clk: Drop the rate range on clk_put()
[linux-2.6-microblaze.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24
25 #include "../perf_event.h"
26
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
33         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
34         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
35         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
36         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
37         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
38         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
39         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
40 };
41
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50         EVENT_CONSTRAINT_END
51 };
52
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68         EVENT_CONSTRAINT_END
69 };
70
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84         EVENT_CONSTRAINT_END
85 };
86
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92         EVENT_EXTRA_END
93 };
94
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104         EVENT_CONSTRAINT_END
105 };
106
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121
122         /*
123          * When HT is off these events can only run on the bottom 4 counters
124          * When HT is on, they are impacted by the HT bug and require EXCL access
125          */
126         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130
131         EVENT_CONSTRAINT_END
132 };
133
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
141         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149
150         /*
151          * When HT is off these events can only run on the bottom 4 counters
152          * When HT is on, they are impacted by the HT bug and require EXCL access
153          */
154         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158
159         EVENT_CONSTRAINT_END
160 };
161
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168         EVENT_EXTRA_END
169 };
170
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173         EVENT_CONSTRAINT_END
174 };
175
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181         EVENT_CONSTRAINT_END
182 };
183
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189         EVENT_CONSTRAINT_END
190 };
191
192 static struct event_constraint intel_skl_event_constraints[] = {
193         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
194         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
195         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
196         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
197
198         /*
199          * when HT is off, these can only run on the bottom 4 counters
200          */
201         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
203         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
204         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
205         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
206
207         EVENT_CONSTRAINT_END
208 };
209
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213         EVENT_EXTRA_END
214 };
215
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221         EVENT_EXTRA_END
222 };
223
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229         EVENT_EXTRA_END
230 };
231
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236         /*
237          * Note the low 8 bits eventsel code is not a continuous field, containing
238          * some #GPing bits. These are masked out.
239          */
240         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241         EVENT_EXTRA_END
242 };
243
244 static struct event_constraint intel_icl_event_constraints[] = {
245         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
246         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* old INST_RETIRED.PREC_DIST */
247         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
248         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
249         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
250         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
251         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
252         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
253         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
254         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
255         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
256         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
257         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
258         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
259         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
260         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
261         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
262         INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
263         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
264         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
265         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
266         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
267         INTEL_EVENT_CONSTRAINT(0xef, 0xf),
268         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
269         EVENT_CONSTRAINT_END
270 };
271
272 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
273         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
274         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
275         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
276         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
277         EVENT_EXTRA_END
278 };
279
280 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
281         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
282         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
283         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
284         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
285         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
286         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
287         EVENT_EXTRA_END
288 };
289
290 static struct event_constraint intel_spr_event_constraints[] = {
291         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
292         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
293         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
294         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
295         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
296         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
297         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
298         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
299         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
300         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
301         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
302         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
303         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
304
305         INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
306         INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
307         /*
308          * Generally event codes < 0x90 are restricted to counters 0-3.
309          * The 0x2E and 0x3C are exception, which has no restriction.
310          */
311         INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
312
313         INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
314         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
315         INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
316         INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
317         INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
318         INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
319         INTEL_EVENT_CONSTRAINT(0xce, 0x1),
320         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
321         /*
322          * Generally event codes >= 0x90 are likely to have no restrictions.
323          * The exception are defined as above.
324          */
325         INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
326
327         EVENT_CONSTRAINT_END
328 };
329
330
331 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
332 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
333 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
334
335 static struct attribute *nhm_mem_events_attrs[] = {
336         EVENT_PTR(mem_ld_nhm),
337         NULL,
338 };
339
340 /*
341  * topdown events for Intel Core CPUs.
342  *
343  * The events are all in slots, which is a free slot in a 4 wide
344  * pipeline. Some events are already reported in slots, for cycle
345  * events we multiply by the pipeline width (4).
346  *
347  * With Hyper Threading on, topdown metrics are either summed or averaged
348  * between the threads of a core: (count_t0 + count_t1).
349  *
350  * For the average case the metric is always scaled to pipeline width,
351  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
352  */
353
354 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
355         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
356         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
357 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
358 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
359         "event=0xe,umask=0x1");                 /* uops_issued.any */
360 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
361         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
362 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
363         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
364 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
365         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
366         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
367 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
368         "4", "2");
369
370 EVENT_ATTR_STR(slots,                   slots,                  "event=0x00,umask=0x4");
371 EVENT_ATTR_STR(topdown-retiring,        td_retiring,            "event=0x00,umask=0x80");
372 EVENT_ATTR_STR(topdown-bad-spec,        td_bad_spec,            "event=0x00,umask=0x81");
373 EVENT_ATTR_STR(topdown-fe-bound,        td_fe_bound,            "event=0x00,umask=0x82");
374 EVENT_ATTR_STR(topdown-be-bound,        td_be_bound,            "event=0x00,umask=0x83");
375 EVENT_ATTR_STR(topdown-heavy-ops,       td_heavy_ops,           "event=0x00,umask=0x84");
376 EVENT_ATTR_STR(topdown-br-mispredict,   td_br_mispredict,       "event=0x00,umask=0x85");
377 EVENT_ATTR_STR(topdown-fetch-lat,       td_fetch_lat,           "event=0x00,umask=0x86");
378 EVENT_ATTR_STR(topdown-mem-bound,       td_mem_bound,           "event=0x00,umask=0x87");
379
380 static struct attribute *snb_events_attrs[] = {
381         EVENT_PTR(td_slots_issued),
382         EVENT_PTR(td_slots_retired),
383         EVENT_PTR(td_fetch_bubbles),
384         EVENT_PTR(td_total_slots),
385         EVENT_PTR(td_total_slots_scale),
386         EVENT_PTR(td_recovery_bubbles),
387         EVENT_PTR(td_recovery_bubbles_scale),
388         NULL,
389 };
390
391 static struct attribute *snb_mem_events_attrs[] = {
392         EVENT_PTR(mem_ld_snb),
393         EVENT_PTR(mem_st_snb),
394         NULL,
395 };
396
397 static struct event_constraint intel_hsw_event_constraints[] = {
398         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
399         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
400         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
401         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
402         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
403         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
404         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
405         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
406         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
407         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
408         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
409         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
410
411         /*
412          * When HT is off these events can only run on the bottom 4 counters
413          * When HT is on, they are impacted by the HT bug and require EXCL access
414          */
415         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
416         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
417         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
418         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
419
420         EVENT_CONSTRAINT_END
421 };
422
423 static struct event_constraint intel_bdw_event_constraints[] = {
424         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
425         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
426         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
427         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
428         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
429         /*
430          * when HT is off, these can only run on the bottom 4 counters
431          */
432         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
433         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
434         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
435         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
436         EVENT_CONSTRAINT_END
437 };
438
439 static u64 intel_pmu_event_map(int hw_event)
440 {
441         return intel_perfmon_event_map[hw_event];
442 }
443
444 static __initconst const u64 spr_hw_cache_event_ids
445                                 [PERF_COUNT_HW_CACHE_MAX]
446                                 [PERF_COUNT_HW_CACHE_OP_MAX]
447                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
448 {
449  [ C(L1D ) ] = {
450         [ C(OP_READ) ] = {
451                 [ C(RESULT_ACCESS) ] = 0x81d0,
452                 [ C(RESULT_MISS)   ] = 0xe124,
453         },
454         [ C(OP_WRITE) ] = {
455                 [ C(RESULT_ACCESS) ] = 0x82d0,
456         },
457  },
458  [ C(L1I ) ] = {
459         [ C(OP_READ) ] = {
460                 [ C(RESULT_MISS)   ] = 0xe424,
461         },
462         [ C(OP_WRITE) ] = {
463                 [ C(RESULT_ACCESS) ] = -1,
464                 [ C(RESULT_MISS)   ] = -1,
465         },
466  },
467  [ C(LL  ) ] = {
468         [ C(OP_READ) ] = {
469                 [ C(RESULT_ACCESS) ] = 0x12a,
470                 [ C(RESULT_MISS)   ] = 0x12a,
471         },
472         [ C(OP_WRITE) ] = {
473                 [ C(RESULT_ACCESS) ] = 0x12a,
474                 [ C(RESULT_MISS)   ] = 0x12a,
475         },
476  },
477  [ C(DTLB) ] = {
478         [ C(OP_READ) ] = {
479                 [ C(RESULT_ACCESS) ] = 0x81d0,
480                 [ C(RESULT_MISS)   ] = 0xe12,
481         },
482         [ C(OP_WRITE) ] = {
483                 [ C(RESULT_ACCESS) ] = 0x82d0,
484                 [ C(RESULT_MISS)   ] = 0xe13,
485         },
486  },
487  [ C(ITLB) ] = {
488         [ C(OP_READ) ] = {
489                 [ C(RESULT_ACCESS) ] = -1,
490                 [ C(RESULT_MISS)   ] = 0xe11,
491         },
492         [ C(OP_WRITE) ] = {
493                 [ C(RESULT_ACCESS) ] = -1,
494                 [ C(RESULT_MISS)   ] = -1,
495         },
496         [ C(OP_PREFETCH) ] = {
497                 [ C(RESULT_ACCESS) ] = -1,
498                 [ C(RESULT_MISS)   ] = -1,
499         },
500  },
501  [ C(BPU ) ] = {
502         [ C(OP_READ) ] = {
503                 [ C(RESULT_ACCESS) ] = 0x4c4,
504                 [ C(RESULT_MISS)   ] = 0x4c5,
505         },
506         [ C(OP_WRITE) ] = {
507                 [ C(RESULT_ACCESS) ] = -1,
508                 [ C(RESULT_MISS)   ] = -1,
509         },
510         [ C(OP_PREFETCH) ] = {
511                 [ C(RESULT_ACCESS) ] = -1,
512                 [ C(RESULT_MISS)   ] = -1,
513         },
514  },
515  [ C(NODE) ] = {
516         [ C(OP_READ) ] = {
517                 [ C(RESULT_ACCESS) ] = 0x12a,
518                 [ C(RESULT_MISS)   ] = 0x12a,
519         },
520  },
521 };
522
523 static __initconst const u64 spr_hw_cache_extra_regs
524                                 [PERF_COUNT_HW_CACHE_MAX]
525                                 [PERF_COUNT_HW_CACHE_OP_MAX]
526                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
527 {
528  [ C(LL  ) ] = {
529         [ C(OP_READ) ] = {
530                 [ C(RESULT_ACCESS) ] = 0x10001,
531                 [ C(RESULT_MISS)   ] = 0x3fbfc00001,
532         },
533         [ C(OP_WRITE) ] = {
534                 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
535                 [ C(RESULT_MISS)   ] = 0x3f3fc00002,
536         },
537  },
538  [ C(NODE) ] = {
539         [ C(OP_READ) ] = {
540                 [ C(RESULT_ACCESS) ] = 0x10c000001,
541                 [ C(RESULT_MISS)   ] = 0x3fb3000001,
542         },
543  },
544 };
545
546 /*
547  * Notes on the events:
548  * - data reads do not include code reads (comparable to earlier tables)
549  * - data counts include speculative execution (except L1 write, dtlb, bpu)
550  * - remote node access includes remote memory, remote cache, remote mmio.
551  * - prefetches are not included in the counts.
552  * - icache miss does not include decoded icache
553  */
554
555 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
556 #define SKL_DEMAND_RFO                  BIT_ULL(1)
557 #define SKL_ANY_RESPONSE                BIT_ULL(16)
558 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
559 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
560 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
561 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
562 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
563 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
564                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
565                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
566                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
567 #define SKL_SPL_HIT                     BIT_ULL(30)
568 #define SKL_SNOOP_NONE                  BIT_ULL(31)
569 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
570 #define SKL_SNOOP_MISS                  BIT_ULL(33)
571 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
572 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
573 #define SKL_SNOOP_HITM                  BIT_ULL(36)
574 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
575 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
576                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
577                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
578                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
579 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
580 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
581                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
582                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
583                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
584 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
585 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
586 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
587                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
588                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
589
590 static __initconst const u64 skl_hw_cache_event_ids
591                                 [PERF_COUNT_HW_CACHE_MAX]
592                                 [PERF_COUNT_HW_CACHE_OP_MAX]
593                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
594 {
595  [ C(L1D ) ] = {
596         [ C(OP_READ) ] = {
597                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
598                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
599         },
600         [ C(OP_WRITE) ] = {
601                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
602                 [ C(RESULT_MISS)   ] = 0x0,
603         },
604         [ C(OP_PREFETCH) ] = {
605                 [ C(RESULT_ACCESS) ] = 0x0,
606                 [ C(RESULT_MISS)   ] = 0x0,
607         },
608  },
609  [ C(L1I ) ] = {
610         [ C(OP_READ) ] = {
611                 [ C(RESULT_ACCESS) ] = 0x0,
612                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
613         },
614         [ C(OP_WRITE) ] = {
615                 [ C(RESULT_ACCESS) ] = -1,
616                 [ C(RESULT_MISS)   ] = -1,
617         },
618         [ C(OP_PREFETCH) ] = {
619                 [ C(RESULT_ACCESS) ] = 0x0,
620                 [ C(RESULT_MISS)   ] = 0x0,
621         },
622  },
623  [ C(LL  ) ] = {
624         [ C(OP_READ) ] = {
625                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
626                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
627         },
628         [ C(OP_WRITE) ] = {
629                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
630                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
631         },
632         [ C(OP_PREFETCH) ] = {
633                 [ C(RESULT_ACCESS) ] = 0x0,
634                 [ C(RESULT_MISS)   ] = 0x0,
635         },
636  },
637  [ C(DTLB) ] = {
638         [ C(OP_READ) ] = {
639                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
640                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
641         },
642         [ C(OP_WRITE) ] = {
643                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
644                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
645         },
646         [ C(OP_PREFETCH) ] = {
647                 [ C(RESULT_ACCESS) ] = 0x0,
648                 [ C(RESULT_MISS)   ] = 0x0,
649         },
650  },
651  [ C(ITLB) ] = {
652         [ C(OP_READ) ] = {
653                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
654                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
655         },
656         [ C(OP_WRITE) ] = {
657                 [ C(RESULT_ACCESS) ] = -1,
658                 [ C(RESULT_MISS)   ] = -1,
659         },
660         [ C(OP_PREFETCH) ] = {
661                 [ C(RESULT_ACCESS) ] = -1,
662                 [ C(RESULT_MISS)   ] = -1,
663         },
664  },
665  [ C(BPU ) ] = {
666         [ C(OP_READ) ] = {
667                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
668                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
669         },
670         [ C(OP_WRITE) ] = {
671                 [ C(RESULT_ACCESS) ] = -1,
672                 [ C(RESULT_MISS)   ] = -1,
673         },
674         [ C(OP_PREFETCH) ] = {
675                 [ C(RESULT_ACCESS) ] = -1,
676                 [ C(RESULT_MISS)   ] = -1,
677         },
678  },
679  [ C(NODE) ] = {
680         [ C(OP_READ) ] = {
681                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
682                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
683         },
684         [ C(OP_WRITE) ] = {
685                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
686                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
687         },
688         [ C(OP_PREFETCH) ] = {
689                 [ C(RESULT_ACCESS) ] = 0x0,
690                 [ C(RESULT_MISS)   ] = 0x0,
691         },
692  },
693 };
694
695 static __initconst const u64 skl_hw_cache_extra_regs
696                                 [PERF_COUNT_HW_CACHE_MAX]
697                                 [PERF_COUNT_HW_CACHE_OP_MAX]
698                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
699 {
700  [ C(LL  ) ] = {
701         [ C(OP_READ) ] = {
702                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
703                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
704                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
705                                        SKL_L3_MISS|SKL_ANY_SNOOP|
706                                        SKL_SUPPLIER_NONE,
707         },
708         [ C(OP_WRITE) ] = {
709                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
710                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
711                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
712                                        SKL_L3_MISS|SKL_ANY_SNOOP|
713                                        SKL_SUPPLIER_NONE,
714         },
715         [ C(OP_PREFETCH) ] = {
716                 [ C(RESULT_ACCESS) ] = 0x0,
717                 [ C(RESULT_MISS)   ] = 0x0,
718         },
719  },
720  [ C(NODE) ] = {
721         [ C(OP_READ) ] = {
722                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
723                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
724                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
725                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
726         },
727         [ C(OP_WRITE) ] = {
728                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
729                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
730                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
731                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
732         },
733         [ C(OP_PREFETCH) ] = {
734                 [ C(RESULT_ACCESS) ] = 0x0,
735                 [ C(RESULT_MISS)   ] = 0x0,
736         },
737  },
738 };
739
740 #define SNB_DMND_DATA_RD        (1ULL << 0)
741 #define SNB_DMND_RFO            (1ULL << 1)
742 #define SNB_DMND_IFETCH         (1ULL << 2)
743 #define SNB_DMND_WB             (1ULL << 3)
744 #define SNB_PF_DATA_RD          (1ULL << 4)
745 #define SNB_PF_RFO              (1ULL << 5)
746 #define SNB_PF_IFETCH           (1ULL << 6)
747 #define SNB_LLC_DATA_RD         (1ULL << 7)
748 #define SNB_LLC_RFO             (1ULL << 8)
749 #define SNB_LLC_IFETCH          (1ULL << 9)
750 #define SNB_BUS_LOCKS           (1ULL << 10)
751 #define SNB_STRM_ST             (1ULL << 11)
752 #define SNB_OTHER               (1ULL << 15)
753 #define SNB_RESP_ANY            (1ULL << 16)
754 #define SNB_NO_SUPP             (1ULL << 17)
755 #define SNB_LLC_HITM            (1ULL << 18)
756 #define SNB_LLC_HITE            (1ULL << 19)
757 #define SNB_LLC_HITS            (1ULL << 20)
758 #define SNB_LLC_HITF            (1ULL << 21)
759 #define SNB_LOCAL               (1ULL << 22)
760 #define SNB_REMOTE              (0xffULL << 23)
761 #define SNB_SNP_NONE            (1ULL << 31)
762 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
763 #define SNB_SNP_MISS            (1ULL << 33)
764 #define SNB_NO_FWD              (1ULL << 34)
765 #define SNB_SNP_FWD             (1ULL << 35)
766 #define SNB_HITM                (1ULL << 36)
767 #define SNB_NON_DRAM            (1ULL << 37)
768
769 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
770 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
771 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
772
773 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
774                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
775                                  SNB_HITM)
776
777 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
778 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
779
780 #define SNB_L3_ACCESS           SNB_RESP_ANY
781 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
782
783 static __initconst const u64 snb_hw_cache_extra_regs
784                                 [PERF_COUNT_HW_CACHE_MAX]
785                                 [PERF_COUNT_HW_CACHE_OP_MAX]
786                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
787 {
788  [ C(LL  ) ] = {
789         [ C(OP_READ) ] = {
790                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
791                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
792         },
793         [ C(OP_WRITE) ] = {
794                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
795                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
796         },
797         [ C(OP_PREFETCH) ] = {
798                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
799                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
800         },
801  },
802  [ C(NODE) ] = {
803         [ C(OP_READ) ] = {
804                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
805                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
806         },
807         [ C(OP_WRITE) ] = {
808                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
809                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
810         },
811         [ C(OP_PREFETCH) ] = {
812                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
813                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
814         },
815  },
816 };
817
818 static __initconst const u64 snb_hw_cache_event_ids
819                                 [PERF_COUNT_HW_CACHE_MAX]
820                                 [PERF_COUNT_HW_CACHE_OP_MAX]
821                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
822 {
823  [ C(L1D) ] = {
824         [ C(OP_READ) ] = {
825                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
826                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
827         },
828         [ C(OP_WRITE) ] = {
829                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
830                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
831         },
832         [ C(OP_PREFETCH) ] = {
833                 [ C(RESULT_ACCESS) ] = 0x0,
834                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
835         },
836  },
837  [ C(L1I ) ] = {
838         [ C(OP_READ) ] = {
839                 [ C(RESULT_ACCESS) ] = 0x0,
840                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
841         },
842         [ C(OP_WRITE) ] = {
843                 [ C(RESULT_ACCESS) ] = -1,
844                 [ C(RESULT_MISS)   ] = -1,
845         },
846         [ C(OP_PREFETCH) ] = {
847                 [ C(RESULT_ACCESS) ] = 0x0,
848                 [ C(RESULT_MISS)   ] = 0x0,
849         },
850  },
851  [ C(LL  ) ] = {
852         [ C(OP_READ) ] = {
853                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
854                 [ C(RESULT_ACCESS) ] = 0x01b7,
855                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
856                 [ C(RESULT_MISS)   ] = 0x01b7,
857         },
858         [ C(OP_WRITE) ] = {
859                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
860                 [ C(RESULT_ACCESS) ] = 0x01b7,
861                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
862                 [ C(RESULT_MISS)   ] = 0x01b7,
863         },
864         [ C(OP_PREFETCH) ] = {
865                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
866                 [ C(RESULT_ACCESS) ] = 0x01b7,
867                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
868                 [ C(RESULT_MISS)   ] = 0x01b7,
869         },
870  },
871  [ C(DTLB) ] = {
872         [ C(OP_READ) ] = {
873                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
874                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
875         },
876         [ C(OP_WRITE) ] = {
877                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
878                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
879         },
880         [ C(OP_PREFETCH) ] = {
881                 [ C(RESULT_ACCESS) ] = 0x0,
882                 [ C(RESULT_MISS)   ] = 0x0,
883         },
884  },
885  [ C(ITLB) ] = {
886         [ C(OP_READ) ] = {
887                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
888                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
889         },
890         [ C(OP_WRITE) ] = {
891                 [ C(RESULT_ACCESS) ] = -1,
892                 [ C(RESULT_MISS)   ] = -1,
893         },
894         [ C(OP_PREFETCH) ] = {
895                 [ C(RESULT_ACCESS) ] = -1,
896                 [ C(RESULT_MISS)   ] = -1,
897         },
898  },
899  [ C(BPU ) ] = {
900         [ C(OP_READ) ] = {
901                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
902                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
903         },
904         [ C(OP_WRITE) ] = {
905                 [ C(RESULT_ACCESS) ] = -1,
906                 [ C(RESULT_MISS)   ] = -1,
907         },
908         [ C(OP_PREFETCH) ] = {
909                 [ C(RESULT_ACCESS) ] = -1,
910                 [ C(RESULT_MISS)   ] = -1,
911         },
912  },
913  [ C(NODE) ] = {
914         [ C(OP_READ) ] = {
915                 [ C(RESULT_ACCESS) ] = 0x01b7,
916                 [ C(RESULT_MISS)   ] = 0x01b7,
917         },
918         [ C(OP_WRITE) ] = {
919                 [ C(RESULT_ACCESS) ] = 0x01b7,
920                 [ C(RESULT_MISS)   ] = 0x01b7,
921         },
922         [ C(OP_PREFETCH) ] = {
923                 [ C(RESULT_ACCESS) ] = 0x01b7,
924                 [ C(RESULT_MISS)   ] = 0x01b7,
925         },
926  },
927
928 };
929
930 /*
931  * Notes on the events:
932  * - data reads do not include code reads (comparable to earlier tables)
933  * - data counts include speculative execution (except L1 write, dtlb, bpu)
934  * - remote node access includes remote memory, remote cache, remote mmio.
935  * - prefetches are not included in the counts because they are not
936  *   reliably counted.
