++;
4400         }
4401
4402         if (x86_pmu.lbr_sel_map)
4403                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4404
4405         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4406                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4407                         struct cpu_hw_events *sibling;
4408                         struct intel_excl_cntrs *c;
4409
4410                         sibling = &per_cpu(cpu_hw_events, i);
4411                         c = sibling->excl_cntrs;
4412                         if (c && c->core_id == core_id) {
4413                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4414                                 cpuc->excl_cntrs = c;
4415                                 if (!sibling->excl_thread_id)
4416                                         cpuc->excl_thread_id = 1;
4417                                 break;
4418                         }
4419                 }
4420                 cpuc->excl_cntrs->core_id = core_id;
4421                 cpuc->excl_cntrs->refcnt++;
4422         }
4423 }
4424
4425 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4426 {
4427         struct intel_excl_cntrs *c;
4428
4429         c = cpuc->excl_cntrs;
4430         if (c) {
4431                 if (c->core_id == -1 || --c->refcnt == 0)
4432                         kfree(c);
4433                 cpuc->excl_cntrs = NULL;
4434         }
4435
4436         kfree(cpuc->constraint_list);
4437         cpuc->constraint_list = NULL;
4438 }
4439
4440 static void intel_pmu_cpu_dying(int cpu)
4441 {
4442         fini_debug_store_on_cpu(cpu);
4443 }
4444
4445 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4446 {
4447         struct intel_shared_regs *pc;
4448
4449         pc = cpuc->shared_regs;
4450         if (pc) {
4451                 if (pc->core_id == -1 || --pc->refcnt == 0)
4452                         kfree(pc);
4453                 cpuc->shared_regs = NULL;
4454         }
4455
4456         free_excl_cntrs(cpuc);
4457 }
4458
4459 static void intel_pmu_cpu_dead(int cpu)
4460 {
4461         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4462
4463         intel_cpuc_finish(cpuc);
4464
4465         if (is_hybrid() && cpuc->pmu)
4466                 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4467 }
4468
4469 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4470                                  bool sched_in)
4471 {
4472         intel_pmu_pebs_sched_task(ctx, sched_in);
4473         intel_pmu_lbr_sched_task(ctx, sched_in);
4474 }
4475
4476 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4477                                     struct perf_event_context *next)
4478 {
4479         intel_pmu_lbr_swap_task_ctx(prev, next);
4480 }
4481
4482 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4483 {
4484         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4485 }
4486
4487 static int intel_pmu_aux_output_match(struct perf_event *event)
4488 {
4489         if (!x86_pmu.intel_cap.pebs_output_pt_available)
4490                 return 0;
4491
4492         return is_intel_pt_event(event);
4493 }
4494
4495 static int intel_pmu_filter_match(struct perf_event *event)
4496 {
4497         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4498         unsigned int cpu = smp_processor_id();
4499
4500         return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4501 }
4502
4503 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4504
4505 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4506
4507 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4508
4509 static struct attribute *intel_arch3_formats_attr[] = {
4510         &format_attr_event.attr,
4511         &format_attr_umask.attr,
4512         &format_attr_edge.attr,
4513         &format_attr_pc.attr,
4514         &format_attr_any.attr,
4515         &format_attr_inv.attr,
4516         &format_attr_cmask.attr,
4517         NULL,
4518 };
4519
4520 static struct attribute *hsw_format_attr[] = {
4521         &format_attr_in_tx.attr,
4522         &format_attr_in_tx_cp.attr,
4523         &format_attr_offcore_rsp.attr,
4524         &format_attr_ldlat.attr,
4525         NULL
4526 };
4527
4528 static struct attribute *nhm_format_attr[] = {
4529         &format_attr_offcore_rsp.attr,
4530         &format_attr_ldlat.attr,
4531         NULL
4532 };
4533
4534 static struct attribute *slm_format_attr[] = {
4535         &format_attr_offcore_rsp.attr,
4536         NULL
4537 };
4538
4539 static struct attribute *skl_format_attr[] = {
4540         &format_attr_frontend.attr,
4541         NULL,
4542 };
4543
4544 static __initconst const struct x86_pmu core_pmu = {
4545         .name                   = "core",
4546         .handle_irq             = x86_pmu_handle_irq,
4547         .disable_all            = x86_pmu_disable_all,
4548         .enable_all             = core_pmu_enable_all,
4549         .enable                 = core_pmu_enable_event,
4550         .disable                = x86_pmu_disable_event,
4551         .hw_config              = core_pmu_hw_config,
4552         .schedule_events        = x86_schedule_events,
4553         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4554         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4555         .event_map              = intel_pmu_event_map,
4556         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4557         .apic                   = 1,
4558         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4559
4560         /*
4561          * Intel PMCs cannot be accessed sanely above 32-bit width,
4562          * so we install an artificial 1<<31 period regardless of
4563          * the generic event period:
4564          */
4565         .max_period             = (1ULL<<31) - 1,
4566         .get_event_constraints  = intel_get_event_constraints,
4567         .put_event_constraints  = intel_put_event_constraints,
4568         .event_constraints      = intel_core_event_constraints,
4569         .guest_get_msrs         = core_guest_get_msrs,
4570         .format_attrs           = intel_arch_formats_attr,
4571         .events_sysfs_show      = intel_event_sysfs_show,
4572
4573         /*
4574          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4575          * together with PMU version 1 and thus be using core_pmu with
4576          * shared_regs. We need following callbacks here to allocate
4577          * it properly.
4578          */
4579         .cpu_prepare            = intel_pmu_cpu_prepare,
4580         .cpu_starting           = intel_pmu_cpu_starting,
4581         .cpu_dying              = intel_pmu_cpu_dying,
4582         .cpu_dead               = intel_pmu_cpu_dead,
4583
4584         .check_period           = intel_pmu_check_period,
4585
4586         .lbr_reset              = intel_pmu_lbr_reset_64,
4587         .lbr_read               = intel_pmu_lbr_read_64,
4588         .lbr_save               = intel_pmu_lbr_save,
4589         .lbr_restore            = intel_pmu_lbr_restore,
4590 };
4591
4592 static __initconst const struct x86_pmu intel_pmu = {
4593         .name                   = "Intel",
4594         .handle_irq             = intel_pmu_handle_irq,
4595         .disable_all            = intel_pmu_disable_all,
4596         .enable_all             = intel_pmu_enable_all,
4597         .enable                 = intel_pmu_enable_event,
4598         .disable                = intel_pmu_disable_event,
4599         .add                    = intel_pmu_add_event,
4600         .del                    = intel_pmu_del_event,
4601         .read                   = intel_pmu_read_event,
4602         .hw_config              = intel_pmu_hw_config,
4603         .schedule_events        = x86_schedule_events,
4604         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4605         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4606         .event_map              = intel_pmu_event_map,
4607         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4608         .apic                   = 1,
4609         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4610         /*
4611          * Intel PMCs cannot be accessed sanely above 32 bit width,
4612          * so we install an artificial 1<<31 period regardless of
4613          * the generic event period:
4614          */
4615         .max_period             = (1ULL << 31) - 1,
4616         .get_event_constraints  = intel_get_event_constraints,
4617         .put_event_constraints  = intel_put_event_constraints,
4618         .pebs_aliases           = intel_pebs_aliases_core2,
4619
4620         .format_attrs           = intel_arch3_formats_attr,
4621         .events_sysfs_show      = intel_event_sysfs_show,
4622
4623         .cpu_prepare            = intel_pmu_cpu_prepare,
4624         .cpu_starting           = intel_pmu_cpu_starting,
4625         .cpu_dying              = intel_pmu_cpu_dying,
4626         .cpu_dead               = intel_pmu_cpu_dead,
4627
4628         .guest_get_msrs         = intel_guest_get_msrs,
4629         .sched_task             = intel_pmu_sched_task,
4630         .swap_task_ctx          = intel_pmu_swap_task_ctx,
4631
4632         .check_period           = intel_pmu_check_period,
4633
4634         .aux_output_match       = intel_pmu_aux_output_match,
4635
4636         .lbr_reset              = intel_pmu_lbr_reset_64,
4637         .lbr_read               = intel_pmu_lbr_read_64,
4638         .lbr_save               = intel_pmu_lbr_save,
4639         .lbr_restore            = intel_pmu_lbr_restore,
4640 };
4641
4642 static __init void intel_clovertown_quirk(void)
4643 {
4644         /*
4645          * PEBS is unreliable due to:
4646          *
4647          *   AJ67  - PEBS may experience CPL leaks
4648          *   AJ68  - PEBS PMI may be delayed by one event
4649          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4650          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4651          *
4652          * AJ67 could be worked around by restricting the OS/USR flags.
