perf/x86/intel: Implement support for TSX Force Abort
[linux-2.6-microblaze.git] / arch / x86 / events / intel / core.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21
22 #include "../perf_event.h"
23
24 /*
25  * Intel PerfMon, used on Core and later.
26  */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
30         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
31         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
32         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
33         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
34         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
35         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
36         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
37 };
38
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47         EVENT_CONSTRAINT_END
48 };
49
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65         EVENT_CONSTRAINT_END
66 };
67
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81         EVENT_CONSTRAINT_END
82 };
83
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89         EVENT_EXTRA_END
90 };
91
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101         EVENT_CONSTRAINT_END
102 };
103
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118
119         /*
120          * When HT is off these events can only run on the bottom 4 counters
121          * When HT is on, they are impacted by the HT bug and require EXCL access
122          */
123         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127
128         EVENT_CONSTRAINT_END
129 };
130
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146
147         /*
148          * When HT is off these events can only run on the bottom 4 counters
149          * When HT is on, they are impacted by the HT bug and require EXCL access
150          */
151         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155
156         EVENT_CONSTRAINT_END
157 };
158
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165         EVENT_EXTRA_END
166 };
167
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170         EVENT_CONSTRAINT_END
171 };
172
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178         EVENT_CONSTRAINT_END
179 };
180
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186         EVENT_CONSTRAINT_END
187 };
188
189 static struct event_constraint intel_skl_event_constraints[] = {
190         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
191         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
192         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
193         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
194
195         /*
196          * when HT is off, these can only run on the bottom 4 counters
197          */
198         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
199         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
200         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
201         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
203
204         EVENT_CONSTRAINT_END
205 };
206
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210         EVENT_EXTRA_END
211 };
212
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218         EVENT_EXTRA_END
219 };
220
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226         EVENT_EXTRA_END
227 };
228
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233         /*
234          * Note the low 8 bits eventsel code is not a continuous field, containing
235          * some #GPing bits. These are masked out.
236          */
237         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238         EVENT_EXTRA_END
239 };
240
241 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
244
245 static struct attribute *nhm_mem_events_attrs[] = {
246         EVENT_PTR(mem_ld_nhm),
247         NULL,
248 };
249
250 /*
251  * topdown events for Intel Core CPUs.
252  *
253  * The events are all in slots, which is a free slot in a 4 wide
254  * pipeline. Some events are already reported in slots, for cycle
255  * events we multiply by the pipeline width (4).
256  *
257  * With Hyper Threading on, topdown metrics are either summed or averaged
258  * between the threads of a core: (count_t0 + count_t1).
259  *
260  * For the average case the metric is always scaled to pipeline width,
261  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262  */
263
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
266         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269         "event=0xe,umask=0x1");                 /* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
276         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278         "4", "2");
279
280 static struct attribute *snb_events_attrs[] = {
281         EVENT_PTR(td_slots_issued),
282         EVENT_PTR(td_slots_retired),
283         EVENT_PTR(td_fetch_bubbles),
284         EVENT_PTR(td_total_slots),
285         EVENT_PTR(td_total_slots_scale),
286         EVENT_PTR(td_recovery_bubbles),
287         EVENT_PTR(td_recovery_bubbles_scale),
288         NULL,
289 };
290
291 static struct attribute *snb_mem_events_attrs[] = {
292         EVENT_PTR(mem_ld_snb),
293         EVENT_PTR(mem_st_snb),
294         NULL,
295 };
296
297 static struct event_constraint intel_hsw_event_constraints[] = {
298         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
299         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
300         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
301         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
302         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
303         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
304         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
305         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
306         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
307         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
308         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
309         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
310
311         /*
312          * When HT is off these events can only run on the bottom 4 counters
313          * When HT is on, they are impacted by the HT bug and require EXCL access
314          */
315         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
316         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
317         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
318         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
319
320         EVENT_CONSTRAINT_END
321 };
322
323 static struct event_constraint intel_bdw_event_constraints[] = {
324         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
325         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
326         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
327         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
328         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
329         /*
330          * when HT is off, these can only run on the bottom 4 counters
331          */
332         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
333         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
334         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
335         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
336         EVENT_CONSTRAINT_END
337 };
338
339 static u64 intel_pmu_event_map(int hw_event)
340 {
341         return intel_perfmon_event_map[hw_event];
342 }
343
344 /*
345  * Notes on the events:
346  * - data reads do not include code reads (comparable to earlier tables)
347  * - data counts include speculative execution (except L1 write, dtlb, bpu)
348  * - remote node access includes remote memory, remote cache, remote mmio.
349  * - prefetches are not included in the counts.
350  * - icache miss does not include decoded icache
351  */
352
353 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
354 #define SKL_DEMAND_RFO                  BIT_ULL(1)
355 #define SKL_ANY_RESPONSE                BIT_ULL(16)
356 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
357 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
358 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
359 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
360 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
361 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
362                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
363                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
364                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
365 #define SKL_SPL_HIT                     BIT_ULL(30)
366 #define SKL_SNOOP_NONE                  BIT_ULL(31)
367 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
368 #define SKL_SNOOP_MISS                  BIT_ULL(33)
369 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
370 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
371 #define SKL_SNOOP_HITM                  BIT_ULL(36)
372 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
373 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
374                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
375                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
376                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
377 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
378 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
379                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
380                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
381                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
382 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
383 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
384 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
385                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
386                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
387
388 static __initconst const u64 skl_hw_cache_event_ids
389                                 [PERF_COUNT_HW_CACHE_MAX]
390                                 [PERF_COUNT_HW_CACHE_OP_MAX]
391                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
392 {
393  [ C(L1D ) ] = {
394         [ C(OP_READ) ] = {
395                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
396                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
397         },
398         [ C(OP_WRITE) ] = {
399                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
400                 [ C(RESULT_MISS)   ] = 0x0,
401         },
402         [ C(OP_PREFETCH) ] = {
403                 [ C(RESULT_ACCESS) ] = 0x0,
404                 [ C(RESULT_MISS)   ] = 0x0,
405         },
406  },
407  [ C(L1I ) ] = {
408         [ C(OP_READ) ] = {
409                 [ C(RESULT_ACCESS) ] = 0x0,
410                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
411         },
412         [ C(OP_WRITE) ] = {
413                 [ C(RESULT_ACCESS) ] = -1,
414                 [ C(RESULT_MISS)   ] = -1,
415         },
416         [ C(OP_PREFETCH) ] = {
417                 [ C(RESULT_ACCESS) ] = 0x0,
418                 [ C(RESULT_MISS)   ] = 0x0,
419         },
420  },
421  [ C(LL  ) ] = {
422         [ C(OP_READ) ] = {
423                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
424                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
425         },
426         [ C(OP_WRITE) ] = {
427                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
428                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
429         },
430         [ C(OP_PREFETCH) ] = {
431                 [ C(RESULT_ACCESS) ] = 0x0,
432                 [ C(RESULT_MISS)   ] = 0x0,
433         },
434  },
435  [ C(DTLB) ] = {
436         [ C(OP_READ) ] = {
437                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
438                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
439         },
440         [ C(OP_WRITE) ] = {
441                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
442                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
443         },
444         [ C(OP_PREFETCH) ] = {
445                 [ C(RESULT_ACCESS) ] = 0x0,
446                 [ C(RESULT_MISS)   ] = 0x0,
447         },
448  },
449  [ C(ITLB) ] = {
450         [ C(OP_READ) ] = {
451                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
452                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
453         },
454         [ C(OP_WRITE) ] = {
455                 [ C(RESULT_ACCESS) ] = -1,
456                 [ C(RESULT_MISS)   ] = -1,
457         },
458         [ C(OP_PREFETCH) ] = {
459                 [ C(RESULT_ACCESS) ] = -1,
460                 [ C(RESULT_MISS)   ] = -1,
461         },
462  },
463  [ C(BPU ) ] = {
464         [ C(OP_READ) ] = {
465                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
466                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
467         },
468         [ C(OP_WRITE) ] = {
469                 [ C(RESULT_ACCESS) ] = -1,
470                 [ C(RESULT_MISS)   ] = -1,
471         },
472         [ C(OP_PREFETCH) ] = {
473                 [ C(RESULT_ACCESS) ] = -1,
474                 [ C(RESULT_MISS)   ] = -1,
475         },
476  },
477  [ C(NODE) ] = {
478         [ C(OP_READ) ] = {
479                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
480                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
481         },
482         [ C(OP_WRITE) ] = {
483                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
484                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
485         },
486         [ C(OP_PREFETCH) ] = {
487                 [ C(RESULT_ACCESS) ] = 0x0,
488                 [ C(RESULT_MISS)   ] = 0x0,
489         },
490  },
491 };
492
493 static __initconst const u64 skl_hw_cache_extra_regs
494                                 [PERF_COUNT_HW_CACHE_MAX]
495                                 [PERF_COUNT_HW_CACHE_OP_MAX]
496                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
497 {
498  [ C(LL  ) ] = {
499         [ C(OP_READ) ] = {
500                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
501                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
502                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
503                                        SKL_L3_MISS|SKL_ANY_SNOOP|
504                                        SKL_SUPPLIER_NONE,
505         },
506         [ C(OP_WRITE) ] = {
507                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
508                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
509                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
510                                        SKL_L3_MISS|SKL_ANY_SNOOP|
511                                        SKL_SUPPLIER_NONE,
512         },
513         [ C(OP_PREFETCH) ] = {
514                 [ C(RESULT_ACCESS) ] = 0x0,
515                 [ C(RESULT_MISS)   ] = 0x0,
516         },
517  },
518  [ C(NODE) ] = {
519         [ C(OP_READ) ] = {
520                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
521                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
522                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
523                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
524         },
525         [ C(OP_WRITE) ] = {
526                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
527                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
528                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
529                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
530         },
531         [ C(OP_PREFETCH) ] = {
532                 [ C(RESULT_ACCESS) ] = 0x0,
533                 [ C(RESULT_MISS)   ] = 0x0,
534         },
535  },
536 };
537
538 #define SNB_DMND_DATA_RD        (1ULL << 0)
539 #define SNB_DMND_RFO            (1ULL << 1)
540 #define SNB_DMND_IFETCH         (1ULL << 2)
541 #define SNB_DMND_WB             (1ULL << 3)
542 #define SNB_PF_DATA_RD          (1ULL << 4)
543 #define SNB_PF_RFO              (1ULL << 5)
544 #define SNB_PF_IFETCH           (1ULL << 6)
545 #define SNB_LLC_DATA_RD         (1ULL << 7)
546 #define SNB_LLC_RFO             (1ULL << 8)
547 #define SNB_LLC_IFETCH          (1ULL << 9)
548 #define SNB_BUS_LOCKS           (1ULL << 10)
549 #define SNB_STRM_ST             (1ULL << 11)
550 #define SNB_OTHER               (1ULL << 15)
551 #define SNB_RESP_ANY            (1ULL << 16)
552 #define SNB_NO_SUPP             (1ULL << 17)
553 #define SNB_LLC_HITM            (1ULL << 18)
554 #define SNB_LLC_HITE            (1ULL << 19)
555 #define SNB_LLC_HITS            (1ULL << 20)
556 #define SNB_LLC_HITF            (1ULL << 21)
557 #define SNB_LOCAL               (1ULL << 22)
558 #define SNB_REMOTE              (0xffULL << 23)
559 #define SNB_SNP_NONE            (1ULL << 31)
560 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
561 #define SNB_SNP_MISS            (1ULL << 33)
562 #define SNB_NO_FWD              (1ULL << 34)
563 #define SNB_SNP_FWD             (1ULL << 35)
564 #define SNB_HITM                (1ULL << 36)
565 #define SNB_NON_DRAM            (1ULL << 37)
566
567 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
568 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
569 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
570
571 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
572                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
573                                  SNB_HITM)
574
575 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
576 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
577
578 #define SNB_L3_ACCESS           SNB_RESP_ANY
579 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
580
581 static __initconst const u64 snb_hw_cache_extra_regs
582                                 [PERF_COUNT_HW_CACHE_MAX]
583                                 [PERF_COUNT_HW_CACHE_OP_MAX]
584                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
585 {
586  [ C(LL  ) ] = {
587         [ C(OP_READ) ] = {
588                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
589                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
590         },
591         [ C(OP_WRITE) ] = {
592                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
593                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
594         },
595         [ C(OP_PREFETCH) ] = {
596                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
597                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
598         },
599  },
600  [ C(NODE) ] = {
601         [ C(OP_READ) ] = {
602                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
603                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
604         },
605         [ C(OP_WRITE) ] = {
606                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
607                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
608         },
609         [ C(OP_PREFETCH) ] = {
610                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
611                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
612         },
613  },
614 };
615
616 static __initconst const u64 snb_hw_cache_event_ids
617                                 [PERF_COUNT_HW_CACHE_MAX]
618                                 [PERF_COUNT_HW_CACHE_OP_MAX]
619                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
620 {
621  [ C(L1D) ] = {
622         [ C(OP_READ) ] = {
623                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
624                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
625         },
626         [ C(OP_WRITE) ] = {
627                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
628                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
629         },
630         [ C(OP_PREFETCH) ] = {
631                 [ C(RESULT_ACCESS) ] = 0x0,
632                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
633         },
634  },
635  [ C(L1I ) ] = {
636         [ C(OP_READ) ] = {
637                 [ C(RESULT_ACCESS) ] = 0x0,
638                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
639         },
640         [ C(OP_WRITE) ] = {
641                 [ C(RESULT_ACCESS) ] = -1,
642                 [ C(RESULT_MISS)   ] = -1,
643         },
644         [ C(OP_PREFETCH) ] = {
645                 [ C(RESULT_ACCESS) ] = 0x0,
646                 [ C(RESULT_MISS)   ] = 0x0,
647         },
648  },
649  [ C(LL  ) ] = {
650         [ C(OP_READ) ] = {
651                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
652                 [ C(RESULT_ACCESS) ] = 0x01b7,
653                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
654                 [ C(RESULT_MISS)   ] = 0x01b7,
655         },
656         [ C(OP_WRITE) ] = {
657                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
658                 [ C(RESULT_ACCESS) ] = 0x01b7,
659                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
660                 [ C(RESULT_MISS)   ] = 0x01b7,
661         },
662         [ C(OP_PREFETCH) ] = {
663                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
664                 [ C(RESULT_ACCESS) ] = 0x01b7,
665                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
666                 [ C(RESULT_MISS)   ] = 0x01b7,
667         },
668  },
669  [ C(DTLB) ] = {
670         [ C(OP_READ) ] = {
671                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
672                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
673         },
674         [ C(OP_WRITE) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
676                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
677         },
678         [ C(OP_PREFETCH) ] = {
679                 [ C(RESULT_ACCESS) ] = 0x0,
680                 [ C(RESULT_MISS)   ] = 0x0,
681         },
682  },
683  [ C(ITLB) ] = {
684         [ C(OP_READ) ] = {
685                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
686                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
687         },
688         [ C(OP_WRITE) ] = {
689                 [ C(RESULT_ACCESS) ] = -1,
690                 [ C(RESULT_MISS)   ] = -1,
691         },
692         [ C(OP_PREFETCH) ] = {
693                 [ C(RESULT_ACCESS) ] = -1,
694                 [ C(RESULT_MISS)   ] = -1,
695         },
696  },
697  [ C(BPU ) ] = {
698         [ C(OP_READ) ] = {
699                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
700                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
701         },
702         [ C(OP_WRITE) ] = {
703                 [ C(RESULT_ACCESS) ] = -1,
704                 [ C(RESULT_MISS)   ] = -1,
705         },
706         [ C(OP_PREFETCH) ] = {
707                 [ C(RESULT_ACCESS) ] = -1,
708                 [ C(RESULT_MISS)   ] = -1,
709         },
710  },
711  [ C(NODE) ] = {
712         [ C(OP_READ) ] = {
713                 [ C(RESULT_ACCESS) ] = 0x01b7,
714                 [ C(RESULT_MISS)   ] = 0x01b7,
715         },
716         [ C(OP_WRITE) ] = {
717                 [ C(RESULT_ACCESS) ] = 0x01b7,
718                 [ C(RESULT_MISS)   ] = 0x01b7,
719         },
720         [ C(OP_PREFETCH) ] = {
721                 [ C(RESULT_ACCESS) ] = 0x01b7,
722                 [ C(RESULT_MISS)   ] = 0x01b7,
723         },
724  },
725
726 };
727
728 /*
729  * Notes on the events:
730  * - data reads do not include code reads (comparable to earlier tables)
731  * - data counts include speculative execution (except L1 write, dtlb, bpu)
732  * - remote node access includes remote memory, remote cache, remote mmio.
733  * - prefetches are not included in the counts because they are not
734  *   reliably counted.