937  */
938
939 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
940 #define HSW_DEMAND_RFO                  BIT_ULL(1)
941 #define HSW_ANY_RESPONSE                BIT_ULL(16)
942 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
943 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
944 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
945 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
946 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
947 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
948                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
949                                          HSW_L3_MISS_REMOTE_HOP2P)
950 #define HSW_SNOOP_NONE                  BIT_ULL(31)
951 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
952 #define HSW_SNOOP_MISS                  BIT_ULL(33)
953 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
954 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
955 #define HSW_SNOOP_HITM                  BIT_ULL(36)
956 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
957 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
958                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
959                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
960                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
961 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
962 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
963 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
964 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
965                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
966 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
967
968 #define BDW_L3_MISS_LOCAL               BIT(26)
969 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
970                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
971                                          HSW_L3_MISS_REMOTE_HOP2P)
972
973
974 static __initconst const u64 hsw_hw_cache_event_ids
975                                 [PERF_COUNT_HW_CACHE_MAX]
976                                 [PERF_COUNT_HW_CACHE_OP_MAX]
977                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
978 {
979  [ C(L1D ) ] = {
980         [ C(OP_READ) ] = {
981                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
982                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
983         },
984         [ C(OP_WRITE) ] = {
985                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
986                 [ C(RESULT_MISS)   ] = 0x0,
987         },
988         [ C(OP_PREFETCH) ] = {
989                 [ C(RESULT_ACCESS) ] = 0x0,
990                 [ C(RESULT_MISS)   ] = 0x0,
991         },
992  },
993  [ C(L1I ) ] = {
994         [ C(OP_READ) ] = {
995                 [ C(RESULT_ACCESS) ] = 0x0,
996                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
997         },
998         [ C(OP_WRITE) ] = {
999                 [ C(RESULT_ACCESS) ] = -1,
1000                 [ C(RESULT_MISS)   ] = -1,
1001         },
1002         [ C(OP_PREFETCH) ] = {
1003                 [ C(RESULT_ACCESS) ] = 0x0,
1004                 [ C(RESULT_MISS)   ] = 0x0,
1005         },
1006  },
1007  [ C(LL  ) ] = {
1008         [ C(OP_READ) ] = {
1009                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1010                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1011         },
1012         [ C(OP_WRITE) ] = {
1013                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1014                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1015         },
1016         [ C(OP_PREFETCH) ] = {
1017                 [ C(RESULT_ACCESS) ] = 0x0,
1018                 [ C(RESULT_MISS)   ] = 0x0,
1019         },
1020  },
1021  [ C(DTLB) ] = {
1022         [ C(OP_READ) ] = {
1023                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1024                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1025         },
1026         [ C(OP_WRITE) ] = {
1027                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1028                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1029         },
1030         [ C(OP_PREFETCH) ] = {
1031                 [ C(RESULT_ACCESS) ] = 0x0,
1032                 [ C(RESULT_MISS)   ] = 0x0,
1033         },
1034  },
1035  [ C(ITLB) ] = {
1036         [ C(OP_READ) ] = {
1037                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
1038                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1039         },
1040         [ C(OP_WRITE) ] = {
1041                 [ C(RESULT_ACCESS) ] = -1,
1042                 [ C(RESULT_MISS)   ] = -1,
1043         },
1044         [ C(OP_PREFETCH) ] = {
1045                 [ C(RESULT_ACCESS) ] = -1,
1046                 [ C(RESULT_MISS)   ] = -1,
1047         },
1048  },
1049  [ C(BPU ) ] = {
1050         [ C(OP_READ) ] = {
1051                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
1052                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
1053         },
1054         [ C(OP_WRITE) ] = {
1055                 [ C(RESULT_ACCESS) ] = -1,
1056                 [ C(RESULT_MISS)   ] = -1,
1057         },
1058         [ C(OP_PREFETCH) ] = {
1059                 [ C(RESULT_ACCESS) ] = -1,
1060                 [ C(RESULT_MISS)   ] = -1,
1061         },
1062  },
1063  [ C(NODE) ] = {
1064         [ C(OP_READ) ] = {
1065                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1066                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1067         },
1068         [ C(OP_WRITE) ] = {
1069                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1070                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1071         },
1072         [ C(OP_PREFETCH) ] = {
1073                 [ C(RESULT_ACCESS) ] = 0x0,
1074                 [ C(RESULT_MISS)   ] = 0x0,
1075         },
1076  },
1077 };
1078
1079 static __initconst const u64 hsw_hw_cache_extra_regs
1080                                 [PERF_COUNT_HW_CACHE_MAX]
1081                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1082                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1083 {
1084  [ C(LL  ) ] = {
1085         [ C(OP_READ) ] = {
1086                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1087                                        HSW_LLC_ACCESS,
1088                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1089                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1090         },
1091         [ C(OP_WRITE) ] = {
1092                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1093                                        HSW_LLC_ACCESS,
1094                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1095                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1096         },
1097         [ C(OP_PREFETCH) ] = {
1098                 [ C(RESULT_ACCESS) ] = 0x0,
1099                 [ C(RESULT_MISS)   ] = 0x0,
1100         },
1101  },
1102  [ C(NODE) ] = {
1103         [ C(OP_READ) ] = {
1104                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1105                                        HSW_L3_MISS_LOCAL_DRAM|
1106                                        HSW_SNOOP_DRAM,
1107                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1108                                        HSW_L3_MISS_REMOTE|
1109                                        HSW_SNOOP_DRAM,
1110         },
1111         [ C(OP_WRITE) ] = {
1112                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1113                                        HSW_L3_MISS_LOCAL_DRAM|
1114                                        HSW_SNOOP_DRAM,
1115                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1116                                        HSW_L3_MISS_REMOTE|
1117                                        HSW_SNOOP_DRAM,
1118         },
1119         [ C(OP_PREFETCH) ] = {
1120                 [ C(RESULT_ACCESS) ] = 0x0,
1121                 [ C(RESULT_MISS)   ] = 0x0,
1122         },
1123  },
1124 };
1125
1126 static __initconst const u64 westmere_hw_cache_event_ids
1127                                 [PERF_COUNT_HW_CACHE_MAX]
1128                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1129                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1130 {
1131  [ C(L1D) ] = {
1132         [ C(OP_READ) ] = {
1133                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1134                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1135         },
1136         [ C(OP_WRITE) ] = {
1137                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1138                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1139         },
1140         [ C(OP_PREFETCH) ] = {
1141                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1142                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1143         },
1144  },
1145  [ C(L1I ) ] = {
1146         [ C(OP_READ) ] = {
1147                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1148                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1149         },
1150         [ C(OP_WRITE) ] = {
1151                 [ C(RESULT_ACCESS) ] = -1,
1152                 [ C(RESULT_MISS)   ] = -1,
1153         },
1154         [ C(OP_PREFETCH) ] = {
1155                 [ C(RESULT_ACCESS) ] = 0x0,
1156                 [ C(RESULT_MISS)   ] = 0x0,
1157         },
1158  },
1159  [ C(LL  ) ] = {
1160         [ C(OP_READ) ] = {
1161                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1162                 [ C(RESULT_ACCESS) ] = 0x01b7,
1163                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1164                 [ C(RESULT_MISS)   ] = 0x01b7,
1165         },
1166         /*
1167          * Use RFO, not WRITEBACK, because a write miss would typically occur
1168          * on RFO.
1169          */
1170         [ C(OP_WRITE) ] = {
1171                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1172                 [ C(RESULT_ACCESS) ] = 0x01b7,
1173                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1174                 [ C(RESULT_MISS)   ] = 0x01b7,
1175         },
1176         [ C(OP_PREFETCH) ] = {
1177                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1178                 [ C(RESULT_ACCESS) ] = 0x01b7,
1179                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1180                 [ C(RESULT_MISS)   ] = 0x01b7,
1181         },
1182  },
1183  [ C(DTLB) ] = {
1184         [ C(OP_READ) ] = {
1185                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1186                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1187         },
1188         [ C(OP_WRITE) ] = {
1189                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1190                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1191         },
1192         [ C(OP_PREFETCH) ] = {
1193                 [ C(RESULT_ACCESS) ] = 0x0,
1194                 [ C(RESULT_MISS)   ] = 0x0,
1195         },
1196  },
1197  [ C(ITLB) ] = {
1198         [ C(OP_READ) ] = {
1199                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1200                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1201         },
1202         [ C(OP_WRITE) ] = {
1203                 [ C(RESULT_ACCESS) ] = -1,
1204                 [ C(RESULT_MISS)   ] = -1,
1205         },
1206         [ C(OP_PREFETCH) ] = {
1207                 [ C(RESULT_ACCESS) ] = -1,
1208                 [ C(RESULT_MISS)   ] = -1,
1209         },
1210  },
1211  [ C(BPU ) ] = {
1212         [ C(OP_READ) ] = {
1213                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1214                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1215         },
1216         [ C(OP_WRITE) ] = {
1217                 [ C(RESULT_ACCESS) ] = -1,
1218                 [ C(RESULT_MISS)   ] = -1,
1219         },
1220         [ C(OP_PREFETCH) ] = {
1221                 [ C(RESULT_ACCESS) ] = -1,
1222                 [ C(RESULT_MISS)   ] = -1,
1223         },
1224  },
1225  [ C(NODE) ] = {
1226         [ C(OP_READ) ] = {
1227                 [ C(RESULT_ACCESS) ] = 0x01b7,
1228                 [ C(RESULT_MISS)   ] = 0x01b7,
1229         },
1230         [ C(OP_WRITE) ] = {
1231                 [ C(RESULT_ACCESS) ] = 0x01b7,
1232                 [ C(RESULT_MISS)   ] = 0x01b7,
1233         },
1234         [ C(OP_PREFETCH) ] = {
1235                 [ C(RESULT_ACCESS) ] = 0x01b7,
1236                 [ C(RESULT_MISS)   ] = 0x01b7,
1237         },
1238  },
1239 };
1240
1241 /*
1242  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1243  * See IA32 SDM Vol 3B 30.6.1.3
1244  */
1245
1246 #define NHM_DMND_DATA_RD        (1 << 0)
1247 #define NHM_DMND_RFO            (1 << 1)
1248 #define NHM_DMND_IFETCH         (1 << 2)
1249 #define NHM_DMND_WB             (1 << 3)
1250 #define NHM_PF_DATA_RD          (1 << 4)
1251 #define NHM_PF_DATA_RFO         (1 << 5)
1252 #define NHM_PF_IFETCH           (1 << 6)
1253 #define NHM_OFFCORE_OTHER       (1 << 7)
1254 #define NHM_UNCORE_HIT          (1 << 8)
1255 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1256 #define NHM_OTHER_CORE_HITM     (1 << 10)
1257                                 /* reserved */
1258 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1259 #define NHM_REMOTE_DRAM         (1 << 13)
1260 #define NHM_LOCAL_DRAM          (1 << 14)
1261 #define NHM_NON_DRAM            (1 << 15)
1262
1263 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1264 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1265
1266 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1267 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1268 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1269
1270 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1271 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1272 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1273
1274 static __initconst const u64 nehalem_hw_cache_extra_regs
1275                                 [PERF_COUNT_HW_CACHE_MAX]
1276                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1277                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1278 {
1279  [ C(LL  ) ] = {
1280         [ C(OP_READ) ] = {
1281                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1282                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1283         },
1284         [ C(OP_WRITE) ] = {
1285                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1286                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1287         },
1288         [ C(OP_PREFETCH) ] = {
1289                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1290                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1291         },
1292  },
1293  [ C(NODE) ] = {
1294         [ C(OP_READ) ] = {
1295                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1296                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1297         },
1298         [ C(OP_WRITE) ] = {
1299                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1300                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1301         },
1302         [ C(OP_PREFETCH) ] = {
1303                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1304                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1305         },
1306  },
1307 };
1308
1309 static __initconst const u64 nehalem_hw_cache_event_ids
1310                                 [PERF_COUNT_HW_CACHE_MAX]
1311                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1312                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314  [ C(L1D) ] = {
1315         [ C(OP_READ) ] = {
1316                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1317                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1318         },
1319         [ C(OP_WRITE) ] = {
1320                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1321                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1322         },
1323         [ C(OP_PREFETCH) ] = {
1324                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1325                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1326         },
1327  },
1328  [ C(L1I ) ] = {
1329         [ C(OP_READ) ] = {
1330                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1331                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1332         },
1333         [ C(OP_WRITE) ] = {
1334                 [ C(RESULT_ACCESS) ] = -1,
1335                 [ C(RESULT_MISS)   ] = -1,
1336         },
1337         [ C(OP_PREFETCH) ] = {
1338                 [ C(RESULT_ACCESS) ] = 0x0,
1339                 [ C(RESULT_MISS)   ] = 0x0,
1340         },
1341  },
1342  [ C(LL  ) ] = {
1343         [ C(OP_READ) ] = {
1344                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1345                 [ C(RESULT_ACCESS) ] = 0x01b7,
1346                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1347                 [ C(RESULT_MISS)   ] = 0x01b7,
1348         },
1349         /*
1350          * Use RFO, not WRITEBACK, because a write miss would typically occur
1351          * on RFO.
1352          */
1353         [ C(OP_WRITE) ] = {
1354                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1355                 [ C(RESULT_ACCESS) ] = 0x01b7,
1356                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1357                 [ C(RESULT_MISS)   ] = 0x01b7,
1358         },
1359         [ C(OP_PREFETCH) ] = {
1360                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1361                 [ C(RESULT_ACCESS) ] = 0x01b7,
1362                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1363                 [ C(RESULT_MISS)   ] = 0x01b7,
1364         },
1365  },
1366  [ C(DTLB) ] = {
1367         [ C(OP_READ) ] = {
1368                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1369                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1370         },
1371         [ C(OP_WRITE) ] = {
1372                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1373                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1374         },
1375         [ C(OP_PREFETCH) ] = {
1376                 [ C(RESULT_ACCESS) ] = 0x0,
1377                 [ C(RESULT_MISS)   ] = 0x0,
1378         },
1379  },
1380  [ C(ITLB) ] = {
1381         [ C(OP_READ) ] = {
1382                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1383                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1384         },
1385         [ C(OP_WRITE) ] = {
1386                 [ C(RESULT_ACCESS) ] = -1,
1387                 [ C(RESULT_MISS)   ] = -1,
1388         },
1389         [ C(OP_PREFETCH) ] = {
1390                 [ C(RESULT_ACCESS) ] = -1,
1391                 [ C(RESULT_MISS)   ] = -1,
1392         },
1393  },
1394  [ C(BPU ) ] = {
1395         [ C(OP_READ) ] = {
1396                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1397                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1398         },
1399         [ C(OP_WRITE) ] = {
1400                 [ C(RESULT_ACCESS) ] = -1,
1401                 [ C(RESULT_MISS)   ] = -1,
1402         },
1403         [ C(OP_PREFETCH) ] = {
1404                 [ C(RESULT_ACCESS) ] = -1,
1405                 [ C(RESULT_MISS)   ] = -1,
1406         },
1407  },
1408  [ C(NODE) ] = {
1409         [ C(OP_READ) ] = {
1410                 [ C(RESULT_ACCESS) ] = 0x01b7,
1411                 [ C(RESULT_MISS)   ] = 0x01b7,
1412         },
1413         [ C(OP_WRITE) ] = {
1414                 [ C(RESULT_ACCESS) ] = 0x01b7,
1415                 [ C(RESULT_MISS)   ] = 0x01b7,
1416         },
1417         [ C(OP_PREFETCH) ] = {
1418                 [ C(RESULT_ACCESS) ] = 0x01b7,
1419                 [ C(RESULT_MISS)   ] = 0x01b7,
1420         },
1421  },
1422 };
1423
1424 static __initconst const u64 core2_hw_cache_event_ids
1425                                 [PERF_COUNT_HW_CACHE_MAX]
1426                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1427                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1428 {
1429  [ C(L1D) ] = {
1430         [ C(OP_READ) ] = {
1431                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1432                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1433         },
1434         [ C(OP_WRITE) ] = {
1435                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1436                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1437         },
1438         [ C(OP_PREFETCH) ] = {
1439                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1440                 [ C(RESULT_MISS)   ] = 0,
1441         },
1442  },
1443  [ C(L1I ) ] = {
1444         [ C(OP_READ) ] = {
1445                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1446                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1447         },
1448         [ C(OP_WRITE) ] = {
1449                 [ C(RESULT_ACCESS) ] = -1,
1450                 [ C(RESULT_MISS)   ] = -1,
1451         },
1452         [ C(OP_PREFETCH) ] = {
1453                 [ C(RESULT_ACCESS) ] = 0,
1454                 [ C(RESULT_MISS)   ] = 0,
1455         },
1456  },
1457  [ C(LL  ) ] = {
1458         [ C(OP_READ) ] = {
1459                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1460                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1461         },
1462         [ C(OP_WRITE) ] = {
1463                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1464                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1465         },
1466         [ C(OP_PREFETCH) ] = {
1467                 [ C(RESULT_ACCESS) ] = 0,
1468                 [ C(RESULT_MISS)   ] = 0,
1469         },
1470  },
1471  [ C(DTLB) ] = {
1472         [ C(OP_READ) ] = {
1473                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1474                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1475         },
1476         [ C(OP_WRITE) ] = {
1477                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1478                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1479         },
1480         [ C(OP_PREFETCH) ] = {
1481                 [ C(RESULT_ACCESS) ] = 0,
1482                 [ C(RESULT_MISS)   ] = 0,
1483         },
1484  },
1485  [ C(ITLB) ] = {
1486         [ C(OP_READ) ] = {
1487                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1488                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1489         },
1490         [ C(OP_WRITE) ] = {
1491                 [ C(RESULT_ACCESS) ] = -1,
1492                 [ C(RESULT_MISS)   ] = -1,
1493         },
1494         [ C(OP_PREFETCH) ] = {
1495                 [ C(RESULT_ACCESS) ] = -1,
1496                 [ C(RESULT_MISS)   ] = -1,
1497         },
1498  },
1499  [ C(BPU ) ] = {
1500         [ C(OP_READ) ] = {
1501                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1502                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1503         },
1504         [ C(OP_WRITE) ] = {
1505                 [ C(RESULT_ACCESS) ] = -1,
1506                 [ C(RESULT_MISS)   ] = -1,
1507         },
1508         [ C(OP_PREFETCH) ] = {
1509                 [ C(RESULT_ACCESS) ] = -1,
1510                 [ C(RESULT_MISS)   ] = -1,
1511         },
1512  },
1513 };
1514
1515 static __initconst const u64 atom_hw_cache_event_ids
1516                                 [PERF_COUNT_HW_CACHE_MAX]
1517                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1518                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1519 {
1520  [ C(L1D) ] = {
1521         [ C(OP_READ) ] = {
1522                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1523                 [ C(RESULT_MISS)   ] = 0,
1524         },
1525         [ C(OP_WRITE) ] = {
1526                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1527                 [ C(RESULT_MISS)   ] = 0,
1528         },
1529         [ C(OP_PREFETCH) ] = {
1530                 [ C(RESULT_ACCESS) ] = 0x0,
1531                 [ C(RESULT_MISS)   ] = 0,
1532         },
1533  },
1534  [ C(L1I ) ] = {
1535         [ C(OP_READ) ] = {
1536                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1537                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1538         },
1539         [ C(OP_WRITE) ] = {
1540                 [ C(RESULT_ACCESS) ] = -1,
1541                 [ C(RESULT_MISS)   ] = -1,
1542         },
1543         [ C(OP_PREFETCH) ] = {
1544                 [ C(RESULT_ACCESS) ] = 0,
1545                 [ C(RESULT_MISS)   ] = 0,
1546         },
1547  },
1548  [ C(LL  ) ] = {
1549         [ C(OP_READ) ] = {
1550                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1551                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1552         },
1553         [ C(OP_WRITE) ] = {
1554                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1555                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1556         },
1557         [ C(OP_PREFETCH) ] = {
1558                 [ C(RESULT_ACCESS) ] = 0,
1559                 [ C(RESULT_MISS)   ] = 0,
1560         },
1561  },
1562  [ C(DTLB) ] = {
1563         [ C(OP_READ) ] = {
1564                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1565                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1566         },
1567         [ C(OP_WRITE) ] = {
1568                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1569                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1570         },
1571         [ C(OP_PREFETCH) ] = {
1572                 [ C(RESULT_ACCESS) ] = 0,
1573                 [ C(RESULT_MISS)   ] = 0,
1574         },
1575  },
1576  [ C(ITLB) ] = {
1577         [ C(OP_READ) ] = {
1578                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1579                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1580         },
1581         [ C(OP_WRITE) ] = {
1582                 [ C(RESULT_ACCESS) ] = -1,
1583                 [ C(RESULT_MISS)   ] = -1,
1584         },
1585         [ C(OP_PREFETCH) ] = {
1586                 [ C(RESULT_ACCESS) ] = -1,
1587                 [ C(RESULT_MISS)   ] = -1,
1588         },
1589  },
1590  [ C(BPU ) ] = {
1591         [ C(OP_READ) ] = {
1592                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1593                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1594         },
1595         [ C(OP_WRITE) ] = {
1596                 [ C(RESULT_ACCESS) ] = -1,
1597                 [ C(RESULT_MISS)   ] = -1,
1598         },
1599         [ C(OP_PREFETCH) ] = {
1600                 [ C(RESULT_ACCESS) ] = -1,
1601                 [ C(RESULT_MISS)   ] = -1,
1602         },
1603  },
1604 };
1605
1606 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1607 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1608 /* no_alloc_cycles.not_delivered */
1609 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1610                "event=0xca,umask=0x50");
1611 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1612 /* uops_retired.all */
1613 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1614                "event=0xc2,umask=0x10");
1615 /* uops_retired.all */
1616 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1617                "event=0xc2,umask=0x10");
1618
1619 static struct attribute *slm_events_attrs[] = {
1620         EVENT_PTR(td_total_slots_slm),
1621         EVENT_PTR(td_total_slots_scale_slm),
1622         EVENT_PTR(td_fetch_bubbles_slm),
1623         EVENT_PTR(td_fetch_bubbles_scale_slm),
1624         EVENT_PTR(td_slots_issued_slm),
1625         EVENT_PTR(td_slots_retired_slm),
1626         NULL
1627 };
1628
1629 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1630 {
1631         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1632         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1633         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1634         EVENT_EXTRA_END
1635 };
1636
1637 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1638 #define SLM_DMND_WRITE          SNB_DMND_RFO
1639 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1640
1641 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1642 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1643 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1644
1645 static __initconst const u64 slm_hw_cache_extra_regs
1646                                 [PERF_COUNT_HW_CACHE_MAX]
1647                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1648                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1649 {
1650  [ C(LL  ) ] = {
1651         [ C(OP_READ) ] = {
1652                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1653                 [ C(RESULT_MISS)   ] = 0,
1654         },
1655         [ C(OP_WRITE) ] = {
1656                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1657                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1658         },
1659         [ C(OP_PREFETCH) ] = {
1660                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1661                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1662         },
1663  },
1664 };
1665
1666 static __initconst const u64 slm_hw_cache_event_ids
1667                                 [PERF_COUNT_HW_CACHE_MAX]
1668                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1669                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1670 {
1671  [ C(L1D) ] = {
1672         [ C(OP_READ) ] = {
1673                 [ C(RESULT_ACCESS) ] = 0,
1674                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1675         },
1676         [ C(OP_WRITE) ] = {
1677                 [ C(RESULT_ACCESS) ] = 0,
1678                 [ C(RESULT_MISS)   ] = 0,
1679         },
1680         [ C(OP_PREFETCH) ] = {
1681                 [ C(RESULT_ACCESS) ] = 0,
1682                 [ C(RESULT_MISS)   ] = 0,
1683         },
1684  },
1685  [ C(L1I ) ] = {
1686         [ C(OP_READ) ] = {
1687                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1688                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1689         },
1690         [ C(OP_WRITE) ] = {
1691                 [ C(RESULT_ACCESS) ] = -1,
1692                 [ C(RESULT_MISS)   ] = -1,
1693         },
1694         [ C(OP_PREFETCH) ] = {
1695                 [ C(RESULT_ACCESS) ] = 0,
1696                 [ C(RESULT_MISS)   ] = 0,
1697         },
1698  },
1699  [ C(LL  ) ] = {
1700         [ C(OP_READ) ] = {
1701                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1702                 [ C(RESULT_ACCESS) ] = 0x01b7,
1703                 [ C(RESULT_MISS)   ] = 0,
1704         },
1705         [ C(OP_WRITE) ] = {
1706                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1707                 [ C(RESULT_ACCESS) ] = 0x01b7,
1708                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1709                 [ C(RESULT_MISS)   ] = 0x01b7,
1710         },
1711         [ C(OP_PREFETCH) ] = {