4653          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4654          *
4655          * AJ106 could possibly be worked around by not allowing LBR
4656          *       usage from PEBS, including the fixup.
4657          * AJ68  could possibly be worked around by always programming
4658          *       a pebs_event_reset[0] value and coping with the lost events.
4659          *
4660          * But taken together it might just make sense to not enable PEBS on
4661          * these chips.
4662          */
4663         pr_warn("PEBS disabled due to CPU errata\n");
4664         x86_pmu.pebs = 0;
4665         x86_pmu.pebs_constraints = NULL;
4666 }
4667
4668 static const struct x86_cpu_desc isolation_ucodes[] = {
4669         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
4670         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
4671         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
4672         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
4673         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
4674         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
4675         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
4676         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
4677         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
4678         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
4679         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
4680         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           1, 0x0b000014),
4681         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
4682         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
4683         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             5, 0x00000000),
4684         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             6, 0x00000000),
4685         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             7, 0x00000000),
4686         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
4687         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
4688         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
4689         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
4690         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
4691         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
4692         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
4693         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
4694         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
4695         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
4696         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
4697         {}
4698 };
4699
4700 static void intel_check_pebs_isolation(void)
4701 {
4702         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4703 }
4704
4705 static __init void intel_pebs_isolation_quirk(void)
4706 {
4707         WARN_ON_ONCE(x86_pmu.check_microcode);
4708         x86_pmu.check_microcode = intel_check_pebs_isolation;
4709         intel_check_pebs_isolation();
4710 }
4711
4712 static const struct x86_cpu_desc pebs_ucodes[] = {
4713         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
4714         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
4715         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
4716         {}
4717 };
4718
4719 static bool intel_snb_pebs_broken(void)
4720 {
4721         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4722 }
4723
4724 static void intel_snb_check_microcode(void)
4725 {
4726         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4727                 return;
4728
4729         /*
4730          * Serialized by the microcode lock..
4731          */
4732         if (x86_pmu.pebs_broken) {
4733                 pr_info("PEBS enabled due to microcode update\n");
4734                 x86_pmu.pebs_broken = 0;
4735         } else {
4736                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4737                 x86_pmu.pebs_broken = 1;
4738         }
4739 }
4740
4741 static bool is_lbr_from(unsigned long msr)
4742 {
4743         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4744
4745         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4746 }
4747
4748 /*
4749  * Under certain circumstances, access certain MSR may cause #GP.
4750  * The function tests if the input MSR can be safely accessed.
4751  */
4752 static bool check_msr(unsigned long msr, u64 mask)
4753 {
4754         u64 val_old, val_new, val_tmp;
4755
4756         /*
4757          * Disable the check for real HW, so we don't
4758          * mess with potentially enabled registers:
4759          */
4760         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4761                 return true;
4762
4763         /*
4764          * Read the current value, change it and read it back to see if it
4765          * matches, this is needed to detect certain hardware emulators
4766          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4767          */
4768         if (rdmsrl_safe(msr, &val_old))
4769                 return false;
4770
4771         /*
4772          * Only change the bits which can be updated by wrmsrl.
4773          */
4774         val_tmp = val_old ^ mask;
4775
4776         if (is_lbr_from(msr))
4777                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4778
4779         if (wrmsrl_safe(msr, val_tmp) ||
4780             rdmsrl_safe(msr, &val_new))
4781                 return false;
4782
4783         /*
4784          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4785          * should equal rdmsrl()'s even with the quirk.
4786          */
4787         if (val_new != val_tmp)
4788                 return false;
4789
4790         if (is_lbr_from(msr))
4791                 val_old = lbr_from_signext_quirk_wr(val_old);
4792
4793         /* Here it's sure that the MSR can be safely accessed.
4794          * Restore the old value and return.
4795          */
4796         wrmsrl(msr, val_old);
4797
4798         return true;
4799 }
4800
4801 static __init void intel_sandybridge_quirk(void)
4802 {
4803         x86_pmu.check_microcode = intel_snb_check_microcode;
4804         cpus_read_lock();
4805         intel_snb_check_microcode();
4806         cpus_read_unlock();
4807 }
4808
4809 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4810         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4811         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4812         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4813         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4814         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4815         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4816         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4817 };
4818
4819 static __init void intel_arch_events_quirk(void)
4820 {
4821         int bit;
4822
4823         /* disable event that reported as not present by cpuid */
4824         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4825                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4826                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4827                         intel_arch_events_map[bit].name);
4828         }
4829 }
4830
4831 static __init void intel_nehalem_quirk(void)
4832 {
4833         union cpuid10_ebx ebx;
4834
4835         ebx.full = x86_pmu.events_maskl;
4836         if (ebx.split.no_branch_misses_retired) {
4837                 /*
4838                  * Erratum AAJ80 detected, we work it around by using
4839                  * the BR_MISP_EXEC.ANY event. This will over-count
4840                  * branch-misses, but it's still much better than the
4841                  * architectural event which is often completely bogus:
4842                  */
4843                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4844                 ebx.split.no_branch_misses_retired = 0;
4845                 x86_pmu.events_maskl = ebx.full;
4846                 pr_info("CPU erratum AAJ80 worked around\n");
4847         }
4848 }
4849
4850 /*
4851  * enable software workaround for errata:
4852  * SNB: BJ122
4853  * IVB: BV98
4854  * HSW: HSD29
4855  *
4856  * Only needed when HT is enabled. However detecting
4857  * if HT is enabled is difficult (model specific). So instead,
4858  * we enable the workaround in the early boot, and verify if
4859  * it is needed in a later initcall phase once we have valid
4860  * topology information to check if HT is actually enabled
4861  */
4862 static __init void intel_ht_bug(void)
4863 {
4864         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4865
4866         x86_pmu.start_scheduling = intel_start_scheduling;
4867         x86_pmu.commit_scheduling = intel_commit_scheduling;
4868         x86_pmu.stop_scheduling = intel_stop_scheduling;
4869 }
4870
4871 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
4872 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
4873
4874 /* Haswell special events */
4875 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
4876 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
4877 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
4878 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