735  */
736
737 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
738 #define HSW_DEMAND_RFO                  BIT_ULL(1)
739 #define HSW_ANY_RESPONSE                BIT_ULL(16)
740 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
741 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
742 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
743 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
744 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
745 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
746                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
747                                          HSW_L3_MISS_REMOTE_HOP2P)
748 #define HSW_SNOOP_NONE                  BIT_ULL(31)
749 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
750 #define HSW_SNOOP_MISS                  BIT_ULL(33)
751 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
752 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
753 #define HSW_SNOOP_HITM                  BIT_ULL(36)
754 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
755 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
756                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
757                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
758                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
759 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
760 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
761 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
762 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
763                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
764 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
765
766 #define BDW_L3_MISS_LOCAL               BIT(26)
767 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
768                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
769                                          HSW_L3_MISS_REMOTE_HOP2P)
770
771
772 static __initconst const u64 hsw_hw_cache_event_ids
773                                 [PERF_COUNT_HW_CACHE_MAX]
774                                 [PERF_COUNT_HW_CACHE_OP_MAX]
775                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
776 {
777  [ C(L1D ) ] = {
778         [ C(OP_READ) ] = {
779                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
780                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
781         },
782         [ C(OP_WRITE) ] = {
783                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
784                 [ C(RESULT_MISS)   ] = 0x0,
785         },
786         [ C(OP_PREFETCH) ] = {
787                 [ C(RESULT_ACCESS) ] = 0x0,
788                 [ C(RESULT_MISS)   ] = 0x0,
789         },
790  },
791  [ C(L1I ) ] = {
792         [ C(OP_READ) ] = {
793                 [ C(RESULT_ACCESS) ] = 0x0,
794                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
795         },
796         [ C(OP_WRITE) ] = {
797                 [ C(RESULT_ACCESS) ] = -1,
798                 [ C(RESULT_MISS)   ] = -1,
799         },
800         [ C(OP_PREFETCH) ] = {
801                 [ C(RESULT_ACCESS) ] = 0x0,
802                 [ C(RESULT_MISS)   ] = 0x0,
803         },
804  },
805  [ C(LL  ) ] = {
806         [ C(OP_READ) ] = {
807                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
808                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
809         },
810         [ C(OP_WRITE) ] = {
811                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
812                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
813         },
814         [ C(OP_PREFETCH) ] = {
815                 [ C(RESULT_ACCESS) ] = 0x0,
816                 [ C(RESULT_MISS)   ] = 0x0,
817         },
818  },
819  [ C(DTLB) ] = {
820         [ C(OP_READ) ] = {
821                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
822                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
823         },
824         [ C(OP_WRITE) ] = {
825                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
826                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
827         },
828         [ C(OP_PREFETCH) ] = {
829                 [ C(RESULT_ACCESS) ] = 0x0,
830                 [ C(RESULT_MISS)   ] = 0x0,
831         },
832  },
833  [ C(ITLB) ] = {
834         [ C(OP_READ) ] = {
835                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
836                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
837         },
838         [ C(OP_WRITE) ] = {
839                 [ C(RESULT_ACCESS) ] = -1,
840                 [ C(RESULT_MISS)   ] = -1,
841         },
842         [ C(OP_PREFETCH) ] = {
843                 [ C(RESULT_ACCESS) ] = -1,
844                 [ C(RESULT_MISS)   ] = -1,
845         },
846  },
847  [ C(BPU ) ] = {
848         [ C(OP_READ) ] = {
849                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
850                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
851         },
852         [ C(OP_WRITE) ] = {
853                 [ C(RESULT_ACCESS) ] = -1,
854                 [ C(RESULT_MISS)   ] = -1,
855         },
856         [ C(OP_PREFETCH) ] = {
857                 [ C(RESULT_ACCESS) ] = -1,
858                 [ C(RESULT_MISS)   ] = -1,
859         },
860  },
861  [ C(NODE) ] = {
862         [ C(OP_READ) ] = {
863                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
864                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
865         },
866         [ C(OP_WRITE) ] = {
867                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
868                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
869         },
870         [ C(OP_PREFETCH) ] = {
871                 [ C(RESULT_ACCESS) ] = 0x0,
872                 [ C(RESULT_MISS)   ] = 0x0,
873         },
874  },
875 };
876
877 static __initconst const u64 hsw_hw_cache_extra_regs
878                                 [PERF_COUNT_HW_CACHE_MAX]
879                                 [PERF_COUNT_HW_CACHE_OP_MAX]
880                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
881 {
882  [ C(LL  ) ] = {
883         [ C(OP_READ) ] = {
884                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
885                                        HSW_LLC_ACCESS,
886                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
887                                        HSW_L3_MISS|HSW_ANY_SNOOP,
888         },
889         [ C(OP_WRITE) ] = {
890                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
891                                        HSW_LLC_ACCESS,
892                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
893                                        HSW_L3_MISS|HSW_ANY_SNOOP,
894         },
895         [ C(OP_PREFETCH) ] = {
896                 [ C(RESULT_ACCESS) ] = 0x0,
897                 [ C(RESULT_MISS)   ] = 0x0,
898         },
899  },
900  [ C(NODE) ] = {
901         [ C(OP_READ) ] = {
902                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
903                                        HSW_L3_MISS_LOCAL_DRAM|
904                                        HSW_SNOOP_DRAM,
905                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
906                                        HSW_L3_MISS_REMOTE|
907                                        HSW_SNOOP_DRAM,
908         },
909         [ C(OP_WRITE) ] = {
910                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
911                                        HSW_L3_MISS_LOCAL_DRAM|
912                                        HSW_SNOOP_DRAM,
913                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
914                                        HSW_L3_MISS_REMOTE|
915                                        HSW_SNOOP_DRAM,
916         },
917         [ C(OP_PREFETCH) ] = {
918                 [ C(RESULT_ACCESS) ] = 0x0,
919                 [ C(RESULT_MISS)   ] = 0x0,
920         },
921  },
922 };
923
924 static __initconst const u64 westmere_hw_cache_event_ids
925                                 [PERF_COUNT_HW_CACHE_MAX]
926                                 [PERF_COUNT_HW_CACHE_OP_MAX]
927                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
928 {
929  [ C(L1D) ] = {
930         [ C(OP_READ) ] = {
931                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
932                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
933         },
934         [ C(OP_WRITE) ] = {
935                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
936                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
937         },
938         [ C(OP_PREFETCH) ] = {
939                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
940                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
941         },
942  },
943  [ C(L1I ) ] = {
944         [ C(OP_READ) ] = {
945                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
946                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
947         },
948         [ C(OP_WRITE) ] = {
949                 [ C(RESULT_ACCESS) ] = -1,
950                 [ C(RESULT_MISS)   ] = -1,
951         },
952         [ C(OP_PREFETCH) ] = {
953                 [ C(RESULT_ACCESS) ] = 0x0,
954                 [ C(RESULT_MISS)   ] = 0x0,
955         },
956  },
957  [ C(LL  ) ] = {
958         [ C(OP_READ) ] = {
959                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
960                 [ C(RESULT_ACCESS) ] = 0x01b7,
961                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
962                 [ C(RESULT_MISS)   ] = 0x01b7,
963         },
964         /*
965          * Use RFO, not WRITEBACK, because a write miss would typically occur
966          * on RFO.
967          */
968         [ C(OP_WRITE) ] = {
969                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
970                 [ C(RESULT_ACCESS) ] = 0x01b7,
971                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
972                 [ C(RESULT_MISS)   ] = 0x01b7,
973         },
974         [ C(OP_PREFETCH) ] = {
975                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
976                 [ C(RESULT_ACCESS) ] = 0x01b7,
977                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
978                 [ C(RESULT_MISS)   ] = 0x01b7,
979         },
980  },
981  [ C(DTLB) ] = {
982         [ C(OP_READ) ] = {
983                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
984                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
985         },
986         [ C(OP_WRITE) ] = {
987                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
988                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
989         },
990         [ C(OP_PREFETCH) ] = {
991                 [ C(RESULT_ACCESS) ] = 0x0,
992                 [ C(RESULT_MISS)   ] = 0x0,
993         },
994  },
995  [ C(ITLB) ] = {
996         [ C(OP_READ) ] = {
997                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
998                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
999         },
1000         [ C(OP_WRITE) ] = {
1001                 [ C(RESULT_ACCESS) ] = -1,
1002                 [ C(RESULT_MISS)   ] = -1,
1003         },
1004         [ C(OP_PREFETCH) ] = {
1005                 [ C(RESULT_ACCESS) ] = -1,
1006                 [ C(RESULT_MISS)   ] = -1,
1007         },
1008  },
1009  [ C(BPU ) ] = {
1010         [ C(OP_READ) ] = {
1011                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1012                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1013         },
1014         [ C(OP_WRITE) ] = {
1015                 [ C(RESULT_ACCESS) ] = -1,
1016                 [ C(RESULT_MISS)   ] = -1,
1017         },
1018         [ C(OP_PREFETCH) ] = {
1019                 [ C(RESULT_ACCESS) ] = -1,
1020                 [ C(RESULT_MISS)   ] = -1,
1021         },
1022  },
1023  [ C(NODE) ] = {
1024         [ C(OP_READ) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x01b7,
1026                 [ C(RESULT_MISS)   ] = 0x01b7,
1027         },
1028         [ C(OP_WRITE) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x01b7,
1030                 [ C(RESULT_MISS)   ] = 0x01b7,
1031         },
1032         [ C(OP_PREFETCH) ] = {
1033                 [ C(RESULT_ACCESS) ] = 0x01b7,
1034                 [ C(RESULT_MISS)   ] = 0x01b7,
1035         },
1036  },
1037 };
1038
1039 /*
1040  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1041  * See IA32 SDM Vol 3B 30.6.1.3
1042  */
1043
1044 #define NHM_DMND_DATA_RD        (1 << 0)
1045 #define NHM_DMND_RFO            (1 << 1)
1046 #define NHM_DMND_IFETCH         (1 << 2)
1047 #define NHM_DMND_WB             (1 << 3)
1048 #define NHM_PF_DATA_RD          (1 << 4)
1049 #define NHM_PF_DATA_RFO         (1 << 5)
1050 #define NHM_PF_IFETCH           (1 << 6)
1051 #define NHM_OFFCORE_OTHER       (1 << 7)
1052 #define NHM_UNCORE_HIT          (1 << 8)
1053 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1054 #define NHM_OTHER_CORE_HITM     (1 << 10)
1055                                 /* reserved */
1056 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1057 #define NHM_REMOTE_DRAM         (1 << 13)
1058 #define NHM_LOCAL_DRAM          (1 << 14)
1059 #define NHM_NON_DRAM            (1 << 15)
1060
1061 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1062 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1063
1064 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1065 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1066 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1067
1068 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1069 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1070 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1071
1072 static __initconst const u64 nehalem_hw_cache_extra_regs
1073                                 [PERF_COUNT_HW_CACHE_MAX]
1074                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1075                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1076 {
1077  [ C(LL  ) ] = {
1078         [ C(OP_READ) ] = {
1079                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1080                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1081         },
1082         [ C(OP_WRITE) ] = {
1083                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1084                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1085         },
1086         [ C(OP_PREFETCH) ] = {
1087                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1088                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1089         },
1090  },
1091  [ C(NODE) ] = {
1092         [ C(OP_READ) ] = {
1093                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1094                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1095         },
1096         [ C(OP_WRITE) ] = {
1097                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1098                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1099         },
1100         [ C(OP_PREFETCH) ] = {
1101                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1102                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1103         },
1104  },
1105 };
1106
1107 static __initconst const u64 nehalem_hw_cache_event_ids
1108                                 [PERF_COUNT_HW_CACHE_MAX]
1109                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1110                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1111 {
1112  [ C(L1D) ] = {
1113         [ C(OP_READ) ] = {
1114                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1115                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1116         },
1117         [ C(OP_WRITE) ] = {
1118                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1119                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1120         },
1121         [ C(OP_PREFETCH) ] = {
1122                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1123                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1124         },
1125  },
1126  [ C(L1I ) ] = {
1127         [ C(OP_READ) ] = {
1128                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1129                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1130         },
1131         [ C(OP_WRITE) ] = {
1132                 [ C(RESULT_ACCESS) ] = -1,
1133                 [ C(RESULT_MISS)   ] = -1,
1134         },
1135         [ C(OP_PREFETCH) ] = {
1136                 [ C(RESULT_ACCESS) ] = 0x0,
1137                 [ C(RESULT_MISS)   ] = 0x0,
1138         },
1139  },
1140  [ C(LL  ) ] = {
1141         [ C(OP_READ) ] = {
1142                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1143                 [ C(RESULT_ACCESS) ] = 0x01b7,
1144                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1145                 [ C(RESULT_MISS)   ] = 0x01b7,
1146         },
1147         /*
1148          * Use RFO, not WRITEBACK, because a write miss would typically occur
1149          * on RFO.