1712                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1713                 [ C(RESULT_ACCESS) ] = 0x01b7,
1714                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1715                 [ C(RESULT_MISS)   ] = 0x01b7,
1716         },
1717  },
1718  [ C(DTLB) ] = {
1719         [ C(OP_READ) ] = {
1720                 [ C(RESULT_ACCESS) ] = 0,
1721                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1722         },
1723         [ C(OP_WRITE) ] = {
1724                 [ C(RESULT_ACCESS) ] = 0,
1725                 [ C(RESULT_MISS)   ] = 0,
1726         },
1727         [ C(OP_PREFETCH) ] = {
1728                 [ C(RESULT_ACCESS) ] = 0,
1729                 [ C(RESULT_MISS)   ] = 0,
1730         },
1731  },
1732  [ C(ITLB) ] = {
1733         [ C(OP_READ) ] = {
1734                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1735                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1736         },
1737         [ C(OP_WRITE) ] = {
1738                 [ C(RESULT_ACCESS) ] = -1,
1739                 [ C(RESULT_MISS)   ] = -1,
1740         },
1741         [ C(OP_PREFETCH) ] = {
1742                 [ C(RESULT_ACCESS) ] = -1,
1743                 [ C(RESULT_MISS)   ] = -1,
1744         },
1745  },
1746  [ C(BPU ) ] = {
1747         [ C(OP_READ) ] = {
1748                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1749                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1750         },
1751         [ C(OP_WRITE) ] = {
1752                 [ C(RESULT_ACCESS) ] = -1,
1753                 [ C(RESULT_MISS)   ] = -1,
1754         },
1755         [ C(OP_PREFETCH) ] = {
1756                 [ C(RESULT_ACCESS) ] = -1,
1757                 [ C(RESULT_MISS)   ] = -1,
1758         },
1759  },
1760 };
1761
1762 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1763 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1764 /* UOPS_NOT_DELIVERED.ANY */
1765 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1766 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1767 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1768 /* UOPS_RETIRED.ANY */
1769 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1770 /* UOPS_ISSUED.ANY */
1771 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1772
1773 static struct attribute *glm_events_attrs[] = {
1774         EVENT_PTR(td_total_slots_glm),
1775         EVENT_PTR(td_total_slots_scale_glm),
1776         EVENT_PTR(td_fetch_bubbles_glm),
1777         EVENT_PTR(td_recovery_bubbles_glm),
1778         EVENT_PTR(td_slots_issued_glm),
1779         EVENT_PTR(td_slots_retired_glm),
1780         NULL
1781 };
1782
1783 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1784         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1785         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1786         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1787         EVENT_EXTRA_END
1788 };
1789
1790 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1791 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1792 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1793 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1794 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1795 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1796 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1797 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1798 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1799 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1800
1801 static __initconst const u64 glm_hw_cache_event_ids
1802                                 [PERF_COUNT_HW_CACHE_MAX]
1803                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1804                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1805         [C(L1D)] = {
1806                 [C(OP_READ)] = {
1807                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1808                         [C(RESULT_MISS)]        = 0x0,
1809                 },
1810                 [C(OP_WRITE)] = {
1811                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1812                         [C(RESULT_MISS)]        = 0x0,
1813                 },
1814                 [C(OP_PREFETCH)] = {
1815                         [C(RESULT_ACCESS)]      = 0x0,
1816                         [C(RESULT_MISS)]        = 0x0,
1817                 },
1818         },
1819         [C(L1I)] = {
1820                 [C(OP_READ)] = {
1821                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1822                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1823                 },
1824                 [C(OP_WRITE)] = {
1825                         [C(RESULT_ACCESS)]      = -1,
1826                         [C(RESULT_MISS)]        = -1,
1827                 },
1828                 [C(OP_PREFETCH)] = {
1829                         [C(RESULT_ACCESS)]      = 0x0,
1830                         [C(RESULT_MISS)]        = 0x0,
1831                 },
1832         },
1833         [C(LL)] = {
1834                 [C(OP_READ)] = {
1835                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1836                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1837                 },
1838                 [C(OP_WRITE)] = {
1839                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1840                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1841                 },
1842                 [C(OP_PREFETCH)] = {
1843                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1844                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1845                 },
1846         },
1847         [C(DTLB)] = {
1848                 [C(OP_READ)] = {
1849                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1850                         [C(RESULT_MISS)]        = 0x0,
1851                 },
1852                 [C(OP_WRITE)] = {
1853                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1854                         [C(RESULT_MISS)]        = 0x0,
1855                 },
1856                 [C(OP_PREFETCH)] = {
1857                         [C(RESULT_ACCESS)]      = 0x0,
1858                         [C(RESULT_MISS)]        = 0x0,
1859                 },
1860         },
1861         [C(ITLB)] = {
1862                 [C(OP_READ)] = {
1863                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1864                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1865                 },
1866                 [C(OP_WRITE)] = {
1867                         [C(RESULT_ACCESS)]      = -1,
1868                         [C(RESULT_MISS)]        = -1,
1869                 },
1870                 [C(OP_PREFETCH)] = {
1871                         [C(RESULT_ACCESS)]      = -1,
1872                         [C(RESULT_MISS)]        = -1,
1873                 },
1874         },
1875         [C(BPU)] = {
1876                 [C(OP_READ)] = {
1877                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1878                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1879                 },
1880                 [C(OP_WRITE)] = {
1881                         [C(RESULT_ACCESS)]      = -1,
1882                         [C(RESULT_MISS)]        = -1,
1883                 },
1884                 [C(OP_PREFETCH)] = {
1885                         [C(RESULT_ACCESS)]      = -1,
1886                         [C(RESULT_MISS)]        = -1,
1887                 },
1888         },
1889 };
1890
1891 static __initconst const u64 glm_hw_cache_extra_regs
1892                                 [PERF_COUNT_HW_CACHE_MAX]
1893                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1894                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1895         [C(LL)] = {
1896                 [C(OP_READ)] = {
1897                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1898                                                   GLM_LLC_ACCESS,
1899                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1900                                                   GLM_LLC_MISS,
1901                 },
1902                 [C(OP_WRITE)] = {
1903                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1904                                                   GLM_LLC_ACCESS,
1905                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1906                                                   GLM_LLC_MISS,
1907                 },
1908                 [C(OP_PREFETCH)] = {
1909                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1910                                                   GLM_LLC_ACCESS,
1911                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1912                                                   GLM_LLC_MISS,
1913                 },
1914         },
1915 };
1916
1917 static __initconst const u64 glp_hw_cache_event_ids
1918                                 [PERF_COUNT_HW_CACHE_MAX]
1919                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1920                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1921         [C(L1D)] = {
1922                 [C(OP_READ)] = {
1923                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1924                         [C(RESULT_MISS)]        = 0x0,
1925                 },
1926                 [C(OP_WRITE)] = {
1927                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1928                         [C(RESULT_MISS)]        = 0x0,
1929                 },
1930                 [C(OP_PREFETCH)] = {
1931                         [C(RESULT_ACCESS)]      = 0x0,
1932                         [C(RESULT_MISS)]        = 0x0,
1933                 },
1934         },
1935         [C(L1I)] = {
1936                 [C(OP_READ)] = {
1937                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1938                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1939                 },
1940                 [C(OP_WRITE)] = {
1941                         [C(RESULT_ACCESS)]      = -1,
1942                         [C(RESULT_MISS)]        = -1,
1943                 },
1944                 [C(OP_PREFETCH)] = {
1945                         [C(RESULT_ACCESS)]      = 0x0,
1946                         [C(RESULT_MISS)]        = 0x0,
1947                 },
1948         },
1949         [C(LL)] = {
1950                 [C(OP_READ)] = {
1951                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1952                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1953                 },
1954                 [C(OP_WRITE)] = {
1955                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1956                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1957                 },
1958                 [C(OP_PREFETCH)] = {
1959                         [C(RESULT_ACCESS)]      = 0x0,
1960                         [C(RESULT_MISS)]        = 0x0,
1961                 },
1962         },
1963         [C(DTLB)] = {
1964                 [C(OP_READ)] = {
1965                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1966                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1967                 },
1968                 [C(OP_WRITE)] = {
1969                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1970                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1971                 },
1972                 [C(OP_PREFETCH)] = {
1973                         [C(RESULT_ACCESS)]      = 0x0,
1974                         [C(RESULT_MISS)]        = 0x0,
1975                 },
1976         },
1977         [C(ITLB)] = {
1978                 [C(OP_READ)] = {
1979                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1980                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1981                 },
1982                 [C(OP_WRITE)] = {
1983                         [C(RESULT_ACCESS)]      = -1,
1984                         [C(RESULT_MISS)]        = -1,
1985                 },
1986                 [C(OP_PREFETCH)] = {
1987                         [C(RESULT_ACCESS)]      = -1,
1988                         [C(RESULT_MISS)]        = -1,
1989                 },
1990         },
1991         [C(BPU)] = {
1992                 [C(OP_READ)] = {
1993                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1994                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1995                 },
1996                 [C(OP_WRITE)] = {
1997                         [C(RESULT_ACCESS)]      = -1,
1998                         [C(RESULT_MISS)]        = -1,
1999                 },
2000                 [C(OP_PREFETCH)] = {
2001                         [C(RESULT_ACCESS)]      = -1,
2002                         [C(RESULT_MISS)]        = -1,
2003                 },
2004         },
2005 };
2006
2007 static __initconst const u64 glp_hw_cache_extra_regs
2008                                 [PERF_COUNT_HW_CACHE_MAX]
2009                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2010                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2011         [C(LL)] = {
2012                 [C(OP_READ)] = {
2013                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
2014                                                   GLM_LLC_ACCESS,
2015                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
2016                                                   GLM_LLC_MISS,
2017                 },
2018                 [C(OP_WRITE)] = {
2019                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
2020                                                   GLM_LLC_ACCESS,
2021                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
2022                                                   GLM_LLC_MISS,
2023                 },
2024                 [C(OP_PREFETCH)] = {
2025                         [C(RESULT_ACCESS)]      = 0x0,
2026                         [C(RESULT_MISS)]        = 0x0,
2027                 },
2028         },
2029 };
2030
2031 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
2032 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
2033 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
2034 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
2035 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2036                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2037 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2038
2039 static __initconst const u64 tnt_hw_cache_extra_regs
2040                                 [PERF_COUNT_HW_CACHE_MAX]
2041                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2042                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2043         [C(LL)] = {
2044                 [C(OP_READ)] = {
2045                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
2046                                                   TNT_LLC_ACCESS,
2047                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
2048                                                   TNT_LLC_MISS,
2049                 },
2050                 [C(OP_WRITE)] = {
2051                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
2052                                                   TNT_LLC_ACCESS,
2053                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
2054                                                   TNT_LLC_MISS,
2055                 },
2056                 [C(OP_PREFETCH)] = {
2057                         [C(RESULT_ACCESS)]      = 0x0,
2058                         [C(RESULT_MISS)]        = 0x0,
2059                 },
2060         },
2061 };
2062
2063 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2064 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2065 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2066 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2067
2068 static struct attribute *tnt_events_attrs[] = {
2069         EVENT_PTR(td_fe_bound_tnt),
2070         EVENT_PTR(td_retiring_tnt),
2071         EVENT_PTR(td_bad_spec_tnt),
2072         EVENT_PTR(td_be_bound_tnt),
2073         NULL,
2074 };
2075
2076 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2077         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2078         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2079         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2080         EVENT_EXTRA_END
2081 };
2082
2083 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2084         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2085         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2086         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2087         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2088         EVENT_EXTRA_END
2089 };
2090
2091 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
2092 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
2093 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
2094 #define KNL_MCDRAM_FAR          BIT_ULL(22)
2095 #define KNL_DDR_LOCAL           BIT_ULL(23)
2096 #define KNL_DDR_FAR             BIT_ULL(24)
2097 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2098                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
2099 #define KNL_L2_READ             SLM_DMND_READ
2100 #define KNL_L2_WRITE            SLM_DMND_WRITE
2101 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
2102 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
2103 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2104                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
2105                                                   SNB_NON_DRAM)
2106
2107 static __initconst const u64 knl_hw_cache_extra_regs
2108                                 [PERF_COUNT_HW_CACHE_MAX]
2109                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2110                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2111         [C(LL)] = {
2112                 [C(OP_READ)] = {
2113                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2114                         [C(RESULT_MISS)]   = 0,
2115                 },
2116                 [C(OP_WRITE)] = {
2117                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2118                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2119                 },
2120                 [C(OP_PREFETCH)] = {
2121                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2122                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2123                 },
2124         },
2125 };
2126
2127 /*
2128  * Used from PMIs where the LBRs are already disabled.
2129  *
2130  * This function could be called consecutively. It is required to remain in
2131  * disabled state if called consecutively.
2132  *
2133  * During consecutive calls, the same disable value will be written to related
2134  * registers, so the PMU state remains unchanged.
2135  *
2136  * intel_bts events don't coexist with intel PMU's BTS events because of
2137  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2138  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2139  *
2140  * Avoid PEBS_ENABLE MSR access in PMIs.
2141  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2142  * It doesn't matter if the PEBS is enabled or not.
2143  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2144  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2145  * However, there are some cases which may change PEBS status, e.g. PMI
2146  * throttle. The PEBS_ENABLE should be updated where the status changes.
2147  */
2148 static __always_inline void __intel_pmu_disable_all(bool bts)
2149 {
2150         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2151
2152         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2153
2154         if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2155                 intel_pmu_disable_bts();
2156 }
2157
2158 static __always_inline void intel_pmu_disable_all(void)
2159 {
2160         __intel_pmu_disable_all(true);
2161         intel_pmu_pebs_disable_all();
2162         intel_pmu_lbr_disable_all();
2163 }
2164
2165 static void __intel_pmu_enable_all(int added, bool pmi)
2166 {
2167         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2168         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2169
2170         intel_pmu_lbr_enable_all(pmi);
2171         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2172                intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2173
2174         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2175                 struct perf_event *event =
2176                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2177
2178                 if (WARN_ON_ONCE(!event))
2179                         return;
2180
2181                 intel_pmu_enable_bts(event->hw.config);
2182         }
2183 }
2184
2185 static void intel_pmu_enable_all(int added)
2186 {
2187         intel_pmu_pebs_enable_all();
2188         __intel_pmu_enable_all(added, false);
2189 }
2190
2191 static noinline int
2192 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2193                                   unsigned int cnt, unsigned long flags)
2194 {
2195         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2196
2197         intel_pmu_lbr_read();
2198         cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2199
2200         memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2201         intel_pmu_enable_all(0);
2202         local_irq_restore(flags);
2203         return cnt;
2204 }
2205
2206 static int
2207 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2208 {
2209         unsigned long flags;
2210
2211         /* must not have branches... */
2212         local_irq_save(flags);
2213         __intel_pmu_disable_all(false); /* we don't care about BTS */
2214         __intel_pmu_lbr_disable();
2215         /*            ... until here */
2216         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2217 }
2218
2219 static int
2220 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2221 {
2222         unsigned long flags;
2223
2224         /* must not have branches... */
2225         local_irq_save(flags);
2226         __intel_pmu_disable_all(false); /* we don't care about BTS */
2227         __intel_pmu_arch_lbr_disable();
2228         /*            ... until here */
2229         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2230 }
2231
2232 /*
2233  * Workaround for:
2234  *   Intel Errata AAK100 (model 26)
2235  *   Intel Errata AAP53  (model 30)
2236  *   Intel Errata BD53   (model 44)
2237  *
2238  * The official story:
2239  *   These chips need to be 'reset' when adding counters by programming the
2240  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2241  *   in sequence on the same PMC or on different PMCs.
2242  *
2243  * In practice it appears some of these events do in fact count, and
2244  * we need to program all 4 events.
2245  */
2246 static void intel_pmu_nhm_workaround(void)
2247 {
2248         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2249         static const unsigned long nhm_magic[4] = {
2250                 0x4300B5,
2251                 0x4300D2,
2252                 0x4300B1,
2253                 0x4300B1
2254         };
2255         struct perf_event *event;
2256         int i;
2257
2258         /*
2259          * The Errata requires below steps:
2260          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2261          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2262          *    the corresponding PMCx;
2263          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2264          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2265          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2266          */
2267
2268         /*
2269          * The real steps we choose are a little different from above.
2270          * A) To reduce MSR operations, we don't run step 1) as they
2271          *    are already cleared before this function is called;
2272          * B) Call x86_perf_event_update to save PMCx before configuring
2273          *    PERFEVTSELx with magic number;
2274          * C) With step 5), we do clear only when the PERFEVTSELx is
2275          *    not used currently.
2276          * D) Call x86_perf_event_set_period to restore PMCx;
2277          */
2278
2279         /* We always operate 4 pairs of PERF Counters */
2280         for (i = 0; i < 4; i++) {
2281                 event = cpuc->events[i];
2282                 if (event)
2283                         x86_perf_event_update(event);
2284         }
2285
2286         for (i = 0; i < 4; i++) {
2287                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2288                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2289         }
2290
2291         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2292         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2293
2294         for (i = 0; i < 4; i++) {
2295                 event = cpuc->events[i];
2296
2297                 if (event) {
2298                         x86_perf_event_set_period(event);
2299                         __x86_pmu_enable_event(&event->hw,
2300                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2301                 } else
2302                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2303         }
2304 }
2305
2306 static void intel_pmu_nhm_enable_all(int added)
2307 {
2308         if (added)
2309                 intel_pmu_nhm_workaround();
2310         intel_pmu_enable_all(added);
2311 }
2312
2313 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2314 {
2315         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2316
2317         if (cpuc->tfa_shadow != val) {
2318                 cpuc->tfa_shadow = val;
2319                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2320         }
2321 }
2322
2323 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2324 {
2325         /*
2326          * We're going to use PMC3, make sure TFA is set before we touch it.
2327          */
2328         if (cntr == 3)
2329                 intel_set_tfa(cpuc, true);
2330 }
2331
2332 static void intel_tfa_pmu_enable_all(int added)
2333 {
2334         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2335
2336         /*
2337          * If we find PMC3 is no longer used when we enable the PMU, we can
2338          * clear TFA.
2339          */
2340         if (!test_bit(3, cpuc->active_mask))
2341                 intel_set_tfa(cpuc, false);
2342
2343         intel_pmu_enable_all(added);
2344 }
2345
2346 static inline u64 intel_pmu_get_status(void)
2347 {
2348         u64 status;
2349
2350         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2351
2352         return status;
2353 }
2354
2355 static inline void intel_pmu_ack_status(u64 ack)
2356 {
2357         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2358 }
2359
2360 static inline bool event_is_checkpointed(struct perf_event *event)
2361 {
2362         return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2363 }
2364
2365 static inline void intel_set_masks(struct perf_event *event, int idx)
2366 {
2367         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2368
2369         if (event->attr.exclude_host)
2370                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2371         if (event->attr.exclude_guest)
2372                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2373         if (event_is_checkpointed(event))
2374                 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2375 }
2376
2377 static inline void intel_clear_masks(struct perf_event *event, int idx)
2378 {
2379         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2380
2381         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2382         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2383         __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2384 }
2385
2386 static void intel_pmu_disable_fixed(struct perf_event *event)
2387 {
2388         struct hw_perf_event *hwc = &event->hw;
2389         u64 ctrl_val, mask;
2390         int idx = hwc->idx;
2391
2392         if (is_topdown_idx(idx)) {
2393                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2394
2395                 /*
2396                  * When there are other active TopDown events,
2397                  * don't disable the fixed counter 3.
2398                  */
2399                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2400                         return;
2401                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2402         }
2403
2404         intel_clear_masks(event, idx);
2405
2406         mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2407         rdmsrl(hwc->config_base, ctrl_val);
2408         ctrl_val &= ~mask;
2409         wrmsrl(hwc->config_base, ctrl_val);
2410 }
2411
2412 static void intel_pmu_disable_event(struct perf_event *event)
2413 {
2414         struct hw_perf_event *hwc = &event->hw;
2415         int idx = hwc->idx;
2416
2417         switch (idx) {
2418         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2419                 intel_clear_masks(event, idx);
2420                 x86_pmu_disable_event(event);
2421                 break;
2422         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2423         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2424                 intel_pmu_disable_fixed(event);
2425                 break;
2426         case INTEL_PMC_IDX_FIXED_BTS:
2427                 intel_pmu_disable_bts();
2428                 intel_pmu_drain_bts_buffer();
2429                 return;
2430         case INTEL_PMC_IDX_FIXED_VLBR:
2431                 intel_clear_masks(event, idx);
2432                 break;
2433         default:
2434                 intel_clear_masks(event, idx);
2435                 pr_warn("Failed to disable the event with invalid index %d\n",
2436                         idx);
2437                 return;
2438         }
2439
2440         /*
2441          * Needs to be called after x86_pmu_disable_event,
2442          * so we don't trigger the event without PEBS bit set.
2443          */
2444         if (unlikely(event->attr.precise_ip))
2445                 intel_pmu_pebs_disable(event);
2446 }
2447
2448 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2449 {
2450         if (is_pebs_pt(event))
2451                 perf_report_aux_output_id(event, idx);
2452 }
2453
2454 static void intel_pmu_del_event(struct perf_event *event)
2455 {
2456         if (needs_branch_stack(event))
2457                 intel_pmu_lbr_del(event);
2458         if (event->attr.precise_ip)
2459                 intel_pmu_pebs_del(event);
2460 }
2461
2462 static int icl_set_topdown_event_period(struct perf_event *event)
2463 {
2464         struct hw_perf_event *hwc = &event->hw;
2465         s64 left = local64_read(&hwc->period_left);
2466
2467         /*
2468          * The values in PERF_METRICS MSR are derived from fixed counter 3.
2469          * Software should start both registers, PERF_METRICS and fixed
2470          * counter 3, from zero.
2471          * Clear PERF_METRICS and Fixed counter 3 in initialization.
2472          * After that, both MSRs will be cleared for each read.
2473          * Don't need to clear them again.