4879 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
4880 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
4881 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
4882 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
4883 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
4884 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
4885 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
4886 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
4887
4888 static struct attribute *hsw_events_attrs[] = {
4889         EVENT_PTR(td_slots_issued),
4890         EVENT_PTR(td_slots_retired),
4891         EVENT_PTR(td_fetch_bubbles),
4892         EVENT_PTR(td_total_slots),
4893         EVENT_PTR(td_total_slots_scale),
4894         EVENT_PTR(td_recovery_bubbles),
4895         EVENT_PTR(td_recovery_bubbles_scale),
4896         NULL
4897 };
4898
4899 static struct attribute *hsw_mem_events_attrs[] = {
4900         EVENT_PTR(mem_ld_hsw),
4901         EVENT_PTR(mem_st_hsw),
4902         NULL,
4903 };
4904
4905 static struct attribute *hsw_tsx_events_attrs[] = {
4906         EVENT_PTR(tx_start),
4907         EVENT_PTR(tx_commit),
4908         EVENT_PTR(tx_abort),
4909         EVENT_PTR(tx_capacity),
4910         EVENT_PTR(tx_conflict),
4911         EVENT_PTR(el_start),
4912         EVENT_PTR(el_commit),
4913         EVENT_PTR(el_abort),
4914         EVENT_PTR(el_capacity),
4915         EVENT_PTR(el_conflict),
4916         EVENT_PTR(cycles_t),
4917         EVENT_PTR(cycles_ct),
4918         NULL
4919 };
4920
4921 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4922 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4923 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4924 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4925
4926 static struct attribute *icl_events_attrs[] = {
4927         EVENT_PTR(mem_ld_hsw),
4928         EVENT_PTR(mem_st_hsw),
4929         NULL,
4930 };
4931
4932 static struct attribute *icl_td_events_attrs[] = {
4933         EVENT_PTR(slots),
4934         EVENT_PTR(td_retiring),
4935         EVENT_PTR(td_bad_spec),
4936         EVENT_PTR(td_fe_bound),
4937         EVENT_PTR(td_be_bound),
4938         NULL,
4939 };
4940
4941 static struct attribute *icl_tsx_events_attrs[] = {
4942         EVENT_PTR(tx_start),
4943         EVENT_PTR(tx_abort),
4944         EVENT_PTR(tx_commit),
4945         EVENT_PTR(tx_capacity_read),
4946         EVENT_PTR(tx_capacity_write),
4947         EVENT_PTR(tx_conflict),
4948         EVENT_PTR(el_start),
4949         EVENT_PTR(el_abort),
4950         EVENT_PTR(el_commit),
4951         EVENT_PTR(el_capacity_read),
4952         EVENT_PTR(el_capacity_write),
4953         EVENT_PTR(el_conflict),
4954         EVENT_PTR(cycles_t),
4955         EVENT_PTR(cycles_ct),
4956         NULL,
4957 };
4958
4959
4960 EVENT_ATTR_STR(mem-stores,      mem_st_spr,     "event=0xcd,umask=0x2");
4961 EVENT_ATTR_STR(mem-loads-aux,   mem_ld_aux,     "event=0x03,umask=0x82");
4962
4963 static struct attribute *spr_events_attrs[] = {
4964         EVENT_PTR(mem_ld_hsw),
4965         EVENT_PTR(mem_st_spr),
4966         EVENT_PTR(mem_ld_aux),
4967         NULL,
4968 };
4969
4970 static struct attribute *spr_td_events_attrs[] = {
4971         EVENT_PTR(slots),
4972         EVENT_PTR(td_retiring),
4973         EVENT_PTR(td_bad_spec),
4974         EVENT_PTR(td_fe_bound),
4975         EVENT_PTR(td_be_bound),
4976         EVENT_PTR(td_heavy_ops),
4977         EVENT_PTR(td_br_mispredict),
4978         EVENT_PTR(td_fetch_lat),
4979         EVENT_PTR(td_mem_bound),
4980         NULL,
4981 };
4982
4983 static struct attribute *spr_tsx_events_attrs[] = {
4984         EVENT_PTR(tx_start),
4985         EVENT_PTR(tx_abort),
4986         EVENT_PTR(tx_commit),
4987         EVENT_PTR(tx_capacity_read),
4988         EVENT_PTR(tx_capacity_write),
4989         EVENT_PTR(tx_conflict),
4990         EVENT_PTR(cycles_t),
4991         EVENT_PTR(cycles_ct),
4992         NULL,
4993 };
4994
4995 static ssize_t freeze_on_smi_show(struct device *cdev,
4996                                   struct device_attribute *attr,
4997                                   char *buf)
4998 {
4999         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5000 }
5001
5002 static DEFINE_MUTEX(freeze_on_smi_mutex);
5003
5004 static ssize_t freeze_on_smi_store(struct device *cdev,
5005                                    struct device_attribute *attr,
5006                                    const char *buf, size_t count)
5007 {
5008         unsigned long val;
5009         ssize_t ret;
5010
5011         ret = kstrtoul(buf, 0, &val);
5012         if (ret)
5013                 return ret;
5014
5015         if (val > 1)
5016                 return -EINVAL;
5017
5018         mutex_lock(&freeze_on_smi_mutex);
5019
5020         if (x86_pmu.attr_freeze_on_smi == val)
5021                 goto done;
5022
5023         x86_pmu.attr_freeze_on_smi = val;
5024
5025         get_online_cpus();
5026         on_each_cpu(flip_smm_bit, &val, 1);
5027         put_online_cpus();
5028 done:
5029         mutex_unlock(&freeze_on_smi_mutex);
5030
5031         return count;
5032 }
5033
5034 static void update_tfa_sched(void *ignored)
5035 {
5036         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5037
5038         /*
5039          * check if PMC3 is used
5040          * and if so force schedule out for all event types all contexts
5041          */
5042         if (test_bit(3, cpuc->active_mask))
5043                 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5044 }
5045
5046 static ssize_t show_sysctl_tfa(struct device *cdev,
5047                               struct device_attribute *attr,
5048                               char *buf)
5049 {
5050         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5051 }
5052
5053 static ssize_t set_sysctl_tfa(struct device *cdev,
5054                               struct device_attribute *attr,
5055                               const char *buf, size_t count)
5056 {
5057         bool val;
5058         ssize_t ret;
5059
5060         ret = kstrtobool(buf, &val);
5061         if (ret)
5062                 return ret;
5063
5064         /* no change */
5065         if (val == allow_tsx_force_abort)
5066                 return count;
5067
5068         allow_tsx_force_abort = val;
5069
5070         get_online_cpus();
5071         on_each_cpu(update_tfa_sched, NULL, 1);
5072         put_online_cpus();
5073
5074         return count;
5075 }
5076
5077
5078 static DEVICE_ATTR_RW(freeze_on_smi);
5079
5080 static ssize_t branches_show(struct device *cdev,
5081                              struct device_attribute *attr,
5082                              char *buf)
5083 {
5084         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5085 }
5086
5087 static DEVICE_ATTR_RO(branches);
5088
5089 static struct attribute *lbr_attrs[] = {
5090         &dev_attr_branches.attr,
5091         NULL
5092 };
5093
5094 static char pmu_name_str[30];
5095
5096 static ssize_t pmu_name_show(struct device *cdev,
5097                              struct device_attribute *attr,
5098                              char *buf)
5099 {
5100         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5101 }
5102
5103 static DEVICE_ATTR_RO(pmu_name);
5104
5105 static struct attribute *intel_pmu_caps_attrs[] = {
5106        &dev_attr_pmu_name.attr,
5107        NULL
5108 };
5109
5110 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5111                    show_sysctl_tfa,
5112                    set_sysctl_tfa);
5113
5114 static struct attribute *intel_pmu_attrs[] = {
5115         &dev_attr_freeze_on_smi.attr,
5116         &dev_attr_allow_tsx_force_abort.attr,
5117         NULL,
5118 };
5119
5120 static umode_t
5121 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5122 {
5123         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5124 }
5125
5126 static umode_t
5127 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5128 {
5129         return x86_pmu.pebs ? attr->mode : 0;
5130 }
5131
5132 static umode_t
5133 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5134 {
5135         return x86_pmu.lbr_nr ? attr->mode : 0;
5136 }
5137
5138 static umode_t
5139 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5140 {
5141         return x86_pmu.version >= 2 ? attr->mode : 0;
5142 }
5143
5144 static umode_t
5145 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5146 {
5147         if (attr == &dev_attr_allow_tsx_force_abort.attr)
5148                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5149
5150         return attr->mode;
5151 }
5152
5153 static struct attribute_group group_events_td  = {
5154         .name = "events",
5155 };
5156
5157 static struct attribute_group group_events_mem = {
5158         .name       = "events",
5159         .is_visible = pebs_is_visible,
5160 };
5161
5162 static struct attribute_group group_events_tsx = {
5163         .name       = "events",
5164         .is_visible = tsx_is_visible,
5165 };
5166
5167 static struct attribute_group group_caps_gen = {
5168         .name  = "caps",
5169         .attrs = intel_pmu_caps_attrs,
5170 };
5171
5172 static struct attribute_group group_caps_lbr = {
5173         .name       = "caps",
5174         .attrs      = lbr_attrs,
5175         .is_visible = lbr_is_visible,
5176 };
5177