1150          */
1151         [ C(OP_WRITE) ] = {
1152                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1153                 [ C(RESULT_ACCESS) ] = 0x01b7,
1154                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1155                 [ C(RESULT_MISS)   ] = 0x01b7,
1156         },
1157         [ C(OP_PREFETCH) ] = {
1158                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1159                 [ C(RESULT_ACCESS) ] = 0x01b7,
1160                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1161                 [ C(RESULT_MISS)   ] = 0x01b7,
1162         },
1163  },
1164  [ C(DTLB) ] = {
1165         [ C(OP_READ) ] = {
1166                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1167                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1168         },
1169         [ C(OP_WRITE) ] = {
1170                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1171                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1172         },
1173         [ C(OP_PREFETCH) ] = {
1174                 [ C(RESULT_ACCESS) ] = 0x0,
1175                 [ C(RESULT_MISS)   ] = 0x0,
1176         },
1177  },
1178  [ C(ITLB) ] = {
1179         [ C(OP_READ) ] = {
1180                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1181                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1182         },
1183         [ C(OP_WRITE) ] = {
1184                 [ C(RESULT_ACCESS) ] = -1,
1185                 [ C(RESULT_MISS)   ] = -1,
1186         },
1187         [ C(OP_PREFETCH) ] = {
1188                 [ C(RESULT_ACCESS) ] = -1,
1189                 [ C(RESULT_MISS)   ] = -1,
1190         },
1191  },
1192  [ C(BPU ) ] = {
1193         [ C(OP_READ) ] = {
1194                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1195                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1196         },
1197         [ C(OP_WRITE) ] = {
1198                 [ C(RESULT_ACCESS) ] = -1,
1199                 [ C(RESULT_MISS)   ] = -1,
1200         },
1201         [ C(OP_PREFETCH) ] = {
1202                 [ C(RESULT_ACCESS) ] = -1,
1203                 [ C(RESULT_MISS)   ] = -1,
1204         },
1205  },
1206  [ C(NODE) ] = {
1207         [ C(OP_READ) ] = {
1208                 [ C(RESULT_ACCESS) ] = 0x01b7,
1209                 [ C(RESULT_MISS)   ] = 0x01b7,
1210         },
1211         [ C(OP_WRITE) ] = {
1212                 [ C(RESULT_ACCESS) ] = 0x01b7,
1213                 [ C(RESULT_MISS)   ] = 0x01b7,
1214         },
1215         [ C(OP_PREFETCH) ] = {
1216                 [ C(RESULT_ACCESS) ] = 0x01b7,
1217                 [ C(RESULT_MISS)   ] = 0x01b7,
1218         },
1219  },
1220 };
1221
1222 static __initconst const u64 core2_hw_cache_event_ids
1223                                 [PERF_COUNT_HW_CACHE_MAX]
1224                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1225                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1226 {
1227  [ C(L1D) ] = {
1228         [ C(OP_READ) ] = {
1229                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1230                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1231         },
1232         [ C(OP_WRITE) ] = {
1233                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1234                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1235         },
1236         [ C(OP_PREFETCH) ] = {
1237                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1238                 [ C(RESULT_MISS)   ] = 0,
1239         },
1240  },
1241  [ C(L1I ) ] = {
1242         [ C(OP_READ) ] = {
1243                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1244                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1245         },
1246         [ C(OP_WRITE) ] = {
1247                 [ C(RESULT_ACCESS) ] = -1,
1248                 [ C(RESULT_MISS)   ] = -1,
1249         },
1250         [ C(OP_PREFETCH) ] = {
1251                 [ C(RESULT_ACCESS) ] = 0,
1252                 [ C(RESULT_MISS)   ] = 0,
1253         },
1254  },
1255  [ C(LL  ) ] = {
1256         [ C(OP_READ) ] = {
1257                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1258                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1259         },
1260         [ C(OP_WRITE) ] = {
1261                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1262                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1263         },
1264         [ C(OP_PREFETCH) ] = {
1265                 [ C(RESULT_ACCESS) ] = 0,
1266                 [ C(RESULT_MISS)   ] = 0,
1267         },
1268  },
1269  [ C(DTLB) ] = {
1270         [ C(OP_READ) ] = {
1271                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1272                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1273         },
1274         [ C(OP_WRITE) ] = {
1275                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1276                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1277         },
1278         [ C(OP_PREFETCH) ] = {
1279                 [ C(RESULT_ACCESS) ] = 0,
1280                 [ C(RESULT_MISS)   ] = 0,
1281         },
1282  },
1283  [ C(ITLB) ] = {
1284         [ C(OP_READ) ] = {
1285                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1286                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1287         },
1288         [ C(OP_WRITE) ] = {
1289                 [ C(RESULT_ACCESS) ] = -1,
1290                 [ C(RESULT_MISS)   ] = -1,
1291         },
1292         [ C(OP_PREFETCH) ] = {
1293                 [ C(RESULT_ACCESS) ] = -1,
1294                 [ C(RESULT_MISS)   ] = -1,
1295         },
1296  },
1297  [ C(BPU ) ] = {
1298         [ C(OP_READ) ] = {
1299                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1300                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1301         },
1302         [ C(OP_WRITE) ] = {
1303                 [ C(RESULT_ACCESS) ] = -1,
1304                 [ C(RESULT_MISS)   ] = -1,
1305         },
1306         [ C(OP_PREFETCH) ] = {
1307                 [ C(RESULT_ACCESS) ] = -1,
1308                 [ C(RESULT_MISS)   ] = -1,
1309         },
1310  },
1311 };
1312
1313 static __initconst const u64 atom_hw_cache_event_ids
1314                                 [PERF_COUNT_HW_CACHE_MAX]
1315                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1316                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1317 {
1318  [ C(L1D) ] = {
1319         [ C(OP_READ) ] = {
1320                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1321                 [ C(RESULT_MISS)   ] = 0,
1322         },
1323         [ C(OP_WRITE) ] = {
1324                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1325                 [ C(RESULT_MISS)   ] = 0,
1326         },
1327         [ C(OP_PREFETCH) ] = {
1328                 [ C(RESULT_ACCESS) ] = 0x0,
1329                 [ C(RESULT_MISS)   ] = 0,
1330         },
1331  },
1332  [ C(L1I ) ] = {
1333         [ C(OP_READ) ] = {
1334                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1335                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1336         },
1337         [ C(OP_WRITE) ] = {
1338                 [ C(RESULT_ACCESS) ] = -1,
1339                 [ C(RESULT_MISS)   ] = -1,
1340         },
1341         [ C(OP_PREFETCH) ] = {
1342                 [ C(RESULT_ACCESS) ] = 0,
1343                 [ C(RESULT_MISS)   ] = 0,
1344         },
1345  },
1346  [ C(LL  ) ] = {
1347         [ C(OP_READ) ] = {
1348                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1349                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1350         },
1351         [ C(OP_WRITE) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1353                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1354         },
1355         [ C(OP_PREFETCH) ] = {
1356                 [ C(RESULT_ACCESS) ] = 0,
1357                 [ C(RESULT_MISS)   ] = 0,
1358         },
1359  },
1360  [ C(DTLB) ] = {
1361         [ C(OP_READ) ] = {
1362                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1363                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1364         },
1365         [ C(OP_WRITE) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1367                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1368         },
1369         [ C(OP_PREFETCH) ] = {
1370                 [ C(RESULT_ACCESS) ] = 0,
1371                 [ C(RESULT_MISS)   ] = 0,
1372         },
1373  },
1374  [ C(ITLB) ] = {
1375         [ C(OP_READ) ] = {
1376                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1377                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1378         },
1379         [ C(OP_WRITE) ] = {
1380                 [ C(RESULT_ACCESS) ] = -1,
1381                 [ C(RESULT_MISS)   ] = -1,
1382         },
1383         [ C(OP_PREFETCH) ] = {
1384                 [ C(RESULT_ACCESS) ] = -1,
1385                 [ C(RESULT_MISS)   ] = -1,
1386         },
1387  },
1388  [ C(BPU ) ] = {
1389         [ C(OP_READ) ] = {
1390                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1391                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1392         },
1393         [ C(OP_WRITE) ] = {
1394                 [ C(RESULT_ACCESS) ] = -1,
1395                 [ C(RESULT_MISS)   ] = -1,
1396         },
1397         [ C(OP_PREFETCH) ] = {
1398                 [ C(RESULT_ACCESS) ] = -1,
1399                 [ C(RESULT_MISS)   ] = -1,
1400         },
1401  },
1402 };
1403
1404 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1405 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1406 /* no_alloc_cycles.not_delivered */
1407 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1408                "event=0xca,umask=0x50");
1409 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1410 /* uops_retired.all */
1411 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1412                "event=0xc2,umask=0x10");
1413 /* uops_retired.all */
1414 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1415                "event=0xc2,umask=0x10");
1416
1417 static struct attribute *slm_events_attrs[] = {
1418         EVENT_PTR(td_total_slots_slm),
1419         EVENT_PTR(td_total_slots_scale_slm),
1420         EVENT_PTR(td_fetch_bubbles_slm),
1421         EVENT_PTR(td_fetch_bubbles_scale_slm),
1422         EVENT_PTR(td_slots_issued_slm),
1423         EVENT_PTR(td_slots_retired_slm),
1424         NULL
1425 };
1426
1427 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1428 {
1429         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1430         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1431         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1432         EVENT_EXTRA_END
1433 };
1434
1435 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1436 #define SLM_DMND_WRITE          SNB_DMND_RFO
1437 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1438
1439 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1440 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1441 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1442
1443 static __initconst const u64 slm_hw_cache_extra_regs
1444                                 [PERF_COUNT_HW_CACHE_MAX]
1445                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1446                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1447 {
1448  [ C(LL  ) ] = {
1449         [ C(OP_READ) ] = {
1450                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1451                 [ C(RESULT_MISS)   ] = 0,
1452         },
1453         [ C(OP_WRITE) ] = {
1454                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1455                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1456         },
1457         [ C(OP_PREFETCH) ] = {
1458                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1459                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1460         },
1461  },
1462 };
1463
1464 static __initconst const u64 slm_hw_cache_event_ids
1465                                 [PERF_COUNT_HW_CACHE_MAX]
1466                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1467                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1468 {
1469  [ C(L1D) ] = {
1470         [ C(OP_READ) ] = {
1471                 [ C(RESULT_ACCESS) ] = 0,
1472                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1473         },
1474         [ C(OP_WRITE) ] = {
1475                 [ C(RESULT_ACCESS) ] = 0,
1476                 [ C(RESULT_MISS)   ] = 0,
1477         },
1478         [ C(OP_PREFETCH) ] = {
1479                 [ C(RESULT_ACCESS) ] = 0,
1480                 [ C(RESULT_MISS)   ] = 0,
1481         },
1482  },
1483  [ C(L1I ) ] = {
1484         [ C(OP_READ) ] = {
1485                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1486                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1487         },
1488         [ C(OP_WRITE) ] = {
1489                 [ C(RESULT_ACCESS) ] = -1,
1490                 [ C(RESULT_MISS)   ] = -1,
1491         },
1492         [ C(OP_PREFETCH) ] = {
1493                 [ C(RESULT_ACCESS) ] = 0,
1494                 [ C(RESULT_MISS)   ] = 0,
1495         },
1496  },
1497  [ C(LL  ) ] = {
1498         [ C(OP_READ) ] = {
1499                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1500                 [ C(RESULT_ACCESS) ] = 0x01b7,
1501                 [ C(RESULT_MISS)   ] = 0,
1502         },
1503         [ C(OP_WRITE) ] = {
1504                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1505                 [ C(RESULT_ACCESS) ] = 0x01b7,
1506                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1507                 [ C(RESULT_MISS)   ] = 0x01b7,
1508         },
1509         [ C(OP_PREFETCH) ] = {
1510                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1511                 [ C(RESULT_ACCESS) ] = 0x01b7,
1512                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1513                 [ C(RESULT_MISS)   ] = 0x01b7,
1514         },
1515  },
1516  [ C(DTLB) ] = {
1517         [ C(OP_READ) ] = {
1518                 [ C(RESULT_ACCESS) ] = 0,
1519                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1520         },
1521         [ C(OP_WRITE) ] = {
1522                 [ C(RESULT_ACCESS) ] = 0,
1523                 [ C(RESULT_MISS)   ] = 0,
1524         },
1525         [ C(OP_PREFETCH) ] = {
1526                 [ C(RESULT_ACCESS) ] = 0,
1527                 [ C(RESULT_MISS)   ] = 0,
1528         },
1529  },
1530  [ C(ITLB) ] = {
1531         [ C(OP_READ) ] = {
1532                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1533                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1534         },
1535         [ C(OP_WRITE) ] = {
1536                 [ C(RESULT_ACCESS) ] = -1,
1537                 [ C(RESULT_MISS)   ] = -1,
1538         },
1539         [ C(OP_PREFETCH) ] = {
1540                 [ C(RESULT_ACCESS) ] = -1,
1541                 [ C(RESULT_MISS)   ] = -1,
1542         },
1543  },
1544  [ C(BPU ) ] = {
1545         [ C(OP_READ) ] = {
1546                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1547                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1548         },
1549         [ C(OP_WRITE) ] = {
1550                 [ C(RESULT_ACCESS) ] = -1,
1551                 [ C(RESULT_MISS)   ] = -1,
1552         },
1553         [ C(OP_PREFETCH) ] = {
1554                 [ C(RESULT_ACCESS) ] = -1,
1555                 [ C(RESULT_MISS)   ] = -1,
1556         },
1557  },
1558 };
1559
1560 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1561 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1562 /* UOPS_NOT_DELIVERED.ANY */
1563 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1564 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1565 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1566 /* UOPS_RETIRED.ANY */
1567 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1568 /* UOPS_ISSUED.ANY */
1569 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1570
1571 static struct attribute *glm_events_attrs[] = {
1572         EVENT_PTR(td_total_slots_glm),
1573         EVENT_PTR(td_total_slots_scale_glm),
1574         EVENT_PTR(td_fetch_bubbles_glm),
1575         EVENT_PTR(td_recovery_bubbles_glm),
1576         EVENT_PTR(td_slots_issued_glm),
1577         EVENT_PTR(td_slots_retired_glm),
1578         NULL
1579 };
1580
1581 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1582         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1583         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1584         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1585         EVENT_EXTRA_END
1586 };
1587
1588 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1589 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1590 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1591 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1592 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1593 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1594 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1595 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1596 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1597 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1598
1599 static __initconst const u64 glm_hw_cache_event_ids
1600                                 [PERF_COUNT_HW_CACHE_MAX]
1601                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1602                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1603         [C(L1D)] = {
1604                 [C(OP_READ)] = {
1605                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1606                         [C(RESULT_MISS)]        = 0x0,
1607                 },
1608                 [C(OP_WRITE)] = {
1609                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1610                         [C(RESULT_MISS)]        = 0x0,
1611                 },
1612                 [C(OP_PREFETCH)] = {
1613                         [C(RESULT_ACCESS)]      = 0x0,
1614                         [C(RESULT_MISS)]        = 0x0,
1615                 },
1616         },
1617         [C(L1I)] = {
1618                 [C(OP_READ)] = {
1619                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1620                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1621                 },
1622                 [C(OP_WRITE)] = {
1623                         [C(RESULT_ACCESS)]      = -1,
1624                         [C(RESULT_MISS)]        = -1,
1625                 },
1626                 [C(OP_PREFETCH)] = {
1627                         [C(RESULT_ACCESS)]      = 0x0,
1628                         [C(RESULT_MISS)]        = 0x0,
1629                 },
1630         },
1631         [C(LL)] = {
1632                 [C(OP_READ)] = {
1633                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1634                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1635                 },
1636                 [C(OP_WRITE)] = {
1637                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1638                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1639                 },
1640                 [C(OP_PREFETCH)] = {
1641                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1642                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1643                 },
1644         },
1645         [C(DTLB)] = {
1646                 [C(OP_READ)] = {
1647                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1648                         [C(RESULT_MISS)]        = 0x0,
1649                 },
1650                 [C(OP_WRITE)] = {
1651                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1652                         [C(RESULT_MISS)]        = 0x0,
1653                 },
1654                 [C(OP_PREFETCH)] = {
1655                         [C(RESULT_ACCESS)]      = 0x0,
1656                         [C(RESULT_MISS)]        = 0x0,
1657                 },
1658         },
1659         [C(ITLB)] = {
1660                 [C(OP_READ)] = {
1661                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1662                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1663                 },
1664                 [C(OP_WRITE)] = {
1665                         [C(RESULT_ACCESS)]      = -1,
1666                         [C(RESULT_MISS)]        = -1,
1667                 },
1668                 [C(OP_PREFETCH)] = {
1669                         [C(RESULT_ACCESS)]      = -1,
1670                         [C(RESULT_MISS)]        = -1,
1671                 },
1672         },
1673         [C(BPU)] = {
1674                 [C(OP_READ)] = {
1675                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1676                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1677                 },
1678                 [C(OP_WRITE)] = {
1679                         [C(RESULT_ACCESS)]      = -1,
1680                         [C(RESULT_MISS)]        = -1,
1681                 },
1682                 [C(OP_PREFETCH)] = {
1683                         [C(RESULT_ACCESS)]      = -1,
1684                         [C(RESULT_MISS)]        = -1,
1685                 },
1686         },
1687 };
1688
1689 static __initconst const u64 glm_hw_cache_extra_regs
1690                                 [PERF_COUNT_HW_CACHE_MAX]
1691                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1692                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1693         [C(LL)] = {
1694                 [C(OP_READ)] = {
1695                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1696                                                   GLM_LLC_ACCESS,
1697                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1698                                                   GLM_LLC_MISS,
1699                 },
1700                 [C(OP_WRITE)] = {
1701                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1702                                                   GLM_LLC_ACCESS,
1703                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1704                                                   GLM_LLC_MISS,
1705                 },
1706                 [C(OP_PREFETCH)] = {
1707                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1708                                                   GLM_LLC_ACCESS,
1709                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1710                                                   GLM_LLC_MISS,
1711                 },
1712         },
1713 };
1714
1715 static __initconst const u64 glp_hw_cache_event_ids
1716                                 [PERF_COUNT_HW_CACHE_MAX]
1717                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1718                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1719         [C(L1D)] = {
1720                 [C(OP_READ)] = {
1721                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1722                         [C(RESULT_MISS)]        = 0x0,
1723                 },
1724                 [C(OP_WRITE)] = {
1725                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1726                         [C(RESULT_MISS)]        = 0x0,
1727                 },
1728                 [C(OP_PREFETCH)] = {
1729                         [C(RESULT_ACCESS)]      = 0x0,
1730                         [C(RESULT_MISS)]        = 0x0,
1731                 },
1732         },
1733         [C(L1I)] = {
1734                 [C(OP_READ)] = {
1735                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1736                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1737                 },
1738                 [C(OP_WRITE)] = {
1739                         [C(RESULT_ACCESS)]      = -1,
1740                         [C(RESULT_MISS)]        = -1,
1741                 },
1742                 [C(OP_PREFETCH)] = {
1743                         [C(RESULT_ACCESS)]      = 0x0,
1744                         [C(RESULT_MISS)]        = 0x0,
1745                 },
1746         },
1747         [C(LL)] = {
1748                 [C(OP_READ)] = {
1749                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1750                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1751                 },
1752                 [C(OP_WRITE)] = {
1753                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1754                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1755                 },
1756                 [C(OP_PREFETCH)] = {
1757                         [C(RESULT_ACCESS)]      = 0x0,
1758                         [C(RESULT_MISS)]        = 0x0,
1759                 },
1760         },
1761         [C(DTLB)] = {
1762                 [C(OP_READ)] = {
1763                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1764                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1765                 },
1766                 [C(OP_WRITE)] = {
1767                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1768                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1769                 },
1770                 [C(OP_PREFETCH)] = {
1771                         [C(RESULT_ACCESS)]      = 0x0,
1772                         [C(RESULT_MISS)]        = 0x0,
1773                 },
1774         },
1775         [C(ITLB)] = {
1776                 [C(OP_READ)] = {
1777                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1778                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1779                 },
1780                 [C(OP_WRITE)] = {
1781                         [C(RESULT_ACCESS)]      = -1,
1782                         [C(RESULT_MISS)]        = -1,
1783                 },
1784                 [C(OP_PREFETCH)] = {
1785                         [C(RESULT_ACCESS)]      = -1,
1786                         [C(RESULT_MISS)]        = -1,
1787                 },
1788         },
1789         [C(BPU)] = {
1790                 [C(OP_READ)] = {
1791                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1792                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1793                 },
1794                 [C(OP_WRITE)] = {
1795                         [C(RESULT_ACCESS)]      = -1,
1796                         [C(RESULT_MISS)]        = -1,
1797                 },
1798                 [C(OP_PREFETCH)] = {
1799                         [C(RESULT_ACCESS)]      = -1,
1800                         [C(RESULT_MISS)]        = -1,
1801                 },
1802         },
1803 };
1804
1805 static __initconst const u64 glp_hw_cache_extra_regs
1806                                 [PERF_COUNT_HW_CACHE_MAX]
1807                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1808                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1809         [C(LL)] = {
1810                 [C(OP_READ)] = {
1811                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1812                                                   GLM_LLC_ACCESS,
1813                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1814                                                   GLM_LLC_MISS,
1815                 },
1816                 [C(OP_WRITE)] = {
1817                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1818                                                   GLM_LLC_ACCESS,
1819                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1820                                                   GLM_LLC_MISS,
1821                 },
1822                 [C(OP_PREFETCH)] = {
1823                         [C(RESULT_ACCESS)]      = 0x0,
1824                         [C(RESULT_MISS)]        = 0x0,
1825                 },
1826         },
1827 };
1828
1829 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1830 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1831 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1832 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1833 #define KNL_DDR_LOCAL           BIT_ULL(23)
1834 #define KNL_DDR_FAR             BIT_ULL(24)
1835 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1836                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1837 #define KNL_L2_READ             SLM_DMND_READ
1838 #define KNL_L2_WRITE            SLM_DMND_WRITE
1839 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1840 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1841 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1842                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1843                                                   SNB_NON_DRAM)
1844
1845 static __initconst const u64 knl_hw_cache_extra_regs
1846                                 [PERF_COUNT_HW_CACHE_MAX]
1847                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1848                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1849         [C(LL)] = {
1850                 [C(OP_READ)] = {
1851                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1852                         [C(RESULT_MISS)]   = 0,
1853                 },
1854                 [C(OP_WRITE)] = {
1855                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1856                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1857                 },
1858                 [C(OP_PREFETCH)] = {
1859                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1860                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1861                 },
1862         },
1863 };
1864
1865 /*
1866  * Used from PMIs where the LBRs are already disabled.