2474          */
2475         if (left == x86_pmu.max_period) {
2476                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2477                 wrmsrl(MSR_PERF_METRICS, 0);
2478                 hwc->saved_slots = 0;
2479                 hwc->saved_metric = 0;
2480         }
2481
2482         if ((hwc->saved_slots) && is_slots_event(event)) {
2483                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2484                 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2485         }
2486
2487         perf_event_update_userpage(event);
2488
2489         return 0;
2490 }
2491
2492 static int adl_set_topdown_event_period(struct perf_event *event)
2493 {
2494         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2495
2496         if (pmu->cpu_type != hybrid_big)
2497                 return 0;
2498
2499         return icl_set_topdown_event_period(event);
2500 }
2501
2502 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2503 {
2504         u32 val;
2505
2506         /*
2507          * The metric is reported as an 8bit integer fraction
2508          * summing up to 0xff.
2509          * slots-in-metric = (Metric / 0xff) * slots
2510          */
2511         val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2512         return  mul_u64_u32_div(slots, val, 0xff);
2513 }
2514
2515 static u64 icl_get_topdown_value(struct perf_event *event,
2516                                        u64 slots, u64 metrics)
2517 {
2518         int idx = event->hw.idx;
2519         u64 delta;
2520
2521         if (is_metric_idx(idx))
2522                 delta = icl_get_metrics_event_value(metrics, slots, idx);
2523         else
2524                 delta = slots;
2525
2526         return delta;
2527 }
2528
2529 static void __icl_update_topdown_event(struct perf_event *event,
2530                                        u64 slots, u64 metrics,
2531                                        u64 last_slots, u64 last_metrics)
2532 {
2533         u64 delta, last = 0;
2534
2535         delta = icl_get_topdown_value(event, slots, metrics);
2536         if (last_slots)
2537                 last = icl_get_topdown_value(event, last_slots, last_metrics);
2538
2539         /*
2540          * The 8bit integer fraction of metric may be not accurate,
2541          * especially when the changes is very small.
2542          * For example, if only a few bad_spec happens, the fraction
2543          * may be reduced from 1 to 0. If so, the bad_spec event value
2544          * will be 0 which is definitely less than the last value.
2545          * Avoid update event->count for this case.
2546          */
2547         if (delta > last) {
2548                 delta -= last;
2549                 local64_add(delta, &event->count);
2550         }
2551 }
2552
2553 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2554                                       u64 metrics, int metric_end)
2555 {
2556         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2557         struct perf_event *other;
2558         int idx;
2559
2560         event->hw.saved_slots = slots;
2561         event->hw.saved_metric = metrics;
2562
2563         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2564                 if (!is_topdown_idx(idx))
2565                         continue;
2566                 other = cpuc->events[idx];
2567                 other->hw.saved_slots = slots;
2568                 other->hw.saved_metric = metrics;
2569         }
2570 }
2571
2572 /*
2573  * Update all active Topdown events.
2574  *
2575  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2576  * modify by a NMI. PMU has to be disabled before calling this function.
2577  */
2578
2579 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2580 {
2581         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2582         struct perf_event *other;
2583         u64 slots, metrics;
2584         bool reset = true;
2585         int idx;
2586
2587         /* read Fixed counter 3 */
2588         rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2589         if (!slots)
2590                 return 0;
2591
2592         /* read PERF_METRICS */
2593         rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2594
2595         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2596                 if (!is_topdown_idx(idx))
2597                         continue;
2598                 other = cpuc->events[idx];
2599                 __icl_update_topdown_event(other, slots, metrics,
2600                                            event ? event->hw.saved_slots : 0,
2601                                            event ? event->hw.saved_metric : 0);
2602         }
2603
2604         /*
2605          * Check and update this event, which may have been cleared
2606          * in active_mask e.g. x86_pmu_stop()
2607          */
2608         if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2609                 __icl_update_topdown_event(event, slots, metrics,
2610                                            event->hw.saved_slots,
2611                                            event->hw.saved_metric);
2612
2613                 /*
2614                  * In x86_pmu_stop(), the event is cleared in active_mask first,
2615                  * then drain the delta, which indicates context switch for
2616                  * counting.
2617                  * Save metric and slots for context switch.
2618                  * Don't need to reset the PERF_METRICS and Fixed counter 3.
2619                  * Because the values will be restored in next schedule in.
2620                  */
2621                 update_saved_topdown_regs(event, slots, metrics, metric_end);
2622                 reset = false;
2623         }
2624
2625         if (reset) {
2626                 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2627                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2628                 wrmsrl(MSR_PERF_METRICS, 0);
2629                 if (event)
2630                         update_saved_topdown_regs(event, 0, 0, metric_end);
2631         }
2632
2633         return slots;
2634 }
2635
2636 static u64 icl_update_topdown_event(struct perf_event *event)
2637 {
2638         return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2639                                                  x86_pmu.num_topdown_events - 1);
2640 }
2641
2642 static u64 adl_update_topdown_event(struct perf_event *event)
2643 {
2644         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2645
2646         if (pmu->cpu_type != hybrid_big)
2647                 return 0;
2648
2649         return icl_update_topdown_event(event);
2650 }
2651
2652
2653 static void intel_pmu_read_topdown_event(struct perf_event *event)
2654 {
2655         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2656
2657         /* Only need to call update_topdown_event() once for group read. */
2658         if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2659             !is_slots_event(event))
2660                 return;
2661
2662         perf_pmu_disable(event->pmu);
2663         x86_pmu.update_topdown_event(event);
2664         perf_pmu_enable(event->pmu);
2665 }
2666
2667 static void intel_pmu_read_event(struct perf_event *event)
2668 {
2669         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2670                 intel_pmu_auto_reload_read(event);
2671         else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2672                 intel_pmu_read_topdown_event(event);
2673         else
2674                 x86_perf_event_update(event);
2675 }
2676
2677 static void intel_pmu_enable_fixed(struct perf_event *event)
2678 {
2679         struct hw_perf_event *hwc = &event->hw;
2680         u64 ctrl_val, mask, bits = 0;
2681         int idx = hwc->idx;
2682
2683         if (is_topdown_idx(idx)) {
2684                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2685                 /*
2686                  * When there are other active TopDown events,
2687                  * don't enable the fixed counter 3 again.
2688                  */
2689                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2690                         return;
2691
2692                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2693         }
2694
2695         intel_set_masks(event, idx);
2696
2697         /*
2698          * Enable IRQ generation (0x8), if not PEBS,
2699          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2700          * if requested:
2701          */
2702         if (!event->attr.precise_ip)
2703                 bits |= 0x8;
2704         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2705                 bits |= 0x2;
2706         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2707                 bits |= 0x1;
2708
2709         /*
2710          * ANY bit is supported in v3 and up
2711          */
2712         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2713                 bits |= 0x4;
2714
2715         idx -= INTEL_PMC_IDX_FIXED;
2716         bits <<= (idx * 4);
2717         mask = 0xfULL << (idx * 4);
2718
2719         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2720                 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2721                 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2722         }
2723
2724         rdmsrl(hwc->config_base, ctrl_val);
2725         ctrl_val &= ~mask;
2726         ctrl_val |= bits;
2727         wrmsrl(hwc->config_base, ctrl_val);
2728 }
2729
2730 static void intel_pmu_enable_event(struct perf_event *event)
2731 {
2732         struct hw_perf_event *hwc = &event->hw;
2733         int idx = hwc->idx;
2734
2735         if (unlikely(event->attr.precise_ip))
2736                 intel_pmu_pebs_enable(event);
2737
2738         switch (idx) {
2739         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2740                 intel_set_masks(event, idx);
2741                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2742                 break;
2743         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2744         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2745                 intel_pmu_enable_fixed(event);
2746                 break;
2747         case INTEL_PMC_IDX_FIXED_BTS:
2748                 if (!__this_cpu_read(cpu_hw_events.enabled))
2749                         return;
2750                 intel_pmu_enable_bts(hwc->config);
2751                 break;
2752         case INTEL_PMC_IDX_FIXED_VLBR:
2753                 intel_set_masks(event, idx);
2754                 break;
2755         default:
2756                 pr_warn("Failed to enable the event with invalid index %d\n",
2757                         idx);
2758         }
2759 }
2760
2761 static void intel_pmu_add_event(struct perf_event *event)
2762 {
2763         if (event->attr.precise_ip)
2764                 intel_pmu_pebs_add(event);
2765         if (needs_branch_stack(event))
2766                 intel_pmu_lbr_add(event);
2767 }
2768
2769 /*
2770  * Save and restart an expired event. Called by NMI contexts,
2771  * so it has to be careful about preempting normal event ops:
2772  */
2773 int intel_pmu_save_and_restart(struct perf_event *event)
2774 {
2775         x86_perf_event_update(event);
2776         /*
2777          * For a checkpointed counter always reset back to 0.  This
2778          * avoids a situation where the counter overflows, aborts the
2779          * transaction and is then set back to shortly before the
2780          * overflow, and overflows and aborts again.
2781          */
2782         if (unlikely(event_is_checkpointed(event))) {
2783                 /* No race with NMIs because the counter should not be armed */
2784                 wrmsrl(event->hw.event_base, 0);
2785                 local64_set(&event->hw.prev_count, 0);
2786         }
2787         return x86_perf_event_set_period(event);
2788 }
2789
2790 static void intel_pmu_reset(void)
2791 {
2792         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2793         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2794         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2795         int num_counters = hybrid(cpuc->pmu, num_counters);
2796         unsigned long flags;
2797         int idx;
2798
2799         if (!num_counters)
2800                 return;
2801
2802         local_irq_save(flags);
2803
2804         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2805
2806         for (idx = 0; idx < num_counters; idx++) {
2807                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2808                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2809         }
2810         for (idx = 0; idx < num_counters_fixed; idx++) {
2811                 if (fixed_counter_disabled(idx, cpuc->pmu))
2812                         continue;
2813                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2814         }
2815
2816         if (ds)
2817                 ds->bts_index = ds->bts_buffer_base;
2818
2819         /* Ack all overflows and disable fixed counters */
2820         if (x86_pmu.version >= 2) {
2821                 intel_pmu_ack_status(intel_pmu_get_status());
2822                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2823         }
2824
2825         /* Reset LBRs and LBR freezing */
2826         if (x86_pmu.lbr_nr) {
2827                 update_debugctlmsr(get_debugctlmsr() &
2828                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2829         }
2830
2831         local_irq_restore(flags);
2832 }
2833
2834 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2835 {
2836         struct perf_sample_data data;
2837         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2838         int bit;
2839         int handled = 0;
2840         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2841
2842         inc_irq_stat(apic_perf_irqs);
2843
2844         /*
2845          * Ignore a range of extra bits in status that do not indicate
2846          * overflow by themselves.
2847          */
2848         status &= ~(GLOBAL_STATUS_COND_CHG |
2849                     GLOBAL_STATUS_ASIF |
2850                     GLOBAL_STATUS_LBRS_FROZEN);
2851         if (!status)
2852                 return 0;
2853         /*
2854          * In case multiple PEBS events are sampled at the same time,
2855          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2856          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2857          * having their bits set in the status register. This is a sign
2858          * that there was at least one PEBS record pending at the time
2859          * of the PMU interrupt. PEBS counters must only be processed
2860          * via the drain_pebs() calls and not via the regular sample
2861          * processing loop coming after that the function, otherwise
2862          * phony regular samples may be generated in the sampling buffer
2863          * not marked with the EXACT tag. Another possibility is to have
2864          * one PEBS event and at least one non-PEBS event which overflows
2865          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2866          * not be set, yet the overflow status bit for the PEBS counter will
2867          * be on Skylake.
2868          *
2869          * To avoid this problem, we systematically ignore the PEBS-enabled
2870          * counters from the GLOBAL_STATUS mask and we always process PEBS
2871          * events via drain_pebs().
2872          */
2873         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2874                 status &= ~cpuc->pebs_enabled;
2875         else
2876                 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2877
2878         /*
2879          * PEBS overflow sets bit 62 in the global status register
2880          */
2881         if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2882                 u64 pebs_enabled = cpuc->pebs_enabled;
2883
2884                 handled++;
2885                 x86_pmu.drain_pebs(regs, &data);
2886                 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2887
2888                 /*
2889                  * PMI throttle may be triggered, which stops the PEBS event.
2890                  * Although cpuc->pebs_enabled is updated accordingly, the
2891                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
2892                  * cpuc->enabled has been forced to 0 in PMI.
2893                  * Update the MSR if pebs_enabled is changed.
2894                  */
2895                 if (pebs_enabled != cpuc->pebs_enabled)
2896                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2897         }
2898
2899         /*
2900          * Intel PT
2901          */
2902         if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2903                 handled++;
2904                 if (!perf_guest_handle_intel_pt_intr())
2905                         intel_pt_interrupt();
2906         }
2907
2908         /*
2909          * Intel Perf metrics
2910          */
2911         if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2912                 handled++;
2913                 if (x86_pmu.update_topdown_event)
2914                         x86_pmu.update_topdown_event(NULL);
2915         }
2916
2917         /*
2918          * Checkpointed counters can lead to 'spurious' PMIs because the
2919          * rollback caused by the PMI will have cleared the overflow status
2920          * bit. Therefore always force probe these counters.
2921          */
2922         status |= cpuc->intel_cp_status;
2923
2924         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2925                 struct perf_event *event = cpuc->events[bit];
2926
2927                 handled++;
2928
2929                 if (!test_bit(bit, cpuc->active_mask))
2930                         continue;
2931
2932                 if (!intel_pmu_save_and_restart(event))
2933                         continue;
2934
2935                 perf_sample_data_init(&data, 0, event->hw.last_period);
2936
2937                 if (has_branch_stack(event))
2938                         data.br_stack = &cpuc->lbr_stack;
2939
2940                 if (perf_event_overflow(event, &data, regs))
2941                         x86_pmu_stop(event, 0);
2942         }
2943
2944         return handled;
2945 }
2946
2947 /*
2948  * This handler is triggered by the local APIC, so the APIC IRQ handling
2949  * rules apply:
2950  */
2951 static int intel_pmu_handle_irq(struct pt_regs *regs)
2952 {
2953         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2954         bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
2955         bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
2956         int loops;
2957         u64 status;
2958         int handled;
2959         int pmu_enabled;
2960
2961         /*
2962          * Save the PMU state.
2963          * It needs to be restored when leaving the handler.
2964          */
2965         pmu_enabled = cpuc->enabled;
2966         /*
2967          * In general, the early ACK is only applied for old platforms.
2968          * For the big core starts from Haswell, the late ACK should be
2969          * applied.
2970          * For the small core after Tremont, we have to do the ACK right
2971          * before re-enabling counters, which is in the middle of the
2972          * NMI handler.
2973          */
2974         if (!late_ack && !mid_ack)
2975                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2976         intel_bts_disable_local();
2977         cpuc->enabled = 0;
2978         __intel_pmu_disable_all(true);
2979         handled = intel_pmu_drain_bts_buffer();
2980         handled += intel_bts_interrupt();
2981         status = intel_pmu_get_status();
2982         if (!status)
2983                 goto done;
2984
2985         loops = 0;
2986 again:
2987         intel_pmu_lbr_read();
2988         intel_pmu_ack_status(status);
2989         if (++loops > 100) {
2990                 static bool warned;
2991
2992                 if (!warned) {
2993                         WARN(1, "perfevents: irq loop stuck!\n");
2994                         perf_event_print_debug();
2995                         warned = true;
2996                 }
2997                 intel_pmu_reset();
2998                 goto done;
2999         }
3000
3001         handled += handle_pmi_common(regs, status);
3002
3003         /*
3004          * Repeat if there is more work to be done:
3005          */
3006         status = intel_pmu_get_status();
3007         if (status)
3008                 goto again;
3009
3010 done:
3011         if (mid_ack)
3012                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3013         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3014         cpuc->enabled = pmu_enabled;
3015         if (pmu_enabled)
3016                 __intel_pmu_enable_all(0, true);
3017         intel_bts_enable_local();
3018
3019         /*
3020          * Only unmask the NMI after the overflow counters
3021          * have been reset. This avoids spurious NMIs on
3022          * Haswell CPUs.
3023          */
3024         if (late_ack)
3025                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3026         return handled;
3027 }
3028
3029 static struct event_constraint *
3030 intel_bts_constraints(struct perf_event *event)
3031 {
3032         if (unlikely(intel_pmu_has_bts(event)))
3033                 return &bts_constraint;
3034
3035         return NULL;
3036 }
3037
3038 /*
3039  * Note: matches a fake event, like Fixed2.
3040  */
3041 static struct event_constraint *
3042 intel_vlbr_constraints(struct perf_event *event)
3043 {
3044         struct event_constraint *c = &vlbr_constraint;
3045
3046         if (unlikely(constraint_match(c, event->hw.config))) {
3047                 event->hw.flags |= c->flags;
3048                 return c;
3049         }
3050
3051         return NULL;
3052 }
3053
3054 static int intel_alt_er(struct cpu_hw_events *cpuc,
3055                         int idx, u64 config)
3056 {
3057         struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3058         int alt_idx = idx;
3059
3060         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3061                 return idx;
3062
3063         if (idx == EXTRA_REG_RSP_0)
3064                 alt_idx = EXTRA_REG_RSP_1;
3065
3066         if (idx == EXTRA_REG_RSP_1)
3067                 alt_idx = EXTRA_REG_RSP_0;
3068
3069         if (config & ~extra_regs[alt_idx].valid_mask)
3070                 return idx;
3071
3072         return alt_idx;
3073 }
3074
3075 static void intel_fixup_er(struct perf_event *event, int idx)
3076 {
3077         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3078         event->hw.extra_reg.idx = idx;
3079
3080         if (idx == EXTRA_REG_RSP_0) {
3081                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3082                 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3083                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3084         } else if (idx == EXTRA_REG_RSP_1) {
3085                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3086                 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3087                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3088         }
3089 }
3090
3091 /*
3092  * manage allocation of shared extra msr for certain events
3093  *
3094  * sharing can be:
3095  * per-cpu: to be shared between the various events on a single PMU
3096  * per-core: per-cpu + shared by HT threads
3097  */
3098 static struct event_constraint *
3099 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3100                                    struct perf_event *event,
3101                                    struct hw_perf_event_extra *reg)
3102 {
3103         struct event_constraint *c = &emptyconstraint;
3104         struct er_account *era;
3105         unsigned long flags;
3106         int idx = reg->idx;
3107
3108         /*
3109          * reg->alloc can be set due to existing state, so for fake cpuc we
3110          * need to ignore this, otherwise we might fail to allocate proper fake
3111          * state for this extra reg constraint. Also see the comment below.
3112          */
3113         if (reg->alloc && !cpuc->is_fake)
3114                 return NULL; /* call x86_get_event_constraint() */
3115
3116 again:
3117         era = &cpuc->shared_regs->regs[idx];
3118         /*
3119          * we use spin_lock_irqsave() to avoid lockdep issues when
3120          * passing a fake cpuc
3121          */
3122         raw_spin_lock_irqsave(&era->lock, flags);
3123
3124         if (!atomic_read(&era->ref) || era->config == reg->config) {
3125
3126                 /*
3127                  * If its a fake cpuc -- as per validate_{group,event}() we
3128                  * shouldn't touch event state and we can avoid doing so
3129                  * since both will only call get_event_constraints() once
3130                  * on each event, this avoids the need for reg->alloc.
3131                  *
3132                  * Not doing the ER fixup will only result in era->reg being
3133                  * wrong, but since we won't actually try and program hardware
3134                  * this isn't a problem either.
3135                  */
3136                 if (!cpuc->is_fake) {
3137                         if (idx != reg->idx)
3138                                 intel_fixup_er(event, idx);
3139
3140                         /*
3141                          * x86_schedule_events() can call get_event_constraints()
3142                          * multiple times on events in the case of incremental
3143                          * scheduling(). reg->alloc ensures we only do the ER
3144                          * allocation once.
3145                          */
3146                         reg->alloc = 1;
3147                 }
3148
3149                 /* lock in msr value */
3150                 era->config = reg->config;
3151                 era->reg = reg->reg;
3152
3153                 /* one more user */
3154                 atomic_inc(&era->ref);
3155
3156                 /*
3157                  * need to call x86_get_event_constraint()
3158                  * to check if associated event has constraints
3159                  */
3160                 c = NULL;
3161         } else {
3162                 idx = intel_alt_er(cpuc, idx, reg->config);
3163                 if (idx != reg->idx) {
3164                         raw_spin_unlock_irqrestore(&era->lock, flags);
3165                         goto again;
3166                 }
3167         }
3168         raw_spin_unlock_irqrestore(&era->lock, flags);
3169
3170         return c;
3171 }
3172
3173 static void
3174 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3175                                    struct hw_perf_event_extra *reg)
3176 {
3177         struct er_account *era;
3178
3179         /*
3180          * Only put constraint if extra reg was actually allocated. Also takes
3181          * care of event which do not use an extra shared reg.
3182          *
3183          * Also, if this is a fake cpuc we shouldn't touch any event state
3184          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3185          * either since it'll be thrown out.