5178 static struct attribute_group group_format_extra = {
5179         .name       = "format",
5180         .is_visible = exra_is_visible,
5181 };
5182
5183 static struct attribute_group group_format_extra_skl = {
5184         .name       = "format",
5185         .is_visible = exra_is_visible,
5186 };
5187
5188 static struct attribute_group group_default = {
5189         .attrs      = intel_pmu_attrs,
5190         .is_visible = default_is_visible,
5191 };
5192
5193 static const struct attribute_group *attr_update[] = {
5194         &group_events_td,
5195         &group_events_mem,
5196         &group_events_tsx,
5197         &group_caps_gen,
5198         &group_caps_lbr,
5199         &group_format_extra,
5200         &group_format_extra_skl,
5201         &group_default,
5202         NULL,
5203 };
5204
5205 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5206 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5207 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5208 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5209 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5210 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5211 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5212 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5213 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5214
5215 static struct attribute *adl_hybrid_events_attrs[] = {
5216         EVENT_PTR(slots_adl),
5217         EVENT_PTR(td_retiring_adl),
5218         EVENT_PTR(td_bad_spec_adl),
5219         EVENT_PTR(td_fe_bound_adl),
5220         EVENT_PTR(td_be_bound_adl),
5221         EVENT_PTR(td_heavy_ops_adl),
5222         EVENT_PTR(td_br_mis_adl),
5223         EVENT_PTR(td_fetch_lat_adl),
5224         EVENT_PTR(td_mem_bound_adl),
5225         NULL,
5226 };
5227
5228 /* Must be in IDX order */
5229 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5230 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5231 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5232
5233 static struct attribute *adl_hybrid_mem_attrs[] = {
5234         EVENT_PTR(mem_ld_adl),
5235         EVENT_PTR(mem_st_adl),
5236         EVENT_PTR(mem_ld_aux_adl),
5237         NULL,
5238 };
5239
5240 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5241 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5242 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5243 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5244 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5245 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5246 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5247 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5248
5249 static struct attribute *adl_hybrid_tsx_attrs[] = {
5250         EVENT_PTR(tx_start_adl),
5251         EVENT_PTR(tx_abort_adl),
5252         EVENT_PTR(tx_commit_adl),
5253         EVENT_PTR(tx_capacity_read_adl),
5254         EVENT_PTR(tx_capacity_write_adl),
5255         EVENT_PTR(tx_conflict_adl),
5256         EVENT_PTR(cycles_t_adl),
5257         EVENT_PTR(cycles_ct_adl),
5258         NULL,
5259 };
5260
5261 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5262 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5263 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5264 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5265 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5266
5267 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5268         FORMAT_HYBRID_PTR(in_tx),
5269         FORMAT_HYBRID_PTR(in_tx_cp),
5270         FORMAT_HYBRID_PTR(offcore_rsp),
5271         FORMAT_HYBRID_PTR(ldlat),
5272         FORMAT_HYBRID_PTR(frontend),
5273         NULL,
5274 };
5275
5276 static struct attribute *adl_hybrid_extra_attr[] = {
5277         FORMAT_HYBRID_PTR(offcore_rsp),
5278         FORMAT_HYBRID_PTR(ldlat),
5279         FORMAT_HYBRID_PTR(frontend),
5280         NULL,
5281 };
5282
5283 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5284 {
5285         struct device *dev = kobj_to_dev(kobj);
5286         struct x86_hybrid_pmu *pmu =
5287                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5288         struct perf_pmu_events_hybrid_attr *pmu_attr =
5289                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5290
5291         return pmu->cpu_type & pmu_attr->pmu_type;
5292 }
5293
5294 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5295                                         struct attribute *attr, int i)
5296 {
5297         return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5298 }
5299
5300 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5301 {
5302         int cpu = cpumask_first(&pmu->supported_cpus);
5303
5304         return (cpu >= nr_cpu_ids) ? -1 : cpu;
5305 }
5306
5307 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5308                                      struct attribute *attr, int i)
5309 {
5310         struct device *dev = kobj_to_dev(kobj);
5311         struct x86_hybrid_pmu *pmu =
5312                  container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5313         int cpu = hybrid_find_supported_cpu(pmu);
5314
5315         return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5316 }
5317
5318 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5319                                         struct attribute *attr, int i)
5320 {
5321         struct device *dev = kobj_to_dev(kobj);
5322         struct x86_hybrid_pmu *pmu =
5323                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5324         struct perf_pmu_format_hybrid_attr *pmu_attr =
5325                 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5326         int cpu = hybrid_find_supported_cpu(pmu);
5327
5328         return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5329 }
5330
5331 static struct attribute_group hybrid_group_events_td  = {
5332         .name           = "events",
5333         .is_visible     = hybrid_events_is_visible,
5334 };
5335
5336 static struct attribute_group hybrid_group_events_mem = {
5337         .name           = "events",
5338         .is_visible     = hybrid_events_is_visible,
5339 };
5340
5341 static struct attribute_group hybrid_group_events_tsx = {
5342         .name           = "events",
5343         .is_visible     = hybrid_tsx_is_visible,
5344 };
5345
5346 static struct attribute_group hybrid_group_format_extra = {
5347         .name           = "format",
5348         .is_visible     = hybrid_format_is_visible,
5349 };
5350
5351 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5352                                           struct device_attribute *attr,
5353                                           char *buf)
5354 {
5355         struct x86_hybrid_pmu *pmu =
5356                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5357
5358         return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5359 }
5360
5361 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5362 static struct attribute *intel_hybrid_cpus_attrs[] = {
5363         &dev_attr_cpus.attr,
5364         NULL,
5365 };
5366
5367 static struct attribute_group hybrid_group_cpus = {
5368         .attrs          = intel_hybrid_cpus_attrs,
5369 };
5370
5371 static const struct attribute_group *hybrid_attr_update[] = {
5372         &hybrid_group_events_td,
5373         &hybrid_group_events_mem,
5374         &hybrid_group_events_tsx,
5375         &group_caps_gen,
5376         &group_caps_lbr,
5377         &hybrid_group_format_extra,
5378         &group_default,
5379         &hybrid_group_cpus,
5380         NULL,
5381 };
5382
5383 static struct attribute *empty_attrs;
5384
5385 static void intel_pmu_check_num_counters(int *num_counters,
5386                                          int *num_counters_fixed,
5387                                          u64 *intel_ctrl, u64 fixed_mask)
5388 {
5389         if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5390                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5391                      *num_counters, INTEL_PMC_MAX_GENERIC);
5392                 *num_counters = INTEL_PMC_MAX_GENERIC;
5393         }
5394         *intel_ctrl = (1ULL << *num_counters) - 1;
5395
5396         if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5397                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5398                      *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5399                 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5400         }
5401
5402         *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5403 }
5404
5405 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5406                                               int num_counters,
5407                                               int num_counters_fixed,
5408                                               u64 intel_ctrl)
5409 {
5410         struct event_constraint *c;
5411
5412         if (!event_constraints)
5413                 return;
5414
5415         /*
5416          * event on fixed counter2 (REF_CYCLES) only works on this
5417          * counter, so do not extend mask to generic counters
5418          */
5419         for_each_event_constraint(c, event_constraints) {
5420                 /*
5421                  * Don't extend the topdown slots and metrics
5422                  * events to the generic counters.