1867  *
1868  * This function could be called consecutively. It is required to remain in
1869  * disabled state if called consecutively.
1870  *
1871  * During consecutive calls, the same disable value will be written to related
1872  * registers, so the PMU state remains unchanged.
1873  *
1874  * intel_bts events don't coexist with intel PMU's BTS events because of
1875  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1876  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1877  */
1878 static void __intel_pmu_disable_all(void)
1879 {
1880         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1881
1882         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1883
1884         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1885                 intel_pmu_disable_bts();
1886
1887         intel_pmu_pebs_disable_all();
1888 }
1889
1890 static void intel_pmu_disable_all(void)
1891 {
1892         __intel_pmu_disable_all();
1893         intel_pmu_lbr_disable_all();
1894 }
1895
1896 static void __intel_pmu_enable_all(int added, bool pmi)
1897 {
1898         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1899
1900         intel_pmu_pebs_enable_all();
1901         intel_pmu_lbr_enable_all(pmi);
1902         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1903                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1904
1905         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1906                 struct perf_event *event =
1907                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1908
1909                 if (WARN_ON_ONCE(!event))
1910                         return;
1911
1912                 intel_pmu_enable_bts(event->hw.config);
1913         }
1914 }
1915
1916 static void intel_pmu_enable_all(int added)
1917 {
1918         __intel_pmu_enable_all(added, false);
1919 }
1920
1921 /*
1922  * Workaround for:
1923  *   Intel Errata AAK100 (model 26)
1924  *   Intel Errata AAP53  (model 30)
1925  *   Intel Errata BD53   (model 44)
1926  *
1927  * The official story:
1928  *   These chips need to be 'reset' when adding counters by programming the
1929  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1930  *   in sequence on the same PMC or on different PMCs.
1931  *
1932  * In practise it appears some of these events do in fact count, and
1933  * we need to program all 4 events.
1934  */
1935 static void intel_pmu_nhm_workaround(void)
1936 {
1937         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1938         static const unsigned long nhm_magic[4] = {
1939                 0x4300B5,
1940                 0x4300D2,
1941                 0x4300B1,
1942                 0x4300B1
1943         };
1944         struct perf_event *event;
1945         int i;
1946
1947         /*
1948          * The Errata requires below steps:
1949          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1950          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1951          *    the corresponding PMCx;
1952          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1953          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1954          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1955          */
1956
1957         /*
1958          * The real steps we choose are a little different from above.
1959          * A) To reduce MSR operations, we don't run step 1) as they
1960          *    are already cleared before this function is called;
1961          * B) Call x86_perf_event_update to save PMCx before configuring
1962          *    PERFEVTSELx with magic number;
1963          * C) With step 5), we do clear only when the PERFEVTSELx is
1964          *    not used currently.
1965          * D) Call x86_perf_event_set_period to restore PMCx;
1966          */
1967
1968         /* We always operate 4 pairs of PERF Counters */
1969         for (i = 0; i < 4; i++) {
1970                 event = cpuc->events[i];
1971                 if (event)
1972                         x86_perf_event_update(event);
1973         }
1974
1975         for (i = 0; i < 4; i++) {
1976                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1977                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1978         }
1979
1980         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1981         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1982
1983         for (i = 0; i < 4; i++) {
1984                 event = cpuc->events[i];
1985
1986                 if (event) {
1987                         x86_perf_event_set_period(event);
1988                         __x86_pmu_enable_event(&event->hw,
1989                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1990                 } else
1991                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1992         }
1993 }
1994
1995 static void intel_pmu_nhm_enable_all(int added)
1996 {
1997         if (added)
1998                 intel_pmu_nhm_workaround();
1999         intel_pmu_enable_all(added);
2000 }
2001
2002 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2003 {
2004         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2005
2006         if (cpuc->tfa_shadow != val) {
2007                 cpuc->tfa_shadow = val;
2008                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2009         }
2010 }
2011
2012 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2013 {
2014         /*
2015          * We're going to use PMC3, make sure TFA is set before we touch it.
2016          */
2017         if (cntr == 3 && !cpuc->is_fake)
2018                 intel_set_tfa(cpuc, true);
2019 }
2020
2021 static void intel_tfa_pmu_enable_all(int added)
2022 {
2023         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2024
2025         /*
2026          * If we find PMC3 is no longer used when we enable the PMU, we can
2027          * clear TFA.
2028          */
2029         if (!test_bit(3, cpuc->active_mask))
2030                 intel_set_tfa(cpuc, false);
2031
2032         intel_pmu_enable_all(added);
2033 }
2034
2035 static void enable_counter_freeze(void)
2036 {
2037         update_debugctlmsr(get_debugctlmsr() |
2038                         DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2039 }
2040
2041 static void disable_counter_freeze(void)
2042 {
2043         update_debugctlmsr(get_debugctlmsr() &
2044                         ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2045 }
2046
2047 static inline u64 intel_pmu_get_status(void)
2048 {
2049         u64 status;
2050
2051         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2052
2053         return status;
2054 }
2055
2056 static inline void intel_pmu_ack_status(u64 ack)
2057 {
2058         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2059 }
2060
2061 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2062 {
2063         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2064         u64 ctrl_val, mask;
2065
2066         mask = 0xfULL << (idx * 4);
2067
2068         rdmsrl(hwc->config_base, ctrl_val);
2069         ctrl_val &= ~mask;
2070         wrmsrl(hwc->config_base, ctrl_val);
2071 }
2072
2073 static inline bool event_is_checkpointed(struct perf_event *event)
2074 {
2075         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2076 }
2077
2078 static void intel_pmu_disable_event(struct perf_event *event)
2079 {
2080         struct hw_perf_event *hwc = &event->hw;
2081         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2082
2083         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2084                 intel_pmu_disable_bts();
2085                 intel_pmu_drain_bts_buffer();
2086                 return;
2087         }
2088
2089         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2090         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2091         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2092
2093         if (unlikely(event->attr.precise_ip))
2094                 intel_pmu_pebs_disable(event);
2095
2096         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2097                 intel_pmu_disable_fixed(hwc);
2098                 return;
2099         }
2100
2101         x86_pmu_disable_event(event);
2102 }
2103
2104 static void intel_pmu_del_event(struct perf_event *event)
2105 {
2106         if (needs_branch_stack(event))
2107                 intel_pmu_lbr_del(event);
2108         if (event->attr.precise_ip)
2109                 intel_pmu_pebs_del(event);
2110 }
2111
2112 static void intel_pmu_read_event(struct perf_event *event)
2113 {
2114         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2115                 intel_pmu_auto_reload_read(event);
2116         else
2117                 x86_perf_event_update(event);
2118 }
2119
2120 static void intel_pmu_enable_fixed(struct perf_event *event)
2121 {
2122         struct hw_perf_event *hwc = &event->hw;
2123         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2124         u64 ctrl_val, mask, bits = 0;
2125
2126         /*
2127          * Enable IRQ generation (0x8), if not PEBS,
2128          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2129          * if requested:
2130          */
2131         if (!event->attr.precise_ip)
2132                 bits |= 0x8;
2133         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2134                 bits |= 0x2;
2135         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2136                 bits |= 0x1;
2137
2138         /*
2139          * ANY bit is supported in v3 and up
2140          */
2141         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2142                 bits |= 0x4;
2143
2144         bits <<= (idx * 4);
2145         mask = 0xfULL << (idx * 4);
2146
2147         rdmsrl(hwc->config_base, ctrl_val);
2148         ctrl_val &= ~mask;
2149         ctrl_val |= bits;
2150         wrmsrl(hwc->config_base, ctrl_val);
2151 }
2152
2153 static void intel_pmu_enable_event(struct perf_event *event)
2154 {
2155         struct hw_perf_event *hwc = &event->hw;
2156         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2157
2158         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2159                 if (!__this_cpu_read(cpu_hw_events.enabled))
2160                         return;
2161
2162                 intel_pmu_enable_bts(hwc->config);
2163                 return;
2164         }
2165
2166         if (event->attr.exclude_host)
2167                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2168         if (event->attr.exclude_guest)
2169                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2170
2171         if (unlikely(event_is_checkpointed(event)))
2172                 cpuc->intel_cp_status |= (1ull << hwc->idx);
2173
2174         if (unlikely(event->attr.precise_ip))
2175                 intel_pmu_pebs_enable(event);
2176
2177         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2178                 intel_pmu_enable_fixed(event);
2179                 return;
2180         }
2181
2182         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2183 }
2184
2185 static void intel_pmu_add_event(struct perf_event *event)
2186 {
2187         if (event->attr.precise_ip)
2188                 intel_pmu_pebs_add(event);
2189         if (needs_branch_stack(event))
2190                 intel_pmu_lbr_add(event);
2191 }
2192
2193 /*
2194  * Save and restart an expired event. Called by NMI contexts,
2195  * so it has to be careful about preempting normal event ops:
2196  */
2197 int intel_pmu_save_and_restart(struct perf_event *event)
2198 {
2199         x86_perf_event_update(event);
2200         /*
2201          * For a checkpointed counter always reset back to 0.  This
2202          * avoids a situation where the counter overflows, aborts the
2203          * transaction and is then set back to shortly before the
2204          * overflow, and overflows and aborts again.
2205          */
2206         if (unlikely(event_is_checkpointed(event))) {
2207                 /* No race with NMIs because the counter should not be armed */
2208                 wrmsrl(event->hw.event_base, 0);
2209                 local64_set(&event->hw.prev_count, 0);
2210         }
2211         return x86_perf_event_set_period(event);
2212 }
2213
2214 static void intel_pmu_reset(void)
2215 {
2216         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2217         unsigned long flags;
2218         int idx;
2219
2220         if (!x86_pmu.num_counters)
2221                 return;
2222
2223         local_irq_save(flags);
2224
2225         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2226
2227         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2228                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2229                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2230         }
2231         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2232                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2233
2234         if (ds)
2235                 ds->bts_index = ds->bts_buffer_base;
2236
2237         /* Ack all overflows and disable fixed counters */
2238         if (x86_pmu.version >= 2) {
2239                 intel_pmu_ack_status(intel_pmu_get_status());
2240                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2241         }
2242
2243         /* Reset LBRs and LBR freezing */
2244         if (x86_pmu.lbr_nr) {
2245                 update_debugctlmsr(get_debugctlmsr() &
2246                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2247         }
2248
2249         local_irq_restore(flags);
2250 }
2251
2252 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2253 {
2254         struct perf_sample_data data;
2255         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2256         int bit;
2257         int handled = 0;
2258
2259         inc_irq_stat(apic_perf_irqs);
2260
2261         /*
2262          * Ignore a range of extra bits in status that do not indicate
2263          * overflow by themselves.
2264          */
2265         status &= ~(GLOBAL_STATUS_COND_CHG |
2266                     GLOBAL_STATUS_ASIF |
2267                     GLOBAL_STATUS_LBRS_FROZEN);
2268         if (!status)
2269                 return 0;
2270         /*
2271          * In case multiple PEBS events are sampled at the same time,
2272          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2273          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2274          * having their bits set in the status register. This is a sign
2275          * that there was at least one PEBS record pending at the time
2276          * of the PMU interrupt. PEBS counters must only be processed
2277          * via the drain_pebs() calls and not via the regular sample
2278          * processing loop coming after that the function, otherwise
2279          * phony regular samples may be generated in the sampling buffer
2280          * not marked with the EXACT tag. Another possibility is to have
2281          * one PEBS event and at least one non-PEBS event whic hoverflows
2282          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2283          * not be set, yet the overflow status bit for the PEBS counter will
2284          * be on Skylake.
2285          *
2286          * To avoid this problem, we systematically ignore the PEBS-enabled
2287          * counters from the GLOBAL_STATUS mask and we always process PEBS
2288          * events via drain_pebs().
2289          */
2290         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2291                 status &= ~cpuc->pebs_enabled;
2292         else
2293                 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2294
2295         /*
2296          * PEBS overflow sets bit 62 in the global status register
2297          */
2298         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2299                 handled++;
2300                 x86_pmu.drain_pebs(regs);
2301                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2302         }
2303
2304         /*
2305          * Intel PT
2306          */
2307         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2308                 handled++;
2309                 intel_pt_interrupt();
2310         }
2311
2312         /*
2313          * Checkpointed counters can lead to 'spurious' PMIs because the
2314          * rollback caused by the PMI will have cleared the overflow status
2315          * bit. Therefore always force probe these counters.
2316          */
2317         status |= cpuc->intel_cp_status;
2318
2319         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2320                 struct perf_event *event = cpuc->events[bit];
2321
2322                 handled++;
2323
2324                 if (!test_bit(bit, cpuc->active_mask))
2325                         continue;
2326
2327                 if (!intel_pmu_save_and_restart(event))
2328                         continue;
2329
2330                 perf_sample_data_init(&data, 0, event->hw.last_period);
2331
2332                 if (has_branch_stack(event))
2333                         data.br_stack = &cpuc->lbr_stack;
2334
2335                 if (perf_event_overflow(event, &data, regs))
2336                         x86_pmu_stop(event, 0);
2337         }
2338
2339         return handled;
2340 }
2341
2342 static bool disable_counter_freezing = true;
2343 static int __init intel_perf_counter_freezing_setup(char *s)
2344 {
2345         bool res;
2346
2347         if (kstrtobool(s, &res))
2348                 return -EINVAL;
2349
2350         disable_counter_freezing = !res;
2351         return 1;
2352 }
2353 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2354
2355 /*
2356  * Simplified handler for Arch Perfmon v4:
2357  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2358  * This is done automatically on PMU ack.
2359  * - Ack the PMU only after the APIC.
2360  */
2361
2362 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2363 {
2364         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2365         int handled = 0;
2366         bool bts = false;
2367         u64 status;
2368         int pmu_enabled = cpuc->enabled;
2369         int loops = 0;
2370
2371         /* PMU has been disabled because of counter freezing */
2372         cpuc->enabled = 0;
2373         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2374                 bts = true;
2375                 intel_bts_disable_local();
2376                 handled = intel_pmu_drain_bts_buffer();
2377                 handled += intel_bts_interrupt();
2378         }
2379         status = intel_pmu_get_status();
2380         if (!status)
2381                 goto done;
2382 again:
2383         intel_pmu_lbr_read();
2384         if (++loops > 100) {
2385                 static bool warned;
2386
2387                 if (!warned) {
2388                         WARN(1, "perfevents: irq loop stuck!\n");
2389                         perf_event_print_debug();
2390                         warned = true;
2391                 }
2392                 intel_pmu_reset();
2393                 goto done;
2394         }
2395
2396
2397         handled += handle_pmi_common(regs, status);
2398 done:
2399         /* Ack the PMI in the APIC */
2400         apic_write(APIC_LVTPC, APIC_DM_NMI);
2401
2402         /*
2403          * The counters start counting immediately while ack the status.
2404          * Make it as close as possible to IRET. This avoids bogus
2405          * freezing on Skylake CPUs.
2406          */
2407         if (status) {
2408                 intel_pmu_ack_status(status);
2409         } else {
2410                 /*
2411                  * CPU may issues two PMIs very close to each other.
2412                  * When the PMI handler services the first one, the
2413                  * GLOBAL_STATUS is already updated to reflect both.
2414                  * When it IRETs, the second PMI is immediately
2415                  * handled and it sees clear status. At the meantime,
2416                  * there may be a third PMI, because the freezing bit
2417                  * isn't set since the ack in first PMI handlers.
2418                  * Double check if there is more work to be done.
2419                  */
2420                 status = intel_pmu_get_status();
2421                 if (status)
2422                         goto again;
2423         }
2424
2425         if (bts)
2426                 intel_bts_enable_local();
2427         cpuc->enabled = pmu_enabled;
2428         return handled;
2429 }
2430
2431 /*
2432  * This handler is triggered by the local APIC, so the APIC IRQ handling
2433  * rules apply:
2434  */
2435 static int intel_pmu_handle_irq(struct pt_regs *regs)
2436 {
2437         struct cpu_hw_events *cpuc;
2438         int loops;
2439         u64 status;
2440         int handled;
2441         int pmu_enabled;
2442
2443         cpuc = this_cpu_ptr(&cpu_hw_events);
2444
2445         /*
2446          * Save the PMU state.
2447          * It needs to be restored when leaving the handler.
2448          */
2449         pmu_enabled = cpuc->enabled;
2450         /*
2451          * No known reason to not always do late ACK,
2452          * but just in case do it opt-in.
