perf/x86: Reduce stack usage for x86_pmu::drain_pebs()
[linux-2.6-microblaze.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24
25 #include "../perf_event.h"
26
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
33         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
34         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
35         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
36         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
37         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
38         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
39         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
40 };
41
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50         EVENT_CONSTRAINT_END
51 };
52
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68         EVENT_CONSTRAINT_END
69 };
70
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84         EVENT_CONSTRAINT_END
85 };
86
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92         EVENT_EXTRA_END
93 };
94
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104         EVENT_CONSTRAINT_END
105 };
106
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121
122         /*
123          * When HT is off these events can only run on the bottom 4 counters
124          * When HT is on, they are impacted by the HT bug and require EXCL access
125          */
126         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130
131         EVENT_CONSTRAINT_END
132 };
133
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
141         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149
150         /*
151          * When HT is off these events can only run on the bottom 4 counters
152          * When HT is on, they are impacted by the HT bug and require EXCL access
153          */
154         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158
159         EVENT_CONSTRAINT_END
160 };
161
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168         EVENT_EXTRA_END
169 };
170
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173         EVENT_CONSTRAINT_END
174 };
175
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181         EVENT_CONSTRAINT_END
182 };
183
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189         EVENT_CONSTRAINT_END
190 };
191
192 static struct event_constraint intel_skl_event_constraints[] = {
193         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
194         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
195         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
196         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
197
198         /*
199          * when HT is off, these can only run on the bottom 4 counters
200          */
201         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
203         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
204         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
205         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
206
207         EVENT_CONSTRAINT_END
208 };
209
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213         EVENT_EXTRA_END
214 };
215
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221         EVENT_EXTRA_END
222 };
223
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229         EVENT_EXTRA_END
230 };
231
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236         /*
237          * Note the low 8 bits eventsel code is not a continuous field, containing
238          * some #GPing bits. These are masked out.
239          */
240         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241         EVENT_EXTRA_END
242 };
243
244 static struct event_constraint intel_icl_event_constraints[] = {
245         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
246         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* INST_RETIRED.PREC_DIST */
247         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
248         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
249         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
250         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
251         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
252         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
253         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
254         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
255         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
256         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
257         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
258         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
259         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
260         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
261         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
262         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
263         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
264         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
265         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
266         EVENT_CONSTRAINT_END
267 };
268
269 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
270         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
271         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
272         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
273         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
274         EVENT_EXTRA_END
275 };
276
277 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
278 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
279 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
280
281 static struct attribute *nhm_mem_events_attrs[] = {
282         EVENT_PTR(mem_ld_nhm),
283         NULL,
284 };
285
286 /*
287  * topdown events for Intel Core CPUs.
288  *
289  * The events are all in slots, which is a free slot in a 4 wide
290  * pipeline. Some events are already reported in slots, for cycle
291  * events we multiply by the pipeline width (4).
292  *
293  * With Hyper Threading on, topdown metrics are either summed or averaged
294  * between the threads of a core: (count_t0 + count_t1).
295  *
296  * For the average case the metric is always scaled to pipeline width,
297  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
298  */
299
300 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
301         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
302         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
303 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
304 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
305         "event=0xe,umask=0x1");                 /* uops_issued.any */
306 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
307         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
308 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
309         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
310 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
311         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
312         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
313 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
314         "4", "2");
315
316 EVENT_ATTR_STR(slots,                   slots,          "event=0x00,umask=0x4");
317 EVENT_ATTR_STR(topdown-retiring,        td_retiring,    "event=0x00,umask=0x80");
318 EVENT_ATTR_STR(topdown-bad-spec,        td_bad_spec,    "event=0x00,umask=0x81");
319 EVENT_ATTR_STR(topdown-fe-bound,        td_fe_bound,    "event=0x00,umask=0x82");
320 EVENT_ATTR_STR(topdown-be-bound,        td_be_bound,    "event=0x00,umask=0x83");
321
322 static struct attribute *snb_events_attrs[] = {
323         EVENT_PTR(td_slots_issued),
324         EVENT_PTR(td_slots_retired),
325         EVENT_PTR(td_fetch_bubbles),
326         EVENT_PTR(td_total_slots),
327         EVENT_PTR(td_total_slots_scale),
328         EVENT_PTR(td_recovery_bubbles),
329         EVENT_PTR(td_recovery_bubbles_scale),
330         NULL,
331 };
332
333 static struct attribute *snb_mem_events_attrs[] = {
334         EVENT_PTR(mem_ld_snb),
335         EVENT_PTR(mem_st_snb),
336         NULL,
337 };
338
339 static struct event_constraint intel_hsw_event_constraints[] = {
340         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
341         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
342         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
343         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
344         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
345         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
346         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
347         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
348         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
349         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
350         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
351         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
352
353         /*
354          * When HT is off these events can only run on the bottom 4 counters
355          * When HT is on, they are impacted by the HT bug and require EXCL access
356          */
357         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
358         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
359         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
360         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
361
362         EVENT_CONSTRAINT_END
363 };
364
365 static struct event_constraint intel_bdw_event_constraints[] = {
366         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
367         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
368         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
369         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
370         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
371         /*
372          * when HT is off, these can only run on the bottom 4 counters
373          */
374         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
375         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
376         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
377         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
378         EVENT_CONSTRAINT_END
379 };
380
381 static u64 intel_pmu_event_map(int hw_event)
382 {
383         return intel_perfmon_event_map[hw_event];
384 }
385
386 /*
387  * Notes on the events:
388  * - data reads do not include code reads (comparable to earlier tables)
389  * - data counts include speculative execution (except L1 write, dtlb, bpu)
390  * - remote node access includes remote memory, remote cache, remote mmio.
391  * - prefetches are not included in the counts.
392  * - icache miss does not include decoded icache
393  */
394
395 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
396 #define SKL_DEMAND_RFO                  BIT_ULL(1)
397 #define SKL_ANY_RESPONSE                BIT_ULL(16)
398 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
399 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
400 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
401 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
402 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
403 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
404                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
405                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
406                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
407 #define SKL_SPL_HIT                     BIT_ULL(30)
408 #define SKL_SNOOP_NONE                  BIT_ULL(31)
409 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
410 #define SKL_SNOOP_MISS                  BIT_ULL(33)
411 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
412 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
413 #define SKL_SNOOP_HITM                  BIT_ULL(36)
414 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
415 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
416                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
417                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
418                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
419 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
420 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
421                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
422                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
423                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
424 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
425 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
426 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
427                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
428                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
429
430 static __initconst const u64 skl_hw_cache_event_ids
431                                 [PERF_COUNT_HW_CACHE_MAX]
432                                 [PERF_COUNT_HW_CACHE_OP_MAX]
433                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
434 {
435  [ C(L1D ) ] = {
436         [ C(OP_READ) ] = {
437                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
438                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
439         },
440         [ C(OP_WRITE) ] = {
441                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
442                 [ C(RESULT_MISS)   ] = 0x0,
443         },
444         [ C(OP_PREFETCH) ] = {
445                 [ C(RESULT_ACCESS) ] = 0x0,
446                 [ C(RESULT_MISS)   ] = 0x0,
447         },
448  },
449  [ C(L1I ) ] = {
450         [ C(OP_READ) ] = {
451                 [ C(RESULT_ACCESS) ] = 0x0,
452                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
453         },
454         [ C(OP_WRITE) ] = {
455                 [ C(RESULT_ACCESS) ] = -1,
456                 [ C(RESULT_MISS)   ] = -1,
457         },
458         [ C(OP_PREFETCH) ] = {
459                 [ C(RESULT_ACCESS) ] = 0x0,
460                 [ C(RESULT_MISS)   ] = 0x0,
461         },
462  },
463  [ C(LL  ) ] = {
464         [ C(OP_READ) ] = {
465                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
466                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
467         },
468         [ C(OP_WRITE) ] = {
469                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
470                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
471         },
472         [ C(OP_PREFETCH) ] = {
473                 [ C(RESULT_ACCESS) ] = 0x0,
474                 [ C(RESULT_MISS)   ] = 0x0,
475         },
476  },
477  [ C(DTLB) ] = {
478         [ C(OP_READ) ] = {
479                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
480                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
481         },
482         [ C(OP_WRITE) ] = {
483                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
484                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
485         },
486         [ C(OP_PREFETCH) ] = {
487                 [ C(RESULT_ACCESS) ] = 0x0,
488                 [ C(RESULT_MISS)   ] = 0x0,
489         },
490  },
491  [ C(ITLB) ] = {
492         [ C(OP_READ) ] = {
493                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
494                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
495         },
496         [ C(OP_WRITE) ] = {
497                 [ C(RESULT_ACCESS) ] = -1,
498                 [ C(RESULT_MISS)   ] = -1,
499         },
500         [ C(OP_PREFETCH) ] = {
501                 [ C(RESULT_ACCESS) ] = -1,
502                 [ C(RESULT_MISS)   ] = -1,
503         },
504  },
505  [ C(BPU ) ] = {
506         [ C(OP_READ) ] = {
507                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
508                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
509         },
510         [ C(OP_WRITE) ] = {
511                 [ C(RESULT_ACCESS) ] = -1,
512                 [ C(RESULT_MISS)   ] = -1,
513         },
514         [ C(OP_PREFETCH) ] = {
515                 [ C(RESULT_ACCESS) ] = -1,
516                 [ C(RESULT_MISS)   ] = -1,
517         },
518  },
519  [ C(NODE) ] = {
520         [ C(OP_READ) ] = {
521                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
522                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
523         },
524         [ C(OP_WRITE) ] = {
525                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
526                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
527         },
528         [ C(OP_PREFETCH) ] = {
529                 [ C(RESULT_ACCESS) ] = 0x0,
530                 [ C(RESULT_MISS)   ] = 0x0,
531         },
532  },
533 };
534
535 static __initconst const u64 skl_hw_cache_extra_regs
536                                 [PERF_COUNT_HW_CACHE_MAX]
537                                 [PERF_COUNT_HW_CACHE_OP_MAX]
538                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
539 {
540  [ C(LL  ) ] = {
541         [ C(OP_READ) ] = {
542                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
543                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
544                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
545                                        SKL_L3_MISS|SKL_ANY_SNOOP|
546                                        SKL_SUPPLIER_NONE,
547         },
548         [ C(OP_WRITE) ] = {
549                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
550                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
551                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
552                                        SKL_L3_MISS|SKL_ANY_SNOOP|
553                                        SKL_SUPPLIER_NONE,
554         },
555         [ C(OP_PREFETCH) ] = {
556                 [ C(RESULT_ACCESS) ] = 0x0,
557                 [ C(RESULT_MISS)   ] = 0x0,
558         },
559  },
560  [ C(NODE) ] = {
561         [ C(OP_READ) ] = {
562                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
563                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
564                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
565                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
566         },
567         [ C(OP_WRITE) ] = {
568                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
569                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
570                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
571                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
572         },
573         [ C(OP_PREFETCH) ] = {
574                 [ C(RESULT_ACCESS) ] = 0x0,
575                 [ C(RESULT_MISS)   ] = 0x0,
576         },
577  },
578 };
579
580 #define SNB_DMND_DATA_RD        (1ULL << 0)
581 #define SNB_DMND_RFO            (1ULL << 1)
582 #define SNB_DMND_IFETCH         (1ULL << 2)
583 #define SNB_DMND_WB             (1ULL << 3)
584 #define SNB_PF_DATA_RD          (1ULL << 4)
585 #define SNB_PF_RFO              (1ULL << 5)
586 #define SNB_PF_IFETCH           (1ULL << 6)
587 #define SNB_LLC_DATA_RD         (1ULL << 7)
588 #define SNB_LLC_RFO             (1ULL << 8)
589 #define SNB_LLC_IFETCH          (1ULL << 9)
590 #define SNB_BUS_LOCKS           (1ULL << 10)
591 #define SNB_STRM_ST             (1ULL << 11)
592 #define SNB_OTHER               (1ULL << 15)
593 #define SNB_RESP_ANY            (1ULL << 16)
594 #define SNB_NO_SUPP             (1ULL << 17)
595 #define SNB_LLC_HITM            (1ULL << 18)
596 #define SNB_LLC_HITE            (1ULL << 19)
597 #define SNB_LLC_HITS            (1ULL << 20)
598 #define SNB_LLC_HITF            (1ULL << 21)
599 #define SNB_LOCAL               (1ULL << 22)
600 #define SNB_REMOTE              (0xffULL << 23)
601 #define SNB_SNP_NONE            (1ULL << 31)
602 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
603 #define SNB_SNP_MISS            (1ULL << 33)
604 #define SNB_NO_FWD              (1ULL << 34)
605 #define SNB_SNP_FWD             (1ULL << 35)
606 #define SNB_HITM                (1ULL << 36)
607 #define SNB_NON_DRAM            (1ULL << 37)
608
609 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
610 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
611 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
612
613 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
614                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
615                                  SNB_HITM)
616
617 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
618 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
619
620 #define SNB_L3_ACCESS           SNB_RESP_ANY
621 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
622
623 static __initconst const u64 snb_hw_cache_extra_regs
624                                 [PERF_COUNT_HW_CACHE_MAX]
625                                 [PERF_COUNT_HW_CACHE_OP_MAX]
626                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
627 {
628  [ C(LL  ) ] = {
629         [ C(OP_READ) ] = {
630                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
631                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
632         },
633         [ C(OP_WRITE) ] = {
634                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
635                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
636         },
637         [ C(OP_PREFETCH) ] = {
638                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
639                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
640         },
641  },
642  [ C(NODE) ] = {
643         [ C(OP_READ) ] = {
644                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
645                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
646         },
647         [ C(OP_WRITE) ] = {
648                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
649                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
650         },
651         [ C(OP_PREFETCH) ] = {
652                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
653                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
654         },
655  },
656 };
657
658 static __initconst const u64 snb_hw_cache_event_ids
659                                 [PERF_COUNT_HW_CACHE_MAX]
660                                 [PERF_COUNT_HW_CACHE_OP_MAX]
661                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
662 {
663  [ C(L1D) ] = {
664         [ C(OP_READ) ] = {
665                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
666                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
667         },
668         [ C(OP_WRITE) ] = {
669                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
670                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
671         },
672         [ C(OP_PREFETCH) ] = {
673                 [ C(RESULT_ACCESS) ] = 0x0,
674                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
675         },
676  },
677  [ C(L1I ) ] = {
678         [ C(OP_READ) ] = {
679                 [ C(RESULT_ACCESS) ] = 0x0,
680                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
681         },
682         [ C(OP_WRITE) ] = {
683                 [ C(RESULT_ACCESS) ] = -1,
684                 [ C(RESULT_MISS)   ] = -1,
685         },
686         [ C(OP_PREFETCH) ] = {
687                 [ C(RESULT_ACCESS) ] = 0x0,
688                 [ C(RESULT_MISS)   ] = 0x0,
689         },
690  },
691  [ C(LL  ) ] = {
692         [ C(OP_READ) ] = {
693                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
694                 [ C(RESULT_ACCESS) ] = 0x01b7,
695                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
696                 [ C(RESULT_MISS)   ] = 0x01b7,
697         },
698         [ C(OP_WRITE) ] = {
699                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
700                 [ C(RESULT_ACCESS) ] = 0x01b7,
701                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
702                 [ C(RESULT_MISS)   ] = 0x01b7,
703         },
704         [ C(OP_PREFETCH) ] = {
705                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
706                 [ C(RESULT_ACCESS) ] = 0x01b7,
707                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
708                 [ C(RESULT_MISS)   ] = 0x01b7,
709         },
710  },
711  [ C(DTLB) ] = {
712         [ C(OP_READ) ] = {
713                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
714                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
715         },
716         [ C(OP_WRITE) ] = {
717                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
718                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
719         },
720         [ C(OP_PREFETCH) ] = {
721                 [ C(RESULT_ACCESS) ] = 0x0,
722                 [ C(RESULT_MISS)   ] = 0x0,
723         },
724  },
725  [ C(ITLB) ] = {
726         [ C(OP_READ) ] = {
727                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
728                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
729         },
730         [ C(OP_WRITE) ] = {
731                 [ C(RESULT_ACCESS) ] = -1,
732                 [ C(RESULT_MISS)   ] = -1,
733         },
734         [ C(OP_PREFETCH) ] = {
735                 [ C(RESULT_ACCESS) ] = -1,
736                 [ C(RESULT_MISS)   ] = -1,
737         },
738  },
739  [ C(BPU ) ] = {
740         [ C(OP_READ) ] = {
741                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
742                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
743         },
744         [ C(OP_WRITE) ] = {
745                 [ C(RESULT_ACCESS) ] = -1,
746                 [ C(RESULT_MISS)   ] = -1,
747         },
748         [ C(OP_PREFETCH) ] = {
749                 [ C(RESULT_ACCESS) ] = -1,
750                 [ C(RESULT_MISS)   ] = -1,
751         },
752  },
753  [ C(NODE) ] = {
754         [ C(OP_READ) ] = {
755                 [ C(RESULT_ACCESS) ] = 0x01b7,
756                 [ C(RESULT_MISS)   ] = 0x01b7,
757         },
758         [ C(OP_WRITE) ] = {
759                 [ C(RESULT_ACCESS) ] = 0x01b7,
760                 [ C(RESULT_MISS)   ] = 0x01b7,
761         },
762         [ C(OP_PREFETCH) ] = {
763                 [ C(RESULT_ACCESS) ] = 0x01b7,
764                 [ C(RESULT_MISS)   ] = 0x01b7,
765         },
766  },
767
768 };
769
770 /*
771  * Notes on the events:
772  * - data reads do not include code reads (comparable to earlier tables)
773  * - data counts include speculative execution (except L1 write, dtlb, bpu)
774  * - remote node access includes remote memory, remote cache, remote mmio.