5423                  */
5424                 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5425                         /*
5426                          * Disable topdown slots and metrics events,
5427                          * if slots event is not in CPUID.
5428                          */
5429                         if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5430                                 c->idxmsk64 = 0;
5431                         c->weight = hweight64(c->idxmsk64);
5432                         continue;
5433                 }
5434
5435                 if (c->cmask == FIXED_EVENT_FLAGS) {
5436                         /* Disabled fixed counters which are not in CPUID */
5437                         c->idxmsk64 &= intel_ctrl;
5438
5439                         if (c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES)
5440                                 c->idxmsk64 |= (1ULL << num_counters) - 1;
5441                 }
5442                 c->idxmsk64 &=
5443                         ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5444                 c->weight = hweight64(c->idxmsk64);
5445         }
5446 }
5447
5448 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5449 {
5450         struct extra_reg *er;
5451
5452         /*
5453          * Access extra MSR may cause #GP under certain circumstances.
5454          * E.g. KVM doesn't support offcore event
5455          * Check all extra_regs here.
5456          */
5457         if (!extra_regs)
5458                 return;
5459
5460         for (er = extra_regs; er->msr; er++) {
5461                 er->extra_msr_access = check_msr(er->msr, 0x11UL);
5462                 /* Disable LBR select mapping */
5463                 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5464                         x86_pmu.lbr_sel_map = NULL;
5465         }
5466 }
5467
5468 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5469 {
5470         struct x86_hybrid_pmu *pmu;
5471         int i;
5472
5473         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5474                 pmu = &x86_pmu.hybrid_pmu[i];
5475
5476                 intel_pmu_check_num_counters(&pmu->num_counters,
5477                                              &pmu->num_counters_fixed,
5478                                              &pmu->intel_ctrl,
5479                                              fixed_mask);
5480
5481                 if (pmu->intel_cap.perf_metrics) {
5482                         pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5483                         pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5484                 }
5485
5486                 if (pmu->intel_cap.pebs_output_pt_available)
5487                         pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5488
5489                 intel_pmu_check_event_constraints(pmu->event_constraints,
5490                                                   pmu->num_counters,
5491                                                   pmu->num_counters_fixed,
5492                                                   pmu->intel_ctrl);
5493
5494                 intel_pmu_check_extra_regs(pmu->extra_regs);
5495         }
5496 }
5497
5498 __init int intel_pmu_init(void)
5499 {
5500         struct attribute **extra_skl_attr = &empty_attrs;
5501         struct attribute **extra_attr = &empty_attrs;
5502         struct attribute **td_attr    = &empty_attrs;
5503         struct attribute **mem_attr   = &empty_attrs;
5504         struct attribute **tsx_attr   = &empty_attrs;
5505         union cpuid10_edx edx;
5506         union cpuid10_eax eax;
5507         union cpuid10_ebx ebx;
5508         unsigned int fixed_mask;
5509         bool pmem = false;
5510         int version, i;
5511         char *name;
5512         struct x86_hybrid_pmu *pmu;
5513
5514         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5515                 switch (boot_cpu_data.x86) {
5516                 case 0x6:
5517                         return p6_pmu_init();
5518                 case 0xb:
5519                         return knc_pmu_init();
5520                 case 0xf:
5521                         return p4_pmu_init();
5522                 }
5523                 return -ENODEV;
5524         }
5525
5526         /*
5527          * Check whether the Architectural PerfMon supports
5528          * Branch Misses Retired hw_event or not.
5529          */
5530         cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5531         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5532                 return -ENODEV;
5533
5534         version = eax.split.version_id;
5535         if (version < 2)
5536                 x86_pmu = core_pmu;
5537         else
5538                 x86_pmu = intel_pmu;
5539
5540         x86_pmu.version                 = version;
5541         x86_pmu.num_counters            = eax.split.num_counters;
5542         x86_pmu.cntval_bits             = eax.split.bit_width;
5543         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
5544
5545         x86_pmu.events_maskl            = ebx.full;
5546         x86_pmu.events_mask_len         = eax.split.mask_length;
5547
5548         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5549
5550         /*
5551          * Quirk: v2 perfmon does not report fixed-purpose events, so
5552          * assume at least 3 events, when not running in a hypervisor:
5553          */
5554         if (version > 1 && version < 5) {
5555                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5556
5557                 x86_pmu.num_counters_fixed =
5558                         max((int)edx.split.num_counters_fixed, assume);
5559
5560                 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5561         } else if (version >= 5)
5562                 x86_pmu.num_counters_fixed = fls(fixed_mask);
5563
5564         if (boot_cpu_has(X86_FEATURE_PDCM)) {
5565                 u64 capabilities;
5566
5567                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5568                 x86_pmu.intel_cap.capabilities = capabilities;
5569         }
5570
5571         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5572                 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5573                 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5574         }
5575
5576         if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5577                 intel_pmu_arch_lbr_init();
5578
5579         intel_ds_init();
5580
5581         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5582
5583         if (version >= 5) {
5584                 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5585                 if (x86_pmu.intel_cap.anythread_deprecated)
5586                         pr_cont(" AnyThread deprecated, ");
5587         }
5588
5589         /*
5590          * Install the hw-cache-events table:
5591          */
5592         switch (boot_cpu_data.x86_model) {
5593         case INTEL_FAM6_CORE_YONAH:
5594                 pr_cont("Core events, ");
5595                 name = "core";
5596                 break;
5597
5598         case INTEL_FAM6_CORE2_MEROM:
5599                 x86_add_quirk(intel_clovertown_quirk);
5600                 fallthrough;
5601
5602         case INTEL_FAM6_CORE2_MEROM_L:
5603         case INTEL_FAM6_CORE2_PENRYN:
5604         case INTEL_FAM6_CORE2_DUNNINGTON:
5605                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5606                        sizeof(hw_cache_event_ids));
5607
5608                 intel_pmu_lbr_init_core();
5609
5610                 x86_pmu.event_constraints = intel_core2_event_constraints;
5611                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5612                 pr_cont("Core2 events, ");
5613                 name = "core2";
5614                 break;
5615
5616         case INTEL_FAM6_NEHALEM:
5617         case INTEL_FAM6_NEHALEM_EP:
5618         case INTEL_FAM6_NEHALEM_EX:
5619                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5620                        sizeof(hw_cache_event_ids));
5621                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5622                        sizeof(hw_cache_extra_regs));
5623
5624                 intel_pmu_lbr_init_nhm();
5625
5626                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
5627                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5628                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5629                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
5630                 x86_pmu.limit_period = nhm_limit_period;
5631
5632                 mem_attr = nhm_mem_events_attrs;
5633
5634                 /* UOPS_ISSUED.STALLED_CYCLES */
5635                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5636                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5637                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5638                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5639                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5640
5641                 intel_pmu_pebs_data_source_nhm();
5642                 x86_add_quirk(intel_nehalem_quirk);
5643                 x86_pmu.pebs_no_tlb = 1;
5644                 extra_attr = nhm_format_attr;
5645
5646                 pr_cont("Nehalem events, ");
5647                 name = "nehalem";
5648                 break;
5649
5650         case INTEL_FAM6_ATOM_BONNELL:
5651         case INTEL_FAM6_ATOM_BONNELL_MID:
5652         case INTEL_FAM6_ATOM_SALTWELL:
5653         case INTEL_FAM6_ATOM_SALTWELL_MID:
5654         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5655                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5656                        sizeof(hw_cache_event_ids));
5657
5658                 intel_pmu_lbr_init_atom();
5659
5660                 x86_pmu.event_constraints = intel_gen_event_constraints;
5661                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5662                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5663                 pr_cont("Atom events, ");
5664                 name = "bonnell";
5665                 break;
5666
5667         case INTEL_FAM6_ATOM_SILVERMONT:
5668         case INTEL_FAM6_ATOM_SILVERMONT_D:
5669         case INTEL_FAM6_ATOM_SILVERMONT_MID:
5670         case INTEL_FAM6_ATOM_AIRMONT:
5671         case INTEL_FAM6_ATOM_AIRMONT_MID:
5672                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5673                         sizeof(hw_cache_event_ids));
5674                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5675                        sizeof(hw_cache_extra_regs));
5676
5677                 intel_pmu_lbr_init_slm();
5678
5679                 x86_pmu.event_constraints = intel_slm_event_constraints;
5680                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5681                 x86_pmu.extra_regs = intel_slm_extra_regs;
5682                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5683                 td_attr = slm_events_attrs;
5684                 extra_attr = slm_format_attr;
5685                 pr_cont("Silvermont events, ");
5686                 name = "silvermont";
5687                 break;
5688
5689         case INTEL_FAM6_ATOM_GOLDMONT:
5690         case INTEL_FAM6_ATOM_GOLDMONT_D:
5691                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5692                        sizeof(hw_cache_event_ids));
5693                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5694                        sizeof(hw_cache_extra_regs));
5695
5696                 intel_pmu_lbr_init_skl();
5697
5698                 x86_pmu.event_constraints = intel_slm_event_constraints;
5699                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5700                 x86_pmu.extra_regs = intel_glm_extra_regs;
5701                 /*
5702                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5703                  * for precise cycles.