2453          */
2454         if (!x86_pmu.late_ack)
2455                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2456         intel_bts_disable_local();
2457         cpuc->enabled = 0;
2458         __intel_pmu_disable_all();
2459         handled = intel_pmu_drain_bts_buffer();
2460         handled += intel_bts_interrupt();
2461         status = intel_pmu_get_status();
2462         if (!status)
2463                 goto done;
2464
2465         loops = 0;
2466 again:
2467         intel_pmu_lbr_read();
2468         intel_pmu_ack_status(status);
2469         if (++loops > 100) {
2470                 static bool warned;
2471
2472                 if (!warned) {
2473                         WARN(1, "perfevents: irq loop stuck!\n");
2474                         perf_event_print_debug();
2475                         warned = true;
2476                 }
2477                 intel_pmu_reset();
2478                 goto done;
2479         }
2480
2481         handled += handle_pmi_common(regs, status);
2482
2483         /*
2484          * Repeat if there is more work to be done:
2485          */
2486         status = intel_pmu_get_status();
2487         if (status)
2488                 goto again;
2489
2490 done:
2491         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2492         cpuc->enabled = pmu_enabled;
2493         if (pmu_enabled)
2494                 __intel_pmu_enable_all(0, true);
2495         intel_bts_enable_local();
2496
2497         /*
2498          * Only unmask the NMI after the overflow counters
2499          * have been reset. This avoids spurious NMIs on
2500          * Haswell CPUs.
2501          */
2502         if (x86_pmu.late_ack)
2503                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2504         return handled;
2505 }
2506
2507 static struct event_constraint *
2508 intel_bts_constraints(struct perf_event *event)
2509 {
2510         if (unlikely(intel_pmu_has_bts(event)))
2511                 return &bts_constraint;
2512
2513         return NULL;
2514 }
2515
2516 static int intel_alt_er(int idx, u64 config)
2517 {
2518         int alt_idx = idx;
2519
2520         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2521                 return idx;
2522
2523         if (idx == EXTRA_REG_RSP_0)
2524                 alt_idx = EXTRA_REG_RSP_1;
2525
2526         if (idx == EXTRA_REG_RSP_1)
2527                 alt_idx = EXTRA_REG_RSP_0;
2528
2529         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2530                 return idx;
2531
2532         return alt_idx;
2533 }
2534
2535 static void intel_fixup_er(struct perf_event *event, int idx)
2536 {
2537         event->hw.extra_reg.idx = idx;
2538
2539         if (idx == EXTRA_REG_RSP_0) {
2540                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2541                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2542                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2543         } else if (idx == EXTRA_REG_RSP_1) {
2544                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2545                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2546                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2547         }
2548 }
2549
2550 /*
2551  * manage allocation of shared extra msr for certain events
2552  *
2553  * sharing can be:
2554  * per-cpu: to be shared between the various events on a single PMU
2555  * per-core: per-cpu + shared by HT threads
2556  */
2557 static struct event_constraint *
2558 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2559                                    struct perf_event *event,
2560                                    struct hw_perf_event_extra *reg)
2561 {
2562         struct event_constraint *c = &emptyconstraint;
2563         struct er_account *era;
2564         unsigned long flags;
2565         int idx = reg->idx;
2566
2567         /*
2568          * reg->alloc can be set due to existing state, so for fake cpuc we
2569          * need to ignore this, otherwise we might fail to allocate proper fake
2570          * state for this extra reg constraint. Also see the comment below.
2571          */
2572         if (reg->alloc && !cpuc->is_fake)
2573                 return NULL; /* call x86_get_event_constraint() */
2574
2575 again:
2576         era = &cpuc->shared_regs->regs[idx];
2577         /*
2578          * we use spin_lock_irqsave() to avoid lockdep issues when
2579          * passing a fake cpuc
2580          */
2581         raw_spin_lock_irqsave(&era->lock, flags);
2582
2583         if (!atomic_read(&era->ref) || era->config == reg->config) {
2584
2585                 /*
2586                  * If its a fake cpuc -- as per validate_{group,event}() we
2587                  * shouldn't touch event state and we can avoid doing so
2588                  * since both will only call get_event_constraints() once
2589                  * on each event, this avoids the need for reg->alloc.
2590                  *
2591                  * Not doing the ER fixup will only result in era->reg being
2592                  * wrong, but since we won't actually try and program hardware
2593                  * this isn't a problem either.
2594                  */
2595                 if (!cpuc->is_fake) {
2596                         if (idx != reg->idx)
2597                                 intel_fixup_er(event, idx);
2598
2599                         /*
2600                          * x86_schedule_events() can call get_event_constraints()
2601                          * multiple times on events in the case of incremental
2602                          * scheduling(). reg->alloc ensures we only do the ER
2603                          * allocation once.
2604                          */
2605                         reg->alloc = 1;
2606                 }
2607
2608                 /* lock in msr value */
2609                 era->config = reg->config;
2610                 era->reg = reg->reg;
2611
2612                 /* one more user */
2613                 atomic_inc(&era->ref);
2614
2615                 /*
2616                  * need to call x86_get_event_constraint()
2617                  * to check if associated event has constraints
2618                  */
2619                 c = NULL;
2620         } else {
2621                 idx = intel_alt_er(idx, reg->config);
2622                 if (idx != reg->idx) {
2623                         raw_spin_unlock_irqrestore(&era->lock, flags);
2624                         goto again;
2625                 }
2626         }
2627         raw_spin_unlock_irqrestore(&era->lock, flags);
2628
2629         return c;
2630 }
2631
2632 static void
2633 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2634                                    struct hw_perf_event_extra *reg)
2635 {
2636         struct er_account *era;
2637
2638         /*
2639          * Only put constraint if extra reg was actually allocated. Also takes
2640          * care of event which do not use an extra shared reg.
2641          *
2642          * Also, if this is a fake cpuc we shouldn't touch any event state
2643          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2644          * either since it'll be thrown out.
2645          */
2646         if (!reg->alloc || cpuc->is_fake)
2647                 return;
2648
2649         era = &cpuc->shared_regs->regs[reg->idx];
2650
2651         /* one fewer user */
2652         atomic_dec(&era->ref);
2653
2654         /* allocate again next time */
2655         reg->alloc = 0;
2656 }
2657
2658 static struct event_constraint *
2659 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2660                               struct perf_event *event)
2661 {
2662         struct event_constraint *c = NULL, *d;
2663         struct hw_perf_event_extra *xreg, *breg;
2664
2665         xreg = &event->hw.extra_reg;
2666         if (xreg->idx != EXTRA_REG_NONE) {
2667                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2668                 if (c == &emptyconstraint)
2669                         return c;
2670         }
2671         breg = &event->hw.branch_reg;
2672         if (breg->idx != EXTRA_REG_NONE) {
2673                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2674                 if (d == &emptyconstraint) {
2675                         __intel_shared_reg_put_constraints(cpuc, xreg);
2676                         c = d;
2677                 }
2678         }
2679         return c;
2680 }
2681
2682 struct event_constraint *
2683 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2684                           struct perf_event *event)
2685 {
2686         struct event_constraint *c;
2687
2688         if (x86_pmu.event_constraints) {
2689                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2690                         if ((event->hw.config & c->cmask) == c->code) {
2691                                 event->hw.flags |= c->flags;
2692                                 return c;
2693                         }
2694                 }
2695         }
2696
2697         return &unconstrained;
2698 }
2699
2700 static struct event_constraint *
2701 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2702                             struct perf_event *event)
2703 {
2704         struct event_constraint *c;
2705
2706         c = intel_bts_constraints(event);
2707         if (c)
2708                 return c;
2709
2710         c = intel_shared_regs_constraints(cpuc, event);
2711         if (c)
2712                 return c;
2713
2714         c = intel_pebs_constraints(event);
2715         if (c)
2716                 return c;
2717
2718         return x86_get_event_constraints(cpuc, idx, event);
2719 }
2720
2721 static void
2722 intel_start_scheduling(struct cpu_hw_events *cpuc)
2723 {
2724         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2725         struct intel_excl_states *xl;
2726         int tid = cpuc->excl_thread_id;
2727
2728         /*
2729          * nothing needed if in group validation mode
2730          */
2731         if (cpuc->is_fake || !is_ht_workaround_enabled())
2732                 return;
2733
2734         /*
2735          * no exclusion needed
2736          */
2737         if (WARN_ON_ONCE(!excl_cntrs))
2738                 return;
2739
2740         xl = &excl_cntrs->states[tid];
2741
2742         xl->sched_started = true;
2743         /*
2744          * lock shared state until we are done scheduling
2745          * in stop_event_scheduling()
2746          * makes scheduling appear as a transaction
2747          */
2748         raw_spin_lock(&excl_cntrs->lock);
2749 }
2750
2751 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2752 {
2753         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2754         struct event_constraint *c = cpuc->event_constraint[idx];
2755         struct intel_excl_states *xl;
2756         int tid = cpuc->excl_thread_id;
2757
2758         if (cpuc->is_fake || !is_ht_workaround_enabled())
2759                 return;
2760
2761         if (WARN_ON_ONCE(!excl_cntrs))
2762                 return;
2763
2764         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2765                 return;
2766
2767         xl = &excl_cntrs->states[tid];
2768
2769         lockdep_assert_held(&excl_cntrs->lock);
2770
2771         if (c->flags & PERF_X86_EVENT_EXCL)
2772                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2773         else
2774                 xl->state[cntr] = INTEL_EXCL_SHARED;
2775 }
2776
2777 static void
2778 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2779 {
2780         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2781         struct intel_excl_states *xl;
2782         int tid = cpuc->excl_thread_id;
2783
2784         /*
2785          * nothing needed if in group validation mode
2786          */
2787         if (cpuc->is_fake || !is_ht_workaround_enabled())
2788                 return;
2789         /*
2790          * no exclusion needed
2791          */
2792         if (WARN_ON_ONCE(!excl_cntrs))
2793                 return;
2794
2795         xl = &excl_cntrs->states[tid];
2796
2797         xl->sched_started = false;
2798         /*
2799          * release shared state lock (acquired in intel_start_scheduling())
2800          */
2801         raw_spin_unlock(&excl_cntrs->lock);
2802 }
2803
2804 static struct event_constraint *
2805 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
2806 {
2807         WARN_ON_ONCE(!cpuc->constraint_list);
2808
2809         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2810                 struct event_constraint *cx;
2811
2812                 /*
2813                  * grab pre-allocated constraint entry
2814                  */
2815                 cx = &cpuc->constraint_list[idx];
2816
2817                 /*
2818                  * initialize dynamic constraint
2819                  * with static constraint
2820                  */
2821                 *cx = *c;
2822
2823                 /*
2824                  * mark constraint as dynamic
2825                  */
2826                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2827                 c = cx;
2828         }
2829
2830         return c;
2831 }
2832
2833 static struct event_constraint *
2834 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2835                            int idx, struct event_constraint *c)
2836 {
2837         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2838         struct intel_excl_states *xlo;
2839         int tid = cpuc->excl_thread_id;
2840         int is_excl, i;
2841
2842         /*
2843          * validating a group does not require
2844          * enforcing cross-thread  exclusion
2845          */
2846         if (cpuc->is_fake || !is_ht_workaround_enabled())
2847                 return c;
2848
2849         /*
2850          * no exclusion needed
2851          */
2852         if (WARN_ON_ONCE(!excl_cntrs))
2853                 return c;
2854
2855         /*
2856          * because we modify the constraint, we need
2857          * to make a copy. Static constraints come
2858          * from static const tables.
2859          *
2860          * only needed when constraint has not yet
2861          * been cloned (marked dynamic)
2862          */
2863         c = dyn_constraint(cpuc, c, idx);
2864
2865         /*
2866          * From here on, the constraint is dynamic.
2867          * Either it was just allocated above, or it
2868          * was allocated during a earlier invocation
2869          * of this function
2870          */
2871
2872         /*
2873          * state of sibling HT
2874          */
2875         xlo = &excl_cntrs->states[tid ^ 1];
2876
2877         /*
2878          * event requires exclusive counter access
2879          * across HT threads
2880          */
2881         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2882         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2883                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2884                 if (!cpuc->n_excl++)
2885                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2886         }
2887
2888         /*
2889          * Modify static constraint with current dynamic
2890          * state of thread
2891          *
2892          * EXCLUSIVE: sibling counter measuring exclusive event
2893          * SHARED   : sibling counter measuring non-exclusive event
2894          * UNUSED   : sibling counter unused
2895          */
2896         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2897                 /*
2898                  * exclusive event in sibling counter
2899                  * our corresponding counter cannot be used
2900                  * regardless of our event
2901                  */
2902                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2903                         __clear_bit(i, c->idxmsk);
2904                 /*
2905                  * if measuring an exclusive event, sibling
2906                  * measuring non-exclusive, then counter cannot
2907                  * be used
2908                  */
2909                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2910                         __clear_bit(i, c->idxmsk);
2911         }
2912
2913         /*
2914          * recompute actual bit weight for scheduling algorithm
2915          */
2916         c->weight = hweight64(c->idxmsk64);
2917
2918         /*
2919          * if we return an empty mask, then switch
2920          * back to static empty constraint to avoid
2921          * the cost of freeing later on
2922          */
2923         if (c->weight == 0)
2924                 c = &emptyconstraint;
2925
2926         return c;
2927 }
2928
2929 static struct event_constraint *
2930 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2931                             struct perf_event *event)
2932 {
2933         struct event_constraint *c1 = NULL;
2934         struct event_constraint *c2;
2935
2936         if (idx >= 0) /* fake does < 0 */
2937                 c1 = cpuc->event_constraint[idx];
2938
2939         /*
2940          * first time only
2941          * - static constraint: no change across incremental scheduling calls
2942          * - dynamic constraint: handled by intel_get_excl_constraints()
2943          */
2944         c2 = __intel_get_event_constraints(cpuc, idx, event);
2945         if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2946                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2947                 c1->weight = c2->weight;
2948                 c2 = c1;
2949         }
2950
2951         if (cpuc->excl_cntrs)
2952                 return intel_get_excl_constraints(cpuc, event, idx, c2);
2953
2954         return c2;
2955 }
2956
2957 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2958                 struct perf_event *event)
2959 {
2960         struct hw_perf_event *hwc = &event->hw;
2961         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2962         int tid = cpuc->excl_thread_id;
2963         struct intel_excl_states *xl;
2964
2965         /*
2966          * nothing needed if in group validation mode
2967          */
2968         if (cpuc->is_fake)
2969                 return;
2970
2971         if (WARN_ON_ONCE(!excl_cntrs))
2972                 return;
2973
2974         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2975                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2976                 if (!--cpuc->n_excl)
2977                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2978         }
2979
2980         /*
2981          * If event was actually assigned, then mark the counter state as
2982          * unused now.
2983          */
2984         if (hwc->idx >= 0) {
2985                 xl = &excl_cntrs->states[tid];
2986
2987                 /*
2988                  * put_constraint may be called from x86_schedule_events()
2989                  * which already has the lock held so here make locking
2990                  * conditional.
2991                  */
2992                 if (!xl->sched_started)
2993                         raw_spin_lock(&excl_cntrs->lock);
2994
2995                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2996
2997                 if (!xl->sched_started)
2998                         raw_spin_unlock(&excl_cntrs->lock);
2999         }
3000 }
3001
3002 static void
3003 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3004                                         struct perf_event *event)
3005 {
3006         struct hw_perf_event_extra *reg;
3007
3008         reg = &event->hw.extra_reg;
3009         if (reg->idx != EXTRA_REG_NONE)
3010                 __intel_shared_reg_put_constraints(cpuc, reg);
3011
3012         reg = &event->hw.branch_reg;
3013         if (reg->idx != EXTRA_REG_NONE)
3014                 __intel_shared_reg_put_constraints(cpuc, reg);
3015 }
3016
3017 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3018                                         struct perf_event *event)
3019 {
3020         intel_put_shared_regs_event_constraints(cpuc, event);
3021
3022         /*
3023          * is PMU has exclusive counter restrictions, then
3024          * all events are subject to and must call the
3025          * put_excl_constraints() routine
3026          */
3027         if (cpuc->excl_cntrs)
3028                 intel_put_excl_constraints(cpuc, event);
3029 }
3030
3031 static void intel_pebs_aliases_core2(struct perf_event *event)
3032 {
3033         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3034                 /*
3035                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3036                  * (0x003c) so that we can use it with PEBS.
3037                  *
3038                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3039                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3040                  * (0x00c0), which is a PEBS capable event, to get the same
3041                  * count.
3042                  *
3043                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3044                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3045                  * larger than the maximum number of instructions that can be
3046                  * retired per cycle (4) and then inverting the condition, we
3047                  * count all cycles that retire 16 or less instructions, which
3048                  * is every cycle.
3049                  *
3050                  * Thereby we gain a PEBS capable cycle counter.
3051                  */
3052                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3053
3054                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3055                 event->hw.config = alt_config;
3056         }
3057 }
3058
3059 static void intel_pebs_aliases_snb(struct perf_event *event)
3060 {
3061         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3062                 /*
3063                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3064                  * (0x003c) so that we can use it with PEBS.
3065                  *
3066                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3067                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3068                  * (0x01c2), which is a PEBS capable event, to get the same
3069                  * count.
3070                  *
3071                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3072                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3073                  * larger than the maximum number of micro-ops that can be
3074                  * retired per cycle (4) and then inverting the condition, we
3075                  * count all cycles that retire 16 or less micro-ops, which
3076                  * is every cycle.
3077                  *
3078                  * Thereby we gain a PEBS capable cycle counter.
3079                  */
3080                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3081
3082                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3083                 event->hw.config = alt_config;
3084         }
3085 }
3086
3087 static void intel_pebs_aliases_precdist(struct perf_event *event)
3088 {
3089         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3090                 /*
3091                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3092                  * (0x003c) so that we can use it with PEBS.
3093                  *
3094                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3095                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3096                  * (0x01c0), which is a PEBS capable event, to get the same
3097                  * count.