775  * - prefetches are not included in the counts because they are not
776  *   reliably counted.
777  */
778
779 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
780 #define HSW_DEMAND_RFO                  BIT_ULL(1)
781 #define HSW_ANY_RESPONSE                BIT_ULL(16)
782 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
783 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
784 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
785 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
786 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
787 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
788                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
789                                          HSW_L3_MISS_REMOTE_HOP2P)
790 #define HSW_SNOOP_NONE                  BIT_ULL(31)
791 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
792 #define HSW_SNOOP_MISS                  BIT_ULL(33)
793 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
794 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
795 #define HSW_SNOOP_HITM                  BIT_ULL(36)
796 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
797 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
798                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
799                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
800                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
801 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
802 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
803 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
804 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
805                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
806 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
807
808 #define BDW_L3_MISS_LOCAL               BIT(26)
809 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
810                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
811                                          HSW_L3_MISS_REMOTE_HOP2P)
812
813
814 static __initconst const u64 hsw_hw_cache_event_ids
815                                 [PERF_COUNT_HW_CACHE_MAX]
816                                 [PERF_COUNT_HW_CACHE_OP_MAX]
817                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
818 {
819  [ C(L1D ) ] = {
820         [ C(OP_READ) ] = {
821                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
822                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
823         },
824         [ C(OP_WRITE) ] = {
825                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
826                 [ C(RESULT_MISS)   ] = 0x0,
827         },
828         [ C(OP_PREFETCH) ] = {
829                 [ C(RESULT_ACCESS) ] = 0x0,
830                 [ C(RESULT_MISS)   ] = 0x0,
831         },
832  },
833  [ C(L1I ) ] = {
834         [ C(OP_READ) ] = {
835                 [ C(RESULT_ACCESS) ] = 0x0,
836                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
837         },
838         [ C(OP_WRITE) ] = {
839                 [ C(RESULT_ACCESS) ] = -1,
840                 [ C(RESULT_MISS)   ] = -1,
841         },
842         [ C(OP_PREFETCH) ] = {
843                 [ C(RESULT_ACCESS) ] = 0x0,
844                 [ C(RESULT_MISS)   ] = 0x0,
845         },
846  },
847  [ C(LL  ) ] = {
848         [ C(OP_READ) ] = {
849                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
850                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
851         },
852         [ C(OP_WRITE) ] = {
853                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
854                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
855         },
856         [ C(OP_PREFETCH) ] = {
857                 [ C(RESULT_ACCESS) ] = 0x0,
858                 [ C(RESULT_MISS)   ] = 0x0,
859         },
860  },
861  [ C(DTLB) ] = {
862         [ C(OP_READ) ] = {
863                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
864                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
865         },
866         [ C(OP_WRITE) ] = {
867                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
868                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
869         },
870         [ C(OP_PREFETCH) ] = {
871                 [ C(RESULT_ACCESS) ] = 0x0,
872                 [ C(RESULT_MISS)   ] = 0x0,
873         },
874  },
875  [ C(ITLB) ] = {
876         [ C(OP_READ) ] = {
877                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
878                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
879         },
880         [ C(OP_WRITE) ] = {
881                 [ C(RESULT_ACCESS) ] = -1,
882                 [ C(RESULT_MISS)   ] = -1,
883         },
884         [ C(OP_PREFETCH) ] = {
885                 [ C(RESULT_ACCESS) ] = -1,
886                 [ C(RESULT_MISS)   ] = -1,
887         },
888  },
889  [ C(BPU ) ] = {
890         [ C(OP_READ) ] = {
891                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
892                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
893         },
894         [ C(OP_WRITE) ] = {
895                 [ C(RESULT_ACCESS) ] = -1,
896                 [ C(RESULT_MISS)   ] = -1,
897         },
898         [ C(OP_PREFETCH) ] = {
899                 [ C(RESULT_ACCESS) ] = -1,
900                 [ C(RESULT_MISS)   ] = -1,
901         },
902  },
903  [ C(NODE) ] = {
904         [ C(OP_READ) ] = {
905                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
906                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
907         },
908         [ C(OP_WRITE) ] = {
909                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
910                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
911         },
912         [ C(OP_PREFETCH) ] = {
913                 [ C(RESULT_ACCESS) ] = 0x0,
914                 [ C(RESULT_MISS)   ] = 0x0,
915         },
916  },
917 };
918
919 static __initconst const u64 hsw_hw_cache_extra_regs
920                                 [PERF_COUNT_HW_CACHE_MAX]
921                                 [PERF_COUNT_HW_CACHE_OP_MAX]
922                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
923 {
924  [ C(LL  ) ] = {
925         [ C(OP_READ) ] = {
926                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
927                                        HSW_LLC_ACCESS,
928                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
929                                        HSW_L3_MISS|HSW_ANY_SNOOP,
930         },
931         [ C(OP_WRITE) ] = {
932                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
933                                        HSW_LLC_ACCESS,
934                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
935                                        HSW_L3_MISS|HSW_ANY_SNOOP,
936         },
937         [ C(OP_PREFETCH) ] = {
938                 [ C(RESULT_ACCESS) ] = 0x0,
939                 [ C(RESULT_MISS)   ] = 0x0,
940         },
941  },
942  [ C(NODE) ] = {
943         [ C(OP_READ) ] = {
944                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
945                                        HSW_L3_MISS_LOCAL_DRAM|
946                                        HSW_SNOOP_DRAM,
947                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
948                                        HSW_L3_MISS_REMOTE|
949                                        HSW_SNOOP_DRAM,
950         },
951         [ C(OP_WRITE) ] = {
952                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
953                                        HSW_L3_MISS_LOCAL_DRAM|
954                                        HSW_SNOOP_DRAM,
955                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
956                                        HSW_L3_MISS_REMOTE|
957                                        HSW_SNOOP_DRAM,
958         },
959         [ C(OP_PREFETCH) ] = {
960                 [ C(RESULT_ACCESS) ] = 0x0,
961                 [ C(RESULT_MISS)   ] = 0x0,
962         },
963  },
964 };
965
966 static __initconst const u64 westmere_hw_cache_event_ids
967                                 [PERF_COUNT_HW_CACHE_MAX]
968                                 [PERF_COUNT_HW_CACHE_OP_MAX]
969                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
970 {
971  [ C(L1D) ] = {
972         [ C(OP_READ) ] = {
973                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
974                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
975         },
976         [ C(OP_WRITE) ] = {
977                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
978                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
979         },
980         [ C(OP_PREFETCH) ] = {
981                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
982                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
983         },
984  },
985  [ C(L1I ) ] = {
986         [ C(OP_READ) ] = {
987                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
988                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
989         },
990         [ C(OP_WRITE) ] = {
991                 [ C(RESULT_ACCESS) ] = -1,
992                 [ C(RESULT_MISS)   ] = -1,
993         },
994         [ C(OP_PREFETCH) ] = {
995                 [ C(RESULT_ACCESS) ] = 0x0,
996                 [ C(RESULT_MISS)   ] = 0x0,
997         },
998  },
999  [ C(LL  ) ] = {
1000         [ C(OP_READ) ] = {
1001                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1002                 [ C(RESULT_ACCESS) ] = 0x01b7,
1003                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1004                 [ C(RESULT_MISS)   ] = 0x01b7,
1005         },
1006         /*
1007          * Use RFO, not WRITEBACK, because a write miss would typically occur
1008          * on RFO.
1009          */
1010         [ C(OP_WRITE) ] = {
1011                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1012                 [ C(RESULT_ACCESS) ] = 0x01b7,
1013                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1014                 [ C(RESULT_MISS)   ] = 0x01b7,
1015         },
1016         [ C(OP_PREFETCH) ] = {
1017                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1018                 [ C(RESULT_ACCESS) ] = 0x01b7,
1019                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1020                 [ C(RESULT_MISS)   ] = 0x01b7,
1021         },
1022  },
1023  [ C(DTLB) ] = {
1024         [ C(OP_READ) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1026                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1027         },
1028         [ C(OP_WRITE) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1030                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1031         },
1032         [ C(OP_PREFETCH) ] = {
1033                 [ C(RESULT_ACCESS) ] = 0x0,
1034                 [ C(RESULT_MISS)   ] = 0x0,
1035         },
1036  },
1037  [ C(ITLB) ] = {
1038         [ C(OP_READ) ] = {
1039                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1040                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1041         },
1042         [ C(OP_WRITE) ] = {
1043                 [ C(RESULT_ACCESS) ] = -1,
1044                 [ C(RESULT_MISS)   ] = -1,
1045         },
1046         [ C(OP_PREFETCH) ] = {
1047                 [ C(RESULT_ACCESS) ] = -1,
1048                 [ C(RESULT_MISS)   ] = -1,
1049         },
1050  },
1051  [ C(BPU ) ] = {
1052         [ C(OP_READ) ] = {
1053                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1054                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1055         },
1056         [ C(OP_WRITE) ] = {
1057                 [ C(RESULT_ACCESS) ] = -1,
1058                 [ C(RESULT_MISS)   ] = -1,
1059         },
1060         [ C(OP_PREFETCH) ] = {
1061                 [ C(RESULT_ACCESS) ] = -1,
1062                 [ C(RESULT_MISS)   ] = -1,
1063         },
1064  },
1065  [ C(NODE) ] = {
1066         [ C(OP_READ) ] = {
1067                 [ C(RESULT_ACCESS) ] = 0x01b7,
1068                 [ C(RESULT_MISS)   ] = 0x01b7,
1069         },
1070         [ C(OP_WRITE) ] = {
1071                 [ C(RESULT_ACCESS) ] = 0x01b7,
1072                 [ C(RESULT_MISS)   ] = 0x01b7,
1073         },
1074         [ C(OP_PREFETCH) ] = {
1075                 [ C(RESULT_ACCESS) ] = 0x01b7,
1076                 [ C(RESULT_MISS)   ] = 0x01b7,
1077         },
1078  },
1079 };
1080
1081 /*
1082  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1083  * See IA32 SDM Vol 3B 30.6.1.3
1084  */
1085
1086 #define NHM_DMND_DATA_RD        (1 << 0)
1087 #define NHM_DMND_RFO            (1 << 1)
1088 #define NHM_DMND_IFETCH         (1 << 2)
1089 #define NHM_DMND_WB             (1 << 3)
1090 #define NHM_PF_DATA_RD          (1 << 4)
1091 #define NHM_PF_DATA_RFO         (1 << 5)
1092 #define NHM_PF_IFETCH           (1 << 6)
1093 #define NHM_OFFCORE_OTHER       (1 << 7)
1094 #define NHM_UNCORE_HIT          (1 << 8)
1095 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1096 #define NHM_OTHER_CORE_HITM     (1 << 10)
1097                                 /* reserved */
1098 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1099 #define NHM_REMOTE_DRAM         (1 << 13)
1100 #define NHM_LOCAL_DRAM          (1 << 14)
1101 #define NHM_NON_DRAM            (1 << 15)
1102
1103 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1104 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1105
1106 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1107 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1108 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1109
1110 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1111 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1112 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1113
1114 static __initconst const u64 nehalem_hw_cache_extra_regs
1115                                 [PERF_COUNT_HW_CACHE_MAX]
1116                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1117                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1118 {
1119  [ C(LL  ) ] = {
1120         [ C(OP_READ) ] = {
1121                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1122                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1123         },
1124         [ C(OP_WRITE) ] = {
1125                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1126                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1127         },
1128         [ C(OP_PREFETCH) ] = {
1129                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1130                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1131         },
1132  },
1133  [ C(NODE) ] = {
1134         [ C(OP_READ) ] = {
1135                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1136                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1137         },
1138         [ C(OP_WRITE) ] = {
1139                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1140                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1141         },
1142         [ C(OP_PREFETCH) ] = {
1143                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1144                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1145         },
1146  },
1147 };
1148
1149 static __initconst const u64 nehalem_hw_cache_event_ids
1150                                 [PERF_COUNT_HW_CACHE_MAX]
1151                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1152                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1153 {
1154  [ C(L1D) ] = {
1155         [ C(OP_READ) ] = {
1156                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1157                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1158         },
1159         [ C(OP_WRITE) ] = {
1160                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1161                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1162         },
1163         [ C(OP_PREFETCH) ] = {
1164                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1165                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1166         },
1167  },
1168  [ C(L1I ) ] = {
1169         [ C(OP_READ) ] = {
1170                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1171                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1172         },
1173         [ C(OP_WRITE) ] = {
1174                 [ C(RESULT_ACCESS) ] = -1,
1175                 [ C(RESULT_MISS)   ] = -1,
1176         },
1177         [ C(OP_PREFETCH) ] = {
1178                 [ C(RESULT_ACCESS) ] = 0x0,
1179                 [ C(RESULT_MISS)   ] = 0x0,
1180         },
1181  },
1182  [ C(LL  ) ] = {
1183         [ C(OP_READ) ] = {
1184                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1185                 [ C(RESULT_ACCESS) ] = 0x01b7,
1186                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1187                 [ C(RESULT_MISS)   ] = 0x01b7,
1188         },
1189         /*
1190          * Use RFO, not WRITEBACK, because a write miss would typically occur
1191          * on RFO.