5704                  * :pp is identical to :ppp
5705                  */
5706                 x86_pmu.pebs_aliases = NULL;
5707                 x86_pmu.pebs_prec_dist = true;
5708                 x86_pmu.lbr_pt_coexist = true;
5709                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5710                 td_attr = glm_events_attrs;
5711                 extra_attr = slm_format_attr;
5712                 pr_cont("Goldmont events, ");
5713                 name = "goldmont";
5714                 break;
5715
5716         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5717                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5718                        sizeof(hw_cache_event_ids));
5719                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5720                        sizeof(hw_cache_extra_regs));
5721
5722                 intel_pmu_lbr_init_skl();
5723
5724                 x86_pmu.event_constraints = intel_slm_event_constraints;
5725                 x86_pmu.extra_regs = intel_glm_extra_regs;
5726                 /*
5727                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5728                  * for precise cycles.
5729                  */
5730                 x86_pmu.pebs_aliases = NULL;
5731                 x86_pmu.pebs_prec_dist = true;
5732                 x86_pmu.lbr_pt_coexist = true;
5733                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5734                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
5735                 x86_pmu.get_event_constraints = glp_get_event_constraints;
5736                 td_attr = glm_events_attrs;
5737                 /* Goldmont Plus has 4-wide pipeline */
5738                 event_attr_td_total_slots_scale_glm.event_str = "4";
5739                 extra_attr = slm_format_attr;
5740                 pr_cont("Goldmont plus events, ");
5741                 name = "goldmont_plus";
5742                 break;
5743
5744         case INTEL_FAM6_ATOM_TREMONT_D:
5745         case INTEL_FAM6_ATOM_TREMONT:
5746         case INTEL_FAM6_ATOM_TREMONT_L:
5747                 x86_pmu.late_ack = true;
5748                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5749                        sizeof(hw_cache_event_ids));
5750                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5751                        sizeof(hw_cache_extra_regs));
5752                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5753
5754                 intel_pmu_lbr_init_skl();
5755
5756                 x86_pmu.event_constraints = intel_slm_event_constraints;
5757                 x86_pmu.extra_regs = intel_tnt_extra_regs;
5758                 /*
5759                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5760                  * for precise cycles.
5761                  */
5762                 x86_pmu.pebs_aliases = NULL;
5763                 x86_pmu.pebs_prec_dist = true;
5764                 x86_pmu.lbr_pt_coexist = true;
5765                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5766                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
5767                 td_attr = tnt_events_attrs;
5768                 extra_attr = slm_format_attr;
5769                 pr_cont("Tremont events, ");
5770                 name = "Tremont";
5771                 break;
5772
5773         case INTEL_FAM6_WESTMERE:
5774         case INTEL_FAM6_WESTMERE_EP:
5775         case INTEL_FAM6_WESTMERE_EX:
5776                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5777                        sizeof(hw_cache_event_ids));
5778                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5779                        sizeof(hw_cache_extra_regs));
5780
5781                 intel_pmu_lbr_init_nhm();
5782
5783                 x86_pmu.event_constraints = intel_westmere_event_constraints;
5784                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5785                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5786                 x86_pmu.extra_regs = intel_westmere_extra_regs;
5787                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5788
5789                 mem_attr = nhm_mem_events_attrs;
5790
5791                 /* UOPS_ISSUED.STALLED_CYCLES */
5792                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5793                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5794                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5795                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5796                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5797
5798                 intel_pmu_pebs_data_source_nhm();
5799                 extra_attr = nhm_format_attr;
5800                 pr_cont("Westmere events, ");
5801                 name = "westmere";
5802                 break;
5803
5804         case INTEL_FAM6_SANDYBRIDGE:
5805         case INTEL_FAM6_SANDYBRIDGE_X:
5806                 x86_add_quirk(intel_sandybridge_quirk);
5807                 x86_add_quirk(intel_ht_bug);
5808                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5809                        sizeof(hw_cache_event_ids));
5810                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5811                        sizeof(hw_cache_extra_regs));
5812
5813                 intel_pmu_lbr_init_snb();
5814
5815                 x86_pmu.event_constraints = intel_snb_event_constraints;
5816                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5817                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5818                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5819                         x86_pmu.extra_regs = intel_snbep_extra_regs;
5820                 else
5821                         x86_pmu.extra_regs = intel_snb_extra_regs;
5822
5823
5824                 /* all extra regs are per-cpu when HT is on */
5825                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5826                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5827
5828                 td_attr  = snb_events_attrs;
5829                 mem_attr = snb_mem_events_attrs;
5830
5831                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5832                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5833                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5834                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5835                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5836                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5837
5838                 extra_attr = nhm_format_attr;
5839
5840                 pr_cont("SandyBridge events, ");
5841                 name = "sandybridge";
5842                 break;
5843
5844         case INTEL_FAM6_IVYBRIDGE:
5845         case INTEL_FAM6_IVYBRIDGE_X:
5846                 x86_add_quirk(intel_ht_bug);
5847                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5848                        sizeof(hw_cache_event_ids));
5849                 /* dTLB-load-misses on IVB is different than SNB */
5850                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5851
5852                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5853                        sizeof(hw_cache_extra_regs));
5854
5855                 intel_pmu_lbr_init_snb();
5856
5857                 x86_pmu.event_constraints = intel_ivb_event_constraints;
5858                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5859                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5860                 x86_pmu.pebs_prec_dist = true;
5861                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5862                         x86_pmu.extra_regs = intel_snbep_extra_regs;
5863                 else
5864                         x86_pmu.extra_regs = intel_snb_extra_regs;
5865                 /* all extra regs are per-cpu when HT is on */
5866                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5867                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5868
5869                 td_attr  = snb_events_attrs;
5870                 mem_attr = snb_mem_events_attrs;
5871
5872                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5873                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5874                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5875
5876                 extra_attr = nhm_format_attr;
5877
5878                 pr_cont("IvyBridge events, ");
5879                 name = "ivybridge";
5880                 break;
5881
5882
5883         case INTEL_FAM6_HASWELL:
5884         case INTEL_FAM6_HASWELL_X:
5885         case INTEL_FAM6_HASWELL_L:
5886         case INTEL_FAM6_HASWELL_G:
5887                 x86_add_quirk(intel_ht_bug);
5888                 x86_add_quirk(intel_pebs_isolation_quirk);
5889                 x86_pmu.late_ack = true;
5890                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5891                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5892
5893                 intel_pmu_lbr_init_hsw();
5894
5895                 x86_pmu.event_constraints = intel_hsw_event_constraints;
5896                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5897                 x86_pmu.extra_regs = intel_snbep_extra_regs;
5898                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5899                 x86_pmu.pebs_prec_dist = true;
5900                 /* all extra regs are per-cpu when HT is on */
5901                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5902                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5903
5904                 x86_pmu.hw_config = hsw_hw_config;
5905                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5906                 x86_pmu.lbr_double_abort = true;
5907                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5908                         hsw_format_attr : nhm_format_attr;
5909                 td_attr  = hsw_events_attrs;
5910                 mem_attr = hsw_mem_events_attrs;
5911                 tsx_attr = hsw_tsx_events_attrs;
5912                 pr_cont("Haswell events, ");
5913                 name = "haswell";