3186          */
3187         if (!reg->alloc || cpuc->is_fake)
3188                 return;
3189
3190         era = &cpuc->shared_regs->regs[reg->idx];
3191
3192         /* one fewer user */
3193         atomic_dec(&era->ref);
3194
3195         /* allocate again next time */
3196         reg->alloc = 0;
3197 }
3198
3199 static struct event_constraint *
3200 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3201                               struct perf_event *event)
3202 {
3203         struct event_constraint *c = NULL, *d;
3204         struct hw_perf_event_extra *xreg, *breg;
3205
3206         xreg = &event->hw.extra_reg;
3207         if (xreg->idx != EXTRA_REG_NONE) {
3208                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3209                 if (c == &emptyconstraint)
3210                         return c;
3211         }
3212         breg = &event->hw.branch_reg;
3213         if (breg->idx != EXTRA_REG_NONE) {
3214                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3215                 if (d == &emptyconstraint) {
3216                         __intel_shared_reg_put_constraints(cpuc, xreg);
3217                         c = d;
3218                 }
3219         }
3220         return c;
3221 }
3222
3223 struct event_constraint *
3224 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3225                           struct perf_event *event)
3226 {
3227         struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3228         struct event_constraint *c;
3229
3230         if (event_constraints) {
3231                 for_each_event_constraint(c, event_constraints) {
3232                         if (constraint_match(c, event->hw.config)) {
3233                                 event->hw.flags |= c->flags;
3234                                 return c;
3235                         }
3236                 }
3237         }
3238
3239         return &hybrid_var(cpuc->pmu, unconstrained);
3240 }
3241
3242 static struct event_constraint *
3243 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3244                             struct perf_event *event)
3245 {
3246         struct event_constraint *c;
3247
3248         c = intel_vlbr_constraints(event);
3249         if (c)
3250                 return c;
3251
3252         c = intel_bts_constraints(event);
3253         if (c)
3254                 return c;
3255
3256         c = intel_shared_regs_constraints(cpuc, event);
3257         if (c)
3258                 return c;
3259
3260         c = intel_pebs_constraints(event);
3261         if (c)
3262                 return c;
3263
3264         return x86_get_event_constraints(cpuc, idx, event);
3265 }
3266
3267 static void
3268 intel_start_scheduling(struct cpu_hw_events *cpuc)
3269 {
3270         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3271         struct intel_excl_states *xl;
3272         int tid = cpuc->excl_thread_id;
3273
3274         /*
3275          * nothing needed if in group validation mode
3276          */
3277         if (cpuc->is_fake || !is_ht_workaround_enabled())
3278                 return;
3279
3280         /*
3281          * no exclusion needed
3282          */
3283         if (WARN_ON_ONCE(!excl_cntrs))
3284                 return;
3285
3286         xl = &excl_cntrs->states[tid];
3287
3288         xl->sched_started = true;
3289         /*
3290          * lock shared state until we are done scheduling
3291          * in stop_event_scheduling()
3292          * makes scheduling appear as a transaction
3293          */
3294         raw_spin_lock(&excl_cntrs->lock);
3295 }
3296
3297 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3298 {
3299         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3300         struct event_constraint *c = cpuc->event_constraint[idx];
3301         struct intel_excl_states *xl;
3302         int tid = cpuc->excl_thread_id;
3303
3304         if (cpuc->is_fake || !is_ht_workaround_enabled())
3305                 return;
3306
3307         if (WARN_ON_ONCE(!excl_cntrs))
3308                 return;
3309
3310         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3311                 return;
3312
3313         xl = &excl_cntrs->states[tid];
3314
3315         lockdep_assert_held(&excl_cntrs->lock);
3316
3317         if (c->flags & PERF_X86_EVENT_EXCL)
3318                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3319         else
3320                 xl->state[cntr] = INTEL_EXCL_SHARED;
3321 }
3322
3323 static void
3324 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3325 {
3326         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3327         struct intel_excl_states *xl;
3328         int tid = cpuc->excl_thread_id;
3329
3330         /*
3331          * nothing needed if in group validation mode
3332          */
3333         if (cpuc->is_fake || !is_ht_workaround_enabled())
3334                 return;
3335         /*
3336          * no exclusion needed
3337          */
3338         if (WARN_ON_ONCE(!excl_cntrs))
3339                 return;
3340
3341         xl = &excl_cntrs->states[tid];
3342
3343         xl->sched_started = false;
3344         /*
3345          * release shared state lock (acquired in intel_start_scheduling())
3346          */
3347         raw_spin_unlock(&excl_cntrs->lock);
3348 }
3349
3350 static struct event_constraint *
3351 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3352 {
3353         WARN_ON_ONCE(!cpuc->constraint_list);
3354
3355         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3356                 struct event_constraint *cx;
3357
3358                 /*
3359                  * grab pre-allocated constraint entry
3360                  */
3361                 cx = &cpuc->constraint_list[idx];
3362
3363                 /*
3364                  * initialize dynamic constraint
3365                  * with static constraint
3366                  */
3367                 *cx = *c;
3368
3369                 /*
3370                  * mark constraint as dynamic
3371                  */
3372                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3373                 c = cx;
3374         }
3375
3376         return c;
3377 }
3378
3379 static struct event_constraint *
3380 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3381                            int idx, struct event_constraint *c)
3382 {
3383         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3384         struct intel_excl_states *xlo;
3385         int tid = cpuc->excl_thread_id;
3386         int is_excl, i, w;
3387
3388         /*
3389          * validating a group does not require
3390          * enforcing cross-thread  exclusion
3391          */
3392         if (cpuc->is_fake || !is_ht_workaround_enabled())
3393                 return c;
3394
3395         /*
3396          * no exclusion needed
3397          */
3398         if (WARN_ON_ONCE(!excl_cntrs))
3399                 return c;
3400
3401         /*
3402          * because we modify the constraint, we need
3403          * to make a copy. Static constraints come
3404          * from static const tables.
3405          *
3406          * only needed when constraint has not yet
3407          * been cloned (marked dynamic)
3408          */
3409         c = dyn_constraint(cpuc, c, idx);
3410
3411         /*
3412          * From here on, the constraint is dynamic.
3413          * Either it was just allocated above, or it
3414          * was allocated during a earlier invocation
3415          * of this function
3416          */
3417
3418         /*
3419          * state of sibling HT
3420          */
3421         xlo = &excl_cntrs->states[tid ^ 1];
3422
3423         /*
3424          * event requires exclusive counter access
3425          * across HT threads
3426          */
3427         is_excl = c->flags & PERF_X86_EVENT_EXCL;
3428         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3429                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3430                 if (!cpuc->n_excl++)
3431                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3432         }
3433
3434         /*
3435          * Modify static constraint with current dynamic
3436          * state of thread
3437          *
3438          * EXCLUSIVE: sibling counter measuring exclusive event
3439          * SHARED   : sibling counter measuring non-exclusive event
3440          * UNUSED   : sibling counter unused
3441          */
3442         w = c->weight;
3443         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3444                 /*
3445                  * exclusive event in sibling counter
3446                  * our corresponding counter cannot be used
3447                  * regardless of our event
3448                  */
3449                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3450                         __clear_bit(i, c->idxmsk);
3451                         w--;
3452                         continue;
3453                 }
3454                 /*
3455                  * if measuring an exclusive event, sibling
3456                  * measuring non-exclusive, then counter cannot
3457                  * be used
3458                  */
3459                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3460                         __clear_bit(i, c->idxmsk);
3461                         w--;
3462                         continue;
3463                 }
3464         }
3465
3466         /*
3467          * if we return an empty mask, then switch
3468          * back to static empty constraint to avoid
3469          * the cost of freeing later on
3470          */
3471         if (!w)
3472                 c = &emptyconstraint;
3473
3474         c->weight = w;
3475
3476         return c;
3477 }
3478
3479 static struct event_constraint *
3480 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3481                             struct perf_event *event)
3482 {
3483         struct event_constraint *c1, *c2;
3484
3485         c1 = cpuc->event_constraint[idx];
3486
3487         /*
3488          * first time only
3489          * - static constraint: no change across incremental scheduling calls
3490          * - dynamic constraint: handled by intel_get_excl_constraints()
3491          */
3492         c2 = __intel_get_event_constraints(cpuc, idx, event);
3493         if (c1) {
3494                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3495                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3496                 c1->weight = c2->weight;
3497                 c2 = c1;
3498         }
3499
3500         if (cpuc->excl_cntrs)
3501                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3502
3503         return c2;
3504 }
3505
3506 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3507                 struct perf_event *event)
3508 {
3509         struct hw_perf_event *hwc = &event->hw;
3510         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3511         int tid = cpuc->excl_thread_id;
3512         struct intel_excl_states *xl;
3513
3514         /*
3515          * nothing needed if in group validation mode
3516          */
3517         if (cpuc->is_fake)
3518                 return;
3519
3520         if (WARN_ON_ONCE(!excl_cntrs))
3521                 return;
3522
3523         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3524                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3525                 if (!--cpuc->n_excl)
3526                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3527         }
3528
3529         /*
3530          * If event was actually assigned, then mark the counter state as
3531          * unused now.
3532          */
3533         if (hwc->idx >= 0) {
3534                 xl = &excl_cntrs->states[tid];
3535
3536                 /*
3537                  * put_constraint may be called from x86_schedule_events()
3538                  * which already has the lock held so here make locking
3539                  * conditional.
3540                  */
3541                 if (!xl->sched_started)
3542                         raw_spin_lock(&excl_cntrs->lock);
3543
3544                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3545
3546                 if (!xl->sched_started)
3547                         raw_spin_unlock(&excl_cntrs->lock);
3548         }
3549 }
3550
3551 static void
3552 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3553                                         struct perf_event *event)
3554 {
3555         struct hw_perf_event_extra *reg;
3556
3557         reg = &event->hw.extra_reg;
3558         if (reg->idx != EXTRA_REG_NONE)
3559                 __intel_shared_reg_put_constraints(cpuc, reg);
3560
3561         reg = &event->hw.branch_reg;
3562         if (reg->idx != EXTRA_REG_NONE)
3563                 __intel_shared_reg_put_constraints(cpuc, reg);
3564 }
3565
3566 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3567                                         struct perf_event *event)
3568 {
3569         intel_put_shared_regs_event_constraints(cpuc, event);
3570
3571         /*
3572          * is PMU has exclusive counter restrictions, then
3573          * all events are subject to and must call the
3574          * put_excl_constraints() routine
3575          */
3576         if (cpuc->excl_cntrs)
3577                 intel_put_excl_constraints(cpuc, event);
3578 }
3579
3580 static void intel_pebs_aliases_core2(struct perf_event *event)
3581 {
3582         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3583                 /*
3584                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3585                  * (0x003c) so that we can use it with PEBS.
3586                  *
3587                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3588                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3589                  * (0x00c0), which is a PEBS capable event, to get the same
3590                  * count.
3591                  *
3592                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3593                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3594                  * larger than the maximum number of instructions that can be
3595                  * retired per cycle (4) and then inverting the condition, we
3596                  * count all cycles that retire 16 or less instructions, which
3597                  * is every cycle.
3598                  *
3599                  * Thereby we gain a PEBS capable cycle counter.
3600                  */
3601                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3602
3603                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3604                 event->hw.config = alt_config;
3605         }
3606 }
3607
3608 static void intel_pebs_aliases_snb(struct perf_event *event)
3609 {
3610         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3611                 /*
3612                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3613                  * (0x003c) so that we can use it with PEBS.
3614                  *
3615                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3616                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3617                  * (0x01c2), which is a PEBS capable event, to get the same
3618                  * count.
3619                  *
3620                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3621                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3622                  * larger than the maximum number of micro-ops that can be
3623                  * retired per cycle (4) and then inverting the condition, we
3624                  * count all cycles that retire 16 or less micro-ops, which
3625                  * is every cycle.
3626                  *
3627                  * Thereby we gain a PEBS capable cycle counter.
3628                  */
3629                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3630
3631                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3632                 event->hw.config = alt_config;
3633         }
3634 }
3635
3636 static void intel_pebs_aliases_precdist(struct perf_event *event)
3637 {
3638         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3639                 /*
3640                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3641                  * (0x003c) so that we can use it with PEBS.
3642                  *
3643                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3644                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3645                  * (0x01c0), which is a PEBS capable event, to get the same
3646                  * count.
3647                  *
3648                  * The PREC_DIST event has special support to minimize sample
3649                  * shadowing effects. One drawback is that it can be
3650                  * only programmed on counter 1, but that seems like an
3651                  * acceptable trade off.
3652                  */
3653                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3654
3655                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3656                 event->hw.config = alt_config;
3657         }
3658 }
3659
3660 static void intel_pebs_aliases_ivb(struct perf_event *event)
3661 {
3662         if (event->attr.precise_ip < 3)
3663                 return intel_pebs_aliases_snb(event);
3664         return intel_pebs_aliases_precdist(event);
3665 }
3666
3667 static void intel_pebs_aliases_skl(struct perf_event *event)
3668 {
3669         if (event->attr.precise_ip < 3)
3670                 return intel_pebs_aliases_core2(event);
3671         return intel_pebs_aliases_precdist(event);
3672 }
3673
3674 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3675 {
3676         unsigned long flags = x86_pmu.large_pebs_flags;
3677
3678         if (event->attr.use_clockid)
3679                 flags &= ~PERF_SAMPLE_TIME;
3680         if (!event->attr.exclude_kernel)
3681                 flags &= ~PERF_SAMPLE_REGS_USER;
3682         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3683                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3684         return flags;
3685 }
3686
3687 static int intel_pmu_bts_config(struct perf_event *event)
3688 {
3689         struct perf_event_attr *attr = &event->attr;
3690
3691         if (unlikely(intel_pmu_has_bts(event))) {
3692                 /* BTS is not supported by this architecture. */
3693                 if (!x86_pmu.bts_active)
3694                         return -EOPNOTSUPP;
3695
3696                 /* BTS is currently only allowed for user-mode. */
3697                 if (!attr->exclude_kernel)
3698                         return -EOPNOTSUPP;
3699
3700                 /* BTS is not allowed for precise events. */
3701                 if (attr->precise_ip)
3702                         return -EOPNOTSUPP;
3703
3704                 /* disallow bts if conflicting events are present */
3705                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3706                         return -EBUSY;
3707
3708                 event->destroy = hw_perf_lbr_event_destroy;
3709         }
3710
3711         return 0;
3712 }
3713
3714 static int core_pmu_hw_config(struct perf_event *event)
3715 {
3716         int ret = x86_pmu_hw_config(event);
3717
3718         if (ret)
3719                 return ret;
3720
3721         return intel_pmu_bts_config(event);
3722 }
3723
3724 #define INTEL_TD_METRIC_AVAILABLE_MAX   (INTEL_TD_METRIC_RETIRING + \
3725                                          ((x86_pmu.num_topdown_events - 1) << 8))
3726
3727 static bool is_available_metric_event(struct perf_event *event)
3728 {
3729         return is_metric_event(event) &&
3730                 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3731 }
3732
3733 static inline bool is_mem_loads_event(struct perf_event *event)
3734 {
3735         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3736 }
3737
3738 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3739 {
3740         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3741 }
3742
3743 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3744 {
3745         if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3746                 return false;
3747
3748         if (is_hybrid())
3749                 return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3750
3751         return true;
3752 }
3753
3754 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3755 {
3756         union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3757
3758         return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3759 }
3760
3761 static int intel_pmu_hw_config(struct perf_event *event)
3762 {
3763         int ret = x86_pmu_hw_config(event);
3764
3765         if (ret)
3766                 return ret;
3767
3768         ret = intel_pmu_bts_config(event);
3769         if (ret)
3770                 return ret;
3771
3772         if (event->attr.precise_ip) {
3773                 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3774                         return -EINVAL;
3775
3776                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3777                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3778                         if (!(event->attr.sample_type &
3779                               ~intel_pmu_large_pebs_flags(event))) {
3780                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3781                                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3782                         }
3783                 }
3784                 if (x86_pmu.pebs_aliases)
3785                         x86_pmu.pebs_aliases(event);
3786
3787                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3788                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3789         }
3790
3791         if (needs_branch_stack(event)) {
3792                 ret = intel_pmu_setup_lbr_filter(event);
3793                 if (ret)
3794                         return ret;
3795                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3796
3797                 /*
3798                  * BTS is set up earlier in this path, so don't account twice
3799                  */
3800                 if (!unlikely(intel_pmu_has_bts(event))) {
3801                         /* disallow lbr if conflicting events are present */
3802                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3803                                 return -EBUSY;
3804
3805                         event->destroy = hw_perf_lbr_event_destroy;
3806                 }
3807         }
3808
3809         if (event->attr.aux_output) {
3810                 if (!event->attr.precise_ip)
3811                         return -EINVAL;
3812
3813                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3814         }
3815
3816         if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3817             (event->attr.type == PERF_TYPE_HW_CACHE))
3818                 return 0;
3819
3820         /*
3821          * Config Topdown slots and metric events
3822          *
3823          * The slots event on Fixed Counter 3 can support sampling,
3824          * which will be handled normally in x86_perf_event_update().
3825          *
3826          * Metric events don't support sampling and require being paired
3827          * with a slots event as group leader. When the slots event
3828          * is used in a metrics group, it too cannot support sampling.
3829          */
3830         if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3831                 if (event->attr.config1 || event->attr.config2)
3832                         return -EINVAL;
3833
3834                 /*
3835                  * The TopDown metrics events and slots event don't
3836                  * support any filters.
3837                  */
3838                 if (event->attr.config & X86_ALL_EVENT_FLAGS)
3839                         return -EINVAL;
3840
3841                 if (is_available_metric_event(event)) {
3842                         struct perf_event *leader = event->group_leader;
3843
3844                         /* The metric events don't support sampling. */
3845                         if (is_sampling_event(event))
3846                                 return -EINVAL;
3847
3848                         /* The metric events require a slots group leader. */
3849                         if (!is_slots_event(leader))
3850                                 return -EINVAL;
3851
3852                         /*
3853                          * The leader/SLOTS must not be a sampling event for
3854                          * metric use; hardware requires it starts at 0 when used
3855                          * in conjunction with MSR_PERF_METRICS.
3856                          */
3857                         if (is_sampling_event(leader))
3858                                 return -EINVAL;
3859
3860                         event->event_caps |= PERF_EV_CAP_SIBLING;
3861                         /*
3862                          * Only once we have a METRICs sibling do we
3863                          * need TopDown magic.
3864                          */
3865                         leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3866                         event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3867                 }
3868         }
3869
3870         /*
3871          * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3872          * doesn't function quite right. As a work-around it needs to always be
3873          * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3874          * The actual count of this second event is irrelevant it just needs
3875          * to be active to make the first event function correctly.
3876          *
3877          * In a group, the auxiliary event must be in front of the load latency
3878          * event. The rule is to simplify the implementation of the check.
3879          * That's because perf cannot have a complete group at the moment.
3880          */
3881         if (require_mem_loads_aux_event(event) &&
3882             (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3883             is_mem_loads_event(event)) {
3884                 struct perf_event *leader = event->group_leader;
3885                 struct perf_event *sibling = NULL;
3886
3887                 if (!is_mem_loads_aux_event(leader)) {
3888                         for_each_sibling_event(sibling, leader) {
3889                                 if (is_mem_loads_aux_event(sibling))
3890                                         break;
3891                         }
3892                         if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3893                                 return -ENODATA;
3894                 }
3895         }
3896
3897         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3898                 return 0;
3899
3900         if (x86_pmu.version < 3)
3901                 return -EINVAL;
3902
3903         ret = perf_allow_cpu(&event->attr);
3904         if (ret)
3905                 return ret;
3906
3907         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3908
3909         return 0;
3910 }
3911
3912 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3913 {
3914         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3915         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3916         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3917
3918         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3919         arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3920         arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3921         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3922                 arr[0].guest &= ~cpuc->pebs_enabled;
3923         else
3924                 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3925         *nr = 1;
3926
3927         if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3928                 /*
3929                  * If PMU counter has PEBS enabled it is not enough to
3930                  * disable counter on a guest entry since PEBS memory
3931                  * write can overshoot guest entry and corrupt guest
3932                  * memory. Disabling PEBS solves the problem.
3933                  *
3934                  * Don't do this if the CPU already enforces it.
3935                  */
3936                 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3937                 arr[1].host = cpuc->pebs_enabled;
3938                 arr[1].guest = 0;
3939                 *nr = 2;
3940         }
3941
3942         return arr;
3943 }
3944
3945 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3946 {
3947         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3948         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3949         int idx;
3950
3951         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3952                 struct perf_event *event = cpuc->events[idx];
3953
3954                 arr[idx].msr = x86_pmu_config_addr(idx);
3955                 arr[idx].host = arr[idx].guest = 0;
3956
3957                 if (!test_bit(idx, cpuc->active_mask))
3958                         continue;
3959
3960                 arr[idx].host = arr[idx].guest =
3961                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3962
3963                 if (event->attr.exclude_host)
3964                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3965                 else if (event->attr.exclude_guest)
3966                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3967         }
3968
3969         *nr = x86_pmu.num_counters;
3970         return arr;
3971 }
3972
3973 static void core_pmu_enable_event(struct perf_event *event)
3974 {
3975         if (!event->attr.exclude_host)
3976                 x86_pmu_enable_event(event);
3977 }
3978
3979 static void core_pmu_enable_all(int added)
3980 {
3981         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3982         int idx;
3983
3984         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3985                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3986
3987                 if (!test_bit(idx, cpuc->active_mask) ||
3988                                 cpuc->events[idx]->attr.exclude_host)
3989                         continue;
3990
3991                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3992         }
3993 }
3994
3995 static int hsw_hw_config(struct perf_event *event)
3996 {
3997         int ret = intel_pmu_hw_config(event);
3998
3999         if (ret)
4000                 return ret;
4001         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4002                 return 0;
4003         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4004
4005         /*
4006          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4007          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4008          * this combination.
4009          */
4010         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4011              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4012               event->attr.precise_ip > 0))
4013                 return -EOPNOTSUPP;
4014
4015         if (event_is_checkpointed(event)) {
4016                 /*
4017                  * Sampling of checkpointed events can cause situations where
4018                  * the CPU constantly aborts because of a overflow, which is
4019                  * then checkpointed back and ignored. Forbid checkpointing
4020                  * for sampling.
4021                  *
4022                  * But still allow a long sampling period, so that perf stat
4023                  * from KVM works.
4024                  */
4025                 if (event->attr.sample_period > 0 &&
4026                     event->attr.sample_period < 0x7fffffff)
4027                         return -EOPNOTSUPP;
4028         }
4029         return 0;
4030 }
4031
4032 static struct event_constraint counter0_constraint =
4033                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4034
4035 static struct event_constraint counter2_constraint =
4036                         EVENT_CONSTRAINT(0, 0x4, 0);
4037
4038 static struct event_constraint fixed0_constraint =
4039                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4040
4041 static struct event_constraint fixed0_counter0_constraint =
4042                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4043
4044 static struct event_constraint *
4045 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4046                           struct perf_event *event)
4047 {
4048         struct event_constraint *c;
4049
4050         c = intel_get_event_constraints(cpuc, idx, event);
4051
4052         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4053         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4054                 if (c->idxmsk64 & (1U << 2))
4055                         return &counter2_constraint;
4056                 return &emptyconstraint;
4057         }
4058
4059         return c;
4060 }
4061
4062 static struct event_constraint *
4063 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4064                           struct perf_event *event)
4065 {
4066         /*
4067          * Fixed counter 0 has less skid.
4068          * Force instruction:ppp in Fixed counter 0
4069          */
4070         if ((event->attr.precise_ip == 3) &&
4071             constraint_match(&fixed0_constraint, event->hw.config))
4072                 return &fixed0_constraint;
4073
4074         return hsw_get_event_constraints(cpuc, idx, event);
4075 }
4076
4077 static struct event_constraint *
4078 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4079                           struct perf_event *event)
4080 {
4081         struct event_constraint *c;
4082
4083         c = icl_get_event_constraints(cpuc, idx, event);
4084
4085         /*
4086          * The :ppp indicates the Precise Distribution (PDist) facility, which
4087          * is only supported on the GP counter 0. If a :ppp event which is not
4088          * available on the GP counter 0, error out.
4089          * Exception: Instruction PDIR is only available on the fixed counter 0.
4090          */
4091         if ((event->attr.precise_ip == 3) &&
4092             !constraint_match(&fixed0_constraint, event->hw.config)) {
4093                 if (c->idxmsk64 & BIT_ULL(0))
4094                         return &counter0_constraint;
4095
4096                 return &emptyconstraint;
4097         }
4098
4099         return c;
4100 }
4101
4102 static struct event_constraint *
4103 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4104                           struct perf_event *event)
4105 {
4106         struct event_constraint *c;
4107
4108         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4109         if (event->attr.precise_ip == 3)
4110                 return &counter0_constraint;
4111
4112         c = intel_get_event_constraints(cpuc, idx, event);
4113
4114         return c;
4115 }
4116
4117 static struct event_constraint *
4118 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4119                           struct perf_event *event)
4120 {
4121         struct event_constraint *c;
4122
4123         /*
4124          * :ppp means to do reduced skid PEBS,
4125          * which is available on PMC0 and fixed counter 0.
4126          */
4127         if (event->attr.precise_ip == 3) {
4128                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4129                 if (constraint_match(&fixed0_constraint, event->hw.config))
4130                         return &fixed0_counter0_constraint;
4131
4132                 return &counter0_constraint;
4133         }
4134
4135         c = intel_get_event_constraints(cpuc, idx, event);
4136
4137         return c;
4138 }
4139
4140 static bool allow_tsx_force_abort = true;
4141
4142 static struct event_constraint *
4143 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4144                           struct perf_event *event)
4145 {
4146         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4147
4148         /*
4149          * Without TFA we must not use PMC3.