1192          */
1193         [ C(OP_WRITE) ] = {
1194                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1195                 [ C(RESULT_ACCESS) ] = 0x01b7,
1196                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1197                 [ C(RESULT_MISS)   ] = 0x01b7,
1198         },
1199         [ C(OP_PREFETCH) ] = {
1200                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1201                 [ C(RESULT_ACCESS) ] = 0x01b7,
1202                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1203                 [ C(RESULT_MISS)   ] = 0x01b7,
1204         },
1205  },
1206  [ C(DTLB) ] = {
1207         [ C(OP_READ) ] = {
1208                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1209                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1210         },
1211         [ C(OP_WRITE) ] = {
1212                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1213                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1214         },
1215         [ C(OP_PREFETCH) ] = {
1216                 [ C(RESULT_ACCESS) ] = 0x0,
1217                 [ C(RESULT_MISS)   ] = 0x0,
1218         },
1219  },
1220  [ C(ITLB) ] = {
1221         [ C(OP_READ) ] = {
1222                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1223                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1224         },
1225         [ C(OP_WRITE) ] = {
1226                 [ C(RESULT_ACCESS) ] = -1,
1227                 [ C(RESULT_MISS)   ] = -1,
1228         },
1229         [ C(OP_PREFETCH) ] = {
1230                 [ C(RESULT_ACCESS) ] = -1,
1231                 [ C(RESULT_MISS)   ] = -1,
1232         },
1233  },
1234  [ C(BPU ) ] = {
1235         [ C(OP_READ) ] = {
1236                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1237                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1238         },
1239         [ C(OP_WRITE) ] = {
1240                 [ C(RESULT_ACCESS) ] = -1,
1241                 [ C(RESULT_MISS)   ] = -1,
1242         },
1243         [ C(OP_PREFETCH) ] = {
1244                 [ C(RESULT_ACCESS) ] = -1,
1245                 [ C(RESULT_MISS)   ] = -1,
1246         },
1247  },
1248  [ C(NODE) ] = {
1249         [ C(OP_READ) ] = {
1250                 [ C(RESULT_ACCESS) ] = 0x01b7,
1251                 [ C(RESULT_MISS)   ] = 0x01b7,
1252         },
1253         [ C(OP_WRITE) ] = {
1254                 [ C(RESULT_ACCESS) ] = 0x01b7,
1255                 [ C(RESULT_MISS)   ] = 0x01b7,
1256         },
1257         [ C(OP_PREFETCH) ] = {
1258                 [ C(RESULT_ACCESS) ] = 0x01b7,
1259                 [ C(RESULT_MISS)   ] = 0x01b7,
1260         },
1261  },
1262 };
1263
1264 static __initconst const u64 core2_hw_cache_event_ids
1265                                 [PERF_COUNT_HW_CACHE_MAX]
1266                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1267                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1268 {
1269  [ C(L1D) ] = {
1270         [ C(OP_READ) ] = {
1271                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1272                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1273         },
1274         [ C(OP_WRITE) ] = {
1275                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1276                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1277         },
1278         [ C(OP_PREFETCH) ] = {
1279                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1280                 [ C(RESULT_MISS)   ] = 0,
1281         },
1282  },
1283  [ C(L1I ) ] = {
1284         [ C(OP_READ) ] = {
1285                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1286                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1287         },
1288         [ C(OP_WRITE) ] = {
1289                 [ C(RESULT_ACCESS) ] = -1,
1290                 [ C(RESULT_MISS)   ] = -1,
1291         },
1292         [ C(OP_PREFETCH) ] = {
1293                 [ C(RESULT_ACCESS) ] = 0,
1294                 [ C(RESULT_MISS)   ] = 0,
1295         },
1296  },
1297  [ C(LL  ) ] = {
1298         [ C(OP_READ) ] = {
1299                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1300                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1301         },
1302         [ C(OP_WRITE) ] = {
1303                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1304                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1305         },
1306         [ C(OP_PREFETCH) ] = {
1307                 [ C(RESULT_ACCESS) ] = 0,
1308                 [ C(RESULT_MISS)   ] = 0,
1309         },
1310  },
1311  [ C(DTLB) ] = {
1312         [ C(OP_READ) ] = {
1313                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1314                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1315         },
1316         [ C(OP_WRITE) ] = {
1317                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1318                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1319         },
1320         [ C(OP_PREFETCH) ] = {
1321                 [ C(RESULT_ACCESS) ] = 0,
1322                 [ C(RESULT_MISS)   ] = 0,
1323         },
1324  },
1325  [ C(ITLB) ] = {
1326         [ C(OP_READ) ] = {
1327                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1328                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1329         },
1330         [ C(OP_WRITE) ] = {
1331                 [ C(RESULT_ACCESS) ] = -1,
1332                 [ C(RESULT_MISS)   ] = -1,
1333         },
1334         [ C(OP_PREFETCH) ] = {
1335                 [ C(RESULT_ACCESS) ] = -1,
1336                 [ C(RESULT_MISS)   ] = -1,
1337         },
1338  },
1339  [ C(BPU ) ] = {
1340         [ C(OP_READ) ] = {
1341                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1342                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1343         },
1344         [ C(OP_WRITE) ] = {
1345                 [ C(RESULT_ACCESS) ] = -1,
1346                 [ C(RESULT_MISS)   ] = -1,
1347         },
1348         [ C(OP_PREFETCH) ] = {
1349                 [ C(RESULT_ACCESS) ] = -1,
1350                 [ C(RESULT_MISS)   ] = -1,
1351         },
1352  },
1353 };
1354
1355 static __initconst const u64 atom_hw_cache_event_ids
1356                                 [PERF_COUNT_HW_CACHE_MAX]
1357                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1358                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1359 {
1360  [ C(L1D) ] = {
1361         [ C(OP_READ) ] = {
1362                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1363                 [ C(RESULT_MISS)   ] = 0,
1364         },
1365         [ C(OP_WRITE) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1367                 [ C(RESULT_MISS)   ] = 0,
1368         },
1369         [ C(OP_PREFETCH) ] = {
1370                 [ C(RESULT_ACCESS) ] = 0x0,
1371                 [ C(RESULT_MISS)   ] = 0,
1372         },
1373  },
1374  [ C(L1I ) ] = {
1375         [ C(OP_READ) ] = {
1376                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1377                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1378         },
1379         [ C(OP_WRITE) ] = {
1380                 [ C(RESULT_ACCESS) ] = -1,
1381                 [ C(RESULT_MISS)   ] = -1,
1382         },
1383         [ C(OP_PREFETCH) ] = {
1384                 [ C(RESULT_ACCESS) ] = 0,
1385                 [ C(RESULT_MISS)   ] = 0,
1386         },
1387  },
1388  [ C(LL  ) ] = {
1389         [ C(OP_READ) ] = {
1390                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1391                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1392         },
1393         [ C(OP_WRITE) ] = {
1394                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1395                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1396         },
1397         [ C(OP_PREFETCH) ] = {
1398                 [ C(RESULT_ACCESS) ] = 0,
1399                 [ C(RESULT_MISS)   ] = 0,
1400         },
1401  },
1402  [ C(DTLB) ] = {
1403         [ C(OP_READ) ] = {
1404                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1405                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1406         },
1407         [ C(OP_WRITE) ] = {
1408                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1409                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1410         },
1411         [ C(OP_PREFETCH) ] = {
1412                 [ C(RESULT_ACCESS) ] = 0,
1413                 [ C(RESULT_MISS)   ] = 0,
1414         },
1415  },
1416  [ C(ITLB) ] = {
1417         [ C(OP_READ) ] = {
1418                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1419                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1420         },
1421         [ C(OP_WRITE) ] = {
1422                 [ C(RESULT_ACCESS) ] = -1,
1423                 [ C(RESULT_MISS)   ] = -1,
1424         },
1425         [ C(OP_PREFETCH) ] = {
1426                 [ C(RESULT_ACCESS) ] = -1,
1427                 [ C(RESULT_MISS)   ] = -1,
1428         },
1429  },
1430  [ C(BPU ) ] = {
1431         [ C(OP_READ) ] = {
1432                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1433                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1434         },
1435         [ C(OP_WRITE) ] = {
1436                 [ C(RESULT_ACCESS) ] = -1,
1437                 [ C(RESULT_MISS)   ] = -1,
1438         },
1439         [ C(OP_PREFETCH) ] = {
1440                 [ C(RESULT_ACCESS) ] = -1,
1441                 [ C(RESULT_MISS)   ] = -1,
1442         },
1443  },
1444 };
1445
1446 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1447 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1448 /* no_alloc_cycles.not_delivered */
1449 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1450                "event=0xca,umask=0x50");
1451 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1452 /* uops_retired.all */
1453 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1454                "event=0xc2,umask=0x10");
1455 /* uops_retired.all */
1456 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1457                "event=0xc2,umask=0x10");
1458
1459 static struct attribute *slm_events_attrs[] = {
1460         EVENT_PTR(td_total_slots_slm),
1461         EVENT_PTR(td_total_slots_scale_slm),
1462         EVENT_PTR(td_fetch_bubbles_slm),
1463         EVENT_PTR(td_fetch_bubbles_scale_slm),
1464         EVENT_PTR(td_slots_issued_slm),
1465         EVENT_PTR(td_slots_retired_slm),
1466         NULL
1467 };
1468
1469 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1470 {
1471         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1472         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1473         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1474         EVENT_EXTRA_END
1475 };
1476
1477 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1478 #define SLM_DMND_WRITE          SNB_DMND_RFO
1479 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1480
1481 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1482 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1483 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1484
1485 static __initconst const u64 slm_hw_cache_extra_regs
1486                                 [PERF_COUNT_HW_CACHE_MAX]
1487                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1488                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1489 {
1490  [ C(LL  ) ] = {
1491         [ C(OP_READ) ] = {
1492                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1493                 [ C(RESULT_MISS)   ] = 0,
1494         },
1495         [ C(OP_WRITE) ] = {
1496                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1497                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1498         },
1499         [ C(OP_PREFETCH) ] = {
1500                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1501                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1502         },
1503  },
1504 };
1505
1506 static __initconst const u64 slm_hw_cache_event_ids
1507                                 [PERF_COUNT_HW_CACHE_MAX]
1508                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1509                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1510 {
1511  [ C(L1D) ] = {
1512         [ C(OP_READ) ] = {
1513                 [ C(RESULT_ACCESS) ] = 0,
1514                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1515         },
1516         [ C(OP_WRITE) ] = {
1517                 [ C(RESULT_ACCESS) ] = 0,
1518                 [ C(RESULT_MISS)   ] = 0,
1519         },
1520         [ C(OP_PREFETCH) ] = {
1521                 [ C(RESULT_ACCESS) ] = 0,
1522                 [ C(RESULT_MISS)   ] = 0,
1523         },
1524  },
1525  [ C(L1I ) ] = {
1526         [ C(OP_READ) ] = {
1527                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1528                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1529         },
1530         [ C(OP_WRITE) ] = {
1531                 [ C(RESULT_ACCESS) ] = -1,
1532                 [ C(RESULT_MISS)   ] = -1,
1533         },
1534         [ C(OP_PREFETCH) ] = {
1535                 [ C(RESULT_ACCESS) ] = 0,
1536                 [ C(RESULT_MISS)   ] = 0,
1537         },
1538  },
1539  [ C(LL  ) ] = {
1540         [ C(OP_READ) ] = {
1541                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1542                 [ C(RESULT_ACCESS) ] = 0x01b7,
1543                 [ C(RESULT_MISS)   ] = 0,
1544         },
1545         [ C(OP_WRITE) ] = {
1546                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1547                 [ C(RESULT_ACCESS) ] = 0x01b7,
1548                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1549                 [ C(RESULT_MISS)   ] = 0x01b7,
1550         },
1551         [ C(OP_PREFETCH) ] = {
1552                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1553                 [ C(RESULT_ACCESS) ] = 0x01b7,
1554                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1555                 [ C(RESULT_MISS)   ] = 0x01b7,
1556         },
1557  },
1558  [ C(DTLB) ] = {
1559         [ C(OP_READ) ] = {
1560                 [ C(RESULT_ACCESS) ] = 0,
1561                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1562         },
1563         [ C(OP_WRITE) ] = {
1564                 [ C(RESULT_ACCESS) ] = 0,
1565                 [ C(RESULT_MISS)   ] = 0,
1566         },
1567         [ C(OP_PREFETCH) ] = {
1568                 [ C(RESULT_ACCESS) ] = 0,
1569                 [ C(RESULT_MISS)   ] = 0,
1570         },
1571  },
1572  [ C(ITLB) ] = {
1573         [ C(OP_READ) ] = {
1574                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1575                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1576         },
1577         [ C(OP_WRITE) ] = {
1578                 [ C(RESULT_ACCESS) ] = -1,
1579                 [ C(RESULT_MISS)   ] = -1,
1580         },
1581         [ C(OP_PREFETCH) ] = {
1582                 [ C(RESULT_ACCESS) ] = -1,
1583                 [ C(RESULT_MISS)   ] = -1,
1584         },
1585  },
1586  [ C(BPU ) ] = {
1587         [ C(OP_READ) ] = {
1588                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1589                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1590         },
1591         [ C(OP_WRITE) ] = {
1592                 [ C(RESULT_ACCESS) ] = -1,
1593                 [ C(RESULT_MISS)   ] = -1,
1594         },
1595         [ C(OP_PREFETCH) ] = {
1596                 [ C(RESULT_ACCESS) ] = -1,
1597                 [ C(RESULT_MISS)   ] = -1,
1598         },
1599  },
1600 };
1601
1602 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1603 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1604 /* UOPS_NOT_DELIVERED.ANY */
1605 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1606 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1607 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1608 /* UOPS_RETIRED.ANY */
1609 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1610 /* UOPS_ISSUED.ANY */
1611 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1612
1613 static struct attribute *glm_events_attrs[] = {
1614         EVENT_PTR(td_total_slots_glm),
1615         EVENT_PTR(td_total_slots_scale_glm),
1616         EVENT_PTR(td_fetch_bubbles_glm),
1617         EVENT_PTR(td_recovery_bubbles_glm),
1618         EVENT_PTR(td_slots_issued_glm),
1619         EVENT_PTR(td_slots_retired_glm),
1620         NULL
1621 };
1622
1623 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1624         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1625         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1626         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1627         EVENT_EXTRA_END
1628 };
1629
1630 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1631 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1632 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1633 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1634 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1635 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1636 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1637 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1638 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1639 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1640
1641 static __initconst const u64 glm_hw_cache_event_ids
1642                                 [PERF_COUNT_HW_CACHE_MAX]
1643                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1644                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1645         [C(L1D)] = {
1646                 [C(OP_READ)] = {
1647                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1648                         [C(RESULT_MISS)]        = 0x0,
1649                 },
1650                 [C(OP_WRITE)] = {
1651                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1652                         [C(RESULT_MISS)]        = 0x0,
1653                 },
1654                 [C(OP_PREFETCH)] = {
1655                         [C(RESULT_ACCESS)]      = 0x0,
1656                         [C(RESULT_MISS)]        = 0x0,
1657                 },
1658         },
1659         [C(L1I)] = {
1660                 [C(OP_READ)] = {
1661                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1662                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1663                 },
1664                 [C(OP_WRITE)] = {
1665                         [C(RESULT_ACCESS)]      = -1,
1666                         [C(RESULT_MISS)]        = -1,
1667                 },
1668                 [C(OP_PREFETCH)] = {
1669                         [C(RESULT_ACCESS)]      = 0x0,
1670                         [C(RESULT_MISS)]        = 0x0,
1671                 },
1672         },
1673         [C(LL)] = {
1674                 [C(OP_READ)] = {
1675                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1676                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1677                 },
1678                 [C(OP_WRITE)] = {
1679                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1680                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1681                 },
1682                 [C(OP_PREFETCH)] = {
1683                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1684                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1685                 },
1686         },
1687         [C(DTLB)] = {
1688                 [C(OP_READ)] = {
1689                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1690                         [C(RESULT_MISS)]        = 0x0,
1691                 },
1692                 [C(OP_WRITE)] = {
1693                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1694                         [C(RESULT_MISS)]        = 0x0,
1695                 },
1696                 [C(OP_PREFETCH)] = {
1697                         [C(RESULT_ACCESS)]      = 0x0,
1698                         [C(RESULT_MISS)]        = 0x0,
1699                 },
1700         },
1701         [C(ITLB)] = {
1702                 [C(OP_READ)] = {
1703                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1704                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1705                 },
1706                 [C(OP_WRITE)] = {
1707                         [C(RESULT_ACCESS)]      = -1,
1708                         [C(RESULT_MISS)]        = -1,
1709                 },
1710                 [C(OP_PREFETCH)] = {
1711                         [C(RESULT_ACCESS)]      = -1,
1712                         [C(RESULT_MISS)]        = -1,
1713                 },
1714         },
1715         [C(BPU)] = {
1716                 [C(OP_READ)] = {
1717                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1718                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1719                 },
1720                 [C(OP_WRITE)] = {
1721                         [C(RESULT_ACCESS)]      = -1,
1722                         [C(RESULT_MISS)]        = -1,
1723                 },
1724                 [C(OP_PREFETCH)] = {
1725                         [C(RESULT_ACCESS)]      = -1,
1726                         [C(RESULT_MISS)]        = -1,
1727                 },
1728         },
1729 };
1730
1731 static __initconst const u64 glm_hw_cache_extra_regs
1732                                 [PERF_COUNT_HW_CACHE_MAX]
1733                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1734                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1735         [C(LL)] = {
1736                 [C(OP_READ)] = {
1737                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1738                                                   GLM_LLC_ACCESS,
1739                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1740                                                   GLM_LLC_MISS,
1741                 },
1742                 [C(OP_WRITE)] = {
1743                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1744                                                   GLM_LLC_ACCESS,
1745                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1746                                                   GLM_LLC_MISS,
1747                 },
1748                 [C(OP_PREFETCH)] = {
1749                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1750                                                   GLM_LLC_ACCESS,
1751                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1752                                                   GLM_LLC_MISS,
1753                 },
1754         },
1755 };
1756
1757 static __initconst const u64 glp_hw_cache_event_ids
1758                                 [PERF_COUNT_HW_CACHE_MAX]
1759                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1760                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1761         [C(L1D)] = {
1762                 [C(OP_READ)] = {
1763                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1764                         [C(RESULT_MISS)]        = 0x0,
1765                 },
1766                 [C(OP_WRITE)] = {
1767                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1768                         [C(RESULT_MISS)]        = 0x0,
1769                 },
1770                 [C(OP_PREFETCH)] = {
1771                         [C(RESULT_ACCESS)]      = 0x0,
1772                         [C(RESULT_MISS)]        = 0x0,
1773                 },
1774         },
1775         [C(L1I)] = {
1776                 [C(OP_READ)] = {
1777                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1778                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1779                 },
1780                 [C(OP_WRITE)] = {
1781                         [C(RESULT_ACCESS)]      = -1,
1782                         [C(RESULT_MISS)]        = -1,
1783                 },
1784                 [C(OP_PREFETCH)] = {
1785                         [C(RESULT_ACCESS)]      = 0x0,
1786                         [C(RESULT_MISS)]        = 0x0,
1787                 },
1788         },
1789         [C(LL)] = {
1790                 [C(OP_READ)] = {
1791                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1792                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1793                 },
1794                 [C(OP_WRITE)] = {
1795                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1796                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1797                 },
1798                 [C(OP_PREFETCH)] = {
1799                         [C(RESULT_ACCESS)]      = 0x0,
1800                         [C(RESULT_MISS)]        = 0x0,
1801                 },
1802         },
1803         [C(DTLB)] = {
1804                 [C(OP_READ)] = {
1805                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1806                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1807                 },
1808                 [C(OP_WRITE)] = {
1809                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1810                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1811                 },
1812                 [C(OP_PREFETCH)] = {
1813                         [C(RESULT_ACCESS)]      = 0x0,
1814                         [C(RESULT_MISS)]        = 0x0,
1815                 },
1816         },
1817         [C(ITLB)] = {
1818                 [C(OP_READ)] = {
1819                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1820                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1821                 },
1822                 [C(OP_WRITE)] = {
1823                         [C(RESULT_ACCESS)]      = -1,
1824                         [C(RESULT_MISS)]        = -1,
1825                 },
1826                 [C(OP_PREFETCH)] = {
1827                         [C(RESULT_ACCESS)]      = -1,
1828                         [C(RESULT_MISS)]        = -1,
1829                 },
1830         },
1831         [C(BPU)] = {
1832                 [C(OP_READ)] = {
1833                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1834                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1835                 },
1836                 [C(OP_WRITE)] = {
1837                         [C(RESULT_ACCESS)]      = -1,
1838                         [C(RESULT_MISS)]        = -1,
1839                 },
1840                 [C(OP_PREFETCH)] = {
1841                         [C(RESULT_ACCESS)]      = -1,
1842                         [C(RESULT_MISS)]        = -1,
1843                 },
1844         },
1845 };
1846
1847 static __initconst const u64 glp_hw_cache_extra_regs
1848                                 [PERF_COUNT_HW_CACHE_MAX]
1849                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1850                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1851         [C(LL)] = {
1852                 [C(OP_READ)] = {
1853                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1854                                                   GLM_LLC_ACCESS,
1855                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1856                                                   GLM_LLC_MISS,
1857                 },
1858                 [C(OP_WRITE)] = {
1859                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1860                                                   GLM_LLC_ACCESS,
1861                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1862                                                   GLM_LLC_MISS,
1863                 },
1864                 [C(OP_PREFETCH)] = {
1865                         [C(RESULT_ACCESS)]      = 0x0,
1866                         [C(RESULT_MISS)]        = 0x0,
1867                 },
1868         },
1869 };
1870
1871 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
1872 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
1873 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
1874 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
1875 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
1876                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
1877 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
1878
1879 static __initconst const u64 tnt_hw_cache_extra_regs
1880                                 [PERF_COUNT_HW_CACHE_MAX]
1881                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1882                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1883         [C(LL)] = {
1884                 [C(OP_READ)] = {
1885                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
1886                                                   TNT_LLC_ACCESS,
1887                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
1888                                                   TNT_LLC_MISS,
1889                 },
1890                 [C(OP_WRITE)] = {
1891                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
1892                                                   TNT_LLC_ACCESS,
1893                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
1894                                                   TNT_LLC_MISS,
1895                 },
1896                 [C(OP_PREFETCH)] = {
1897                         [C(RESULT_ACCESS)]      = 0x0,
1898                         [C(RESULT_MISS)]        = 0x0,
1899                 },
1900         },
1901 };
1902
1903 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
1904         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1905         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
1906         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
1907         EVENT_EXTRA_END
1908 };
1909
1910 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1911 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1912 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1913 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1914 #define KNL_DDR_LOCAL           BIT_ULL(23)
1915 #define KNL_DDR_FAR             BIT_ULL(24)
1916 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1917                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1918 #define KNL_L2_READ             SLM_DMND_READ
1919 #define KNL_L2_WRITE            SLM_DMND_WRITE
1920 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1921 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1922 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1923                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1924                                                   SNB_NON_DRAM)
1925
1926 static __initconst const u64 knl_hw_cache_extra_regs
1927                                 [PERF_COUNT_HW_CACHE_MAX]
1928                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1929                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1930         [C(LL)] = {
1931                 [C(OP_READ)] = {
1932                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1933                         [C(RESULT_MISS)]   = 0,
1934                 },
1935                 [C(OP_WRITE)] = {
1936                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1937                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1938                 },
1939                 [C(OP_PREFETCH)] = {
1940                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1941                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1942                 },
1943         },
1944 };
1945
1946 /*
1947  * Used from PMIs where the LBRs are already disabled.