3098                  *
3099                  * The PREC_DIST event has special support to minimize sample
3100                  * shadowing effects. One drawback is that it can be
3101                  * only programmed on counter 1, but that seems like an
3102                  * acceptable trade off.
3103                  */
3104                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3105
3106                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3107                 event->hw.config = alt_config;
3108         }
3109 }
3110
3111 static void intel_pebs_aliases_ivb(struct perf_event *event)
3112 {
3113         if (event->attr.precise_ip < 3)
3114                 return intel_pebs_aliases_snb(event);
3115         return intel_pebs_aliases_precdist(event);
3116 }
3117
3118 static void intel_pebs_aliases_skl(struct perf_event *event)
3119 {
3120         if (event->attr.precise_ip < 3)
3121                 return intel_pebs_aliases_core2(event);
3122         return intel_pebs_aliases_precdist(event);
3123 }
3124
3125 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3126 {
3127         unsigned long flags = x86_pmu.large_pebs_flags;
3128
3129         if (event->attr.use_clockid)
3130                 flags &= ~PERF_SAMPLE_TIME;
3131         if (!event->attr.exclude_kernel)
3132                 flags &= ~PERF_SAMPLE_REGS_USER;
3133         if (event->attr.sample_regs_user & ~PEBS_REGS)
3134                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3135         return flags;
3136 }
3137
3138 static int intel_pmu_bts_config(struct perf_event *event)
3139 {
3140         struct perf_event_attr *attr = &event->attr;
3141
3142         if (unlikely(intel_pmu_has_bts(event))) {
3143                 /* BTS is not supported by this architecture. */
3144                 if (!x86_pmu.bts_active)
3145                         return -EOPNOTSUPP;
3146
3147                 /* BTS is currently only allowed for user-mode. */
3148                 if (!attr->exclude_kernel)
3149                         return -EOPNOTSUPP;
3150
3151                 /* BTS is not allowed for precise events. */
3152                 if (attr->precise_ip)
3153                         return -EOPNOTSUPP;
3154
3155                 /* disallow bts if conflicting events are present */
3156                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3157                         return -EBUSY;
3158
3159                 event->destroy = hw_perf_lbr_event_destroy;
3160         }
3161
3162         return 0;
3163 }
3164
3165 static int core_pmu_hw_config(struct perf_event *event)
3166 {
3167         int ret = x86_pmu_hw_config(event);
3168
3169         if (ret)
3170                 return ret;
3171
3172         return intel_pmu_bts_config(event);
3173 }
3174
3175 static int intel_pmu_hw_config(struct perf_event *event)
3176 {
3177         int ret = x86_pmu_hw_config(event);
3178
3179         if (ret)
3180                 return ret;
3181
3182         ret = intel_pmu_bts_config(event);
3183         if (ret)
3184                 return ret;
3185
3186         if (event->attr.precise_ip) {
3187                 if (!event->attr.freq) {
3188                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3189                         if (!(event->attr.sample_type &
3190                               ~intel_pmu_large_pebs_flags(event)))
3191                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3192                 }
3193                 if (x86_pmu.pebs_aliases)
3194                         x86_pmu.pebs_aliases(event);
3195
3196                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3197                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3198         }
3199
3200         if (needs_branch_stack(event)) {
3201                 ret = intel_pmu_setup_lbr_filter(event);
3202                 if (ret)
3203                         return ret;
3204
3205                 /*
3206                  * BTS is set up earlier in this path, so don't account twice
3207                  */
3208                 if (!unlikely(intel_pmu_has_bts(event))) {
3209                         /* disallow lbr if conflicting events are present */
3210                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3211                                 return -EBUSY;
3212
3213                         event->destroy = hw_perf_lbr_event_destroy;
3214                 }
3215         }
3216
3217         if (event->attr.type != PERF_TYPE_RAW)
3218                 return 0;
3219
3220         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3221                 return 0;
3222
3223         if (x86_pmu.version < 3)
3224                 return -EINVAL;
3225
3226         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3227                 return -EACCES;
3228
3229         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3230
3231         return 0;
3232 }
3233
3234 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3235 {
3236         if (x86_pmu.guest_get_msrs)
3237                 return x86_pmu.guest_get_msrs(nr);
3238         *nr = 0;
3239         return NULL;
3240 }
3241 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3242
3243 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3244 {
3245         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3246         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3247
3248         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3249         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3250         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3251         /*
3252          * If PMU counter has PEBS enabled it is not enough to disable counter
3253          * on a guest entry since PEBS memory write can overshoot guest entry
3254          * and corrupt guest memory. Disabling PEBS solves the problem.
3255          */
3256         arr[1].msr = MSR_IA32_PEBS_ENABLE;
3257         arr[1].host = cpuc->pebs_enabled;
3258         arr[1].guest = 0;
3259
3260         *nr = 2;
3261         return arr;
3262 }
3263
3264 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3265 {
3266         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3267         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3268         int idx;
3269
3270         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3271                 struct perf_event *event = cpuc->events[idx];
3272
3273                 arr[idx].msr = x86_pmu_config_addr(idx);
3274                 arr[idx].host = arr[idx].guest = 0;
3275
3276                 if (!test_bit(idx, cpuc->active_mask))
3277                         continue;
3278
3279                 arr[idx].host = arr[idx].guest =
3280                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3281
3282                 if (event->attr.exclude_host)
3283                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3284                 else if (event->attr.exclude_guest)
3285                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3286         }
3287
3288         *nr = x86_pmu.num_counters;
3289         return arr;
3290 }
3291
3292 static void core_pmu_enable_event(struct perf_event *event)
3293 {
3294         if (!event->attr.exclude_host)
3295                 x86_pmu_enable_event(event);
3296 }
3297
3298 static void core_pmu_enable_all(int added)
3299 {
3300         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3301         int idx;
3302
3303         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3304                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3305
3306                 if (!test_bit(idx, cpuc->active_mask) ||
3307                                 cpuc->events[idx]->attr.exclude_host)
3308                         continue;
3309
3310                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3311         }
3312 }
3313
3314 static int hsw_hw_config(struct perf_event *event)
3315 {
3316         int ret = intel_pmu_hw_config(event);
3317
3318         if (ret)
3319                 return ret;
3320         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3321                 return 0;
3322         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3323
3324         /*
3325          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3326          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3327          * this combination.
3328          */
3329         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3330              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3331               event->attr.precise_ip > 0))
3332                 return -EOPNOTSUPP;
3333
3334         if (event_is_checkpointed(event)) {
3335                 /*
3336                  * Sampling of checkpointed events can cause situations where
3337                  * the CPU constantly aborts because of a overflow, which is
3338                  * then checkpointed back and ignored. Forbid checkpointing
3339                  * for sampling.
3340                  *
3341                  * But still allow a long sampling period, so that perf stat
3342                  * from KVM works.
3343                  */
3344                 if (event->attr.sample_period > 0 &&
3345                     event->attr.sample_period < 0x7fffffff)
3346                         return -EOPNOTSUPP;
3347         }
3348         return 0;
3349 }
3350
3351 static struct event_constraint counter0_constraint =
3352                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3353
3354 static struct event_constraint counter2_constraint =
3355                         EVENT_CONSTRAINT(0, 0x4, 0);
3356
3357 static struct event_constraint *
3358 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3359                           struct perf_event *event)
3360 {
3361         struct event_constraint *c;
3362
3363         c = intel_get_event_constraints(cpuc, idx, event);
3364
3365         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3366         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3367                 if (c->idxmsk64 & (1U << 2))
3368                         return &counter2_constraint;
3369                 return &emptyconstraint;
3370         }
3371
3372         return c;
3373 }
3374
3375 static struct event_constraint *
3376 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3377                           struct perf_event *event)
3378 {
3379         struct event_constraint *c;
3380
3381         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3382         if (event->attr.precise_ip == 3)
3383                 return &counter0_constraint;
3384
3385         c = intel_get_event_constraints(cpuc, idx, event);
3386
3387         return c;
3388 }
3389
3390 static bool allow_tsx_force_abort = true;
3391
3392 static struct event_constraint *
3393 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3394                           struct perf_event *event)
3395 {
3396         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3397
3398         /*
3399          * Without TFA we must not use PMC3.
3400          */
3401         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
3402                 c = dyn_constraint(cpuc, c, idx);
3403                 c->idxmsk64 &= ~(1ULL << 3);
3404                 c->weight--;
3405         }
3406
3407         return c;
3408 }
3409
3410 /*
3411  * Broadwell:
3412  *
3413  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3414  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3415  * the two to enforce a minimum period of 128 (the smallest value that has bits
3416  * 0-5 cleared and >= 100).
3417  *
3418  * Because of how the code in x86_perf_event_set_period() works, the truncation
3419  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3420  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3421  *
3422  * Therefore the effective (average) period matches the requested period,
3423  * despite coarser hardware granularity.
3424  */
3425 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3426 {
3427         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3428                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
3429                 if (left < 128)
3430                         left = 128;
3431                 left &= ~0x3fULL;
3432         }
3433         return left;
3434 }
3435
3436 PMU_FORMAT_ATTR(event,  "config:0-7"    );
3437 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3438 PMU_FORMAT_ATTR(edge,   "config:18"     );
3439 PMU_FORMAT_ATTR(pc,     "config:19"     );
3440 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3441 PMU_FORMAT_ATTR(inv,    "config:23"     );
3442 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3443 PMU_FORMAT_ATTR(in_tx,  "config:32");
3444 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3445
3446 static struct attribute *intel_arch_formats_attr[] = {
3447         &format_attr_event.attr,
3448         &format_attr_umask.attr,
3449         &format_attr_edge.attr,
3450         &format_attr_pc.attr,
3451         &format_attr_inv.attr,
3452         &format_attr_cmask.attr,
3453         NULL,
3454 };
3455
3456 ssize_t intel_event_sysfs_show(char *page, u64 config)
3457 {
3458         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3459
3460         return x86_event_sysfs_show(page, config, event);
3461 }
3462
3463 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3464 {
3465         struct intel_shared_regs *regs;
3466         int i;
3467
3468         regs = kzalloc_node(sizeof(struct intel_shared_regs),
3469                             GFP_KERNEL, cpu_to_node(cpu));
3470         if (regs) {
3471                 /*
3472                  * initialize the locks to keep lockdep happy
3473                  */
3474                 for (i = 0; i < EXTRA_REG_MAX; i++)
3475                         raw_spin_lock_init(&regs->regs[i].lock);
3476
3477                 regs->core_id = -1;
3478         }
3479         return regs;
3480 }
3481
3482 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3483 {
3484         struct intel_excl_cntrs *c;
3485
3486         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3487                          GFP_KERNEL, cpu_to_node(cpu));
3488         if (c) {
3489                 raw_spin_lock_init(&c->lock);
3490                 c->core_id = -1;
3491         }
3492         return c;
3493 }
3494
3495
3496 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
3497 {
3498         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3499                 cpuc->shared_regs = allocate_shared_regs(cpu);
3500                 if (!cpuc->shared_regs)
3501                         goto err;
3502         }
3503
3504         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
3505                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3506
3507                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
3508                 if (!cpuc->constraint_list)
3509                         goto err_shared_regs;
3510         }
3511
3512         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3513                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3514                 if (!cpuc->excl_cntrs)
3515                         goto err_constraint_list;
3516
3517                 cpuc->excl_thread_id = 0;
3518         }
3519
3520         return 0;
3521
3522 err_constraint_list:
3523         kfree(cpuc->constraint_list);
3524         cpuc->constraint_list = NULL;
3525
3526 err_shared_regs:
3527         kfree(cpuc->shared_regs);
3528         cpuc->shared_regs = NULL;
3529
3530 err:
3531         return -ENOMEM;
3532 }
3533
3534 static int intel_pmu_cpu_prepare(int cpu)
3535 {
3536         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
3537 }
3538
3539 static void flip_smm_bit(void *data)
3540 {
3541         unsigned long set = *(unsigned long *)data;
3542
3543         if (set > 0) {
3544                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3545                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3546         } else {
3547                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3548                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3549         }
3550 }
3551
3552 static void intel_pmu_cpu_starting(int cpu)
3553 {
3554         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3555         int core_id = topology_core_id(cpu);
3556         int i;
3557
3558         init_debug_store_on_cpu(cpu);
3559         /*
3560          * Deal with CPUs that don't clear their LBRs on power-up.
3561          */
3562         intel_pmu_lbr_reset();
3563
3564         cpuc->lbr_sel = NULL;
3565
3566         if (x86_pmu.version > 1)
3567                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3568
3569         if (x86_pmu.counter_freezing)
3570                 enable_counter_freeze();
3571
3572         if (!cpuc->shared_regs)
3573                 return;
3574
3575         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3576                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3577                         struct intel_shared_regs *pc;
3578
3579                         pc = per_cpu(cpu_hw_events, i).shared_regs;
3580                         if (pc && pc->core_id == core_id) {
3581                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3582                                 cpuc->shared_regs = pc;
3583                                 break;
3584                         }
3585                 }
3586                 cpuc->shared_regs->core_id = core_id;
3587                 cpuc->shared_regs->refcnt++;
3588         }
3589
3590         if (x86_pmu.lbr_sel_map)
3591                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3592
3593         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3594                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3595                         struct cpu_hw_events *sibling;
3596                         struct intel_excl_cntrs *c;
3597
3598                         sibling = &per_cpu(cpu_hw_events, i);
3599                         c = sibling->excl_cntrs;
3600                         if (c && c->core_id == core_id) {
3601                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3602                                 cpuc->excl_cntrs = c;
3603                                 if (!sibling->excl_thread_id)
3604                                         cpuc->excl_thread_id = 1;
3605                                 break;
3606                         }
3607                 }
3608                 cpuc->excl_cntrs->core_id = core_id;
3609                 cpuc->excl_cntrs->refcnt++;
3610         }
3611 }
3612
3613 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
3614 {
3615         struct intel_excl_cntrs *c;
3616
3617         c = cpuc->excl_cntrs;
3618         if (c) {
3619                 if (c->core_id == -1 || --c->refcnt == 0)
3620                         kfree(c);
3621                 cpuc->excl_cntrs = NULL;
3622         }
3623
3624         kfree(cpuc->constraint_list);
3625         cpuc->constraint_list = NULL;
3626 }
3627
3628 static void intel_pmu_cpu_dying(int cpu)
3629 {
3630         fini_debug_store_on_cpu(cpu);
3631
3632         if (x86_pmu.counter_freezing)
3633                 disable_counter_freeze();
3634 }
3635
3636 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
3637 {
3638         struct intel_shared_regs *pc;
3639
3640         pc = cpuc->shared_regs;
3641         if (pc) {
3642                 if (pc->core_id == -1 || --pc->refcnt == 0)
3643                         kfree(pc);
3644                 cpuc->shared_regs = NULL;
3645         }
3646
3647         free_excl_cntrs(cpuc);
3648 }
3649
3650 static void intel_pmu_cpu_dead(int cpu)
3651 {
3652         intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
3653 }
3654
3655 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3656                                  bool sched_in)
3657 {
3658         intel_pmu_pebs_sched_task(ctx, sched_in);
3659         intel_pmu_lbr_sched_task(ctx, sched_in);
3660 }
3661
3662 static int intel_pmu_check_period(struct perf_event *event, u64 value)
3663 {
3664         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
3665 }
3666
3667 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3668
3669 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3670
3671 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3672
3673 static struct attribute *intel_arch3_formats_attr[] = {
3674         &format_attr_event.attr,
3675         &format_attr_umask.attr,
3676         &format_attr_edge.attr,
3677         &format_attr_pc.attr,
3678         &format_attr_any.attr,
3679         &format_attr_inv.attr,
3680         &format_attr_cmask.attr,
3681         NULL,
3682 };
3683
3684 static struct attribute *hsw_format_attr[] = {
3685         &format_attr_in_tx.attr,
3686         &format_attr_in_tx_cp.attr,
3687         &format_attr_offcore_rsp.attr,
3688         &format_attr_ldlat.attr,
3689         NULL
3690 };
3691
3692 static struct attribute *nhm_format_attr[] = {
3693         &format_attr_offcore_rsp.attr,
3694         &format_attr_ldlat.attr,
3695         NULL
3696 };
3697
3698 static struct attribute *slm_format_attr[] = {
3699         &format_attr_offcore_rsp.attr,
3700         NULL
3701 };
3702
3703 static struct attribute *skl_format_attr[] = {
3704         &format_attr_frontend.attr,
3705         NULL,
3706 };
3707
3708 static __initconst const struct x86_pmu core_pmu = {
3709         .name                   = "core",
3710         .handle_irq             = x86_pmu_handle_irq,
3711         .disable_all            = x86_pmu_disable_all,
3712         .enable_all             = core_pmu_enable_all,
3713         .enable                 = core_pmu_enable_event,
3714         .disable                = x86_pmu_disable_event,
3715         .hw_config              = core_pmu_hw_config,
3716         .schedule_events        = x86_schedule_events,
3717         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3718         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3719         .event_map              = intel_pmu_event_map,
3720         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3721         .apic                   = 1,
3722         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3723
3724         /*
3725          * Intel PMCs cannot be accessed sanely above 32-bit width,
3726          * so we install an artificial 1<<31 period regardless of
3727          * the generic event period:
3728          */
3729         .max_period             = (1ULL<<31) - 1,
3730         .get_event_constraints  = intel_get_event_constraints,
3731         .put_event_constraints  = intel_put_event_constraints,
3732         .event_constraints      = intel_core_event_constraints,
3733         .guest_get_msrs         = core_guest_get_msrs,
3734         .format_attrs           = intel_arch_formats_attr,
3735         .events_sysfs_show      = intel_event_sysfs_show,
3736
3737         /*
3738          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3739          * together with PMU version 1 and thus be using core_pmu with
3740          * shared_regs. We need following callbacks here to allocate
3741          * it properly.