4150          */
4151         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4152                 c = dyn_constraint(cpuc, c, idx);
4153                 c->idxmsk64 &= ~(1ULL << 3);
4154                 c->weight--;
4155         }
4156
4157         return c;
4158 }
4159
4160 static struct event_constraint *
4161 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4162                           struct perf_event *event)
4163 {
4164         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4165
4166         if (pmu->cpu_type == hybrid_big)
4167                 return spr_get_event_constraints(cpuc, idx, event);
4168         else if (pmu->cpu_type == hybrid_small)
4169                 return tnt_get_event_constraints(cpuc, idx, event);
4170
4171         WARN_ON(1);
4172         return &emptyconstraint;
4173 }
4174
4175 static int adl_hw_config(struct perf_event *event)
4176 {
4177         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4178
4179         if (pmu->cpu_type == hybrid_big)
4180                 return hsw_hw_config(event);
4181         else if (pmu->cpu_type == hybrid_small)
4182                 return intel_pmu_hw_config(event);
4183
4184         WARN_ON(1);
4185         return -EOPNOTSUPP;
4186 }
4187
4188 static u8 adl_get_hybrid_cpu_type(void)
4189 {
4190         return hybrid_big;
4191 }
4192
4193 /*
4194  * Broadwell:
4195  *
4196  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4197  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4198  * the two to enforce a minimum period of 128 (the smallest value that has bits
4199  * 0-5 cleared and >= 100).
4200  *
4201  * Because of how the code in x86_perf_event_set_period() works, the truncation
4202  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4203  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4204  *
4205  * Therefore the effective (average) period matches the requested period,
4206  * despite coarser hardware granularity.
4207  */
4208 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4209 {
4210         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4211                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
4212                 if (left < 128)
4213                         left = 128;
4214                 left &= ~0x3fULL;
4215         }
4216         return left;
4217 }
4218
4219 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4220 {
4221         return max(left, 32ULL);
4222 }
4223
4224 static u64 spr_limit_period(struct perf_event *event, u64 left)
4225 {
4226         if (event->attr.precise_ip == 3)
4227                 return max(left, 128ULL);
4228
4229         return left;
4230 }
4231
4232 PMU_FORMAT_ATTR(event,  "config:0-7"    );
4233 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
4234 PMU_FORMAT_ATTR(edge,   "config:18"     );
4235 PMU_FORMAT_ATTR(pc,     "config:19"     );
4236 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
4237 PMU_FORMAT_ATTR(inv,    "config:23"     );
4238 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
4239 PMU_FORMAT_ATTR(in_tx,  "config:32");
4240 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4241
4242 static struct attribute *intel_arch_formats_attr[] = {
4243         &format_attr_event.attr,
4244         &format_attr_umask.attr,
4245         &format_attr_edge.attr,
4246         &format_attr_pc.attr,
4247         &format_attr_inv.attr,
4248         &format_attr_cmask.attr,
4249         NULL,
4250 };
4251
4252 ssize_t intel_event_sysfs_show(char *page, u64 config)
4253 {
4254         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4255
4256         return x86_event_sysfs_show(page, config, event);
4257 }
4258
4259 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4260 {
4261         struct intel_shared_regs *regs;
4262         int i;
4263
4264         regs = kzalloc_node(sizeof(struct intel_shared_regs),
4265                             GFP_KERNEL, cpu_to_node(cpu));
4266         if (regs) {
4267                 /*
4268                  * initialize the locks to keep lockdep happy
4269                  */
4270                 for (i = 0; i < EXTRA_REG_MAX; i++)
4271                         raw_spin_lock_init(&regs->regs[i].lock);
4272
4273                 regs->core_id = -1;
4274         }
4275         return regs;
4276 }
4277
4278 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4279 {
4280         struct intel_excl_cntrs *c;
4281
4282         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4283                          GFP_KERNEL, cpu_to_node(cpu));
4284         if (c) {
4285                 raw_spin_lock_init(&c->lock);
4286                 c->core_id = -1;
4287         }
4288         return c;
4289 }
4290
4291
4292 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4293 {
4294         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4295
4296         if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4297                 cpuc->shared_regs = allocate_shared_regs(cpu);
4298                 if (!cpuc->shared_regs)
4299                         goto err;
4300         }
4301
4302         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4303                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4304
4305                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4306                 if (!cpuc->constraint_list)
4307                         goto err_shared_regs;
4308         }
4309
4310         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4311                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4312                 if (!cpuc->excl_cntrs)
4313                         goto err_constraint_list;
4314
4315                 cpuc->excl_thread_id = 0;
4316         }
4317
4318         return 0;
4319
4320 err_constraint_list:
4321         kfree(cpuc->constraint_list);
4322         cpuc->constraint_list = NULL;
4323
4324 err_shared_regs:
4325         kfree(cpuc->shared_regs);
4326         cpuc->shared_regs = NULL;
4327
4328 err:
4329         return -ENOMEM;
4330 }
4331
4332 static int intel_pmu_cpu_prepare(int cpu)
4333 {
4334         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4335 }
4336
4337 static void flip_smm_bit(void *data)
4338 {
4339         unsigned long set = *(unsigned long *)data;
4340
4341         if (set > 0) {
4342                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4343                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4344         } else {
4345                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4346                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4347         }
4348 }
4349
4350 static bool init_hybrid_pmu(int cpu)
4351 {
4352         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4353         u8 cpu_type = get_this_hybrid_cpu_type();
4354         struct x86_hybrid_pmu *pmu = NULL;
4355         int i;
4356
4357         if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4358                 cpu_type = x86_pmu.get_hybrid_cpu_type();
4359
4360         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4361                 if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4362                         pmu = &x86_pmu.hybrid_pmu[i];
4363                         break;
4364                 }
4365         }
4366         if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4367                 cpuc->pmu = NULL;
4368                 return false;
4369         }
4370
4371         /* Only check and dump the PMU information for the first CPU */
4372         if (!cpumask_empty(&pmu->supported_cpus))
4373                 goto end;
4374
4375         if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4376                 return false;
4377
4378         pr_info("%s PMU driver: ", pmu->name);
4379
4380         if (pmu->intel_cap.pebs_output_pt_available)
4381                 pr_cont("PEBS-via-PT ");
4382
4383         pr_cont("\n");
4384
4385         x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4386                              pmu->intel_ctrl);
4387
4388 end:
4389         cpumask_set_cpu(cpu, &pmu->supported_cpus);
4390         cpuc->pmu = &pmu->pmu;
4391
4392         x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4393
4394         return true;
4395 }
4396
4397 static void intel_pmu_cpu_starting(int cpu)
4398 {
4399         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4400         int core_id = topology_core_id(cpu);
4401         int i;
4402
4403         if (is_hybrid() && !init_hybrid_pmu(cpu))
4404                 return;
4405
4406         init_debug_store_on_cpu(cpu);
4407         /*
4408          * Deal with CPUs that don't clear their LBRs on power-up.
4409          */
4410         intel_pmu_lbr_reset();
4411
4412         cpuc->lbr_sel = NULL;
4413
4414         if (x86_pmu.flags & PMU_FL_TFA) {
4415                 WARN_ON_ONCE(cpuc->tfa_shadow);
4416                 cpuc->tfa_shadow = ~0ULL;
4417                 intel_set_tfa(cpuc, false);
4418         }
4419
4420         if (x86_pmu.version > 1)
4421                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4422
4423         /*
4424          * Disable perf metrics if any added CPU doesn't support it.
4425          *
4426          * Turn off the check for a hybrid architecture, because the
4427          * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4428          * the architecture features. The perf metrics is a model-specific
4429          * feature for now. The corresponding bit should always be 0 on
4430          * a hybrid platform, e.g., Alder Lake.
4431          */
4432         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4433                 union perf_capabilities perf_cap;
4434
4435                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4436                 if (!perf_cap.perf_metrics) {
4437                         x86_pmu.intel_cap.perf_metrics = 0;
4438                         x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4439                 }
4440         }
4441
4442         if (!cpuc->shared_regs)
4443                 return;
4444
4445         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4446                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4447                         struct intel_shared_regs *pc;
4448
4449                         pc = per_cpu(cpu_hw_events, i).shared_regs;
4450                         if (pc && pc->core_id == core_id) {
4451                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4452                                 cpuc->shared_regs = pc;
4453                                 break;
4454                         }
4455                 }
4456                 cpuc->shared_regs->core_id = core_id;
4457                 cpuc->shared_regs->refcnt++;
4458         }
4459
4460         if (x86_pmu.lbr_sel_map)
4461                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4462
4463         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4464                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4465                         struct cpu_hw_events *sibling;
4466                         struct intel_excl_cntrs *c;
4467
4468                         sibling = &per_cpu(cpu_hw_events, i);
4469                         c = sibling->excl_cntrs;
4470                         if (c && c->core_id == core_id) {
4471                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4472                                 cpuc->excl_cntrs = c;
4473                                 if (!sibling->excl_thread_id)
4474                                         cpuc->excl_thread_id = 1;
4475                                 break;
4476                         }
4477                 }
4478                 cpuc->excl_cntrs->core_id = core_id;
4479                 cpuc->excl_cntrs->refcnt++;
4480         }
4481 }
4482
4483 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4484 {
4485         struct intel_excl_cntrs *c;
4486
4487         c = cpuc->excl_cntrs;
4488         if (c) {
4489                 if (c->core_id == -1 || --c->refcnt == 0)
4490                         kfree(c);
4491                 cpuc->excl_cntrs = NULL;
4492         }
4493
4494         kfree(cpuc->constraint_list);
4495         cpuc->constraint_list = NULL;
4496 }
4497
4498 static void intel_pmu_cpu_dying(int cpu)
4499 {
4500         fini_debug_store_on_cpu(cpu);
4501 }
4502
4503 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4504 {
4505         struct intel_shared_regs *pc;
4506
4507         pc = cpuc->shared_regs;
4508         if (pc) {
4509                 if (pc->core_id == -1 || --pc->refcnt == 0)
4510                         kfree(pc);
4511                 cpuc->shared_regs = NULL;
4512         }
4513
4514         free_excl_cntrs(cpuc);
4515 }
4516
4517 static void intel_pmu_cpu_dead(int cpu)
4518 {
4519         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4520
4521         intel_cpuc_finish(cpuc);
4522
4523         if (is_hybrid() && cpuc->pmu)
4524                 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4525 }
4526
4527 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4528                                  bool sched_in)
4529 {
4530         intel_pmu_pebs_sched_task(ctx, sched_in);
4531         intel_pmu_lbr_sched_task(ctx, sched_in);
4532 }
4533
4534 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4535                                     struct perf_event_context *next)
4536 {
4537         intel_pmu_lbr_swap_task_ctx(prev, next);
4538 }
4539
4540 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4541 {
4542         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4543 }
4544
4545 static void intel_aux_output_init(void)
4546 {
4547         /* Refer also intel_pmu_aux_output_match() */
4548         if (x86_pmu.intel_cap.pebs_output_pt_available)
4549                 x86_pmu.assign = intel_pmu_assign_event;
4550 }
4551
4552 static int intel_pmu_aux_output_match(struct perf_event *event)
4553 {
4554         /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4555         if (!x86_pmu.intel_cap.pebs_output_pt_available)
4556                 return 0;
4557
4558         return is_intel_pt_event(event);
4559 }
4560
4561 static int intel_pmu_filter_match(struct perf_event *event)
4562 {
4563         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4564         unsigned int cpu = smp_processor_id();
4565
4566         return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4567 }
4568
4569 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4570
4571 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4572
4573 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4574
4575 static struct attribute *intel_arch3_formats_attr[] = {
4576         &format_attr_event.attr,
4577         &format_attr_umask.attr,
4578         &format_attr_edge.attr,
4579         &format_attr_pc.attr,
4580         &format_attr_any.attr,
4581         &format_attr_inv.attr,
4582         &format_attr_cmask.attr,
4583         NULL,
4584 };
4585
4586 static struct attribute *hsw_format_attr[] = {
4587         &format_attr_in_tx.attr,
4588         &format_attr_in_tx_cp.attr,
4589         &format_attr_offcore_rsp.attr,
4590         &format_attr_ldlat.attr,
4591         NULL
4592 };
4593
4594 static struct attribute *nhm_format_attr[] = {
4595         &format_attr_offcore_rsp.attr,
4596         &format_attr_ldlat.attr,
4597         NULL
4598 };
4599
4600 static struct attribute *slm_format_attr[] = {
4601         &format_attr_offcore_rsp.attr,
4602         NULL
4603 };
4604
4605 static struct attribute *skl_format_attr[] = {
4606         &format_attr_frontend.attr,
4607         NULL,
4608 };
4609
4610 static __initconst const struct x86_pmu core_pmu = {
4611         .name                   = "core",
4612         .handle_irq             = x86_pmu_handle_irq,
4613         .disable_all            = x86_pmu_disable_all,
4614         .enable_all             = core_pmu_enable_all,
4615         .enable                 = core_pmu_enable_event,
4616         .disable                = x86_pmu_disable_event,
4617         .hw_config              = core_pmu_hw_config,
4618         .schedule_events        = x86_schedule_events,
4619         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4620         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4621         .event_map              = intel_pmu_event_map,
4622         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4623         .apic                   = 1,
4624         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4625
4626         /*
4627          * Intel PMCs cannot be accessed sanely above 32-bit width,
4628          * so we install an artificial 1<<31 period regardless of
4629          * the generic event period:
4630          */
4631         .max_period             = (1ULL<<31) - 1,
4632         .get_event_constraints  = intel_get_event_constraints,
4633         .put_event_constraints  = intel_put_event_constraints,
4634         .event_constraints      = intel_core_event_constraints,
4635         .guest_get_msrs         = core_guest_get_msrs,
4636         .format_attrs           = intel_arch_formats_attr,
4637         .events_sysfs_show      = intel_event_sysfs_show,
4638
4639         /*
4640          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4641          * together with PMU version 1 and thus be using core_pmu with
4642          * shared_regs. We need following callbacks here to allocate
4643          * it properly.
4644          */
4645         .cpu_prepare            = intel_pmu_cpu_prepare,
4646         .cpu_starting           = intel_pmu_cpu_starting,
4647         .cpu_dying              = intel_pmu_cpu_dying,
4648         .cpu_dead               = intel_pmu_cpu_dead,
4649
4650         .check_period           = intel_pmu_check_period,
4651
4652         .lbr_reset              = intel_pmu_lbr_reset_64,
4653         .lbr_read               = intel_pmu_lbr_read_64,
4654         .lbr_save               = intel_pmu_lbr_save,
4655         .lbr_restore            = intel_pmu_lbr_restore,
4656 };
4657
4658 static __initconst const struct x86_pmu intel_pmu = {
4659         .name                   = "Intel",
4660         .handle_irq             = intel_pmu_handle_irq,
4661         .disable_all            = intel_pmu_disable_all,
4662         .enable_all             = intel_pmu_enable_all,
4663         .enable                 = intel_pmu_enable_event,
4664         .disable                = intel_pmu_disable_event,
4665         .add                    = intel_pmu_add_event,
4666         .del                    = intel_pmu_del_event,
4667         .read                   = intel_pmu_read_event,
4668         .hw_config              = intel_pmu_hw_config,
4669         .schedule_events        = x86_schedule_events,
4670         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4671         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4672         .event_map              = intel_pmu_event_map,
4673         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4674         .apic                   = 1,
4675         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4676         /*
4677          * Intel PMCs cannot be accessed sanely above 32 bit width,
4678          * so we install an artificial 1<<31 period regardless of
4679          * the generic event period:
4680          */
4681         .max_period             = (1ULL << 31) - 1,
4682         .get_event_constraints  = intel_get_event_constraints,
4683         .put_event_constraints  = intel_put_event_constraints,
4684         .pebs_aliases           = intel_pebs_aliases_core2,
4685
4686         .format_attrs           = intel_arch3_formats_attr,
4687         .events_sysfs_show      = intel_event_sysfs_show,
4688
4689         .cpu_prepare            = intel_pmu_cpu_prepare,
4690         .cpu_starting           = intel_pmu_cpu_starting,
4691         .cpu_dying              = intel_pmu_cpu_dying,
4692         .cpu_dead               = intel_pmu_cpu_dead,
4693
4694         .guest_get_msrs         = intel_guest_get_msrs,
4695         .sched_task             = intel_pmu_sched_task,
4696         .swap_task_ctx          = intel_pmu_swap_task_ctx,
4697
4698         .check_period           = intel_pmu_check_period,
4699
4700         .aux_output_match       = intel_pmu_aux_output_match,
4701
4702         .lbr_reset              = intel_pmu_lbr_reset_64,
4703         .lbr_read               = intel_pmu_lbr_read_64,
4704         .lbr_save               = intel_pmu_lbr_save,
4705         .lbr_restore            = intel_pmu_lbr_restore,
4706 };
4707
4708 static __init void intel_clovertown_quirk(void)
4709 {
4710         /*
4711          * PEBS is unreliable due to:
4712          *
4713          *   AJ67  - PEBS may experience CPL leaks
4714          *   AJ68  - PEBS PMI may be delayed by one event
4715          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4716          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4717          *
4718          * AJ67 could be worked around by restricting the OS/USR flags.
4719          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4720          *
4721          * AJ106 could possibly be worked around by not allowing LBR
4722          *       usage from PEBS, including the fixup.
4723          * AJ68  could possibly be worked around by always programming
4724          *       a pebs_event_reset[0] value and coping with the lost events.
4725          *
4726          * But taken together it might just make sense to not enable PEBS on
4727          * these chips.
4728          */
4729         pr_warn("PEBS disabled due to CPU errata\n");
4730         x86_pmu.pebs = 0;
4731         x86_pmu.pebs_constraints = NULL;
4732 }
4733
4734 static const struct x86_cpu_desc isolation_ucodes[] = {
4735         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
4736         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
4737         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
4738         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
4739         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
4740         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
4741         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
4742         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
4743         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
4744         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
4745         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
4746         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           1, 0x0b000014),
4747         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
4748         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
4749         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             5, 0x00000000),
4750         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             6, 0x00000000),
4751         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             7, 0x00000000),
4752         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
4753         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
4754         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
4755         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
4756         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
4757         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
4758         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
4759         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
4760         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
4761         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
4762         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
4763         {}
4764 };
4765
4766 static void intel_check_pebs_isolation(void)
4767 {
4768         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4769 }
4770
4771 static __init void intel_pebs_isolation_quirk(void)
4772 {
4773         WARN_ON_ONCE(x86_pmu.check_microcode);
4774         x86_pmu.check_microcode = intel_check_pebs_isolation;
4775         intel_check_pebs_isolation();
4776 }
4777
4778 static const struct x86_cpu_desc pebs_ucodes[] = {
4779         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
4780         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
4781         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
4782         {}
4783 };
4784
4785 static bool intel_snb_pebs_broken(void)
4786 {
4787         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4788 }
4789
4790 static void intel_snb_check_microcode(void)
4791 {
4792         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4793                 return;
4794
4795         /*
4796          * Serialized by the microcode lock..
4797          */
4798         if (x86_pmu.pebs_broken) {
4799                 pr_info("PEBS enabled due to microcode update\n");
4800                 x86_pmu.pebs_broken = 0;
4801         } else {
4802                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4803                 x86_pmu.pebs_broken = 1;
4804         }
4805 }
4806
4807 static bool is_lbr_from(unsigned long msr)
4808 {
4809         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4810
4811         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4812 }
4813
4814 /*
4815  * Under certain circumstances, access certain MSR may cause #GP.
4816  * The function tests if the input MSR can be safely accessed.
4817  */
4818 static bool check_msr(unsigned long msr, u64 mask)
4819 {
4820         u64 val_old, val_new, val_tmp;
4821
4822         /*
4823          * Disable the check for real HW, so we don't
4824          * mess with potentially enabled registers:
4825          */
4826         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4827                 return true;
4828
4829         /*
4830          * Read the current value, change it and read it back to see if it
4831          * matches, this is needed to detect certain hardware emulators
4832          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4833          */
4834         if (rdmsrl_safe(msr, &val_old))
4835                 return false;
4836
4837         /*
4838          * Only change the bits which can be updated by wrmsrl.
4839          */
4840         val_tmp = val_old ^ mask;
4841
4842         if (is_lbr_from(msr))
4843                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4844
4845         if (wrmsrl_safe(msr, val_tmp) ||
4846             rdmsrl_safe(msr, &val_new))
4847                 return false;
4848
4849         /*
4850          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4851          * should equal rdmsrl()'s even with the quirk.
4852          */
4853         if (val_new != val_tmp)
4854                 return false;
4855
4856         if (is_lbr_from(msr))
4857                 val_old = lbr_from_signext_quirk_wr(val_old);
4858
4859         /* Here it's sure that the MSR can be safely accessed.
4860          * Restore the old value and return.