1948  *
1949  * This function could be called consecutively. It is required to remain in
1950  * disabled state if called consecutively.
1951  *
1952  * During consecutive calls, the same disable value will be written to related
1953  * registers, so the PMU state remains unchanged.
1954  *
1955  * intel_bts events don't coexist with intel PMU's BTS events because of
1956  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1957  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1958  *
1959  * Avoid PEBS_ENABLE MSR access in PMIs.
1960  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
1961  * It doesn't matter if the PEBS is enabled or not.
1962  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
1963  * access PEBS_ENABLE MSR in disable_all()/enable_all().
1964  * However, there are some cases which may change PEBS status, e.g. PMI
1965  * throttle. The PEBS_ENABLE should be updated where the status changes.
1966  */
1967 static void __intel_pmu_disable_all(void)
1968 {
1969         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1970
1971         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1972
1973         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1974                 intel_pmu_disable_bts();
1975 }
1976
1977 static void intel_pmu_disable_all(void)
1978 {
1979         __intel_pmu_disable_all();
1980         intel_pmu_pebs_disable_all();
1981         intel_pmu_lbr_disable_all();
1982 }
1983
1984 static void __intel_pmu_enable_all(int added, bool pmi)
1985 {
1986         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1987
1988         intel_pmu_lbr_enable_all(pmi);
1989         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1990                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1991
1992         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1993                 struct perf_event *event =
1994                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1995
1996                 if (WARN_ON_ONCE(!event))
1997                         return;
1998
1999                 intel_pmu_enable_bts(event->hw.config);
2000         }
2001 }
2002
2003 static void intel_pmu_enable_all(int added)
2004 {
2005         intel_pmu_pebs_enable_all();
2006         __intel_pmu_enable_all(added, false);
2007 }
2008
2009 /*
2010  * Workaround for:
2011  *   Intel Errata AAK100 (model 26)
2012  *   Intel Errata AAP53  (model 30)
2013  *   Intel Errata BD53   (model 44)
2014  *
2015  * The official story:
2016  *   These chips need to be 'reset' when adding counters by programming the
2017  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2018  *   in sequence on the same PMC or on different PMCs.
2019  *
2020  * In practise it appears some of these events do in fact count, and
2021  * we need to program all 4 events.
2022  */
2023 static void intel_pmu_nhm_workaround(void)
2024 {
2025         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2026         static const unsigned long nhm_magic[4] = {
2027                 0x4300B5,
2028                 0x4300D2,
2029                 0x4300B1,
2030                 0x4300B1
2031         };
2032         struct perf_event *event;
2033         int i;
2034
2035         /*
2036          * The Errata requires below steps:
2037          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2038          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2039          *    the corresponding PMCx;
2040          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2041          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2042          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2043          */
2044
2045         /*
2046          * The real steps we choose are a little different from above.
2047          * A) To reduce MSR operations, we don't run step 1) as they
2048          *    are already cleared before this function is called;
2049          * B) Call x86_perf_event_update to save PMCx before configuring
2050          *    PERFEVTSELx with magic number;
2051          * C) With step 5), we do clear only when the PERFEVTSELx is
2052          *    not used currently.
2053          * D) Call x86_perf_event_set_period to restore PMCx;
2054          */
2055
2056         /* We always operate 4 pairs of PERF Counters */
2057         for (i = 0; i < 4; i++) {
2058                 event = cpuc->events[i];
2059                 if (event)
2060                         x86_perf_event_update(event);
2061         }
2062
2063         for (i = 0; i < 4; i++) {
2064                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2065                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2066         }
2067
2068         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2069         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2070
2071         for (i = 0; i < 4; i++) {
2072                 event = cpuc->events[i];
2073
2074                 if (event) {
2075                         x86_perf_event_set_period(event);
2076                         __x86_pmu_enable_event(&event->hw,
2077                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2078                 } else
2079                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2080         }
2081 }
2082
2083 static void intel_pmu_nhm_enable_all(int added)
2084 {
2085         if (added)
2086                 intel_pmu_nhm_workaround();
2087         intel_pmu_enable_all(added);
2088 }
2089
2090 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2091 {
2092         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2093
2094         if (cpuc->tfa_shadow != val) {
2095                 cpuc->tfa_shadow = val;
2096                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2097         }
2098 }
2099
2100 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2101 {
2102         /*
2103          * We're going to use PMC3, make sure TFA is set before we touch it.
2104          */
2105         if (cntr == 3)
2106                 intel_set_tfa(cpuc, true);
2107 }
2108
2109 static void intel_tfa_pmu_enable_all(int added)
2110 {
2111         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2112
2113         /*
2114          * If we find PMC3 is no longer used when we enable the PMU, we can
2115          * clear TFA.
2116          */
2117         if (!test_bit(3, cpuc->active_mask))
2118                 intel_set_tfa(cpuc, false);
2119
2120         intel_pmu_enable_all(added);
2121 }
2122
2123 static void enable_counter_freeze(void)
2124 {
2125         update_debugctlmsr(get_debugctlmsr() |
2126                         DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2127 }
2128
2129 static void disable_counter_freeze(void)
2130 {
2131         update_debugctlmsr(get_debugctlmsr() &
2132                         ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2133 }
2134
2135 static inline u64 intel_pmu_get_status(void)
2136 {
2137         u64 status;
2138
2139         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2140
2141         return status;
2142 }
2143
2144 static inline void intel_pmu_ack_status(u64 ack)
2145 {
2146         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2147 }
2148
2149 static inline bool event_is_checkpointed(struct perf_event *event)
2150 {
2151         return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2152 }
2153
2154 static inline void intel_set_masks(struct perf_event *event, int idx)
2155 {
2156         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2157
2158         if (event->attr.exclude_host)
2159                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2160         if (event->attr.exclude_guest)
2161                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2162         if (event_is_checkpointed(event))
2163                 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2164 }
2165
2166 static inline void intel_clear_masks(struct perf_event *event, int idx)
2167 {
2168         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2169
2170         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2171         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2172         __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2173 }
2174
2175 static void intel_pmu_disable_fixed(struct perf_event *event)
2176 {
2177         struct hw_perf_event *hwc = &event->hw;
2178         u64 ctrl_val, mask;
2179         int idx = hwc->idx;
2180
2181         if (is_topdown_idx(idx)) {
2182                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2183
2184                 /*
2185                  * When there are other active TopDown events,
2186                  * don't disable the fixed counter 3.
2187                  */
2188                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2189                         return;
2190                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2191         }
2192
2193         intel_clear_masks(event, idx);
2194
2195         mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2196         rdmsrl(hwc->config_base, ctrl_val);
2197         ctrl_val &= ~mask;
2198         wrmsrl(hwc->config_base, ctrl_val);
2199 }
2200
2201 static void intel_pmu_disable_event(struct perf_event *event)
2202 {
2203         struct hw_perf_event *hwc = &event->hw;
2204         int idx = hwc->idx;
2205
2206         switch (idx) {
2207         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2208                 intel_clear_masks(event, idx);
2209                 x86_pmu_disable_event(event);
2210                 break;
2211         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2212         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2213                 intel_pmu_disable_fixed(event);
2214                 break;
2215         case INTEL_PMC_IDX_FIXED_BTS:
2216                 intel_pmu_disable_bts();
2217                 intel_pmu_drain_bts_buffer();
2218                 return;
2219         case INTEL_PMC_IDX_FIXED_VLBR:
2220                 intel_clear_masks(event, idx);
2221                 break;
2222         default:
2223                 intel_clear_masks(event, idx);
2224                 pr_warn("Failed to disable the event with invalid index %d\n",
2225                         idx);
2226                 return;
2227         }
2228
2229         /*
2230          * Needs to be called after x86_pmu_disable_event,
2231          * so we don't trigger the event without PEBS bit set.
2232          */
2233         if (unlikely(event->attr.precise_ip))
2234                 intel_pmu_pebs_disable(event);
2235 }
2236
2237 static void intel_pmu_del_event(struct perf_event *event)
2238 {
2239         if (needs_branch_stack(event))
2240                 intel_pmu_lbr_del(event);
2241         if (event->attr.precise_ip)
2242                 intel_pmu_pebs_del(event);
2243 }
2244
2245 static int icl_set_topdown_event_period(struct perf_event *event)
2246 {
2247         struct hw_perf_event *hwc = &event->hw;
2248         s64 left = local64_read(&hwc->period_left);
2249
2250         /*
2251          * The values in PERF_METRICS MSR are derived from fixed counter 3.
2252          * Software should start both registers, PERF_METRICS and fixed
2253          * counter 3, from zero.
2254          * Clear PERF_METRICS and Fixed counter 3 in initialization.
2255          * After that, both MSRs will be cleared for each read.
2256          * Don't need to clear them again.
2257          */
2258         if (left == x86_pmu.max_period) {
2259                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2260                 wrmsrl(MSR_PERF_METRICS, 0);
2261                 hwc->saved_slots = 0;
2262                 hwc->saved_metric = 0;
2263         }
2264
2265         if ((hwc->saved_slots) && is_slots_event(event)) {
2266                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2267                 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2268         }
2269
2270         perf_event_update_userpage(event);
2271
2272         return 0;
2273 }
2274
2275 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2276 {
2277         u32 val;
2278
2279         /*
2280          * The metric is reported as an 8bit integer fraction
2281          * suming up to 0xff.
2282          * slots-in-metric = (Metric / 0xff) * slots
2283          */
2284         val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2285         return  mul_u64_u32_div(slots, val, 0xff);
2286 }
2287
2288 static u64 icl_get_topdown_value(struct perf_event *event,
2289                                        u64 slots, u64 metrics)
2290 {
2291         int idx = event->hw.idx;
2292         u64 delta;
2293
2294         if (is_metric_idx(idx))
2295                 delta = icl_get_metrics_event_value(metrics, slots, idx);
2296         else
2297                 delta = slots;
2298
2299         return delta;
2300 }
2301
2302 static void __icl_update_topdown_event(struct perf_event *event,
2303                                        u64 slots, u64 metrics,
2304                                        u64 last_slots, u64 last_metrics)
2305 {
2306         u64 delta, last = 0;
2307
2308         delta = icl_get_topdown_value(event, slots, metrics);
2309         if (last_slots)
2310                 last = icl_get_topdown_value(event, last_slots, last_metrics);
2311
2312         /*
2313          * The 8bit integer fraction of metric may be not accurate,
2314          * especially when the changes is very small.
2315          * For example, if only a few bad_spec happens, the fraction
2316          * may be reduced from 1 to 0. If so, the bad_spec event value
2317          * will be 0 which is definitely less than the last value.
2318          * Avoid update event->count for this case.
2319          */
2320         if (delta > last) {
2321                 delta -= last;
2322                 local64_add(delta, &event->count);
2323         }
2324 }
2325
2326 static void update_saved_topdown_regs(struct perf_event *event,
2327                                       u64 slots, u64 metrics)
2328 {
2329         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2330         struct perf_event *other;
2331         int idx;
2332
2333         event->hw.saved_slots = slots;
2334         event->hw.saved_metric = metrics;
2335
2336         for_each_set_bit(idx, cpuc->active_mask, INTEL_PMC_IDX_TD_BE_BOUND + 1) {
2337                 if (!is_topdown_idx(idx))
2338                         continue;
2339                 other = cpuc->events[idx];
2340                 other->hw.saved_slots = slots;
2341                 other->hw.saved_metric = metrics;
2342         }
2343 }
2344
2345 /*
2346  * Update all active Topdown events.
2347  *
2348  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2349  * modify by a NMI. PMU has to be disabled before calling this function.
2350  */
2351 static u64 icl_update_topdown_event(struct perf_event *event)
2352 {
2353         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2354         struct perf_event *other;
2355         u64 slots, metrics;
2356         bool reset = true;
2357         int idx;
2358
2359         /* read Fixed counter 3 */
2360         rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2361         if (!slots)
2362                 return 0;
2363
2364         /* read PERF_METRICS */
2365         rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2366
2367         for_each_set_bit(idx, cpuc->active_mask, INTEL_PMC_IDX_TD_BE_BOUND + 1) {
2368                 if (!is_topdown_idx(idx))
2369                         continue;
2370                 other = cpuc->events[idx];
2371                 __icl_update_topdown_event(other, slots, metrics,
2372                                            event ? event->hw.saved_slots : 0,
2373                                            event ? event->hw.saved_metric : 0);
2374         }
2375
2376         /*
2377          * Check and update this event, which may have been cleared
2378          * in active_mask e.g. x86_pmu_stop()
2379          */
2380         if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2381                 __icl_update_topdown_event(event, slots, metrics,
2382                                            event->hw.saved_slots,
2383                                            event->hw.saved_metric);
2384
2385                 /*
2386                  * In x86_pmu_stop(), the event is cleared in active_mask first,
2387                  * then drain the delta, which indicates context switch for
2388                  * counting.