3742          */
3743         .cpu_prepare            = intel_pmu_cpu_prepare,
3744         .cpu_starting           = intel_pmu_cpu_starting,
3745         .cpu_dying              = intel_pmu_cpu_dying,
3746         .cpu_dead               = intel_pmu_cpu_dead,
3747
3748         .check_period           = intel_pmu_check_period,
3749 };
3750
3751 static struct attribute *intel_pmu_attrs[];
3752
3753 static __initconst const struct x86_pmu intel_pmu = {
3754         .name                   = "Intel",
3755         .handle_irq             = intel_pmu_handle_irq,
3756         .disable_all            = intel_pmu_disable_all,
3757         .enable_all             = intel_pmu_enable_all,
3758         .enable                 = intel_pmu_enable_event,
3759         .disable                = intel_pmu_disable_event,
3760         .add                    = intel_pmu_add_event,
3761         .del                    = intel_pmu_del_event,
3762         .read                   = intel_pmu_read_event,
3763         .hw_config              = intel_pmu_hw_config,
3764         .schedule_events        = x86_schedule_events,
3765         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3766         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3767         .event_map              = intel_pmu_event_map,
3768         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3769         .apic                   = 1,
3770         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3771         /*
3772          * Intel PMCs cannot be accessed sanely above 32 bit width,
3773          * so we install an artificial 1<<31 period regardless of
3774          * the generic event period:
3775          */
3776         .max_period             = (1ULL << 31) - 1,
3777         .get_event_constraints  = intel_get_event_constraints,
3778         .put_event_constraints  = intel_put_event_constraints,
3779         .pebs_aliases           = intel_pebs_aliases_core2,
3780
3781         .format_attrs           = intel_arch3_formats_attr,
3782         .events_sysfs_show      = intel_event_sysfs_show,
3783
3784         .attrs                  = intel_pmu_attrs,
3785
3786         .cpu_prepare            = intel_pmu_cpu_prepare,
3787         .cpu_starting           = intel_pmu_cpu_starting,
3788         .cpu_dying              = intel_pmu_cpu_dying,
3789         .cpu_dead               = intel_pmu_cpu_dead,
3790
3791         .guest_get_msrs         = intel_guest_get_msrs,
3792         .sched_task             = intel_pmu_sched_task,
3793
3794         .check_period           = intel_pmu_check_period,
3795 };
3796
3797 static __init void intel_clovertown_quirk(void)
3798 {
3799         /*
3800          * PEBS is unreliable due to:
3801          *
3802          *   AJ67  - PEBS may experience CPL leaks
3803          *   AJ68  - PEBS PMI may be delayed by one event
3804          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3805          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3806          *
3807          * AJ67 could be worked around by restricting the OS/USR flags.
3808          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3809          *
3810          * AJ106 could possibly be worked around by not allowing LBR
3811          *       usage from PEBS, including the fixup.
3812          * AJ68  could possibly be worked around by always programming
3813          *       a pebs_event_reset[0] value and coping with the lost events.
3814          *
3815          * But taken together it might just make sense to not enable PEBS on
3816          * these chips.
3817          */
3818         pr_warn("PEBS disabled due to CPU errata\n");
3819         x86_pmu.pebs = 0;
3820         x86_pmu.pebs_constraints = NULL;
3821 }
3822
3823 static int intel_snb_pebs_broken(int cpu)
3824 {
3825         u32 rev = UINT_MAX; /* default to broken for unknown models */
3826
3827         switch (cpu_data(cpu).x86_model) {
3828         case INTEL_FAM6_SANDYBRIDGE:
3829                 rev = 0x28;
3830                 break;
3831
3832         case INTEL_FAM6_SANDYBRIDGE_X:
3833                 switch (cpu_data(cpu).x86_stepping) {
3834                 case 6: rev = 0x618; break;
3835                 case 7: rev = 0x70c; break;
3836                 }
3837         }
3838
3839         return (cpu_data(cpu).microcode < rev);
3840 }
3841
3842 static void intel_snb_check_microcode(void)
3843 {
3844         int pebs_broken = 0;
3845         int cpu;
3846
3847         for_each_online_cpu(cpu) {
3848                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3849                         break;
3850         }
3851
3852         if (pebs_broken == x86_pmu.pebs_broken)
3853                 return;
3854
3855         /*
3856          * Serialized by the microcode lock..
3857          */
3858         if (x86_pmu.pebs_broken) {
3859                 pr_info("PEBS enabled due to microcode update\n");
3860                 x86_pmu.pebs_broken = 0;
3861         } else {
3862                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3863                 x86_pmu.pebs_broken = 1;
3864         }
3865 }
3866
3867 static bool is_lbr_from(unsigned long msr)
3868 {
3869         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3870
3871         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3872 }
3873
3874 /*
3875  * Under certain circumstances, access certain MSR may cause #GP.
3876  * The function tests if the input MSR can be safely accessed.
3877  */
3878 static bool check_msr(unsigned long msr, u64 mask)
3879 {
3880         u64 val_old, val_new, val_tmp;
3881
3882         /*
3883          * Read the current value, change it and read it back to see if it
3884          * matches, this is needed to detect certain hardware emulators
3885          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3886          */
3887         if (rdmsrl_safe(msr, &val_old))
3888                 return false;
3889
3890         /*
3891          * Only change the bits which can be updated by wrmsrl.
3892          */
3893         val_tmp = val_old ^ mask;
3894
3895         if (is_lbr_from(msr))
3896                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3897
3898         if (wrmsrl_safe(msr, val_tmp) ||
3899             rdmsrl_safe(msr, &val_new))
3900                 return false;
3901
3902         /*
3903          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3904          * should equal rdmsrl()'s even with the quirk.
3905          */
3906         if (val_new != val_tmp)
3907                 return false;
3908
3909         if (is_lbr_from(msr))
3910                 val_old = lbr_from_signext_quirk_wr(val_old);
3911
3912         /* Here it's sure that the MSR can be safely accessed.
3913          * Restore the old value and return.
3914          */
3915         wrmsrl(msr, val_old);
3916
3917         return true;
3918 }
3919
3920 static __init void intel_sandybridge_quirk(void)
3921 {
3922         x86_pmu.check_microcode = intel_snb_check_microcode;
3923         cpus_read_lock();
3924         intel_snb_check_microcode();
3925         cpus_read_unlock();
3926 }
3927
3928 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3929         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3930         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3931         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3932         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3933         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3934         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3935         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3936 };
3937
3938 static __init void intel_arch_events_quirk(void)
3939 {
3940         int bit;
3941
3942         /* disable event that reported as not presend by cpuid */
3943         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3944                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3945                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3946                         intel_arch_events_map[bit].name);
3947         }
3948 }
3949
3950 static __init void intel_nehalem_quirk(void)
3951 {
3952         union cpuid10_ebx ebx;
3953
3954         ebx.full = x86_pmu.events_maskl;
3955         if (ebx.split.no_branch_misses_retired) {
3956                 /*
3957                  * Erratum AAJ80 detected, we work it around by using
3958                  * the BR_MISP_EXEC.ANY event. This will over-count
3959                  * branch-misses, but it's still much better than the
3960                  * architectural event which is often completely bogus:
3961                  */
3962                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3963                 ebx.split.no_branch_misses_retired = 0;
3964                 x86_pmu.events_maskl = ebx.full;
3965                 pr_info("CPU erratum AAJ80 worked around\n");
3966         }
3967 }
3968
3969 static bool intel_glp_counter_freezing_broken(int cpu)
3970 {
3971         u32 rev = UINT_MAX; /* default to broken for unknown stepping */
3972
3973         switch (cpu_data(cpu).x86_stepping) {
3974         case 1:
3975                 rev = 0x28;
3976                 break;
3977         case 8:
3978                 rev = 0x6;
3979                 break;
3980         }
3981
3982         return (cpu_data(cpu).microcode < rev);
3983 }
3984
3985 static __init void intel_glp_counter_freezing_quirk(void)
3986 {
3987         /* Check if it's already disabled */
3988         if (disable_counter_freezing)
3989                 return;
3990
3991         /*
3992          * If the system starts with the wrong ucode, leave the
3993          * counter-freezing feature permanently disabled.
3994          */
3995         if (intel_glp_counter_freezing_broken(raw_smp_processor_id())) {
3996                 pr_info("PMU counter freezing disabled due to CPU errata,"
3997                         "please upgrade microcode\n");
3998                 x86_pmu.counter_freezing = false;
3999                 x86_pmu.handle_irq = intel_pmu_handle_irq;
4000         }
4001 }
4002
4003 /*
4004  * enable software workaround for errata:
4005  * SNB: BJ122
4006  * IVB: BV98
4007  * HSW: HSD29
4008  *
4009  * Only needed when HT is enabled. However detecting
4010  * if HT is enabled is difficult (model specific). So instead,
4011  * we enable the workaround in the early boot, and verify if
4012  * it is needed in a later initcall phase once we have valid
4013  * topology information to check if HT is actually enabled
4014  */
4015 static __init void intel_ht_bug(void)
4016 {
4017         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4018
4019         x86_pmu.start_scheduling = intel_start_scheduling;
4020         x86_pmu.commit_scheduling = intel_commit_scheduling;
4021         x86_pmu.stop_scheduling = intel_stop_scheduling;
4022 }
4023
4024 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
4025 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
4026
4027 /* Haswell special events */
4028 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
4029 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
4030 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
4031 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
4032 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
4033 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
4034 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
4035 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
4036 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
4037 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
4038 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
4039 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
4040
4041 static struct attribute *hsw_events_attrs[] = {
4042         EVENT_PTR(td_slots_issued),
4043         EVENT_PTR(td_slots_retired),
4044         EVENT_PTR(td_fetch_bubbles),
4045         EVENT_PTR(td_total_slots),
4046         EVENT_PTR(td_total_slots_scale),
4047         EVENT_PTR(td_recovery_bubbles),
4048         EVENT_PTR(td_recovery_bubbles_scale),
4049         NULL
4050 };
4051
4052 static struct attribute *hsw_mem_events_attrs[] = {
4053         EVENT_PTR(mem_ld_hsw),
4054         EVENT_PTR(mem_st_hsw),
4055         NULL,
4056 };
4057
4058 static struct attribute *hsw_tsx_events_attrs[] = {
4059         EVENT_PTR(tx_start),
4060         EVENT_PTR(tx_commit),
4061         EVENT_PTR(tx_abort),
4062         EVENT_PTR(tx_capacity),
4063         EVENT_PTR(tx_conflict),
4064         EVENT_PTR(el_start),
4065         EVENT_PTR(el_commit),
4066         EVENT_PTR(el_abort),
4067         EVENT_PTR(el_capacity),
4068         EVENT_PTR(el_conflict),
4069         EVENT_PTR(cycles_t),
4070         EVENT_PTR(cycles_ct),
4071         NULL
4072 };
4073
4074 static ssize_t freeze_on_smi_show(struct device *cdev,
4075                                   struct device_attribute *attr,
4076                                   char *buf)
4077 {
4078         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4079 }
4080
4081 static DEFINE_MUTEX(freeze_on_smi_mutex);
4082
4083 static ssize_t freeze_on_smi_store(struct device *cdev,
4084                                    struct device_attribute *attr,
4085                                    const char *buf, size_t count)
4086 {
4087         unsigned long val;
4088         ssize_t ret;
4089
4090         ret = kstrtoul(buf, 0, &val);
4091         if (ret)
4092                 return ret;
4093
4094         if (val > 1)
4095                 return -EINVAL;
4096
4097         mutex_lock(&freeze_on_smi_mutex);
4098
4099         if (x86_pmu.attr_freeze_on_smi == val)
4100                 goto done;
4101
4102         x86_pmu.attr_freeze_on_smi = val;
4103
4104         get_online_cpus();
4105         on_each_cpu(flip_smm_bit, &val, 1);
4106         put_online_cpus();
4107 done:
4108         mutex_unlock(&freeze_on_smi_mutex);
4109
4110         return count;
4111 }
4112
4113 static DEVICE_ATTR_RW(freeze_on_smi);
4114
4115 static ssize_t branches_show(struct device *cdev,
4116                              struct device_attribute *attr,
4117                              char *buf)
4118 {
4119         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4120 }
4121
4122 static DEVICE_ATTR_RO(branches);
4123
4124 static struct attribute *lbr_attrs[] = {
4125         &dev_attr_branches.attr,
4126         NULL
4127 };
4128
4129 static char pmu_name_str[30];
4130
4131 static ssize_t pmu_name_show(struct device *cdev,
4132                              struct device_attribute *attr,
4133                              char *buf)
4134 {
4135         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4136 }
4137
4138 static DEVICE_ATTR_RO(pmu_name);
4139
4140 static struct attribute *intel_pmu_caps_attrs[] = {
4141        &dev_attr_pmu_name.attr,
4142        NULL
4143 };
4144
4145 DEVICE_BOOL_ATTR(allow_tsx_force_abort, 0644, allow_tsx_force_abort);
4146
4147 static struct attribute *intel_pmu_attrs[] = {
4148         &dev_attr_freeze_on_smi.attr,
4149         NULL, /* &dev_attr_allow_tsx_force_abort.attr.attr */
4150         NULL,
4151 };
4152
4153 static __init struct attribute **
4154 get_events_attrs(struct attribute **base,
4155                  struct attribute **mem,
4156                  struct attribute **tsx)
4157 {
4158         struct attribute **attrs = base;
4159         struct attribute **old;
4160
4161         if (mem && x86_pmu.pebs)
4162                 attrs = merge_attr(attrs, mem);
4163
4164         if (tsx && boot_cpu_has(X86_FEATURE_RTM)) {
4165                 old = attrs;
4166                 attrs = merge_attr(attrs, tsx);
4167                 if (old != base)
4168                         kfree(old);
4169         }
4170
4171         return attrs;
4172 }
4173
4174 __init int intel_pmu_init(void)
4175 {
4176         struct attribute **extra_attr = NULL;
4177         struct attribute **mem_attr = NULL;
4178         struct attribute **tsx_attr = NULL;
4179         struct attribute **to_free = NULL;
4180         union cpuid10_edx edx;
4181         union cpuid10_eax eax;
4182         union cpuid10_ebx ebx;
4183         struct event_constraint *c;
4184         unsigned int unused;
4185         struct extra_reg *er;
4186         int version, i;
4187         char *name;
4188
4189         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4190                 switch (boot_cpu_data.x86) {
4191                 case 0x6:
4192                         return p6_pmu_init();
4193                 case 0xb:
4194                         return knc_pmu_init();
4195                 case 0xf:
4196                         return p4_pmu_init();
4197                 }
4198                 return -ENODEV;
4199         }
4200
4201         /*
4202          * Check whether the Architectural PerfMon supports
4203          * Branch Misses Retired hw_event or not.