4861          */
4862         wrmsrl(msr, val_old);
4863
4864         return true;
4865 }
4866
4867 static __init void intel_sandybridge_quirk(void)
4868 {
4869         x86_pmu.check_microcode = intel_snb_check_microcode;
4870         cpus_read_lock();
4871         intel_snb_check_microcode();
4872         cpus_read_unlock();
4873 }
4874
4875 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4876         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4877         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4878         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4879         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4880         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4881         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4882         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4883 };
4884
4885 static __init void intel_arch_events_quirk(void)
4886 {
4887         int bit;
4888
4889         /* disable event that reported as not present by cpuid */
4890         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4891                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4892                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4893                         intel_arch_events_map[bit].name);
4894         }
4895 }
4896
4897 static __init void intel_nehalem_quirk(void)
4898 {
4899         union cpuid10_ebx ebx;
4900
4901         ebx.full = x86_pmu.events_maskl;
4902         if (ebx.split.no_branch_misses_retired) {
4903                 /*
4904                  * Erratum AAJ80 detected, we work it around by using
4905                  * the BR_MISP_EXEC.ANY event. This will over-count
4906                  * branch-misses, but it's still much better than the
4907                  * architectural event which is often completely bogus:
4908                  */
4909                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4910                 ebx.split.no_branch_misses_retired = 0;
4911                 x86_pmu.events_maskl = ebx.full;
4912                 pr_info("CPU erratum AAJ80 worked around\n");
4913         }
4914 }
4915
4916 /*
4917  * enable software workaround for errata:
4918  * SNB: BJ122
4919  * IVB: BV98
4920  * HSW: HSD29
4921  *
4922  * Only needed when HT is enabled. However detecting
4923  * if HT is enabled is difficult (model specific). So instead,
4924  * we enable the workaround in the early boot, and verify if
4925  * it is needed in a later initcall phase once we have valid
4926  * topology information to check if HT is actually enabled
4927  */
4928 static __init void intel_ht_bug(void)
4929 {
4930         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4931
4932         x86_pmu.start_scheduling = intel_start_scheduling;
4933         x86_pmu.commit_scheduling = intel_commit_scheduling;
4934         x86_pmu.stop_scheduling = intel_stop_scheduling;
4935 }
4936
4937 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
4938 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
4939
4940 /* Haswell special events */
4941 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
4942 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
4943 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
4944 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
4945 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
4946 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
4947 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
4948 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
4949 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
4950 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
4951 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
4952 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
4953
4954 static struct attribute *hsw_events_attrs[] = {
4955         EVENT_PTR(td_slots_issued),
4956         EVENT_PTR(td_slots_retired),
4957         EVENT_PTR(td_fetch_bubbles),
4958         EVENT_PTR(td_total_slots),
4959         EVENT_PTR(td_total_slots_scale),
4960         EVENT_PTR(td_recovery_bubbles),
4961         EVENT_PTR(td_recovery_bubbles_scale),
4962         NULL
4963 };
4964
4965 static struct attribute *hsw_mem_events_attrs[] = {
4966         EVENT_PTR(mem_ld_hsw),
4967         EVENT_PTR(mem_st_hsw),
4968         NULL,
4969 };
4970
4971 static struct attribute *hsw_tsx_events_attrs[] = {
4972         EVENT_PTR(tx_start),
4973         EVENT_PTR(tx_commit),
4974         EVENT_PTR(tx_abort),
4975         EVENT_PTR(tx_capacity),
4976         EVENT_PTR(tx_conflict),
4977         EVENT_PTR(el_start),
4978         EVENT_PTR(el_commit),
4979         EVENT_PTR(el_abort),
4980         EVENT_PTR(el_capacity),
4981         EVENT_PTR(el_conflict),
4982         EVENT_PTR(cycles_t),
4983         EVENT_PTR(cycles_ct),
4984         NULL
4985 };
4986
4987 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4988 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4989 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4990 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4991
4992 static struct attribute *icl_events_attrs[] = {
4993         EVENT_PTR(mem_ld_hsw),
4994         EVENT_PTR(mem_st_hsw),
4995         NULL,
4996 };
4997
4998 static struct attribute *icl_td_events_attrs[] = {
4999         EVENT_PTR(slots),
5000         EVENT_PTR(td_retiring),
5001         EVENT_PTR(td_bad_spec),
5002         EVENT_PTR(td_fe_bound),
5003         EVENT_PTR(td_be_bound),
5004         NULL,
5005 };
5006
5007 static struct attribute *icl_tsx_events_attrs[] = {
5008         EVENT_PTR(tx_start),
5009         EVENT_PTR(tx_abort),
5010         EVENT_PTR(tx_commit),
5011         EVENT_PTR(tx_capacity_read),
5012         EVENT_PTR(tx_capacity_write),
5013         EVENT_PTR(tx_conflict),
5014         EVENT_PTR(el_start),
5015         EVENT_PTR(el_abort),
5016         EVENT_PTR(el_commit),
5017         EVENT_PTR(el_capacity_read),
5018         EVENT_PTR(el_capacity_write),
5019         EVENT_PTR(el_conflict),
5020         EVENT_PTR(cycles_t),
5021         EVENT_PTR(cycles_ct),
5022         NULL,
5023 };
5024
5025
5026 EVENT_ATTR_STR(mem-stores,      mem_st_spr,     "event=0xcd,umask=0x2");
5027 EVENT_ATTR_STR(mem-loads-aux,   mem_ld_aux,     "event=0x03,umask=0x82");
5028
5029 static struct attribute *spr_events_attrs[] = {
5030         EVENT_PTR(mem_ld_hsw),
5031         EVENT_PTR(mem_st_spr),
5032         EVENT_PTR(mem_ld_aux),
5033         NULL,
5034 };
5035
5036 static struct attribute *spr_td_events_attrs[] = {
5037         EVENT_PTR(slots),
5038         EVENT_PTR(td_retiring),
5039         EVENT_PTR(td_bad_spec),
5040         EVENT_PTR(td_fe_bound),
5041         EVENT_PTR(td_be_bound),
5042         EVENT_PTR(td_heavy_ops),
5043         EVENT_PTR(td_br_mispredict),
5044         EVENT_PTR(td_fetch_lat),
5045         EVENT_PTR(td_mem_bound),
5046         NULL,
5047 };
5048
5049 static struct attribute *spr_tsx_events_attrs[] = {
5050         EVENT_PTR(tx_start),
5051         EVENT_PTR(tx_abort),
5052         EVENT_PTR(tx_commit),
5053         EVENT_PTR(tx_capacity_read),
5054         EVENT_PTR(tx_capacity_write),
5055         EVENT_PTR(tx_conflict),
5056         EVENT_PTR(cycles_t),
5057         EVENT_PTR(cycles_ct),
5058         NULL,
5059 };
5060
5061 static ssize_t freeze_on_smi_show(struct device *cdev,
5062                                   struct device_attribute *attr,
5063                                   char *buf)
5064 {
5065         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5066 }
5067
5068 static DEFINE_MUTEX(freeze_on_smi_mutex);
5069
5070 static ssize_t freeze_on_smi_store(struct device *cdev,
5071                                    struct device_attribute *attr,
5072                                    const char *buf, size_t count)
5073 {
5074         unsigned long val;
5075         ssize_t ret;
5076
5077         ret = kstrtoul(buf, 0, &val);
5078         if (ret)
5079                 return ret;
5080
5081         if (val > 1)
5082                 return -EINVAL;
5083
5084         mutex_lock(&freeze_on_smi_mutex);
5085
5086         if (x86_pmu.attr_freeze_on_smi == val)
5087                 goto done;
5088
5089         x86_pmu.attr_freeze_on_smi = val;
5090
5091         cpus_read_lock();
5092         on_each_cpu(flip_smm_bit, &val, 1);
5093         cpus_read_unlock();
5094 done:
5095         mutex_unlock(&freeze_on_smi_mutex);
5096
5097         return count;
5098 }
5099
5100 static void update_tfa_sched(void *ignored)
5101 {
5102         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5103
5104         /*
5105          * check if PMC3 is used
5106          * and if so force schedule out for all event types all contexts
5107          */
5108         if (test_bit(3, cpuc->active_mask))
5109                 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5110 }
5111
5112 static ssize_t show_sysctl_tfa(struct device *cdev,
5113                               struct device_attribute *attr,
5114                               char *buf)
5115 {
5116         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5117 }
5118
5119 static ssize_t set_sysctl_tfa(struct device *cdev,
5120                               struct device_attribute *attr,
5121                               const char *buf, size_t count)
5122 {
5123         bool val;
5124         ssize_t ret;
5125
5126         ret = kstrtobool(buf, &val);
5127         if (ret)
5128                 return ret;
5129
5130         /* no change */
5131         if (val == allow_tsx_force_abort)
5132                 return count;
5133
5134         allow_tsx_force_abort = val;
5135
5136         cpus_read_lock();
5137         on_each_cpu(update_tfa_sched, NULL, 1);
5138         cpus_read_unlock();
5139
5140         return count;
5141 }
5142
5143
5144 static DEVICE_ATTR_RW(freeze_on_smi);
5145
5146 static ssize_t branches_show(struct device *cdev,
5147                              struct device_attribute *attr,
5148                              char *buf)
5149 {
5150         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5151 }
5152
5153 static DEVICE_ATTR_RO(branches);
5154
5155 static struct attribute *lbr_attrs[] = {
5156         &dev_attr_branches.attr,
5157         NULL
5158 };
5159
5160 static char pmu_name_str[30];
5161
5162 static ssize_t pmu_name_show(struct device *cdev,
5163                              struct device_attribute *attr,
5164                              char *buf)
5165 {
5166         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5167 }
5168
5169 static DEVICE_ATTR_RO(pmu_name);
5170
5171 static struct attribute *intel_pmu_caps_attrs[] = {
5172        &dev_attr_pmu_name.attr,
5173        NULL
5174 };
5175
5176 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5177                    show_sysctl_tfa,
5178                    set_sysctl_tfa);
5179
5180 static struct attribute *intel_pmu_attrs[] = {
5181         &dev_attr_freeze_on_smi.attr,
5182         &dev_attr_allow_tsx_force_abort.attr,
5183         NULL,
5184 };
5185
5186 static umode_t
5187 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5188 {
5189         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5190 }
5191
5192 static umode_t
5193 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5194 {
5195         return x86_pmu.pebs ? attr->mode : 0;
5196 }
5197
5198 static umode_t
5199 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5200 {
5201         return x86_pmu.lbr_nr ? attr->mode : 0;
5202 }
5203
5204 static umode_t
5205 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5206 {
5207         return x86_pmu.version >= 2 ? attr->mode : 0;
5208 }
5209
5210 static umode_t
5211 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5212 {
5213         if (attr == &dev_attr_allow_tsx_force_abort.attr)
5214                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5215
5216         return attr->mode;
5217 }
5218
5219 static struct attribute_group group_events_td  = {
5220         .name = "events",
5221 };
5222
5223 static struct attribute_group group_events_mem = {
5224         .name       = "events",
5225         .is_visible = pebs_is_visible,
5226 };
5227
5228 static struct attribute_group group_events_tsx = {
5229         .name       = "events",
5230         .is_visible = tsx_is_visible,
5231 };
5232
5233 static struct attribute_group group_caps_gen = {
5234         .name  = "caps",
5235         .attrs = intel_pmu_caps_attrs,
5236 };
5237
5238 static struct attribute_group group_caps_lbr = {
5239         .name       = "caps",
5240         .attrs      = lbr_attrs,
5241         .is_visible = lbr_is_visible,
5242 };
5243
5244 static struct attribute_group group_format_extra = {
5245         .name       = "format",
5246         .is_visible = exra_is_visible,
5247 };
5248
5249 static struct attribute_group group_format_extra_skl = {
5250         .name       = "format",
5251         .is_visible = exra_is_visible,
5252 };
5253
5254 static struct attribute_group group_default = {
5255         .attrs      = intel_pmu_attrs,
5256         .is_visible = default_is_visible,
5257 };
5258
5259 static const struct attribute_group *attr_update[] = {
5260         &group_events_td,
5261         &group_events_mem,
5262         &group_events_tsx,
5263         &group_caps_gen,
5264         &group_caps_lbr,
5265         &group_format_extra,
5266         &group_format_extra_skl,
5267         &group_default,
5268         NULL,
5269 };
5270
5271 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5272 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5273 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5274 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5275 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5276 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5277 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5278 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5279 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5280
5281 static struct attribute *adl_hybrid_events_attrs[] = {
5282         EVENT_PTR(slots_adl),
5283         EVENT_PTR(td_retiring_adl),
5284         EVENT_PTR(td_bad_spec_adl),
5285         EVENT_PTR(td_fe_bound_adl),
5286         EVENT_PTR(td_be_bound_adl),
5287         EVENT_PTR(td_heavy_ops_adl),
5288         EVENT_PTR(td_br_mis_adl),
5289         EVENT_PTR(td_fetch_lat_adl),
5290         EVENT_PTR(td_mem_bound_adl),
5291         NULL,
5292 };
5293
5294 /* Must be in IDX order */
5295 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5296 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5297 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5298
5299 static struct attribute *adl_hybrid_mem_attrs[] = {
5300         EVENT_PTR(mem_ld_adl),
5301         EVENT_PTR(mem_st_adl),
5302         EVENT_PTR(mem_ld_aux_adl),
5303         NULL,
5304 };
5305
5306 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5307 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5308 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5309 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5310 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5311 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5312 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5313 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5314
5315 static struct attribute *adl_hybrid_tsx_attrs[] = {
5316         EVENT_PTR(tx_start_adl),
5317         EVENT_PTR(tx_abort_adl),
5318         EVENT_PTR(tx_commit_adl),
5319         EVENT_PTR(tx_capacity_read_adl),
5320         EVENT_PTR(tx_capacity_write_adl),
5321         EVENT_PTR(tx_conflict_adl),
5322         EVENT_PTR(cycles_t_adl),
5323         EVENT_PTR(cycles_ct_adl),
5324         NULL,
5325 };
5326
5327 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5328 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5329 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5330 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5331 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5332
5333 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5334         FORMAT_HYBRID_PTR(in_tx),
5335         FORMAT_HYBRID_PTR(in_tx_cp),
5336         FORMAT_HYBRID_PTR(offcore_rsp),
5337         FORMAT_HYBRID_PTR(ldlat),
5338         FORMAT_HYBRID_PTR(frontend),
5339         NULL,
5340 };
5341
5342 static struct attribute *adl_hybrid_extra_attr[] = {
5343         FORMAT_HYBRID_PTR(offcore_rsp),
5344         FORMAT_HYBRID_PTR(ldlat),
5345         FORMAT_HYBRID_PTR(frontend),
5346         NULL,
5347 };
5348
5349 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5350 {
5351         struct device *dev = kobj_to_dev(kobj);
5352         struct x86_hybrid_pmu *pmu =
5353                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5354         struct perf_pmu_events_hybrid_attr *pmu_attr =
5355                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5356
5357         return pmu->cpu_type & pmu_attr->pmu_type;
5358 }
5359
5360 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5361                                         struct attribute *attr, int i)
5362 {
5363         return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5364 }
5365
5366 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5367 {
5368         int cpu = cpumask_first(&pmu->supported_cpus);
5369
5370         return (cpu >= nr_cpu_ids) ? -1 : cpu;
5371 }
5372
5373 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5374                                      struct attribute *attr, int i)
5375 {
5376         struct device *dev = kobj_to_dev(kobj);
5377         struct x86_hybrid_pmu *pmu =
5378                  container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5379         int cpu = hybrid_find_supported_cpu(pmu);
5380
5381         return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5382 }
5383
5384 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5385                                         struct attribute *attr, int i)
5386 {
5387         struct device *dev = kobj_to_dev(kobj);
5388         struct x86_hybrid_pmu *pmu =
5389                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5390         struct perf_pmu_format_hybrid_attr *pmu_attr =
5391                 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5392         int cpu = hybrid_find_supported_cpu(pmu);
5393
5394         return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5395 }
5396
5397 static struct attribute_group hybrid_group_events_td  = {
5398         .name           = "events",
5399         .is_visible     = hybrid_events_is_visible,
5400 };
5401
5402 static struct attribute_group hybrid_group_events_mem = {
5403         .name           = "events",
5404         .is_visible     = hybrid_events_is_visible,
5405 };
5406
5407 static struct attribute_group hybrid_group_events_tsx = {
5408         .name           = "events",
5409         .is_visible     = hybrid_tsx_is_visible,
5410 };
5411
5412 static struct attribute_group hybrid_group_format_extra = {
5413         .name           = "format",
5414         .is_visible     = hybrid_format_is_visible,
5415 };
5416
5417 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5418                                           struct device_attribute *attr,
5419                                           char *buf)
5420 {
5421         struct x86_hybrid_pmu *pmu =
5422                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5423
5424         return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5425 }
5426
5427 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5428 static struct attribute *intel_hybrid_cpus_attrs[] = {
5429         &dev_attr_cpus.attr,
5430         NULL,
5431 };
5432
5433 static struct attribute_group hybrid_group_cpus = {
5434         .attrs          = intel_hybrid_cpus_attrs,
5435 };
5436
5437 static const struct attribute_group *hybrid_attr_update[] = {
5438         &hybrid_group_events_td,
5439         &hybrid_group_events_mem,
5440         &hybrid_group_events_tsx,
5441         &group_caps_gen,
5442         &group_caps_lbr,
5443         &hybrid_group_format_extra,
5444         &group_default,
5445         &hybrid_group_cpus,
5446         NULL,
5447 };
5448
5449 static struct attribute *empty_attrs;
5450
5451 static void intel_pmu_check_num_counters(int *num_counters,
5452                                          int *num_counters_fixed,
5453                                          u64 *intel_ctrl, u64 fixed_mask)
5454 {
5455         if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5456                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5457                      *num_counters, INTEL_PMC_MAX_GENERIC);
5458                 *num_counters = INTEL_PMC_MAX_GENERIC;
5459         }
5460         *intel_ctrl = (1ULL << *num_counters) - 1;
5461
5462         if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5463                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5464                      *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5465                 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5466         }
5467
5468         *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5469 }
5470
5471 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5472                                               int num_counters,
5473                                               int num_counters_fixed,
5474                                               u64 intel_ctrl)
5475 {
5476         struct event_constraint *c;
5477
5478         if (!event_constraints)
5479                 return;
5480
5481         /*
5482          * event on fixed counter2 (REF_CYCLES) only works on this
5483          * counter, so do not extend mask to generic counters
5484          */
5485         for_each_event_constraint(c, event_constraints) {
5486                 /*
5487                  * Don't extend the topdown slots and metrics
5488                  * events to the generic counters.
5489                  */
5490                 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5491                         /*
5492                          * Disable topdown slots and metrics events,
5493                          * if slots event is not in CPUID.
5494                          */
5495                         if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5496                                 c->idxmsk64 = 0;
5497                         c->weight = hweight64(c->idxmsk64);
5498                         continue;
5499                 }
5500
5501                 if (c->cmask == FIXED_EVENT_FLAGS) {
5502                         /* Disabled fixed counters which are not in CPUID */
5503                         c->idxmsk64 &= intel_ctrl;
5504
5505                         if (c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES)
5506                                 c->idxmsk64 |= (1ULL << num_counters) - 1;
5507                 }
5508                 c->idxmsk64 &=
5509                         ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5510                 c->weight = hweight64(c->idxmsk64);
5511         }
5512 }
5513
5514 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5515 {
5516         struct extra_reg *er;
5517
5518         /*
5519          * Access extra MSR may cause #GP under certain circumstances.
5520          * E.g. KVM doesn't support offcore event
5521          * Check all extra_regs here.
5522          */
5523         if (!extra_regs)
5524                 return;
5525
5526         for (er = extra_regs; er->msr; er++) {
5527                 er->extra_msr_access = check_msr(er->msr, 0x11UL);
5528                 /* Disable LBR select mapping */
5529                 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5530                         x86_pmu.lbr_sel_map = NULL;
5531         }
5532 }
5533
5534 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5535 {
5536         struct x86_hybrid_pmu *pmu;
5537         int i;
5538
5539         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5540                 pmu = &x86_pmu.hybrid_pmu[i];
5541
5542                 intel_pmu_check_num_counters(&pmu->num_counters,
5543                                              &pmu->num_counters_fixed,
5544                                              &pmu->intel_ctrl,
5545                                              fixed_mask);
5546
5547                 if (pmu->intel_cap.perf_metrics) {
5548                         pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5549                         pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5550                 }
5551
5552                 if (pmu->intel_cap.pebs_output_pt_available)
5553                         pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5554
5555                 intel_pmu_check_event_constraints(pmu->event_constraints,
5556                                                   pmu->num_counters,
5557                                                   pmu->num_counters_fixed,
5558                                                   pmu->intel_ctrl);
5559
5560                 intel_pmu_check_extra_regs(pmu->extra_regs);
5561         }
5562 }
5563
5564 __init int intel_pmu_init(void)
5565 {
5566         struct attribute **extra_skl_attr = &empty_attrs;
5567         struct attribute **extra_attr = &empty_attrs;
5568         struct attribute **td_attr    = &empty_attrs;
5569         struct attribute **mem_attr   = &empty_attrs;
5570         struct attribute **tsx_attr   = &empty_attrs;
5571         union cpuid10_edx edx;
5572         union cpuid10_eax eax;
5573         union cpuid10_ebx ebx;
5574         unsigned int fixed_mask;
5575         bool pmem = false;
5576         int version, i;
5577         char *name;
5578         struct x86_hybrid_pmu *pmu;
5579
5580         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5581                 switch (boot_cpu_data.x86) {
5582                 case 0x6:
5583                         return p6_pmu_init();
5584                 case 0xb:
5585                         return knc_pmu_init();
5586                 case 0xf:
5587                         return p4_pmu_init();
5588                 }
5589                 return -ENODEV;
5590         }
5591
5592         /*
5593          * Check whether the Architectural PerfMon supports
5594          * Branch Misses Retired hw_event or not.
5595          */
5596         cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5597         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5598                 return -ENODEV;
5599
5600         version = eax.split.version_id;
5601         if (version < 2)
5602                 x86_pmu = core_pmu;
5603         else
5604                 x86_pmu = intel_pmu;
5605
5606         x86_pmu.version                 = version;
5607         x86_pmu.num_counters            = eax.split.num_counters;
5608         x86_pmu.cntval_bits             = eax.split.bit_width;
5609         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
5610
5611         x86_pmu.events_maskl            = ebx.full;
5612         x86_pmu.events_mask_len         = eax.split.mask_length;
5613
5614         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5615
5616         /*
5617          * Quirk: v2 perfmon does not report fixed-purpose events, so
5618          * assume at least 3 events, when not running in a hypervisor:
5619          */
5620         if (version > 1 && version < 5) {
5621                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5622
5623                 x86_pmu.num_counters_fixed =
5624                         max((int)edx.split.num_counters_fixed, assume);
5625
5626                 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5627         } else if (version >= 5)
5628                 x86_pmu.num_counters_fixed = fls(fixed_mask);
5629
5630         if (boot_cpu_has(X86_FEATURE_PDCM)) {
5631                 u64 capabilities;
5632
5633                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5634                 x86_pmu.intel_cap.capabilities = capabilities;
5635         }
5636
5637         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5638                 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5639                 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5640         }
5641
5642         if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5643                 intel_pmu_arch_lbr_init();
5644
5645         intel_ds_init();
5646
5647         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5648
5649         if (version >= 5) {
5650                 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5651                 if (x86_pmu.intel_cap.anythread_deprecated)
5652                         pr_cont(" AnyThread deprecated, ");
5653         }
5654
5655         /*
5656          * Install the hw-cache-events table:
5657          */
5658         switch (boot_cpu_data.x86_model) {
5659         case INTEL_FAM6_CORE_YONAH:
5660                 pr_cont("Core events, ");
5661                 name = "core";
5662                 break;
5663
5664         case INTEL_FAM6_CORE2_MEROM:
5665                 x86_add_quirk(intel_clovertown_quirk);
5666                 fallthrough;
5667
5668         case INTEL_FAM6_CORE2_MEROM_L:
5669         case INTEL_FAM6_CORE2_PENRYN:
5670         case INTEL_FAM6_CORE2_DUNNINGTON:
5671                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5672                        sizeof(hw_cache_event_ids));
5673
5674                 intel_pmu_lbr_init_core();
5675
5676                 x86_pmu.event_constraints = intel_core2_event_constraints;
5677                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5678                 pr_cont("Core2 events, ");
5679                 name = "core2";
5680                 break;
5681
5682         case INTEL_FAM6_NEHALEM:
5683         case INTEL_FAM6_NEHALEM_EP:
5684         case INTEL_FAM6_NEHALEM_EX:
5685                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5686                        sizeof(hw_cache_event_ids));
5687                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5688                        sizeof(hw_cache_extra_regs));
5689
5690                 intel_pmu_lbr_init_nhm();
5691
5692                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
5693                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5694                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5695                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
5696                 x86_pmu.limit_period = nhm_limit_period;
5697
5698                 mem_attr = nhm_mem_events_attrs;
5699
5700                 /* UOPS_ISSUED.STALLED_CYCLES */
5701                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5702                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5703                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5704                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5705                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5706
5707                 intel_pmu_pebs_data_source_nhm();
5708                 x86_add_quirk(intel_nehalem_quirk);
5709                 x86_pmu.pebs_no_tlb = 1;
5710                 extra_attr = nhm_format_attr;
5711
5712                 pr_cont("Nehalem events, ");
5713                 name = "nehalem";
5714                 break;
5715
5716         case INTEL_FAM6_ATOM_BONNELL:
5717         case INTEL_FAM6_ATOM_BONNELL_MID:
5718         case INTEL_FAM6_ATOM_SALTWELL:
5719         case INTEL_FAM6_ATOM_SALTWELL_MID:
5720         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5721                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5722                        sizeof(hw_cache_event_ids));
5723
5724                 intel_pmu_lbr_init_atom();
5725
5726                 x86_pmu.event_constraints = intel_gen_event_constraints;
5727                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5728                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5729                 pr_cont("Atom events, ");
5730                 name = "bonnell";
5731                 break;
5732
5733         case INTEL_FAM6_ATOM_SILVERMONT:
5734         case INTEL_FAM6_ATOM_SILVERMONT_D:
5735         case INTEL_FAM6_ATOM_SILVERMONT_MID:
5736         case INTEL_FAM6_ATOM_AIRMONT:
5737         case INTEL_FAM6_ATOM_AIRMONT_MID:
5738                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5739                         sizeof(hw_cache_event_ids));
5740                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5741                        sizeof(hw_cache_extra_regs));
5742
5743                 intel_pmu_lbr_init_slm();
5744
5745                 x86_pmu.event_constraints = intel_slm_event_constraints;
5746                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5747                 x86_pmu.extra_regs = intel_slm_extra_regs;
5748                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5749                 td_attr = slm_events_attrs;
5750                 extra_attr = slm_format_attr;
5751                 pr_cont("Silvermont events, ");
5752                 name = "silvermont";
5753                 break;
5754
5755         case INTEL_FAM6_ATOM_GOLDMONT:
5756         case INTEL_FAM6_ATOM_GOLDMONT_D:
5757                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5758                        sizeof(hw_cache_event_ids));
5759                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5760                        sizeof(hw_cache_extra_regs));
5761
5762                 intel_pmu_lbr_init_skl();
5763
5764                 x86_pmu.event_constraints = intel_slm_event_constraints;
5765                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5766                 x86_pmu.extra_regs = intel_glm_extra_regs;
5767                 /*
5768                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5769                  * for precise cycles.