2389                  * Save metric and slots for context switch.
2390                  * Don't need to reset the PERF_METRICS and Fixed counter 3.
2391                  * Because the values will be restored in next schedule in.
2392                  */
2393                 update_saved_topdown_regs(event, slots, metrics);
2394                 reset = false;
2395         }
2396
2397         if (reset) {
2398                 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2399                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2400                 wrmsrl(MSR_PERF_METRICS, 0);
2401                 if (event)
2402                         update_saved_topdown_regs(event, 0, 0);
2403         }
2404
2405         return slots;
2406 }
2407
2408 static void intel_pmu_read_topdown_event(struct perf_event *event)
2409 {
2410         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2411
2412         /* Only need to call update_topdown_event() once for group read. */
2413         if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2414             !is_slots_event(event))
2415                 return;
2416
2417         perf_pmu_disable(event->pmu);
2418         x86_pmu.update_topdown_event(event);
2419         perf_pmu_enable(event->pmu);
2420 }
2421
2422 static void intel_pmu_read_event(struct perf_event *event)
2423 {
2424         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2425                 intel_pmu_auto_reload_read(event);
2426         else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2427                 intel_pmu_read_topdown_event(event);
2428         else
2429                 x86_perf_event_update(event);
2430 }
2431
2432 static void intel_pmu_enable_fixed(struct perf_event *event)
2433 {
2434         struct hw_perf_event *hwc = &event->hw;
2435         u64 ctrl_val, mask, bits = 0;
2436         int idx = hwc->idx;
2437
2438         if (is_topdown_idx(idx)) {
2439                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2440                 /*
2441                  * When there are other active TopDown events,
2442                  * don't enable the fixed counter 3 again.
2443                  */
2444                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2445                         return;
2446
2447                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2448         }
2449
2450         intel_set_masks(event, idx);
2451
2452         /*
2453          * Enable IRQ generation (0x8), if not PEBS,
2454          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2455          * if requested:
2456          */
2457         if (!event->attr.precise_ip)
2458                 bits |= 0x8;
2459         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2460                 bits |= 0x2;
2461         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2462                 bits |= 0x1;
2463
2464         /*
2465          * ANY bit is supported in v3 and up
2466          */
2467         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2468                 bits |= 0x4;
2469
2470         idx -= INTEL_PMC_IDX_FIXED;
2471         bits <<= (idx * 4);
2472         mask = 0xfULL << (idx * 4);
2473
2474         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2475                 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2476                 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2477         }
2478
2479         rdmsrl(hwc->config_base, ctrl_val);
2480         ctrl_val &= ~mask;
2481         ctrl_val |= bits;
2482         wrmsrl(hwc->config_base, ctrl_val);
2483 }
2484
2485 static void intel_pmu_enable_event(struct perf_event *event)
2486 {
2487         struct hw_perf_event *hwc = &event->hw;
2488         int idx = hwc->idx;
2489
2490         if (unlikely(event->attr.precise_ip))
2491                 intel_pmu_pebs_enable(event);
2492
2493         switch (idx) {
2494         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2495                 intel_set_masks(event, idx);
2496                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2497                 break;
2498         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2499         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2500                 intel_pmu_enable_fixed(event);
2501                 break;
2502         case INTEL_PMC_IDX_FIXED_BTS:
2503                 if (!__this_cpu_read(cpu_hw_events.enabled))
2504                         return;
2505                 intel_pmu_enable_bts(hwc->config);
2506                 break;
2507         case INTEL_PMC_IDX_FIXED_VLBR:
2508                 intel_set_masks(event, idx);
2509                 break;
2510         default:
2511                 pr_warn("Failed to enable the event with invalid index %d\n",
2512                         idx);
2513         }
2514 }
2515
2516 static void intel_pmu_add_event(struct perf_event *event)
2517 {
2518         if (event->attr.precise_ip)
2519                 intel_pmu_pebs_add(event);
2520         if (needs_branch_stack(event))
2521                 intel_pmu_lbr_add(event);
2522 }
2523
2524 /*
2525  * Save and restart an expired event. Called by NMI contexts,
2526  * so it has to be careful about preempting normal event ops:
2527  */
2528 int intel_pmu_save_and_restart(struct perf_event *event)
2529 {
2530         x86_perf_event_update(event);
2531         /*
2532          * For a checkpointed counter always reset back to 0.  This
2533          * avoids a situation where the counter overflows, aborts the
2534          * transaction and is then set back to shortly before the
2535          * overflow, and overflows and aborts again.
2536          */
2537         if (unlikely(event_is_checkpointed(event))) {
2538                 /* No race with NMIs because the counter should not be armed */
2539                 wrmsrl(event->hw.event_base, 0);
2540                 local64_set(&event->hw.prev_count, 0);
2541         }
2542         return x86_perf_event_set_period(event);
2543 }
2544
2545 static void intel_pmu_reset(void)
2546 {
2547         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2548         unsigned long flags;
2549         int idx;
2550
2551         if (!x86_pmu.num_counters)
2552                 return;
2553
2554         local_irq_save(flags);
2555
2556         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2557
2558         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2559                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2560                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2561         }
2562         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2563                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2564
2565         if (ds)
2566                 ds->bts_index = ds->bts_buffer_base;
2567
2568         /* Ack all overflows and disable fixed counters */
2569         if (x86_pmu.version >= 2) {
2570                 intel_pmu_ack_status(intel_pmu_get_status());
2571                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2572         }
2573
2574         /* Reset LBRs and LBR freezing */
2575         if (x86_pmu.lbr_nr) {
2576                 update_debugctlmsr(get_debugctlmsr() &
2577                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2578         }
2579
2580         local_irq_restore(flags);
2581 }
2582
2583 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2584 {
2585         struct perf_sample_data data;
2586         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2587         int bit;
2588         int handled = 0;
2589
2590         inc_irq_stat(apic_perf_irqs);
2591
2592         /*
2593          * Ignore a range of extra bits in status that do not indicate
2594          * overflow by themselves.
2595          */
2596         status &= ~(GLOBAL_STATUS_COND_CHG |
2597                     GLOBAL_STATUS_ASIF |
2598                     GLOBAL_STATUS_LBRS_FROZEN);
2599         if (!status)
2600                 return 0;
2601         /*
2602          * In case multiple PEBS events are sampled at the same time,
2603          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2604          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2605          * having their bits set in the status register. This is a sign
2606          * that there was at least one PEBS record pending at the time
2607          * of the PMU interrupt. PEBS counters must only be processed
2608          * via the drain_pebs() calls and not via the regular sample
2609          * processing loop coming after that the function, otherwise
2610          * phony regular samples may be generated in the sampling buffer
2611          * not marked with the EXACT tag. Another possibility is to have
2612          * one PEBS event and at least one non-PEBS event whic hoverflows
2613          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2614          * not be set, yet the overflow status bit for the PEBS counter will
2615          * be on Skylake.
2616          *
2617          * To avoid this problem, we systematically ignore the PEBS-enabled
2618          * counters from the GLOBAL_STATUS mask and we always process PEBS
2619          * events via drain_pebs().
2620          */
2621         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2622                 status &= ~cpuc->pebs_enabled;
2623         else
2624                 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2625
2626         /*
2627          * PEBS overflow sets bit 62 in the global status register
2628          */
2629         if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2630                 u64 pebs_enabled = cpuc->pebs_enabled;
2631
2632                 handled++;
2633                 x86_pmu.drain_pebs(regs, &data);
2634                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2635
2636                 /*
2637                  * PMI throttle may be triggered, which stops the PEBS event.
2638                  * Although cpuc->pebs_enabled is updated accordingly, the
2639                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
2640                  * cpuc->enabled has been forced to 0 in PMI.
2641                  * Update the MSR if pebs_enabled is changed.
2642                  */
2643                 if (pebs_enabled != cpuc->pebs_enabled)
2644                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2645         }
2646
2647         /*
2648          * Intel PT
2649          */
2650         if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2651                 handled++;
2652                 if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2653                         perf_guest_cbs->handle_intel_pt_intr))
2654                         perf_guest_cbs->handle_intel_pt_intr();
2655                 else
2656                         intel_pt_interrupt();
2657         }
2658
2659         /*
2660          * Intel Perf mertrics
2661          */
2662         if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2663                 handled++;
2664                 if (x86_pmu.update_topdown_event)
2665                         x86_pmu.update_topdown_event(NULL);
2666         }
2667
2668         /*
2669          * Checkpointed counters can lead to 'spurious' PMIs because the
2670          * rollback caused by the PMI will have cleared the overflow status
2671          * bit. Therefore always force probe these counters.
2672          */
2673         status |= cpuc->intel_cp_status;
2674
2675         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2676                 struct perf_event *event = cpuc->events[bit];
2677
2678                 handled++;
2679
2680                 if (!test_bit(bit, cpuc->active_mask))
2681                         continue;
2682
2683                 if (!intel_pmu_save_and_restart(event))
2684                         continue;
2685
2686                 perf_sample_data_init(&data, 0, event->hw.last_period);
2687
2688                 if (has_branch_stack(event))
2689                         data.br_stack = &cpuc->lbr_stack;
2690
2691                 if (perf_event_overflow(event, &data, regs))
2692                         x86_pmu_stop(event, 0);
2693         }
2694
2695         return handled;
2696 }
2697
2698 static bool disable_counter_freezing = true;
2699 static int __init intel_perf_counter_freezing_setup(char *s)
2700 {
2701         bool res;
2702
2703         if (kstrtobool(s, &res))
2704                 return -EINVAL;
2705
2706         disable_counter_freezing = !res;
2707         return 1;
2708 }
2709 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2710
2711 /*
2712  * Simplified handler for Arch Perfmon v4:
2713  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2714  * This is done automatically on PMU ack.
2715  * - Ack the PMU only after the APIC.
2716  */
2717
2718 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2719 {
2720         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2721         int handled = 0;
2722         bool bts = false;
2723         u64 status;
2724         int pmu_enabled = cpuc->enabled;
2725         int loops = 0;
2726
2727         /* PMU has been disabled because of counter freezing */
2728         cpuc->enabled = 0;
2729         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2730                 bts = true;
2731                 intel_bts_disable_local();
2732                 handled = intel_pmu_drain_bts_buffer();
2733                 handled += intel_bts_interrupt();
2734         }
2735         status = intel_pmu_get_status();
2736         if (!status)
2737                 goto done;
2738 again:
2739         intel_pmu_lbr_read();
2740         if (++loops > 100) {
2741                 static bool warned;
2742
2743                 if (!warned) {
2744                         WARN(1, "perfevents: irq loop stuck!\n");
2745                         perf_event_print_debug();
2746                         warned = true;
2747                 }
2748                 intel_pmu_reset();
2749                 goto done;
2750         }
2751
2752
2753         handled += handle_pmi_common(regs, status);
2754 done:
2755         /* Ack the PMI in the APIC */
2756         apic_write(APIC_LVTPC, APIC_DM_NMI);
2757
2758         /*
2759          * The counters start counting immediately while ack the status.
2760          * Make it as close as possible to IRET. This avoids bogus
2761          * freezing on Skylake CPUs.
2762          */
2763         if (status) {
2764                 intel_pmu_ack_status(status);
2765         } else {
2766                 /*
2767                  * CPU may issues two PMIs very close to each other.
2768                  * When the PMI handler services the first one, the
2769                  * GLOBAL_STATUS is already updated to reflect both.
2770                  * When it IRETs, the second PMI is immediately
2771                  * handled and it sees clear status. At the meantime,
2772                  * there may be a third PMI, because the freezing bit
2773                  * isn't set since the ack in first PMI handlers.
2774                  * Double check if there is more work to be done.
2775                  */
2776                 status = intel_pmu_get_status();
2777                 if (status)
2778                         goto again;
2779         }
2780
2781         if (bts)
2782                 intel_bts_enable_local();
2783         cpuc->enabled = pmu_enabled;
2784         return handled;
2785 }
2786
2787 /*
2788  * This handler is triggered by the local APIC, so the APIC IRQ handling
2789  * rules apply:
2790  */
2791 static int intel_pmu_handle_irq(struct pt_regs *regs)
2792 {
2793         struct cpu_hw_events *cpuc;
2794         int loops;
2795         u64 status;
2796         int handled;
2797         int pmu_enabled;
2798
2799         cpuc = this_cpu_ptr(&cpu_hw_events);
2800
2801         /*
2802          * Save the PMU state.
2803          * It needs to be restored when leaving the handler.
2804          */
2805         pmu_enabled = cpuc->enabled;
2806         /*
2807          * No known reason to not always do late ACK,
2808          * but just in case do it opt-in.
2809          */
2810         if (!x86_pmu.late_ack)
2811                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2812         intel_bts_disable_local();
2813         cpuc->enabled = 0;
2814         __intel_pmu_disable_all();
2815         handled = intel_pmu_drain_bts_buffer();
2816         handled += intel_bts_interrupt();
2817         status = intel_pmu_get_status();
2818         if (!status)
2819                 goto done;
2820
2821         loops = 0;
2822 again:
2823         intel_pmu_lbr_read();
2824         intel_pmu_ack_status(status);
2825         if (++loops > 100) {
2826                 static bool warned;
2827
2828                 if (!warned) {
2829                         WARN(1, "perfevents: irq loop stuck!\n");
2830                         perf_event_print_debug();
2831                         warned = true;
2832                 }
2833                 intel_pmu_reset();
2834                 goto done;
2835         }
2836
2837         handled += handle_pmi_common(regs, status);
2838
2839         /*
2840          * Repeat if there is more work to be done:
2841          */
2842         status = intel_pmu_get_status();
2843         if (status)
2844                 goto again;
2845
2846 done:
2847         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2848         cpuc->enabled = pmu_enabled;
2849         if (pmu_enabled)
2850                 __intel_pmu_enable_all(0, true);
2851         intel_bts_enable_local();
2852
2853         /*
2854          * Only unmask the NMI after the overflow counters
2855          * have been reset. This avoids spurious NMIs on
2856          * Haswell CPUs.
2857          */
2858         if (x86_pmu.late_ack)
2859                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2860         return handled;
2861 }
2862
2863 static struct event_constraint *
2864 intel_bts_constraints(struct perf_event *event)
2865 {
2866         if (unlikely(intel_pmu_has_bts(event)))
2867                 return &bts_constraint;
2868
2869         return NULL;
2870 }
2871
2872 /*
2873  * Note: matches a fake event, like Fixed2.
2874  */
2875 static struct event_constraint *
2876 intel_vlbr_constraints(struct perf_event *event)
2877 {
2878         struct event_constraint *c = &vlbr_constraint;
2879
2880         if (unlikely(constraint_match(c, event->hw.config)))
2881                 return c;
2882
2883         return NULL;
2884 }
2885
2886 static int intel_alt_er(int idx, u64 config)
2887 {
2888         int alt_idx = idx;
2889
2890         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2891                 return idx;
2892
2893         if (idx == EXTRA_REG_RSP_0)
2894                 alt_idx = EXTRA_REG_RSP_1;
2895
2896         if (idx == EXTRA_REG_RSP_1)
2897                 alt_idx = EXTRA_REG_RSP_0;
2898
2899         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2900                 return idx;
2901
2902         return alt_idx;
2903 }
2904
2905 static void intel_fixup_er(struct perf_event *event, int idx)
2906 {
2907         event->hw.extra_reg.idx = idx;
2908
2909         if (idx == EXTRA_REG_RSP_0) {
2910                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2911                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2912                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2913         } else if (idx == EXTRA_REG_RSP_1) {
2914                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2915                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2916                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2917         }
2918 }
2919
2920 /*
2921  * manage allocation of shared extra msr for certain events
2922  *
2923  * sharing can be:
2924  * per-cpu: to be shared between the various events on a single PMU
2925  * per-core: per-cpu + shared by HT threads
2926  */
2927 static struct event_constraint *
2928 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2929                                    struct perf_event *event,
2930                                    struct hw_perf_event_extra *reg)
2931 {
2932         struct event_constraint *c = &emptyconstraint;
2933         struct er_account *era;
2934         unsigned long flags;
2935         int idx = reg->idx;
2936
2937         /*
2938          * reg->alloc can be set due to existing state, so for fake cpuc we
2939          * need to ignore this, otherwise we might fail to allocate proper fake
2940          * state for this extra reg constraint. Also see the comment below.
2941          */
2942         if (reg->alloc && !cpuc->is_fake)
2943                 return NULL; /* call x86_get_event_constraint() */
2944
2945 again:
2946         era = &cpuc->shared_regs->regs[idx];
2947         /*
2948          * we use spin_lock_irqsave() to avoid lockdep issues when
2949          * passing a fake cpuc
2950          */
2951         raw_spin_lock_irqsave(&era->lock, flags);
2952
2953         if (!atomic_read(&era->ref) || era->config == reg->config) {
2954
2955                 /*
2956                  * If its a fake cpuc -- as per validate_{group,event}() we
2957                  * shouldn't touch event state and we can avoid doing so
2958                  * since both will only call get_event_constraints() once
2959                  * on each event, this avoids the need for reg->alloc.