4204          */
4205         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4206         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4207                 return -ENODEV;
4208
4209         version = eax.split.version_id;
4210         if (version < 2)
4211                 x86_pmu = core_pmu;
4212         else
4213                 x86_pmu = intel_pmu;
4214
4215         x86_pmu.version                 = version;
4216         x86_pmu.num_counters            = eax.split.num_counters;
4217         x86_pmu.cntval_bits             = eax.split.bit_width;
4218         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
4219
4220         x86_pmu.events_maskl            = ebx.full;
4221         x86_pmu.events_mask_len         = eax.split.mask_length;
4222
4223         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4224
4225         /*
4226          * Quirk: v2 perfmon does not report fixed-purpose events, so
4227          * assume at least 3 events, when not running in a hypervisor:
4228          */
4229         if (version > 1) {
4230                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4231
4232                 x86_pmu.num_counters_fixed =
4233                         max((int)edx.split.num_counters_fixed, assume);
4234         }
4235
4236         if (version >= 4)
4237                 x86_pmu.counter_freezing = !disable_counter_freezing;
4238
4239         if (boot_cpu_has(X86_FEATURE_PDCM)) {
4240                 u64 capabilities;
4241
4242                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4243                 x86_pmu.intel_cap.capabilities = capabilities;
4244         }
4245
4246         intel_ds_init();
4247
4248         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4249
4250         /*
4251          * Install the hw-cache-events table:
4252          */
4253         switch (boot_cpu_data.x86_model) {
4254         case INTEL_FAM6_CORE_YONAH:
4255                 pr_cont("Core events, ");
4256                 name = "core";
4257                 break;
4258
4259         case INTEL_FAM6_CORE2_MEROM:
4260                 x86_add_quirk(intel_clovertown_quirk);
4261         case INTEL_FAM6_CORE2_MEROM_L:
4262         case INTEL_FAM6_CORE2_PENRYN:
4263         case INTEL_FAM6_CORE2_DUNNINGTON:
4264                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4265                        sizeof(hw_cache_event_ids));
4266
4267                 intel_pmu_lbr_init_core();
4268
4269                 x86_pmu.event_constraints = intel_core2_event_constraints;
4270                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4271                 pr_cont("Core2 events, ");
4272                 name = "core2";
4273                 break;
4274
4275         case INTEL_FAM6_NEHALEM:
4276         case INTEL_FAM6_NEHALEM_EP:
4277         case INTEL_FAM6_NEHALEM_EX:
4278                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4279                        sizeof(hw_cache_event_ids));
4280                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4281                        sizeof(hw_cache_extra_regs));
4282
4283                 intel_pmu_lbr_init_nhm();
4284
4285                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
4286                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4287                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4288                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
4289
4290                 mem_attr = nhm_mem_events_attrs;
4291
4292                 /* UOPS_ISSUED.STALLED_CYCLES */
4293                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4294                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4295                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4296                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4297                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4298
4299                 intel_pmu_pebs_data_source_nhm();
4300                 x86_add_quirk(intel_nehalem_quirk);
4301                 x86_pmu.pebs_no_tlb = 1;
4302                 extra_attr = nhm_format_attr;
4303
4304                 pr_cont("Nehalem events, ");
4305                 name = "nehalem";
4306                 break;
4307
4308         case INTEL_FAM6_ATOM_BONNELL:
4309         case INTEL_FAM6_ATOM_BONNELL_MID:
4310         case INTEL_FAM6_ATOM_SALTWELL:
4311         case INTEL_FAM6_ATOM_SALTWELL_MID:
4312         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4313                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4314                        sizeof(hw_cache_event_ids));
4315
4316                 intel_pmu_lbr_init_atom();
4317
4318                 x86_pmu.event_constraints = intel_gen_event_constraints;
4319                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4320                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4321                 pr_cont("Atom events, ");
4322                 name = "bonnell";
4323                 break;
4324
4325         case INTEL_FAM6_ATOM_SILVERMONT:
4326         case INTEL_FAM6_ATOM_SILVERMONT_X:
4327         case INTEL_FAM6_ATOM_SILVERMONT_MID:
4328         case INTEL_FAM6_ATOM_AIRMONT:
4329         case INTEL_FAM6_ATOM_AIRMONT_MID:
4330                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4331                         sizeof(hw_cache_event_ids));
4332                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4333                        sizeof(hw_cache_extra_regs));
4334
4335                 intel_pmu_lbr_init_slm();
4336
4337                 x86_pmu.event_constraints = intel_slm_event_constraints;
4338                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4339                 x86_pmu.extra_regs = intel_slm_extra_regs;
4340                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4341                 x86_pmu.cpu_events = slm_events_attrs;
4342                 extra_attr = slm_format_attr;
4343                 pr_cont("Silvermont events, ");
4344                 name = "silvermont";
4345                 break;
4346
4347         case INTEL_FAM6_ATOM_GOLDMONT:
4348         case INTEL_FAM6_ATOM_GOLDMONT_X:
4349                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4350                        sizeof(hw_cache_event_ids));
4351                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4352                        sizeof(hw_cache_extra_regs));
4353
4354                 intel_pmu_lbr_init_skl();
4355
4356                 x86_pmu.event_constraints = intel_slm_event_constraints;
4357                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4358                 x86_pmu.extra_regs = intel_glm_extra_regs;
4359                 /*
4360                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4361                  * for precise cycles.
4362                  * :pp is identical to :ppp
4363                  */
4364                 x86_pmu.pebs_aliases = NULL;
4365                 x86_pmu.pebs_prec_dist = true;
4366                 x86_pmu.lbr_pt_coexist = true;
4367                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4368                 x86_pmu.cpu_events = glm_events_attrs;
4369                 extra_attr = slm_format_attr;
4370                 pr_cont("Goldmont events, ");
4371                 name = "goldmont";
4372                 break;
4373
4374         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4375                 x86_add_quirk(intel_glp_counter_freezing_quirk);
4376                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4377                        sizeof(hw_cache_event_ids));
4378                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4379                        sizeof(hw_cache_extra_regs));
4380
4381                 intel_pmu_lbr_init_skl();
4382
4383                 x86_pmu.event_constraints = intel_slm_event_constraints;
4384                 x86_pmu.extra_regs = intel_glm_extra_regs;
4385                 /*
4386                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4387                  * for precise cycles.
4388                  */
4389                 x86_pmu.pebs_aliases = NULL;
4390                 x86_pmu.pebs_prec_dist = true;
4391                 x86_pmu.lbr_pt_coexist = true;
4392                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4393                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
4394                 x86_pmu.get_event_constraints = glp_get_event_constraints;
4395                 x86_pmu.cpu_events = glm_events_attrs;
4396                 /* Goldmont Plus has 4-wide pipeline */
4397                 event_attr_td_total_slots_scale_glm.event_str = "4";
4398                 extra_attr = slm_format_attr;
4399                 pr_cont("Goldmont plus events, ");
4400                 name = "goldmont_plus";
4401                 break;
4402
4403         case INTEL_FAM6_WESTMERE:
4404         case INTEL_FAM6_WESTMERE_EP:
4405         case INTEL_FAM6_WESTMERE_EX:
4406                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4407                        sizeof(hw_cache_event_ids));
4408                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4409                        sizeof(hw_cache_extra_regs));
4410
4411                 intel_pmu_lbr_init_nhm();
4412
4413                 x86_pmu.event_constraints = intel_westmere_event_constraints;
4414                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4415                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4416                 x86_pmu.extra_regs = intel_westmere_extra_regs;
4417                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4418
4419                 mem_attr = nhm_mem_events_attrs;
4420
4421                 /* UOPS_ISSUED.STALLED_CYCLES */
4422                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4423                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4424                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4425                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4426                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4427
4428                 intel_pmu_pebs_data_source_nhm();
4429                 extra_attr = nhm_format_attr;
4430                 pr_cont("Westmere events, ");
4431                 name = "westmere";
4432                 break;
4433
4434         case INTEL_FAM6_SANDYBRIDGE:
4435         case INTEL_FAM6_SANDYBRIDGE_X:
4436                 x86_add_quirk(intel_sandybridge_quirk);
4437                 x86_add_quirk(intel_ht_bug);
4438                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4439                        sizeof(hw_cache_event_ids));
4440                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4441                        sizeof(hw_cache_extra_regs));
4442
4443                 intel_pmu_lbr_init_snb();
4444
4445                 x86_pmu.event_constraints = intel_snb_event_constraints;
4446                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4447                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4448                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4449                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4450                 else
4451                         x86_pmu.extra_regs = intel_snb_extra_regs;
4452
4453
4454                 /* all extra regs are per-cpu when HT is on */
4455                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4456                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4457
4458                 x86_pmu.cpu_events = snb_events_attrs;
4459                 mem_attr = snb_mem_events_attrs;
4460
4461                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4462                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4463                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4464                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4465                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4466                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4467
4468                 extra_attr = nhm_format_attr;
4469
4470                 pr_cont("SandyBridge events, ");
4471                 name = "sandybridge";
4472                 break;
4473
4474         case INTEL_FAM6_IVYBRIDGE:
4475         case INTEL_FAM6_IVYBRIDGE_X:
4476                 x86_add_quirk(intel_ht_bug);
4477                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4478                        sizeof(hw_cache_event_ids));
4479                 /* dTLB-load-misses on IVB is different than SNB */
4480                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4481
4482                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4483                        sizeof(hw_cache_extra_regs));
4484
4485                 intel_pmu_lbr_init_snb();
4486
4487                 x86_pmu.event_constraints = intel_ivb_event_constraints;
4488                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4489                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4490                 x86_pmu.pebs_prec_dist = true;
4491                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4492                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4493                 else
4494                         x86_pmu.extra_regs = intel_snb_extra_regs;
4495                 /* all extra regs are per-cpu when HT is on */
4496                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4497                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4498
4499                 x86_pmu.cpu_events = snb_events_attrs;
4500                 mem_attr = snb_mem_events_attrs;
4501
4502                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4503                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4504                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4505
4506                 extra_attr = nhm_format_attr;
4507
4508                 pr_cont("IvyBridge events, ");
4509                 name = "ivybridge";
4510                 break;
4511
4512
4513         case INTEL_FAM6_HASWELL_CORE:
4514         case INTEL_FAM6_HASWELL_X:
4515         case INTEL_FAM6_HASWELL_ULT:
4516         case INTEL_FAM6_HASWELL_GT3E:
4517                 x86_add_quirk(intel_ht_bug);
4518                 x86_pmu.late_ack = true;
4519                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4520                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4521
4522                 intel_pmu_lbr_init_hsw();
4523
4524                 x86_pmu.event_constraints = intel_hsw_event_constraints;
4525                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4526                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4527                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4528                 x86_pmu.pebs_prec_dist = true;
4529                 /* all extra regs are per-cpu when HT is on */
4530                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4531                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4532
4533                 x86_pmu.hw_config = hsw_hw_config;
4534                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4535                 x86_pmu.cpu_events = hsw_events_attrs;
4536                 x86_pmu.lbr_double_abort = true;
4537                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4538                         hsw_format_attr : nhm_format_attr;
4539                 mem_attr = hsw_mem_events_attrs;
4540                 tsx_attr = hsw_tsx_events_attrs;
4541                 pr_cont("Haswell events, ");
4542                 name = "haswell";
4543                 break;
4544
4545         case INTEL_FAM6_BROADWELL_CORE:
4546         case INTEL_FAM6_BROADWELL_XEON_D:
4547         case INTEL_FAM6_BROADWELL_GT3E:
4548         case INTEL_FAM6_BROADWELL_X:
4549                 x86_pmu.late_ack = true;
4550                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4551                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4552
4553                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4554                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4555                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
4556                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4557                                                                           HSW_SNOOP_DRAM;
4558                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4559                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4560                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4561                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4562
4563                 intel_pmu_lbr_init_hsw();
4564
4565                 x86_pmu.event_constraints = intel_bdw_event_constraints;
4566                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4567                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4568                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4569                 x86_pmu.pebs_prec_dist = true;
4570                 /* all extra regs are per-cpu when HT is on */
4571                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4572                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4573
4574                 x86_pmu.hw_config = hsw_hw_config;
4575                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4576                 x86_pmu.cpu_events = hsw_events_attrs;
4577                 x86_pmu.limit_period = bdw_limit_period;
4578                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4579                         hsw_format_attr : nhm_format_attr;
4580                 mem_attr = hsw_mem_events_attrs;
4581                 tsx_attr = hsw_tsx_events_attrs;
4582                 pr_cont("Broadwell events, ");
4583                 name = "broadwell";
4584                 break;
4585
4586         case INTEL_FAM6_XEON_PHI_KNL:
4587         case INTEL_FAM6_XEON_PHI_KNM:
4588                 memcpy(hw_cache_event_ids,
4589                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4590                 memcpy(hw_cache_extra_regs,
4591                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4592                 intel_pmu_lbr_init_knl();
4593
4594                 x86_pmu.event_constraints = intel_slm_event_constraints;
4595                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4596                 x86_pmu.extra_regs = intel_knl_extra_regs;
4597
4598                 /* all extra regs are per-cpu when HT is on */
4599                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4600                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4601                 extra_attr = slm_format_attr;
4602                 pr_cont("Knights Landing/Mill events, ");
4603                 name = "knights-landing";
4604                 break;
4605
4606         case INTEL_FAM6_SKYLAKE_MOBILE:
4607         case INTEL_FAM6_SKYLAKE_DESKTOP:
4608         case INTEL_FAM6_SKYLAKE_X:
4609         case INTEL_FAM6_KABYLAKE_MOBILE:
4610         case INTEL_FAM6_KABYLAKE_DESKTOP:
4611                 x86_pmu.late_ack = true;
4612                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4613                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4614                 intel_pmu_lbr_init_skl();
4615
4616                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4617                 event_attr_td_recovery_bubbles.event_str_noht =
4618                         "event=0xd,umask=0x1,cmask=1";
4619                 event_attr_td_recovery_bubbles.event_str_ht =
4620                         "event=0xd,umask=0x1,cmask=1,any=1";
4621
4622                 x86_pmu.event_constraints = intel_skl_event_constraints;
4623                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4624                 x86_pmu.extra_regs = intel_skl_extra_regs;
4625                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4626                 x86_pmu.pebs_prec_dist = true;
4627                 /* all extra regs are per-cpu when HT is on */
4628                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4629                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4630
4631                 x86_pmu.hw_config = hsw_hw_config;
4632                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4633                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4634                         hsw_format_attr : nhm_format_attr;
4635                 extra_attr = merge_attr(extra_attr, skl_format_attr);
4636                 to_free = extra_attr;
4637                 x86_pmu.cpu_events = hsw_events_attrs;
4638                 mem_attr = hsw_mem_events_attrs;
4639                 tsx_attr = hsw_tsx_events_attrs;
4640                 intel_pmu_pebs_data_source_skl(
4641                         boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
4642
4643                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
4644                         x86_pmu.flags |= PMU_FL_TFA;
4645                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
4646                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
4647                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
4648                         intel_pmu_attrs[1] = &dev_attr_allow_tsx_force_abort.attr.attr;
4649                 }
4650
4651                 pr_cont("Skylake events, ");
4652                 name = "skylake";
4653                 break;
4654
4655         default:
4656                 switch (x86_pmu.version) {
4657                 case 1:
4658                         x86_pmu.event_constraints = intel_v1_event_constraints;
4659                         pr_cont("generic architected perfmon v1, ");
4660                         name = "generic_arch_v1";
4661                         break;
4662                 default:
4663                         /*
4664                          * default constraints for v2 and up
4665                          */
4666                         x86_pmu.event_constraints = intel_gen_event_constraints;
4667                         pr_cont("generic architected perfmon, ");
4668                         name = "generic_arch_v2+";
4669                         break;
4670                 }
4671         }
4672
4673         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
4674
4675         if (version >= 2 && extra_attr) {
4676                 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4677                                                   extra_attr);
4678                 WARN_ON(!x86_pmu.format_attrs);
4679         }
4680
4681         x86_pmu.cpu_events = get_events_attrs(x86_pmu.cpu_events,
4682                                               mem_attr, tsx_attr);
4683
4684         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4685                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4686                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4687                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4688         }
4689         x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4690
4691         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4692                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4693                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4694                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4695         }
4696
4697         x86_pmu.intel_ctrl |=
4698                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4699
4700         if (x86_pmu.event_constraints) {
4701                 /*
4702                  * event on fixed counter2 (REF_CYCLES) only works on this
4703                  * counter, so do not extend mask to generic counters
4704                  */
4705                 for_each_event_constraint(c, x86_pmu.event_constraints) {
4706                         if (c->cmask == FIXED_EVENT_FLAGS
4707                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4708                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4709                         }
4710                         c->idxmsk64 &=
4711                                 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4712                         c->weight = hweight64(c->idxmsk64);
4713                 }
4714         }
4715
4716         /*
4717          * Access LBR MSR may cause #GP under certain circumstances.
4718          * E.g. KVM doesn't support LBR MSR
4719          * Check all LBT MSR here.
4720          * Disable LBR access if any LBR MSRs can not be accessed.
4721          */
4722         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4723                 x86_pmu.lbr_nr = 0;
4724         for (i = 0; i < x86_pmu.lbr_nr; i++) {
4725                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4726                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4727                         x86_pmu.lbr_nr = 0;
4728         }
4729
4730         x86_pmu.caps_attrs = intel_pmu_caps_attrs;
4731
4732         if (x86_pmu.lbr_nr) {
4733                 x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
4734                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4735         }
4736
4737         /*
4738          * Access extra MSR may cause #GP under certain circumstances.
4739          * E.g. KVM doesn't support offcore event
4740          * Check all extra_regs here.
4741          */
4742         if (x86_pmu.extra_regs) {
4743                 for (er = x86_pmu.extra_regs; er->msr; er++) {
4744                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
4745                         /* Disable LBR select mapping */
4746                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4747                                 x86_pmu.lbr_sel_map = NULL;
4748                 }
4749         }
4750
4751         /* Support full width counters using alternative MSR range */
4752         if (x86_pmu.intel_cap.full_width_write) {
4753                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4754                 x86_pmu.perfctr = MSR_IA32_PMC0;
4755                 pr_cont("full-width counters, ");
4756         }
4757
4758         /*
4759          * For arch perfmon 4 use counter freezing to avoid
4760          * several MSR accesses in the PMI.
4761          */
4762         if (x86_pmu.counter_freezing)
4763                 x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
4764
4765         kfree(to_free);
4766         return 0;
4767 }
4768
4769 /*
4770  * HT bug: phase 2 init
4771  * Called once we have valid topology information to check
4772  * whether or not HT is enabled
4773  * If HT is off, then we disable the workaround
4774  */
4775 static __init int fixup_ht_bug(void)
4776 {
4777         int c;
4778         /*
4779          * problem not present on this CPU model, nothing to do
4780          */
4781         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4782                 return 0;
4783
4784         if (topology_max_smt_threads() > 1) {
4785                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4786                 return 0;
4787         }
4788
4789         cpus_read_lock();
4790
4791         hardlockup_detector_perf_stop();
4792
4793         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4794
4795         x86_pmu.start_scheduling = NULL;
4796         x86_pmu.commit_scheduling = NULL;
4797         x86_pmu.stop_scheduling = NULL;
4798
4799         hardlockup_detector_perf_restart();
4800
4801         for_each_online_cpu(c)
4802                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
4803
4804         cpus_read_unlock();
4805         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4806         return 0;
4807 }
4808 subsys_initcall(fixup_ht_bug)