5914                 break;
5915
5916         case INTEL_FAM6_BROADWELL:
5917         case INTEL_FAM6_BROADWELL_D:
5918         case INTEL_FAM6_BROADWELL_G:
5919         case INTEL_FAM6_BROADWELL_X:
5920                 x86_add_quirk(intel_pebs_isolation_quirk);
5921                 x86_pmu.late_ack = true;
5922                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5923                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5924
5925                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5926                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5927                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
5928                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5929                                                                           HSW_SNOOP_DRAM;
5930                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5931                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5932                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5933                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5934
5935                 intel_pmu_lbr_init_hsw();
5936
5937                 x86_pmu.event_constraints = intel_bdw_event_constraints;
5938                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5939                 x86_pmu.extra_regs = intel_snbep_extra_regs;
5940                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5941                 x86_pmu.pebs_prec_dist = true;
5942                 /* all extra regs are per-cpu when HT is on */
5943                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5944                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5945
5946                 x86_pmu.hw_config = hsw_hw_config;
5947                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5948                 x86_pmu.limit_period = bdw_limit_period;
5949                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5950                         hsw_format_attr : nhm_format_attr;
5951                 td_attr  = hsw_events_attrs;
5952                 mem_attr = hsw_mem_events_attrs;
5953                 tsx_attr = hsw_tsx_events_attrs;
5954                 pr_cont("Broadwell events, ");
5955                 name = "broadwell";
5956                 break;
5957
5958         case INTEL_FAM6_XEON_PHI_KNL:
5959         case INTEL_FAM6_XEON_PHI_KNM:
5960                 memcpy(hw_cache_event_ids,
5961                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5962                 memcpy(hw_cache_extra_regs,
5963                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5964                 intel_pmu_lbr_init_knl();
5965
5966                 x86_pmu.event_constraints = intel_slm_event_constraints;
5967                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5968                 x86_pmu.extra_regs = intel_knl_extra_regs;
5969
5970                 /* all extra regs are per-cpu when HT is on */
5971                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5972                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5973                 extra_attr = slm_format_attr;
5974                 pr_cont("Knights Landing/Mill events, ");
5975                 name = "knights-landing";
5976                 break;
5977
5978         case INTEL_FAM6_SKYLAKE_X:
5979                 pmem = true;
5980                 fallthrough;
5981         case INTEL_FAM6_SKYLAKE_L:
5982         case INTEL_FAM6_SKYLAKE:
5983         case INTEL_FAM6_KABYLAKE_L:
5984         case INTEL_FAM6_KABYLAKE:
5985         case INTEL_FAM6_COMETLAKE_L:
5986         case INTEL_FAM6_COMETLAKE:
5987                 x86_add_quirk(intel_pebs_isolation_quirk);
5988                 x86_pmu.late_ack = true;
5989                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5990                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5991                 intel_pmu_lbr_init_skl();
5992
5993                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5994                 event_attr_td_recovery_bubbles.event_str_noht =
5995                         "event=0xd,umask=0x1,cmask=1";
5996                 event_attr_td_recovery_bubbles.event_str_ht =
5997                         "event=0xd,umask=0x1,cmask=1,any=1";
5998
5999                 x86_pmu.event_constraints = intel_skl_event_constraints;
6000                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6001                 x86_pmu.extra_regs = intel_skl_extra_regs;
6002                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6003                 x86_pmu.pebs_prec_dist = true;
6004                 /* all extra regs are per-cpu when HT is on */
6005                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6006                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6007
6008                 x86_pmu.hw_config = hsw_hw_config;
6009                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6010                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6011                         hsw_format_attr : nhm_format_attr;
6012                 extra_skl_attr = skl_format_attr;
6013                 td_attr  = hsw_events_attrs;
6014                 mem_attr = hsw_mem_events_attrs;
6015                 tsx_attr = hsw_tsx_events_attrs;
6016                 intel_pmu_pebs_data_source_skl(pmem);
6017
6018                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
6019                         x86_pmu.flags |= PMU_FL_TFA;
6020                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
6021                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6022                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6023                 }
6024
6025                 pr_cont("Skylake events, ");
6026                 name = "skylake";
6027                 break;
6028
6029         case INTEL_FAM6_ICELAKE_X:
6030         case INTEL_FAM6_ICELAKE_D:
6031                 pmem = true;
6032                 fallthrough;
6033         case INTEL_FAM6_ICELAKE_L:
6034         case INTEL_FAM6_ICELAKE:
6035         case INTEL_FAM6_TIGERLAKE_L:
6036         case INTEL_FAM6_TIGERLAKE:
6037         case INTEL_FAM6_ROCKETLAKE:
6038                 x86_pmu.late_ack = true;
6039                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6040                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6041                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6042                 intel_pmu_lbr_init_skl();
6043
6044                 x86_pmu.event_constraints = intel_icl_event_constraints;
6045                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6046                 x86_pmu.extra_regs = intel_icl_extra_regs;
6047                 x86_pmu.pebs_aliases = NULL;
6048                 x86_pmu.pebs_prec_dist = true;
6049                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6050                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6051
6052                 x86_pmu.hw_config = hsw_hw_config;
6053                 x86_pmu.get_event_constraints = icl_get_event_constraints;
6054                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6055                         hsw_format_attr : nhm_format_attr;
6056                 extra_skl_attr = skl_format_attr;
6057                 mem_attr = icl_events_attrs;
6058                 td_attr = icl_td_events_attrs;
6059                 tsx_attr = icl_tsx_events_attrs;
6060                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6061                 x86_pmu.lbr_pt_coexist = true;
6062                 intel_pmu_pebs_data_source_skl(pmem);
6063                 x86_pmu.num_topdown_events = 4;
6064                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6065                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6066                 pr_cont("Icelake events, ");
6067                 name = "icelake";
6068                 break;
6069
6070         case INTEL_FAM6_SAPPHIRERAPIDS_X:
6071                 pmem = true;
6072                 x86_pmu.late_ack = true;
6073                 memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6074                 memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6075
6076                 x86_pmu.event_constraints = intel_spr_event_constraints;
6077                 x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6078                 x86_pmu.extra_regs = intel_spr_extra_regs;
6079                 x86_pmu.limit_period = spr_limit_period;
6080                 x86_pmu.pebs_aliases = NULL;
6081                 x86_pmu.pebs_prec_dist = true;
6082                 x86_pmu.pebs_block = true;
6083                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6084                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6085                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6086                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6087                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6088
6089                 x86_pmu.hw_config = hsw_hw_config;
6090                 x86_pmu.get_event_constraints = spr_get_event_constraints;
6091                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6092                         hsw_format_attr : nhm_format_attr;
6093                 extra_skl_attr = skl_format_attr;
6094                 mem_attr = spr_events_attrs;
6095                 td_attr = spr_td_events_attrs;
6096                 tsx_attr = spr_tsx_events_attrs;
6097                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6098                 x86_pmu.lbr_pt_coexist = true;
6099                 intel_pmu_pebs_data_source_skl(pmem);
6100                 x86_pmu.num_topdown_events = 8;
6101                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6102                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6103                 pr_cont("Sapphire Rapids events, ");
6104                 name = "sapphire_rapids";
6105                 break;
6106
6107         case INTEL_FAM6_ALDERLAKE:
6108         case INTEL_FAM6_ALDERLAKE_L:
6109                 /*
6110                  * Alder Lake has 2 types of CPU, core and atom.