2960                  *
2961                  * Not doing the ER fixup will only result in era->reg being
2962                  * wrong, but since we won't actually try and program hardware
2963                  * this isn't a problem either.
2964                  */
2965                 if (!cpuc->is_fake) {
2966                         if (idx != reg->idx)
2967                                 intel_fixup_er(event, idx);
2968
2969                         /*
2970                          * x86_schedule_events() can call get_event_constraints()
2971                          * multiple times on events in the case of incremental
2972                          * scheduling(). reg->alloc ensures we only do the ER
2973                          * allocation once.
2974                          */
2975                         reg->alloc = 1;
2976                 }
2977
2978                 /* lock in msr value */
2979                 era->config = reg->config;
2980                 era->reg = reg->reg;
2981
2982                 /* one more user */
2983                 atomic_inc(&era->ref);
2984
2985                 /*
2986                  * need to call x86_get_event_constraint()
2987                  * to check if associated event has constraints
2988                  */
2989                 c = NULL;
2990         } else {
2991                 idx = intel_alt_er(idx, reg->config);
2992                 if (idx != reg->idx) {
2993                         raw_spin_unlock_irqrestore(&era->lock, flags);
2994                         goto again;
2995                 }
2996         }
2997         raw_spin_unlock_irqrestore(&era->lock, flags);
2998
2999         return c;
3000 }
3001
3002 static void
3003 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3004                                    struct hw_perf_event_extra *reg)
3005 {
3006         struct er_account *era;
3007
3008         /*
3009          * Only put constraint if extra reg was actually allocated. Also takes
3010          * care of event which do not use an extra shared reg.
3011          *
3012          * Also, if this is a fake cpuc we shouldn't touch any event state
3013          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3014          * either since it'll be thrown out.
3015          */
3016         if (!reg->alloc || cpuc->is_fake)
3017                 return;
3018
3019         era = &cpuc->shared_regs->regs[reg->idx];
3020
3021         /* one fewer user */
3022         atomic_dec(&era->ref);
3023
3024         /* allocate again next time */
3025         reg->alloc = 0;
3026 }
3027
3028 static struct event_constraint *
3029 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3030                               struct perf_event *event)
3031 {
3032         struct event_constraint *c = NULL, *d;
3033         struct hw_perf_event_extra *xreg, *breg;
3034
3035         xreg = &event->hw.extra_reg;
3036         if (xreg->idx != EXTRA_REG_NONE) {
3037                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3038                 if (c == &emptyconstraint)
3039                         return c;
3040         }
3041         breg = &event->hw.branch_reg;
3042         if (breg->idx != EXTRA_REG_NONE) {
3043                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3044                 if (d == &emptyconstraint) {
3045                         __intel_shared_reg_put_constraints(cpuc, xreg);
3046                         c = d;
3047                 }
3048         }
3049         return c;
3050 }
3051
3052 struct event_constraint *
3053 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3054                           struct perf_event *event)
3055 {
3056         struct event_constraint *c;
3057
3058         if (x86_pmu.event_constraints) {
3059                 for_each_event_constraint(c, x86_pmu.event_constraints) {
3060                         if (constraint_match(c, event->hw.config)) {
3061                                 event->hw.flags |= c->flags;
3062                                 return c;
3063                         }
3064                 }
3065         }
3066
3067         return &unconstrained;
3068 }
3069
3070 static struct event_constraint *
3071 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3072                             struct perf_event *event)
3073 {
3074         struct event_constraint *c;
3075
3076         c = intel_vlbr_constraints(event);
3077         if (c)
3078                 return c;
3079
3080         c = intel_bts_constraints(event);
3081         if (c)
3082                 return c;
3083
3084         c = intel_shared_regs_constraints(cpuc, event);
3085         if (c)
3086                 return c;
3087
3088         c = intel_pebs_constraints(event);
3089         if (c)
3090                 return c;
3091
3092         return x86_get_event_constraints(cpuc, idx, event);
3093 }
3094
3095 static void
3096 intel_start_scheduling(struct cpu_hw_events *cpuc)
3097 {
3098         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3099         struct intel_excl_states *xl;
3100         int tid = cpuc->excl_thread_id;
3101
3102         /*
3103          * nothing needed if in group validation mode
3104          */
3105         if (cpuc->is_fake || !is_ht_workaround_enabled())
3106                 return;
3107
3108         /*
3109          * no exclusion needed
3110          */
3111         if (WARN_ON_ONCE(!excl_cntrs))
3112                 return;
3113
3114         xl = &excl_cntrs->states[tid];
3115
3116         xl->sched_started = true;
3117         /*
3118          * lock shared state until we are done scheduling
3119          * in stop_event_scheduling()
3120          * makes scheduling appear as a transaction
3121          */
3122         raw_spin_lock(&excl_cntrs->lock);
3123 }
3124
3125 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3126 {
3127         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3128         struct event_constraint *c = cpuc->event_constraint[idx];
3129         struct intel_excl_states *xl;
3130         int tid = cpuc->excl_thread_id;
3131
3132         if (cpuc->is_fake || !is_ht_workaround_enabled())
3133                 return;
3134
3135         if (WARN_ON_ONCE(!excl_cntrs))
3136                 return;
3137
3138         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3139                 return;
3140
3141         xl = &excl_cntrs->states[tid];
3142
3143         lockdep_assert_held(&excl_cntrs->lock);
3144
3145         if (c->flags & PERF_X86_EVENT_EXCL)
3146                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3147         else
3148                 xl->state[cntr] = INTEL_EXCL_SHARED;
3149 }
3150
3151 static void
3152 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3153 {
3154         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3155         struct intel_excl_states *xl;
3156         int tid = cpuc->excl_thread_id;
3157
3158         /*
3159          * nothing needed if in group validation mode
3160          */
3161         if (cpuc->is_fake || !is_ht_workaround_enabled())
3162                 return;
3163         /*
3164          * no exclusion needed
3165          */
3166         if (WARN_ON_ONCE(!excl_cntrs))
3167                 return;
3168
3169         xl = &excl_cntrs->states[tid];
3170
3171         xl->sched_started = false;
3172         /*
3173          * release shared state lock (acquired in intel_start_scheduling())
3174          */
3175         raw_spin_unlock(&excl_cntrs->lock);
3176 }
3177
3178 static struct event_constraint *
3179 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3180 {
3181         WARN_ON_ONCE(!cpuc->constraint_list);
3182
3183         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3184                 struct event_constraint *cx;
3185
3186                 /*
3187                  * grab pre-allocated constraint entry
3188                  */
3189                 cx = &cpuc->constraint_list[idx];
3190
3191                 /*
3192                  * initialize dynamic constraint
3193                  * with static constraint
3194                  */
3195                 *cx = *c;
3196
3197                 /*
3198                  * mark constraint as dynamic
3199                  */
3200                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3201                 c = cx;
3202         }
3203
3204         return c;
3205 }
3206
3207 static struct event_constraint *
3208 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3209                            int idx, struct event_constraint *c)
3210 {
3211         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3212         struct intel_excl_states *xlo;
3213         int tid = cpuc->excl_thread_id;
3214         int is_excl, i, w;
3215
3216         /*
3217          * validating a group does not require
3218          * enforcing cross-thread  exclusion
3219          */
3220         if (cpuc->is_fake || !is_ht_workaround_enabled())
3221                 return c;
3222
3223         /*
3224          * no exclusion needed
3225          */
3226         if (WARN_ON_ONCE(!excl_cntrs))
3227                 return c;
3228
3229         /*
3230          * because we modify the constraint, we need
3231          * to make a copy. Static constraints come
3232          * from static const tables.
3233          *
3234          * only needed when constraint has not yet
3235          * been cloned (marked dynamic)
3236          */
3237         c = dyn_constraint(cpuc, c, idx);
3238
3239         /*
3240          * From here on, the constraint is dynamic.
3241          * Either it was just allocated above, or it
3242          * was allocated during a earlier invocation
3243          * of this function
3244          */
3245
3246         /*
3247          * state of sibling HT
3248          */
3249         xlo = &excl_cntrs->states[tid ^ 1];
3250
3251         /*
3252          * event requires exclusive counter access
3253          * across HT threads
3254          */
3255         is_excl = c->flags & PERF_X86_EVENT_EXCL;
3256         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3257                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3258                 if (!cpuc->n_excl++)
3259                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3260         }
3261
3262         /*
3263          * Modify static constraint with current dynamic
3264          * state of thread
3265          *
3266          * EXCLUSIVE: sibling counter measuring exclusive event
3267          * SHARED   : sibling counter measuring non-exclusive event
3268          * UNUSED   : sibling counter unused
3269          */
3270         w = c->weight;
3271         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3272                 /*
3273                  * exclusive event in sibling counter
3274                  * our corresponding counter cannot be used
3275                  * regardless of our event
3276                  */
3277                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3278                         __clear_bit(i, c->idxmsk);
3279                         w--;
3280                         continue;
3281                 }
3282                 /*
3283                  * if measuring an exclusive event, sibling
3284                  * measuring non-exclusive, then counter cannot
3285                  * be used
3286                  */
3287                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3288                         __clear_bit(i, c->idxmsk);
3289                         w--;
3290                         continue;
3291                 }
3292         }
3293
3294         /*
3295          * if we return an empty mask, then switch
3296          * back to static empty constraint to avoid
3297          * the cost of freeing later on
3298          */
3299         if (!w)
3300                 c = &emptyconstraint;
3301
3302         c->weight = w;
3303
3304         return c;
3305 }
3306
3307 static struct event_constraint *
3308 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3309                             struct perf_event *event)
3310 {
3311         struct event_constraint *c1, *c2;
3312
3313         c1 = cpuc->event_constraint[idx];
3314
3315         /*
3316          * first time only
3317          * - static constraint: no change across incremental scheduling calls
3318          * - dynamic constraint: handled by intel_get_excl_constraints()
3319          */
3320         c2 = __intel_get_event_constraints(cpuc, idx, event);
3321         if (c1) {
3322                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3323                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3324                 c1->weight = c2->weight;
3325                 c2 = c1;
3326         }
3327
3328         if (cpuc->excl_cntrs)
3329                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3330
3331         return c2;
3332 }
3333
3334 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3335                 struct perf_event *event)
3336 {
3337         struct hw_perf_event *hwc = &event->hw;
3338         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3339         int tid = cpuc->excl_thread_id;
3340         struct intel_excl_states *xl;
3341
3342         /*
3343          * nothing needed if in group validation mode
3344          */
3345         if (cpuc->is_fake)
3346                 return;
3347
3348         if (WARN_ON_ONCE(!excl_cntrs))
3349                 return;
3350
3351         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3352                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3353                 if (!--cpuc->n_excl)
3354                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3355         }
3356
3357         /*
3358          * If event was actually assigned, then mark the counter state as
3359          * unused now.
3360          */
3361         if (hwc->idx >= 0) {
3362                 xl = &excl_cntrs->states[tid];
3363
3364                 /*
3365                  * put_constraint may be called from x86_schedule_events()
3366                  * which already has the lock held so here make locking
3367                  * conditional.
3368                  */
3369                 if (!xl->sched_started)
3370                         raw_spin_lock(&excl_cntrs->lock);
3371
3372                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3373
3374                 if (!xl->sched_started)
3375                         raw_spin_unlock(&excl_cntrs->lock);
3376         }
3377 }
3378
3379 static void
3380 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3381                                         struct perf_event *event)
3382 {
3383         struct hw_perf_event_extra *reg;
3384
3385         reg = &event->hw.extra_reg;
3386         if (reg->idx != EXTRA_REG_NONE)
3387                 __intel_shared_reg_put_constraints(cpuc, reg);
3388
3389         reg = &event->hw.branch_reg;
3390         if (reg->idx != EXTRA_REG_NONE)
3391                 __intel_shared_reg_put_constraints(cpuc, reg);
3392 }
3393
3394 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3395                                         struct perf_event *event)
3396 {
3397         intel_put_shared_regs_event_constraints(cpuc, event);
3398
3399         /*
3400          * is PMU has exclusive counter restrictions, then
3401          * all events are subject to and must call the
3402          * put_excl_constraints() routine
3403          */
3404         if (cpuc->excl_cntrs)
3405                 intel_put_excl_constraints(cpuc, event);
3406 }
3407
3408 static void intel_pebs_aliases_core2(struct perf_event *event)
3409 {
3410         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3411                 /*
3412                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3413                  * (0x003c) so that we can use it with PEBS.
3414                  *
3415                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3416                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3417                  * (0x00c0), which is a PEBS capable event, to get the same
3418                  * count.
3419                  *
3420                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3421                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3422                  * larger than the maximum number of instructions that can be
3423                  * retired per cycle (4) and then inverting the condition, we
3424                  * count all cycles that retire 16 or less instructions, which
3425                  * is every cycle.
3426                  *
3427                  * Thereby we gain a PEBS capable cycle counter.
3428                  */
3429                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3430
3431                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3432                 event->hw.config = alt_config;
3433         }
3434 }
3435
3436 static void intel_pebs_aliases_snb(struct perf_event *event)
3437 {
3438         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3439                 /*
3440                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3441                  * (0x003c) so that we can use it with PEBS.
3442                  *
3443                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3444                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3445                  * (0x01c2), which is a PEBS capable event, to get the same
3446                  * count.
3447                  *
3448                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3449                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3450                  * larger than the maximum number of micro-ops that can be
3451                  * retired per cycle (4) and then inverting the condition, we
3452                  * count all cycles that retire 16 or less micro-ops, which
3453                  * is every cycle.
3454                  *
3455                  * Thereby we gain a PEBS capable cycle counter.
3456                  */
3457                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3458
3459                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3460                 event->hw.config = alt_config;
3461         }
3462 }
3463
3464 static void intel_pebs_aliases_precdist(struct perf_event *event)
3465 {
3466         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3467                 /*
3468                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3469                  * (0x003c) so that we can use it with PEBS.
3470                  *
3471                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3472                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3473                  * (0x01c0), which is a PEBS capable event, to get the same
3474                  * count.
3475                  *
3476                  * The PREC_DIST event has special support to minimize sample
3477                  * shadowing effects. One drawback is that it can be
3478                  * only programmed on counter 1, but that seems like an
3479                  * acceptable trade off.
3480                  */
3481                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3482
3483                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3484                 event->hw.config = alt_config;
3485         }
3486 }
3487
3488 static void intel_pebs_aliases_ivb(struct perf_event *event)
3489 {
3490         if (event->attr.precise_ip < 3)
3491                 return intel_pebs_aliases_snb(event);
3492         return intel_pebs_aliases_precdist(event);
3493 }
3494
3495 static void intel_pebs_aliases_skl(struct perf_event *event)
3496 {
3497         if (event->attr.precise_ip < 3)
3498                 return intel_pebs_aliases_core2(event);
3499         return intel_pebs_aliases_precdist(event);
3500 }
3501
3502 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3503 {
3504         unsigned long flags = x86_pmu.large_pebs_flags;
3505
3506         if (event->attr.use_clockid)
3507                 flags &= ~PERF_SAMPLE_TIME;
3508         if (!event->attr.exclude_kernel)
3509                 flags &= ~PERF_SAMPLE_REGS_USER;
3510         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3511                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3512         return flags;
3513 }
3514
3515 static int intel_pmu_bts_config(struct perf_event *event)
3516 {
3517         struct perf_event_attr *attr = &event->attr;
3518
3519         if (unlikely(intel_pmu_has_bts(event))) {
3520                 /* BTS is not supported by this architecture. */
3521                 if (!x86_pmu.bts_active)
3522                         return -EOPNOTSUPP;
3523
3524                 /* BTS is currently only allowed for user-mode. */
3525                 if (!attr->exclude_kernel)
3526                         return -EOPNOTSUPP;
3527
3528                 /* BTS is not allowed for precise events. */
3529                 if (attr->precise_ip)
3530                         return -EOPNOTSUPP;
3531
3532                 /* disallow bts if conflicting events are present */
3533                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3534                         return -EBUSY;
3535
3536                 event->destroy = hw_perf_lbr_event_destroy;
3537         }
3538
3539         return 0;
3540 }
3541
3542 static int core_pmu_hw_config(struct perf_event *event)
3543 {
3544         int ret = x86_pmu_hw_config(event);
3545
3546         if (ret)
3547                 return ret;
3548
3549         return intel_pmu_bts_config(event);
3550 }
3551
3552 static int intel_pmu_hw_config(struct perf_event *event)
3553 {
3554         int ret = x86_pmu_hw_config(event);
3555
3556         if (ret)
3557                 return ret;
3558
3559         ret = intel_pmu_bts_config(event);
3560         if (ret)
3561                 return ret;
3562
3563         if (event->attr.precise_ip) {
3564                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3565                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3566                         if (!(event->attr.sample_type &
3567                               ~intel_pmu_large_pebs_flags(event)))
3568                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3569                 }
3570                 if (x86_pmu.pebs_aliases)
3571                         x86_pmu.pebs_aliases(event);
3572
3573                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3574                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3575         }
3576
3577         if (needs_branch_stack(event)) {
3578                 ret = intel_pmu_setup_lbr_filter(event);
3579                 if (ret)
3580                         return ret;
3581
3582                 /*
3583                  * BTS is set up earlier in this path, so don't account twice
3584                  */
3585                 if (!unlikely(intel_pmu_has_bts(event))) {
3586                         /* disallow lbr if conflicting events are present */
3587                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3588                                 return -EBUSY;
3589
3590                         event->destroy = hw_perf_lbr_event_destroy;
3591                 }
3592         }
3593
3594         if (event->attr.aux_output) {
3595                 if (!event->attr.precise_ip)
3596                         return -EINVAL;
3597
3598                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3599         }
3600
3601         if (event->attr.type != PERF_TYPE_RAW)
3602                 return 0;
3603
3604         /*
3605          * Config Topdown slots and metric events
3606          *
3607          * The slots event on Fixed Counter 3 can support sampling,
3608          * which will be handled normally in x86_perf_event_update().