5770                  * :pp is identical to :ppp
5771                  */
5772                 x86_pmu.pebs_aliases = NULL;
5773                 x86_pmu.pebs_prec_dist = true;
5774                 x86_pmu.lbr_pt_coexist = true;
5775                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5776                 td_attr = glm_events_attrs;
5777                 extra_attr = slm_format_attr;
5778                 pr_cont("Goldmont events, ");
5779                 name = "goldmont";
5780                 break;
5781
5782         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5783                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5784                        sizeof(hw_cache_event_ids));
5785                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5786                        sizeof(hw_cache_extra_regs));
5787
5788                 intel_pmu_lbr_init_skl();
5789
5790                 x86_pmu.event_constraints = intel_slm_event_constraints;
5791                 x86_pmu.extra_regs = intel_glm_extra_regs;
5792                 /*
5793                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5794                  * for precise cycles.
5795                  */
5796                 x86_pmu.pebs_aliases = NULL;
5797                 x86_pmu.pebs_prec_dist = true;
5798                 x86_pmu.lbr_pt_coexist = true;
5799                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5800                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
5801                 x86_pmu.get_event_constraints = glp_get_event_constraints;
5802                 td_attr = glm_events_attrs;
5803                 /* Goldmont Plus has 4-wide pipeline */
5804                 event_attr_td_total_slots_scale_glm.event_str = "4";
5805                 extra_attr = slm_format_attr;
5806                 pr_cont("Goldmont plus events, ");
5807                 name = "goldmont_plus";
5808                 break;
5809
5810         case INTEL_FAM6_ATOM_TREMONT_D:
5811         case INTEL_FAM6_ATOM_TREMONT:
5812         case INTEL_FAM6_ATOM_TREMONT_L:
5813                 x86_pmu.late_ack = true;
5814                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5815                        sizeof(hw_cache_event_ids));
5816                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5817                        sizeof(hw_cache_extra_regs));
5818                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5819
5820                 intel_pmu_lbr_init_skl();
5821
5822                 x86_pmu.event_constraints = intel_slm_event_constraints;
5823                 x86_pmu.extra_regs = intel_tnt_extra_regs;
5824                 /*
5825                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5826                  * for precise cycles.
5827                  */
5828                 x86_pmu.pebs_aliases = NULL;
5829                 x86_pmu.pebs_prec_dist = true;
5830                 x86_pmu.lbr_pt_coexist = true;
5831                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5832                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
5833                 td_attr = tnt_events_attrs;
5834                 extra_attr = slm_format_attr;
5835                 pr_cont("Tremont events, ");
5836                 name = "Tremont";
5837                 break;
5838
5839         case INTEL_FAM6_WESTMERE:
5840         case INTEL_FAM6_WESTMERE_EP:
5841         case INTEL_FAM6_WESTMERE_EX:
5842                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5843                        sizeof(hw_cache_event_ids));
5844                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5845                        sizeof(hw_cache_extra_regs));
5846
5847                 intel_pmu_lbr_init_nhm();
5848
5849                 x86_pmu.event_constraints = intel_westmere_event_constraints;
5850                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5851                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5852                 x86_pmu.extra_regs = intel_westmere_extra_regs;
5853                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5854
5855                 mem_attr = nhm_mem_events_attrs;
5856
5857                 /* UOPS_ISSUED.STALLED_CYCLES */
5858                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5859                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5860                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5861                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5862                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5863
5864                 intel_pmu_pebs_data_source_nhm();
5865                 extra_attr = nhm_format_attr;
5866                 pr_cont("Westmere events, ");
5867                 name = "westmere";
5868                 break;
5869
5870         case INTEL_FAM6_SANDYBRIDGE:
5871         case INTEL_FAM6_SANDYBRIDGE_X:
5872                 x86_add_quirk(intel_sandybridge_quirk);
5873                 x86_add_quirk(intel_ht_bug);
5874                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5875                        sizeof(hw_cache_event_ids));
5876                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5877                        sizeof(hw_cache_extra_regs));
5878
5879                 intel_pmu_lbr_init_snb();
5880
5881                 x86_pmu.event_constraints = intel_snb_event_constraints;
5882                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5883                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5884                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5885                         x86_pmu.extra_regs = intel_snbep_extra_regs;
5886                 else
5887                         x86_pmu.extra_regs = intel_snb_extra_regs;
5888
5889
5890                 /* all extra regs are per-cpu when HT is on */
5891                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5892                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5893
5894                 td_attr  = snb_events_attrs;
5895                 mem_attr = snb_mem_events_attrs;
5896
5897                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5898                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5899                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5900                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5901                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5902                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5903
5904                 extra_attr = nhm_format_attr;
5905
5906                 pr_cont("SandyBridge events, ");
5907                 name = "sandybridge";
5908                 break;
5909
5910         case INTEL_FAM6_IVYBRIDGE:
5911         case INTEL_FAM6_IVYBRIDGE_X:
5912                 x86_add_quirk(intel_ht_bug);
5913                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5914                        sizeof(hw_cache_event_ids));
5915                 /* dTLB-load-misses on IVB is different than SNB */
5916                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5917
5918                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5919                        sizeof(hw_cache_extra_regs));
5920
5921                 intel_pmu_lbr_init_snb();
5922
5923                 x86_pmu.event_constraints = intel_ivb_event_constraints;
5924                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5925                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5926                 x86_pmu.pebs_prec_dist = true;
5927                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5928                         x86_pmu.extra_regs = intel_snbep_extra_regs;
5929                 else
5930                         x86_pmu.extra_regs = intel_snb_extra_regs;
5931                 /* all extra regs are per-cpu when HT is on */
5932                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5933                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5934
5935                 td_attr  = snb_events_attrs;
5936                 mem_attr = snb_mem_events_attrs;
5937
5938                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5939                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5940                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5941
5942                 extra_attr = nhm_format_attr;
5943
5944                 pr_cont("IvyBridge events, ");
5945                 name = "ivybridge";
5946                 break;
5947
5948
5949         case INTEL_FAM6_HASWELL:
5950         case INTEL_FAM6_HASWELL_X:
5951         case INTEL_FAM6_HASWELL_L:
5952         case INTEL_FAM6_HASWELL_G:
5953                 x86_add_quirk(intel_ht_bug);
5954                 x86_add_quirk(intel_pebs_isolation_quirk);
5955                 x86_pmu.late_ack = true;
5956                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5957                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5958
5959                 intel_pmu_lbr_init_hsw();
5960
5961                 x86_pmu.event_constraints = intel_hsw_event_constraints;
5962                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5963                 x86_pmu.extra_regs = intel_snbep_extra_regs;
5964                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5965                 x86_pmu.pebs_prec_dist = true;
5966                 /* all extra regs are per-cpu when HT is on */
5967                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5968                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5969
5970                 x86_pmu.hw_config = hsw_hw_config;
5971                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5972                 x86_pmu.lbr_double_abort = true;
5973                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5974                         hsw_format_attr : nhm_format_attr;
5975                 td_attr  = hsw_events_attrs;
5976                 mem_attr = hsw_mem_events_attrs;
5977                 tsx_attr = hsw_tsx_events_attrs;
5978                 pr_cont("Haswell events, ");
5979                 name = "haswell";
5980                 break;
5981
5982         case INTEL_FAM6_BROADWELL:
5983         case INTEL_FAM6_BROADWELL_D:
5984         case INTEL_FAM6_BROADWELL_G:
5985         case INTEL_FAM6_BROADWELL_X:
5986                 x86_add_quirk(intel_pebs_isolation_quirk);
5987                 x86_pmu.late_ack = true;
5988                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5989                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5990
5991                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5992                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5993                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
5994                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5995                                                                           HSW_SNOOP_DRAM;
5996                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5997                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5998                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5999                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6000
6001                 intel_pmu_lbr_init_hsw();
6002
6003                 x86_pmu.event_constraints = intel_bdw_event_constraints;
6004                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6005                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6006                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6007                 x86_pmu.pebs_prec_dist = true;
6008                 /* all extra regs are per-cpu when HT is on */
6009                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6010                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6011
6012                 x86_pmu.hw_config = hsw_hw_config;
6013                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6014                 x86_pmu.limit_period = bdw_limit_period;
6015                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6016                         hsw_format_attr : nhm_format_attr;
6017                 td_attr  = hsw_events_attrs;
6018                 mem_attr = hsw_mem_events_attrs;
6019                 tsx_attr = hsw_tsx_events_attrs;
6020                 pr_cont("Broadwell events, ");
6021                 name = "broadwell";
6022                 break;
6023
6024         case INTEL_FAM6_XEON_PHI_KNL:
6025         case INTEL_FAM6_XEON_PHI_KNM:
6026                 memcpy(hw_cache_event_ids,
6027                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6028                 memcpy(hw_cache_extra_regs,
6029                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6030                 intel_pmu_lbr_init_knl();
6031
6032                 x86_pmu.event_constraints = intel_slm_event_constraints;
6033                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6034                 x86_pmu.extra_regs = intel_knl_extra_regs;
6035
6036                 /* all extra regs are per-cpu when HT is on */
6037                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6038                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6039                 extra_attr = slm_format_attr;
6040                 pr_cont("Knights Landing/Mill events, ");
6041                 name = "knights-landing";
6042                 break;
6043
6044         case INTEL_FAM6_SKYLAKE_X:
6045                 pmem = true;
6046                 fallthrough;
6047         case INTEL_FAM6_SKYLAKE_L:
6048         case INTEL_FAM6_SKYLAKE:
6049         case INTEL_FAM6_KABYLAKE_L:
6050         case INTEL_FAM6_KABYLAKE:
6051         case INTEL_FAM6_COMETLAKE_L:
6052         case INTEL_FAM6_COMETLAKE:
6053                 x86_add_quirk(intel_pebs_isolation_quirk);
6054                 x86_pmu.late_ack = true;
6055                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6056                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6057                 intel_pmu_lbr_init_skl();
6058
6059                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6060                 event_attr_td_recovery_bubbles.event_str_noht =
6061                         "event=0xd,umask=0x1,cmask=1";
6062                 event_attr_td_recovery_bubbles.event_str_ht =
6063                         "event=0xd,umask=0x1,cmask=1,any=1";
6064
6065                 x86_pmu.event_constraints = intel_skl_event_constraints;
6066                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6067                 x86_pmu.extra_regs = intel_skl_extra_regs;
6068                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6069                 x86_pmu.pebs_prec_dist = true;
6070                 /* all extra regs are per-cpu when HT is on */
6071                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6072                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6073
6074                 x86_pmu.hw_config = hsw_hw_config;
6075                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6076                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6077                         hsw_format_attr : nhm_format_attr;
6078                 extra_skl_attr = skl_format_attr;
6079                 td_attr  = hsw_events_attrs;
6080                 mem_attr = hsw_mem_events_attrs;
6081                 tsx_attr = hsw_tsx_events_attrs;
6082                 intel_pmu_pebs_data_source_skl(pmem);
6083
6084                 /*
6085                  * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6086                  * TSX force abort hooks are not required on these systems. Only deploy
6087                  * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6088                  */
6089                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6090                    !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6091                         x86_pmu.flags |= PMU_FL_TFA;
6092                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
6093                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6094                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6095                 }
6096
6097                 pr_cont("Skylake events, ");
6098                 name = "skylake";
6099                 break;
6100
6101         case INTEL_FAM6_ICELAKE_X:
6102         case INTEL_FAM6_ICELAKE_D:
6103                 pmem = true;
6104                 fallthrough;
6105         case INTEL_FAM6_ICELAKE_L:
6106         case INTEL_FAM6_ICELAKE:
6107         case INTEL_FAM6_TIGERLAKE_L:
6108         case INTEL_FAM6_TIGERLAKE:
6109         case INTEL_FAM6_ROCKETLAKE:
6110                 x86_pmu.late_ack = true;
6111                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6112                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6113                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6114                 intel_pmu_lbr_init_skl();
6115
6116                 x86_pmu.event_constraints = intel_icl_event_constraints;
6117                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6118                 x86_pmu.extra_regs = intel_icl_extra_regs;
6119                 x86_pmu.pebs_aliases = NULL;
6120                 x86_pmu.pebs_prec_dist = true;
6121                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6122                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6123
6124                 x86_pmu.hw_config = hsw_hw_config;
6125                 x86_pmu.get_event_constraints = icl_get_event_constraints;
6126                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6127                         hsw_format_attr : nhm_format_attr;
6128                 extra_skl_attr = skl_format_attr;
6129                 mem_attr = icl_events_attrs;
6130                 td_attr = icl_td_events_attrs;
6131                 tsx_attr = icl_tsx_events_attrs;
6132                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6133                 x86_pmu.lbr_pt_coexist = true;
6134                 intel_pmu_pebs_data_source_skl(pmem);
6135                 x86_pmu.num_topdown_events = 4;
6136                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6137                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6138                 pr_cont("Icelake events, ");
6139                 name = "icelake";
6140                 break;
6141
6142         case INTEL_FAM6_SAPPHIRERAPIDS_X:
6143                 pmem = true;
6144                 x86_pmu.late_ack = true;
6145                 memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6146                 memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6147
6148                 x86_pmu.event_constraints = intel_spr_event_constraints;
6149                 x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6150                 x86_pmu.extra_regs = intel_spr_extra_regs;
6151                 x86_pmu.limit_period = spr_limit_period;
6152                 x86_pmu.pebs_aliases = NULL;
6153                 x86_pmu.pebs_prec_dist = true;
6154                 x86_pmu.pebs_block = true;
6155                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6156                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6157                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6158                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6159                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6160
6161                 x86_pmu.hw_config = hsw_hw_config;
6162                 x86_pmu.get_event_constraints = spr_get_event_constraints;
6163                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6164                         hsw_format_attr : nhm_format_attr;
6165                 extra_skl_attr = skl_format_attr;
6166                 mem_attr = spr_events_attrs;
6167                 td_attr = spr_td_events_attrs;
6168                 tsx_attr = spr_tsx_events_attrs;
6169                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6170                 x86_pmu.lbr_pt_coexist = true;
6171                 intel_pmu_pebs_data_source_skl(pmem);
6172                 x86_pmu.num_topdown_events = 8;
6173                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6174                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6175                 pr_cont("Sapphire Rapids events, ");
6176                 name = "sapphire_rapids";
6177                 break;
6178
6179         case INTEL_FAM6_ALDERLAKE:
6180         case INTEL_FAM6_ALDERLAKE_L:
6181                 /*
6182                  * Alder Lake has 2 types of CPU, core and atom.
6183                  *
6184                  * Initialize the common PerfMon capabilities here.
6185                  */
6186                 x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6187                                              sizeof(struct x86_hybrid_pmu),
6188                                              GFP_KERNEL);
6189                 if (!x86_pmu.hybrid_pmu)
6190                         return -ENOMEM;
6191                 static_branch_enable(&perf_is_hybrid);
6192                 x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6193
6194                 x86_pmu.pebs_aliases = NULL;
6195                 x86_pmu.pebs_prec_dist = true;
6196                 x86_pmu.pebs_block = true;
6197                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6198                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6199                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6200                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6201                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6202                 x86_pmu.lbr_pt_coexist = true;
6203                 intel_pmu_pebs_data_source_skl(false);
6204                 x86_pmu.num_topdown_events = 8;
6205                 x86_pmu.update_topdown_event = adl_update_topdown_event;
6206                 x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6207
6208                 x86_pmu.filter_match = intel_pmu_filter_match;
6209                 x86_pmu.get_event_constraints = adl_get_event_constraints;
6210                 x86_pmu.hw_config = adl_hw_config;
6211                 x86_pmu.limit_period = spr_limit_period;
6212                 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6213                 /*
6214                  * The rtm_abort_event is used to check whether to enable GPRs
6215                  * for the RTM abort event. Atom doesn't have the RTM abort
6216                  * event. There is no harmful to set it in the common
6217                  * x86_pmu.rtm_abort_event.
6218                  */
6219                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6220
6221                 td_attr = adl_hybrid_events_attrs;
6222                 mem_attr = adl_hybrid_mem_attrs;
6223                 tsx_attr = adl_hybrid_tsx_attrs;
6224                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6225                         adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6226
6227                 /* Initialize big core specific PerfMon capabilities.*/
6228                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6229                 pmu->name = "cpu_core";
6230                 pmu->cpu_type = hybrid_big;
6231                 pmu->late_ack = true;
6232                 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6233                         pmu->num_counters = x86_pmu.num_counters + 2;
6234                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6235                 } else {
6236                         pmu->num_counters = x86_pmu.num_counters;
6237                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6238                 }
6239                 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6240                 pmu->unconstrained = (struct event_constraint)
6241                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6242                                                            0, pmu->num_counters, 0, 0);
6243                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6244                 pmu->intel_cap.perf_metrics = 1;
6245                 pmu->intel_cap.pebs_output_pt_available = 0;
6246
6247                 memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6248                 memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6249                 pmu->event_constraints = intel_spr_event_constraints;
6250                 pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6251                 pmu->extra_regs = intel_spr_extra_regs;
6252
6253                 /* Initialize Atom core specific PerfMon capabilities.*/
6254                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6255                 pmu->name = "cpu_atom";
6256                 pmu->cpu_type = hybrid_small;
6257                 pmu->mid_ack = true;
6258                 pmu->num_counters = x86_pmu.num_counters;
6259                 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6260                 pmu->max_pebs_events = x86_pmu.max_pebs_events;
6261                 pmu->unconstrained = (struct event_constraint)
6262                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6263                                                            0, pmu->num_counters, 0, 0);
6264                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6265                 pmu->intel_cap.perf_metrics = 0;
6266                 pmu->intel_cap.pebs_output_pt_available = 1;
6267
6268                 memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6269                 memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6270                 pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6271                 pmu->event_constraints = intel_slm_event_constraints;
6272                 pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6273                 pmu->extra_regs = intel_grt_extra_regs;
6274                 pr_cont("Alderlake Hybrid events, ");
6275                 name = "alderlake_hybrid";
6276                 break;
6277
6278         default:
6279                 switch (x86_pmu.version) {
6280                 case 1:
6281                         x86_pmu.event_constraints = intel_v1_event_constraints;
6282                         pr_cont("generic architected perfmon v1, ");
6283                         name = "generic_arch_v1";
6284                         break;
6285                 default:
6286                         /*
6287                          * default constraints for v2 and up
6288                          */
6289                         x86_pmu.event_constraints = intel_gen_event_constraints;
6290                         pr_cont("generic architected perfmon, ");
6291                         name = "generic_arch_v2+";
6292                         break;
6293                 }
6294         }
6295
6296         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6297
6298         if (!is_hybrid()) {
6299                 group_events_td.attrs  = td_attr;
6300                 group_events_mem.attrs = mem_attr;
6301                 group_events_tsx.attrs = tsx_attr;
6302                 group_format_extra.attrs = extra_attr;
6303                 group_format_extra_skl.attrs = extra_skl_attr;
6304
6305                 x86_pmu.attr_update = attr_update;
6306         } else {
6307                 hybrid_group_events_td.attrs  = td_attr;
6308                 hybrid_group_events_mem.attrs = mem_attr;
6309                 hybrid_group_events_tsx.attrs = tsx_attr;
6310                 hybrid_group_format_extra.attrs = extra_attr;
6311
6312                 x86_pmu.attr_update = hybrid_attr_update;
6313         }
6314
6315         intel_pmu_check_num_counters(&x86_pmu.num_counters,
6316                                      &x86_pmu.num_counters_fixed,
6317                                      &x86_pmu.intel_ctrl,
6318                                      (u64)fixed_mask);
6319
6320         /* AnyThread may be deprecated on arch perfmon v5 or later */
6321         if (x86_pmu.intel_cap.anythread_deprecated)
6322                 x86_pmu.format_attrs = intel_arch_formats_attr;
6323
6324         intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6325                                           x86_pmu.num_counters,
6326                                           x86_pmu.num_counters_fixed,
6327                                           x86_pmu.intel_ctrl);
6328         /*
6329          * Access LBR MSR may cause #GP under certain circumstances.
6330          * E.g. KVM doesn't support LBR MSR
6331          * Check all LBT MSR here.
6332          * Disable LBR access if any LBR MSRs can not be accessed.
6333          */
6334         if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6335                 x86_pmu.lbr_nr = 0;
6336         for (i = 0; i < x86_pmu.lbr_nr; i++) {
6337                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6338                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6339                         x86_pmu.lbr_nr = 0;
6340         }
6341
6342         if (x86_pmu.lbr_nr) {
6343                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6344
6345                 /* only support branch_stack snapshot for perfmon >= v2 */
6346                 if (x86_pmu.disable_all == intel_pmu_disable_all) {
6347                         if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6348                                 static_call_update(perf_snapshot_branch_stack,
6349                                                    intel_pmu_snapshot_arch_branch_stack);
6350                         } else {
6351                                 static_call_update(perf_snapshot_branch_stack,
6352                                                    intel_pmu_snapshot_branch_stack);
6353                         }
6354                 }
6355         }
6356
6357         intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6358
6359         /* Support full width counters using alternative MSR range */
6360         if (x86_pmu.intel_cap.full_width_write) {
6361                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6362                 x86_pmu.perfctr = MSR_IA32_PMC0;
6363                 pr_cont("full-width counters, ");
6364         }
6365
6366         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6367                 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6368
6369         if (is_hybrid())
6370                 intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6371
6372         intel_aux_output_init();
6373
6374         return 0;
6375 }
6376
6377 /*
6378  * HT bug: phase 2 init
6379  * Called once we have valid topology information to check
6380  * whether or not HT is enabled
6381  * If HT is off, then we disable the workaround
6382  */
6383 static __init int fixup_ht_bug(void)
6384 {
6385         int c;
6386         /*
6387          * problem not present on this CPU model, nothing to do
6388          */
6389         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6390                 return 0;
6391
6392         if (topology_max_smt_threads() > 1) {
6393                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6394                 return 0;
6395         }
6396
6397         cpus_read_lock();
6398
6399         hardlockup_detector_perf_stop();
6400
6401         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6402
6403         x86_pmu.start_scheduling = NULL;
6404         x86_pmu.commit_scheduling = NULL;
6405         x86_pmu.stop_scheduling = NULL;
6406
6407         hardlockup_detector_perf_restart();
6408
6409         for_each_online_cpu(c)
6410                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6411
6412         cpus_read_unlock();
6413         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6414         return 0;
6415 }
6416 subsys_initcall(fixup_ht_bug)