6111                  *
6112                  * Initialize the common PerfMon capabilities here.
6113                  */
6114                 x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6115                                              sizeof(struct x86_hybrid_pmu),
6116                                              GFP_KERNEL);
6117                 if (!x86_pmu.hybrid_pmu)
6118                         return -ENOMEM;
6119                 static_branch_enable(&perf_is_hybrid);
6120                 x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6121
6122                 x86_pmu.late_ack = true;
6123                 x86_pmu.pebs_aliases = NULL;
6124                 x86_pmu.pebs_prec_dist = true;
6125                 x86_pmu.pebs_block = true;
6126                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6127                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6128                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6129                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6130                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6131                 x86_pmu.lbr_pt_coexist = true;
6132                 intel_pmu_pebs_data_source_skl(false);
6133                 x86_pmu.num_topdown_events = 8;
6134                 x86_pmu.update_topdown_event = adl_update_topdown_event;
6135                 x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6136
6137                 x86_pmu.filter_match = intel_pmu_filter_match;
6138                 x86_pmu.get_event_constraints = adl_get_event_constraints;
6139                 x86_pmu.hw_config = adl_hw_config;
6140                 x86_pmu.limit_period = spr_limit_period;
6141                 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6142                 /*
6143                  * The rtm_abort_event is used to check whether to enable GPRs
6144                  * for the RTM abort event. Atom doesn't have the RTM abort
6145                  * event. There is no harmful to set it in the common
6146                  * x86_pmu.rtm_abort_event.
6147                  */
6148                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6149
6150                 td_attr = adl_hybrid_events_attrs;
6151                 mem_attr = adl_hybrid_mem_attrs;
6152                 tsx_attr = adl_hybrid_tsx_attrs;
6153                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6154                         adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6155
6156                 /* Initialize big core specific PerfMon capabilities.*/
6157                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6158                 pmu->name = "cpu_core";
6159                 pmu->cpu_type = hybrid_big;
6160                 pmu->num_counters = x86_pmu.num_counters + 2;
6161                 pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6162                 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6163                 pmu->unconstrained = (struct event_constraint)
6164                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6165                                                            0, pmu->num_counters, 0, 0);
6166                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6167                 pmu->intel_cap.perf_metrics = 1;
6168                 pmu->intel_cap.pebs_output_pt_available = 0;
6169
6170                 memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6171                 memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6172                 pmu->event_constraints = intel_spr_event_constraints;
6173                 pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6174                 pmu->extra_regs = intel_spr_extra_regs;
6175
6176                 /* Initialize Atom core specific PerfMon capabilities.*/
6177                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6178                 pmu->name = "cpu_atom";
6179                 pmu->cpu_type = hybrid_small;
6180                 pmu->num_counters = x86_pmu.num_counters;
6181                 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6182                 pmu->max_pebs_events = x86_pmu.max_pebs_events;
6183                 pmu->unconstrained = (struct event_constraint)
6184                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6185                                                            0, pmu->num_counters, 0, 0);
6186                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6187                 pmu->intel_cap.perf_metrics = 0;
6188                 pmu->intel_cap.pebs_output_pt_available = 1;
6189
6190                 memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6191                 memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6192                 pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6193                 pmu->event_constraints = intel_slm_event_constraints;
6194                 pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6195                 pmu->extra_regs = intel_grt_extra_regs;
6196                 pr_cont("Alderlake Hybrid events, ");
6197                 name = "alderlake_hybrid";
6198                 break;
6199
6200         default:
6201                 switch (x86_pmu.version) {
6202                 case 1:
6203                         x86_pmu.event_constraints = intel_v1_event_constraints;
6204                         pr_cont("generic architected perfmon v1, ");
6205                         name = "generic_arch_v1";
6206                         break;
6207                 default:
6208                         /*
6209                          * default constraints for v2 and up
6210                          */
6211                         x86_pmu.event_constraints = intel_gen_event_constraints;
6212                         pr_cont("generic architected perfmon, ");
6213                         name = "generic_arch_v2+";
6214                         break;
6215                 }
6216         }
6217
6218         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6219
6220         if (!is_hybrid()) {
6221                 group_events_td.attrs  = td_attr;
6222                 group_events_mem.attrs = mem_attr;
6223                 group_events_tsx.attrs = tsx_attr;
6224                 group_format_extra.attrs = extra_attr;
6225                 group_format_extra_skl.attrs = extra_skl_attr;
6226
6227                 x86_pmu.attr_update = attr_update;
6228         } else {
6229                 hybrid_group_events_td.attrs  = td_attr;
6230                 hybrid_group_events_mem.attrs = mem_attr;
6231                 hybrid_group_events_tsx.attrs = tsx_attr;
6232                 hybrid_group_format_extra.attrs = extra_attr;
6233
6234                 x86_pmu.attr_update = hybrid_attr_update;
6235         }
6236
6237         intel_pmu_check_num_counters(&x86_pmu.num_counters,
6238                                      &x86_pmu.num_counters_fixed,
6239                                      &x86_pmu.intel_ctrl,
6240                                      (u64)fixed_mask);
6241
6242         /* AnyThread may be deprecated on arch perfmon v5 or later */
6243         if (x86_pmu.intel_cap.anythread_deprecated)
6244                 x86_pmu.format_attrs = intel_arch_formats_attr;
6245
6246         intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6247                                           x86_pmu.num_counters,
6248                                           x86_pmu.num_counters_fixed,
6249                                           x86_pmu.intel_ctrl);
6250         /*
6251          * Access LBR MSR may cause #GP under certain circumstances.
6252          * E.g. KVM doesn't support LBR MSR
6253          * Check all LBT MSR here.
6254          * Disable LBR access if any LBR MSRs can not be accessed.
6255          */
6256         if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6257                 x86_pmu.lbr_nr = 0;
6258         for (i = 0; i < x86_pmu.lbr_nr; i++) {
6259                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6260                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6261                         x86_pmu.lbr_nr = 0;
6262         }
6263
6264         if (x86_pmu.lbr_nr)
6265                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6266
6267         intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6268
6269         /* Support full width counters using alternative MSR range */
6270         if (x86_pmu.intel_cap.full_width_write) {
6271                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6272                 x86_pmu.perfctr = MSR_IA32_PMC0;
6273                 pr_cont("full-width counters, ");
6274         }
6275
6276         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6277                 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6278
6279         if (is_hybrid())
6280                 intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6281
6282         return 0;
6283 }
6284
6285 /*
6286  * HT bug: phase 2 init
6287  * Called once we have valid topology information to check
6288  * whether or not HT is enabled
6289  * If HT is off, then we disable the workaround
6290  */
6291 static __init int fixup_ht_bug(void)
6292 {
6293         int c;
6294         /*
6295          * problem not present on this CPU model, nothing to do
6296          */
6297         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6298                 return 0;
6299
6300         if (topology_max_smt_threads() > 1) {
6301                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6302                 return 0;
6303         }
6304
6305         cpus_read_lock();
6306
6307         hardlockup_detector_perf_stop();
6308
6309         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6310
6311         x86_pmu.start_scheduling = NULL;
6312         x86_pmu.commit_scheduling = NULL;
6313         x86_pmu.stop_scheduling = NULL;
6314
6315         hardlockup_detector_perf_restart();
6316
6317         for_each_online_cpu(c)
6318                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6319
6320         cpus_read_unlock();
6321         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6322         return 0;
6323 }
6324 subsys_initcall(fixup_ht_bug)