3609          *
3610          * Metric events don't support sampling and require being paired
3611          * with a slots event as group leader. When the slots event
3612          * is used in a metrics group, it too cannot support sampling.
3613          */
3614         if (x86_pmu.intel_cap.perf_metrics && is_topdown_event(event)) {
3615                 if (event->attr.config1 || event->attr.config2)
3616                         return -EINVAL;
3617
3618                 /*
3619                  * The TopDown metrics events and slots event don't
3620                  * support any filters.
3621                  */
3622                 if (event->attr.config & X86_ALL_EVENT_FLAGS)
3623                         return -EINVAL;
3624
3625                 if (is_metric_event(event)) {
3626                         struct perf_event *leader = event->group_leader;
3627
3628                         /* The metric events don't support sampling. */
3629                         if (is_sampling_event(event))
3630                                 return -EINVAL;
3631
3632                         /* The metric events require a slots group leader. */
3633                         if (!is_slots_event(leader))
3634                                 return -EINVAL;
3635
3636                         /*
3637                          * The leader/SLOTS must not be a sampling event for
3638                          * metric use; hardware requires it starts at 0 when used
3639                          * in conjunction with MSR_PERF_METRICS.
3640                          */
3641                         if (is_sampling_event(leader))
3642                                 return -EINVAL;
3643
3644                         event->event_caps |= PERF_EV_CAP_SIBLING;
3645                         /*
3646                          * Only once we have a METRICs sibling do we
3647                          * need TopDown magic.
3648                          */
3649                         leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3650                         event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3651                 }
3652         }
3653
3654         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3655                 return 0;
3656
3657         if (x86_pmu.version < 3)
3658                 return -EINVAL;
3659
3660         ret = perf_allow_cpu(&event->attr);
3661         if (ret)
3662                 return ret;
3663
3664         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3665
3666         return 0;
3667 }
3668
3669 #ifdef CONFIG_RETPOLINE
3670 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr);
3671 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr);
3672 #endif
3673
3674 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3675 {
3676 #ifdef CONFIG_RETPOLINE
3677         if (x86_pmu.guest_get_msrs == intel_guest_get_msrs)
3678                 return intel_guest_get_msrs(nr);
3679         else if (x86_pmu.guest_get_msrs == core_guest_get_msrs)
3680                 return core_guest_get_msrs(nr);
3681 #endif
3682         if (x86_pmu.guest_get_msrs)
3683                 return x86_pmu.guest_get_msrs(nr);
3684         *nr = 0;
3685         return NULL;
3686 }
3687 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3688
3689 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3690 {
3691         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3692         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3693
3694         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3695         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3696         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3697         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3698                 arr[0].guest &= ~cpuc->pebs_enabled;
3699         else
3700                 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3701         *nr = 1;
3702
3703         if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3704                 /*
3705                  * If PMU counter has PEBS enabled it is not enough to
3706                  * disable counter on a guest entry since PEBS memory
3707                  * write can overshoot guest entry and corrupt guest
3708                  * memory. Disabling PEBS solves the problem.
3709                  *
3710                  * Don't do this if the CPU already enforces it.
3711                  */
3712                 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3713                 arr[1].host = cpuc->pebs_enabled;
3714                 arr[1].guest = 0;
3715                 *nr = 2;
3716         }
3717
3718         return arr;
3719 }
3720
3721 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3722 {
3723         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3724         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3725         int idx;
3726
3727         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3728                 struct perf_event *event = cpuc->events[idx];
3729
3730                 arr[idx].msr = x86_pmu_config_addr(idx);
3731                 arr[idx].host = arr[idx].guest = 0;
3732
3733                 if (!test_bit(idx, cpuc->active_mask))
3734                         continue;
3735
3736                 arr[idx].host = arr[idx].guest =
3737                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3738
3739                 if (event->attr.exclude_host)
3740                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3741                 else if (event->attr.exclude_guest)
3742                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3743         }
3744
3745         *nr = x86_pmu.num_counters;
3746         return arr;
3747 }
3748
3749 static void core_pmu_enable_event(struct perf_event *event)
3750 {
3751         if (!event->attr.exclude_host)
3752                 x86_pmu_enable_event(event);
3753 }
3754
3755 static void core_pmu_enable_all(int added)
3756 {
3757         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3758         int idx;
3759
3760         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3761                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3762
3763                 if (!test_bit(idx, cpuc->active_mask) ||
3764                                 cpuc->events[idx]->attr.exclude_host)
3765                         continue;
3766
3767                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3768         }
3769 }
3770
3771 static int hsw_hw_config(struct perf_event *event)
3772 {
3773         int ret = intel_pmu_hw_config(event);
3774
3775         if (ret)
3776                 return ret;
3777         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3778                 return 0;
3779         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3780
3781         /*
3782          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3783          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3784          * this combination.
3785          */
3786         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3787              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3788               event->attr.precise_ip > 0))
3789                 return -EOPNOTSUPP;
3790
3791         if (event_is_checkpointed(event)) {
3792                 /*
3793                  * Sampling of checkpointed events can cause situations where
3794                  * the CPU constantly aborts because of a overflow, which is
3795                  * then checkpointed back and ignored. Forbid checkpointing
3796                  * for sampling.
3797                  *
3798                  * But still allow a long sampling period, so that perf stat
3799                  * from KVM works.
3800                  */
3801                 if (event->attr.sample_period > 0 &&
3802                     event->attr.sample_period < 0x7fffffff)
3803                         return -EOPNOTSUPP;
3804         }
3805         return 0;
3806 }
3807
3808 static struct event_constraint counter0_constraint =
3809                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3810
3811 static struct event_constraint counter2_constraint =
3812                         EVENT_CONSTRAINT(0, 0x4, 0);
3813
3814 static struct event_constraint fixed0_constraint =
3815                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3816
3817 static struct event_constraint fixed0_counter0_constraint =
3818                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3819
3820 static struct event_constraint *
3821 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3822                           struct perf_event *event)
3823 {
3824         struct event_constraint *c;
3825
3826         c = intel_get_event_constraints(cpuc, idx, event);
3827
3828         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3829         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3830                 if (c->idxmsk64 & (1U << 2))
3831                         return &counter2_constraint;
3832                 return &emptyconstraint;
3833         }
3834
3835         return c;
3836 }
3837
3838 static struct event_constraint *
3839 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3840                           struct perf_event *event)
3841 {
3842         /*
3843          * Fixed counter 0 has less skid.
3844          * Force instruction:ppp in Fixed counter 0
3845          */
3846         if ((event->attr.precise_ip == 3) &&
3847             constraint_match(&fixed0_constraint, event->hw.config))
3848                 return &fixed0_constraint;
3849
3850         return hsw_get_event_constraints(cpuc, idx, event);
3851 }
3852
3853 static struct event_constraint *
3854 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3855                           struct perf_event *event)
3856 {
3857         struct event_constraint *c;
3858
3859         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3860         if (event->attr.precise_ip == 3)
3861                 return &counter0_constraint;
3862
3863         c = intel_get_event_constraints(cpuc, idx, event);
3864
3865         return c;
3866 }
3867
3868 static struct event_constraint *
3869 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3870                           struct perf_event *event)
3871 {
3872         struct event_constraint *c;
3873
3874         /*
3875          * :ppp means to do reduced skid PEBS,
3876          * which is available on PMC0 and fixed counter 0.
3877          */
3878         if (event->attr.precise_ip == 3) {
3879                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
3880                 if (constraint_match(&fixed0_constraint, event->hw.config))
3881                         return &fixed0_counter0_constraint;
3882
3883                 return &counter0_constraint;
3884         }
3885
3886         c = intel_get_event_constraints(cpuc, idx, event);
3887
3888         return c;
3889 }
3890
3891 static bool allow_tsx_force_abort = true;
3892
3893 static struct event_constraint *
3894 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3895                           struct perf_event *event)
3896 {
3897         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3898
3899         /*
3900          * Without TFA we must not use PMC3.
3901          */
3902         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
3903                 c = dyn_constraint(cpuc, c, idx);
3904                 c->idxmsk64 &= ~(1ULL << 3);
3905                 c->weight--;
3906         }
3907
3908         return c;
3909 }
3910
3911 /*
3912  * Broadwell:
3913  *
3914  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3915  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3916  * the two to enforce a minimum period of 128 (the smallest value that has bits
3917  * 0-5 cleared and >= 100).
3918  *
3919  * Because of how the code in x86_perf_event_set_period() works, the truncation
3920  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3921  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3922  *
3923  * Therefore the effective (average) period matches the requested period,
3924  * despite coarser hardware granularity.
3925  */
3926 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3927 {
3928         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3929                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
3930                 if (left < 128)
3931                         left = 128;
3932                 left &= ~0x3fULL;
3933         }
3934         return left;
3935 }
3936
3937 static u64 nhm_limit_period(struct perf_event *event, u64 left)
3938 {
3939         return max(left, 32ULL);
3940 }
3941
3942 PMU_FORMAT_ATTR(event,  "config:0-7"    );
3943 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3944 PMU_FORMAT_ATTR(edge,   "config:18"     );
3945 PMU_FORMAT_ATTR(pc,     "config:19"     );
3946 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3947 PMU_FORMAT_ATTR(inv,    "config:23"     );
3948 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3949 PMU_FORMAT_ATTR(in_tx,  "config:32");
3950 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3951
3952 static struct attribute *intel_arch_formats_attr[] = {
3953         &format_attr_event.attr,
3954         &format_attr_umask.attr,
3955         &format_attr_edge.attr,
3956         &format_attr_pc.attr,
3957         &format_attr_inv.attr,
3958         &format_attr_cmask.attr,
3959         NULL,
3960 };
3961
3962 ssize_t intel_event_sysfs_show(char *page, u64 config)
3963 {
3964         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3965
3966         return x86_event_sysfs_show(page, config, event);
3967 }
3968
3969 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3970 {
3971         struct intel_shared_regs *regs;
3972         int i;
3973
3974         regs = kzalloc_node(sizeof(struct intel_shared_regs),
3975                             GFP_KERNEL, cpu_to_node(cpu));
3976         if (regs) {
3977                 /*
3978                  * initialize the locks to keep lockdep happy
3979                  */
3980                 for (i = 0; i < EXTRA_REG_MAX; i++)
3981                         raw_spin_lock_init(&regs->regs[i].lock);
3982
3983                 regs->core_id = -1;
3984         }
3985         return regs;
3986 }
3987
3988 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3989 {
3990         struct intel_excl_cntrs *c;
3991
3992         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3993                          GFP_KERNEL, cpu_to_node(cpu));
3994         if (c) {
3995                 raw_spin_lock_init(&c->lock);
3996                 c->core_id = -1;
3997         }
3998         return c;
3999 }
4000
4001
4002 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4003 {
4004         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4005
4006         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4007                 cpuc->shared_regs = allocate_shared_regs(cpu);
4008                 if (!cpuc->shared_regs)
4009                         goto err;
4010         }
4011
4012         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4013                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4014
4015                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4016                 if (!cpuc->constraint_list)
4017                         goto err_shared_regs;
4018         }
4019
4020         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4021                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4022                 if (!cpuc->excl_cntrs)
4023                         goto err_constraint_list;
4024
4025                 cpuc->excl_thread_id = 0;
4026         }
4027
4028         return 0;
4029
4030 err_constraint_list:
4031         kfree(cpuc->constraint_list);
4032         cpuc->constraint_list = NULL;
4033
4034 err_shared_regs:
4035         kfree(cpuc->shared_regs);
4036         cpuc->shared_regs = NULL;
4037
4038 err:
4039         return -ENOMEM;
4040 }
4041
4042 static int intel_pmu_cpu_prepare(int cpu)
4043 {
4044         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4045 }
4046
4047 static void flip_smm_bit(void *data)
4048 {
4049         unsigned long set = *(unsigned long *)data;
4050
4051         if (set > 0) {
4052                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4053                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4054         } else {
4055                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4056                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4057         }
4058 }
4059
4060 static void intel_pmu_cpu_starting(int cpu)
4061 {
4062         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4063         int core_id = topology_core_id(cpu);
4064         int i;
4065
4066         init_debug_store_on_cpu(cpu);
4067         /*
4068          * Deal with CPUs that don't clear their LBRs on power-up.
4069          */
4070         intel_pmu_lbr_reset();
4071
4072         cpuc->lbr_sel = NULL;
4073
4074         if (x86_pmu.flags & PMU_FL_TFA) {
4075                 WARN_ON_ONCE(cpuc->tfa_shadow);
4076                 cpuc->tfa_shadow = ~0ULL;
4077                 intel_set_tfa(cpuc, false);
4078         }
4079
4080         if (x86_pmu.version > 1)
4081                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4082
4083         if (x86_pmu.counter_freezing)
4084                 enable_counter_freeze();
4085
4086         /* Disable perf metrics if any added CPU doesn't support it. */
4087         if (x86_pmu.intel_cap.perf_metrics) {
4088                 union perf_capabilities perf_cap;
4089
4090                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4091                 if (!perf_cap.perf_metrics) {
4092                         x86_pmu.intel_cap.perf_metrics = 0;
4093                         x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4094                 }
4095         }
4096
4097         if (!cpuc->shared_regs)
4098                 return;
4099
4100         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4101                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4102                         struct intel_shared_regs *pc;
4103
4104                         pc = per_cpu(cpu_hw_events, i).shared_regs;
4105                         if (pc && pc->core_id == core_id) {
4106                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4107                                 cpuc->shared_regs = pc;
4108                                 break;
4109                         }
4110                 }
4111                 cpuc->shared_regs->core_id = core_id;
4112                 cpuc->shared_regs->refcnt++;
4113         }
4114
4115         if (x86_pmu.lbr_sel_map)
4116                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4117
4118         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4119                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4120                         struct cpu_hw_events *sibling;
4121                         struct intel_excl_cntrs *c;
4122
4123                         sibling = &per_cpu(cpu_hw_events, i);
4124                         c = sibling->excl_cntrs;
4125                         if (c && c->core_id == core_id) {
4126                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4127                                 cpuc->excl_cntrs = c;
4128                                 if (!sibling->excl_thread_id)
4129                                         cpuc->excl_thread_id = 1;
4130                                 break;
4131                         }
4132                 }
4133                 cpuc->excl_cntrs->core_id = core_id;
4134                 cpuc->excl_cntrs->refcnt++;
4135         }
4136 }
4137
4138 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4139 {
4140         struct intel_excl_cntrs *c;
4141
4142         c = cpuc->excl_cntrs;
4143         if (c) {
4144                 if (c->core_id == -1 || --c->refcnt == 0)
4145                         kfree(c);
4146                 cpuc->excl_cntrs = NULL;
4147         }
4148
4149         kfree(cpuc->constraint_list);
4150         cpuc->constraint_list = NULL;
4151 }
4152
4153 static void intel_pmu_cpu_dying(int cpu)
4154 {
4155         fini_debug_store_on_cpu(cpu);
4156
4157         if (x86_pmu.counter_freezing)
4158                 disable_counter_freeze();
4159 }
4160
4161 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4162 {
4163         struct intel_shared_regs *pc;
4164
4165         pc = cpuc->shared_regs;
4166         if (pc) {
4167                 if (pc->core_id == -1 || --pc->refcnt == 0)
4168                         kfree(pc);
4169                 cpuc->shared_regs = NULL;
4170         }
4171
4172         free_excl_cntrs(cpuc);
4173 }
4174
4175 static void intel_pmu_cpu_dead(int cpu)
4176 {
4177         intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
4178 }
4179
4180 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4181                                  bool sched_in)
4182 {
4183         intel_pmu_pebs_sched_task(ctx, sched_in);
4184         intel_pmu_lbr_sched_task(ctx, sched_in);
4185 }
4186
4187 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4188                                     struct perf_event_context *next)
4189 {
4190         intel_pmu_lbr_swap_task_ctx(prev, next);
4191 }
4192
4193 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4194 {
4195         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4196 }
4197
4198 static int intel_pmu_aux_output_match(struct perf_event *event)
4199 {
4200         if (!x86_pmu.intel_cap.pebs_output_pt_available)
4201                 return 0;
4202
4203         return is_intel_pt_event(event);
4204 }
4205
4206 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4207
4208 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4209
4210 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4211
4212 static struct attribute *intel_arch3_formats_attr[] = {
4213         &format_attr_event.attr,
4214         &format_attr_umask.attr,
4215         &format_attr_edge.attr,
4216         &format_attr_pc.attr,
4217         &format_attr_any.attr,
4218         &format_attr_inv.attr,
4219         &format_attr_cmask.attr,
4220         NULL,
4221 };
4222
4223 static struct attribute *hsw_format_attr[] = {
4224         &format_attr_in_tx.attr,
4225         &format_attr_in_tx_cp.attr,
4226         &format_attr_offcore_rsp.attr,
4227         &format_attr_ldlat.attr,
4228         NULL
4229 };
4230
4231 static struct attribute *nhm_format_attr[] = {
4232         &format_attr_offcore_rsp.attr,
4233         &format_attr_ldlat.attr,
4234         NULL
4235 };
4236
4237 static struct attribute *slm_format_attr[] = {
4238         &format_attr_offcore_rsp.attr,
4239         NULL
4240 };
4241
4242 static struct attribute *skl_format_attr[] = {
4243         &format_attr_frontend.attr,
4244         NULL,
4245 };
4246
4247 static __initconst const struct x86_pmu core_pmu = {
4248         .name                   = "core",
4249         .handle_irq             = x86_pmu_handle_irq,
4250         .disable_all            = x86_pmu_disable_all,
4251         .enable_all             = core_pmu_enable_all,
4252         .enable                 = core_pmu_enable_event,
4253         .disable                = x86_pmu_disable_event,
4254         .hw_config              = core_pmu_hw_config,
4255         .schedule_events        = x86_schedule_events,
4256         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4257         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4258         .event_map              = intel_pmu_event_map,
4259         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4260         .apic                   = 1,
4261         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4262
4263         /*
4264          * Intel PMCs cannot be accessed sanely above 32-bit width,
4265          * so we install an artificial 1<<31 period regardless of
4266          * the generic event period:
4267          */
4268         .max_period             = (1ULL<<31) - 1,
4269         .get_event_constraints  = intel_get_event_constraints,
4270         .put_event_constraints  = intel_put_event_constraints,
4271         .event_constraints      = intel_core_event_constraints,
4272         .guest_get_msrs         = core_guest_get_msrs,
4273         .format_attrs           = intel_arch_formats_attr,
4274         .events_sysfs_show      = intel_event_sysfs_show,
4275
4276         /*
4277          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4278          * together with PMU version 1 and thus be using core_pmu with
4279          * shared_regs. We need following callbacks here to allocate
4280          * it properly.
4281          */
4282         .cpu_prepare            = intel_pmu_cpu_prepare,
4283         .cpu_starting           = intel_pmu_cpu_starting,
4284         .cpu_dying              = intel_pmu_cpu_dying,
4285         .cpu_dead               = intel_pmu_cpu_dead,
4286
4287         .check_period           = intel_pmu_check_period,
4288
4289         .lbr_reset              = intel_pmu_lbr_reset_64,
4290         .lbr_read               = intel_pmu_lbr_read_64,
4291         .lbr_save               = intel_pmu_lbr_save,
4292         .lbr_restore            = intel_pmu_lbr_restore,
4293 };
4294
4295 static __initconst const struct x86_pmu intel_pmu = {
4296         .name                   = "Intel",
4297         .handle_irq             = intel_pmu_handle_irq,
4298         .disable_all            = intel_pmu_disable_all,
4299         .enable_all             = intel_pmu_enable_all,
4300         .enable                 = intel_pmu_enable_event,
4301         .disable                = intel_pmu_disable_event,
4302         .add                    = intel_pmu_add_event,
4303         .del                    = intel_pmu_del_event,
4304         .read                   = intel_pmu_read_event,
4305         .hw_config              = intel_pmu_hw_config,
4306         .schedule_events        = x86_schedule_events,
4307         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4308         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4309         .event_map              = intel_pmu_event_map,
4310         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4311         .apic                   = 1,
4312         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4313         /*
4314          * Intel PMCs cannot be accessed sanely above 32 bit width,
4315          * so we install an artificial 1<<31 period regardless of
4316          * the generic event period:
4317          */
4318         .max_period             = (1ULL << 31) - 1,
4319         .get_event_constraints  = intel_get_event_constraints,
4320         .put_event_constraints  = intel_put_event_constraints,
4321         .pebs_aliases           = intel_pebs_aliases_core2,
4322
4323         .format_attrs           = intel_arch3_formats_attr,
4324         .events_sysfs_show      = intel_event_sysfs_show,
4325
4326         .cpu_prepare            = intel_pmu_cpu_prepare,
4327         .cpu_starting           = intel_pmu_cpu_starting,
4328         .cpu_dying              = intel_pmu_cpu_dying,
4329         .cpu_dead               = intel_pmu_cpu_dead,
4330
4331         .guest_get_msrs         = intel_guest_get_msrs,
4332         .sched_task             = intel_pmu_sched_task,
4333         .swap_task_ctx          = intel_pmu_swap_task_ctx,
4334
4335         .check_period           = intel_pmu_check_period,
4336
4337         .aux_output_match       = intel_pmu_aux_output_match,
4338
4339         .lbr_reset              = intel_pmu_lbr_reset_64,
4340         .lbr_read               = intel_pmu_lbr_read_64,
4341         .lbr_save               = intel_pmu_lbr_save,
4342         .lbr_restore            = intel_pmu_lbr_restore,
4343 };
4344
4345 static __init void intel_clovertown_quirk(void)
4346 {
4347         /*
4348          * PEBS is unreliable due to:
4349          *
4350          *   AJ67  - PEBS may experience CPL leaks
4351          *   AJ68  - PEBS PMI may be delayed by one event
4352          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4353          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4354          *
4355          * AJ67 could be worked around by restricting the OS/USR flags.
4356          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4357          *
4358          * AJ106 could possibly be worked around by not allowing LBR
4359          *       usage from PEBS, including the fixup.
4360          * AJ68  could possibly be worked around by always programming
4361          *       a pebs_event_reset[0] value and coping with the lost events.
4362          *
4363          * But taken together it might just make sense to not enable PEBS on
4364          * these chips.
4365          */
4366         pr_warn("PEBS disabled due to CPU errata\n");
4367         x86_pmu.pebs = 0;
4368         x86_pmu.pebs_constraints = NULL;
4369 }
4370
4371 static const struct x86_cpu_desc isolation_ucodes[] = {
4372         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
4373         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
4374         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
4375         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
4376         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
4377         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
4378         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
4379         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
4380         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
4381         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
4382         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
4383         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           2, 0x0b000014),
4384         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
4385         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
4386         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
4387         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
4388         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
4389         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
4390         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
4391         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
4392         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
4393         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
4394         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
4395         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
4396         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
4397         {}
4398 };
4399
4400 static void intel_check_pebs_isolation(void)
4401 {
4402         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4403 }
4404
4405 static __init void intel_pebs_isolation_quirk(void)
4406 {
4407         WARN_ON_ONCE(x86_pmu.check_microcode);
4408         x86_pmu.check_microcode = intel_check_pebs_isolation;
4409         intel_check_pebs_isolation();
4410 }
4411
4412 static const struct x86_cpu_desc pebs_ucodes[] = {
4413         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
4414         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
4415         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
4416         {}
4417 };
4418
4419 static bool intel_snb_pebs_broken(void)
4420 {
4421         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4422 }
4423
4424 static void intel_snb_check_microcode(void)
4425 {
4426         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4427                 return;
4428
4429         /*
4430          * Serialized by the microcode lock..
4431          */
4432         if (x86_pmu.pebs_broken) {
4433                 pr_info("PEBS enabled due to microcode update\n");
4434                 x86_pmu.pebs_broken = 0;
4435         } else {
4436                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4437                 x86_pmu.pebs_broken = 1;
4438         }
4439 }
4440
4441 static bool is_lbr_from(unsigned long msr)
4442 {
4443         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4444
4445         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4446 }
4447
4448 /*
4449  * Under certain circumstances, access certain MSR may cause #GP.
4450  * The function tests if the input MSR can be safely accessed.
4451  */
4452 static bool check_msr(unsigned long msr, u64 mask)
4453 {
4454         u64 val_old, val_new, val_tmp;
4455
4456         /*
4457          * Disable the check for real HW, so we don't
4458          * mess with potentionaly enabled registers:
4459          */
4460         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4461                 return true;
4462
4463         /*
4464          * Read the current value, change it and read it back to see if it
4465          * matches, this is needed to detect certain hardware emulators
4466          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4467          */
4468         if (rdmsrl_safe(msr, &val_old))
4469                 return false;
4470
4471         /*
4472          * Only change the bits which can be updated by wrmsrl.
4473          */
4474         val_tmp = val_old ^ mask;
4475
4476         if (is_lbr_from(msr))
4477                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4478
4479         if (wrmsrl_safe(msr, val_tmp) ||
4480             rdmsrl_safe(msr, &val_new))
4481                 return false;
4482
4483         /*
4484          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4485          * should equal rdmsrl()'s even with the quirk.
4486          */
4487         if (val_new != val_tmp)
4488                 return false;
4489
4490         if (is_lbr_from(msr))
4491                 val_old = lbr_from_signext_quirk_wr(val_old);
4492
4493         /* Here it's sure that the MSR can be safely accessed.
4494          * Restore the old value and return.
4495          */
4496         wrmsrl(msr, val_old);
4497
4498         return true;
4499 }
4500
4501 static __init void intel_sandybridge_quirk(void)
4502 {
4503         x86_pmu.check_microcode = intel_snb_check_microcode;
4504         cpus_read_lock();
4505         intel_snb_check_microcode();
4506         cpus_read_unlock();
4507 }
4508
4509 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4510         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4511         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4512         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4513         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4514         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4515         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4516         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4517 };
4518
4519 static __init void intel_arch_events_quirk(void)
4520 {
4521         int bit;
4522
4523         /* disable event that reported as not presend by cpuid */
4524         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4525                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4526                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4527                         intel_arch_events_map[bit].name);
4528         }
4529 }
4530
4531 static __init void intel_nehalem_quirk(void)
4532 {
4533         union cpuid10_ebx ebx;
4534
4535         ebx.full = x86_pmu.events_maskl;
4536         if (ebx.split.no_branch_misses_retired) {
4537                 /*
4538                  * Erratum AAJ80 detected, we work it around by using
4539                  * the BR_MISP_EXEC.ANY event. This will over-count
4540                  * branch-misses, but it's still much better than the
4541                  * architectural event which is often completely bogus:
4542                  */
4543                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4544                 ebx.split.no_branch_misses_retired = 0;
4545                 x86_pmu.events_maskl = ebx.full;
4546                 pr_info("CPU erratum AAJ80 worked around\n");
4547         }
4548 }
4549
4550 static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4551         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,         2, 0x0000000e),
4552         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,         9, 0x0000002e),
4553         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,        10, 0x00000008),
4554         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D,       1, 0x00000028),
4555         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,    1, 0x00000028),
4556         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,    8, 0x00000006),
4557         {}
4558 };
4559
4560 static bool intel_counter_freezing_broken(void)
4561 {
4562         return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4563 }
4564
4565 static __init void intel_counter_freezing_quirk(void)
4566 {
4567         /* Check if it's already disabled */
4568         if (disable_counter_freezing)
4569                 return;
4570
4571         /*
4572          * If the system starts with the wrong ucode, leave the
4573          * counter-freezing feature permanently disabled.
4574          */
4575         if (intel_counter_freezing_broken()) {
4576                 pr_info("PMU counter freezing disabled due to CPU errata,"
4577                         "please upgrade microcode\n");
4578                 x86_pmu.counter_freezing = false;
4579                 x86_pmu.handle_irq = intel_pmu_handle_irq;
4580         }
4581 }
4582
4583 /*
4584  * enable software workaround for errata:
4585  * SNB: BJ122
4586  * IVB: BV98
4587  * HSW: HSD29
4588  *
4589  * Only needed when HT is enabled. However detecting
4590  * if HT is enabled is difficult (model specific). So instead,
4591  * we enable the workaround in the early boot, and verify if
4592  * it is needed in a later initcall phase once we have valid
4593  * topology information to check if HT is actually enabled
4594  */
4595 static __init void intel_ht_bug(void)
4596 {
4597         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4598
4599         x86_pmu.start_scheduling = intel_start_scheduling;
4600         x86_pmu.commit_scheduling = intel_commit_scheduling;
4601         x86_pmu.stop_scheduling = intel_stop_scheduling;
4602 }
4603
4604 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
4605 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
4606
4607 /* Haswell special events */
4608 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
4609 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
4610 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
4611 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
4612 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
4613 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
4614 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
4615 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
4616 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
4617 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
4618 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
4619 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
4620
4621 static struct attribute *hsw_events_attrs[] = {
4622         EVENT_PTR(td_slots_issued),
4623         EVENT_PTR(td_slots_retired),
4624         EVENT_PTR(td_fetch_bubbles),
4625         EVENT_PTR(td_total_slots),
4626         EVENT_PTR(td_total_slots_scale),
4627         EVENT_PTR(td_recovery_bubbles),
4628         EVENT_PTR(td_recovery_bubbles_scale),
4629         NULL
4630 };
4631
4632 static struct attribute *hsw_mem_events_attrs[] = {
4633         EVENT_PTR(mem_ld_hsw),
4634         EVENT_PTR(mem_st_hsw),
4635         NULL,
4636 };
4637
4638 static struct attribute *hsw_tsx_events_attrs[] = {
4639         EVENT_PTR(tx_start),
4640         EVENT_PTR(tx_commit),
4641         EVENT_PTR(tx_abort),
4642         EVENT_PTR(tx_capacity),
4643         EVENT_PTR(tx_conflict),
4644         EVENT_PTR(el_start),
4645         EVENT_PTR(el_commit),
4646         EVENT_PTR(el_abort),
4647         EVENT_PTR(el_capacity),
4648         EVENT_PTR(el_conflict),
4649         EVENT_PTR(cycles_t),
4650         EVENT_PTR(cycles_ct),
4651         NULL
4652 };
4653
4654 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4655 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4656 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4657 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4658
4659 static struct attribute *icl_events_attrs[] = {
4660         EVENT_PTR(mem_ld_hsw),
4661         EVENT_PTR(mem_st_hsw),
4662         NULL,
4663 };
4664
4665 static struct attribute *icl_td_events_attrs[] = {
4666         EVENT_PTR(slots),
4667         EVENT_PTR(td_retiring),
4668         EVENT_PTR(td_bad_spec),
4669         EVENT_PTR(td_fe_bound),
4670         EVENT_PTR(td_be_bound),
4671         NULL,
4672 };
4673
4674 static struct attribute *icl_tsx_events_attrs[] = {
4675         EVENT_PTR(tx_start),
4676         EVENT_PTR(tx_abort),
4677         EVENT_PTR(tx_commit),
4678         EVENT_PTR(tx_capacity_read),
4679         EVENT_PTR(tx_capacity_write),
4680         EVENT_PTR(tx_conflict),
4681         EVENT_PTR(el_start),
4682         EVENT_PTR(el_abort),
4683         EVENT_PTR(el_commit),
4684         EVENT_PTR(el_capacity_read),
4685         EVENT_PTR(el_capacity_write),
4686         EVENT_PTR(el_conflict),
4687         EVENT_PTR(cycles_t),
4688         EVENT_PTR(cycles_ct),
4689         NULL,
4690 };
4691
4692 static ssize_t freeze_on_smi_show(struct device *cdev,
4693                                   struct device_attribute *attr,
4694                                   char *buf)
4695 {
4696         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4697 }
4698
4699 static DEFINE_MUTEX(freeze_on_smi_mutex);
4700
4701 static ssize_t freeze_on_smi_store(struct device *cdev,
4702                                    struct device_attribute *attr,
4703                                    const char *buf, size_t count)
4704 {
4705         unsigned long val;
4706         ssize_t ret;
4707
4708         ret = kstrtoul(buf, 0, &val);
4709         if (ret)
4710                 return ret;
4711
4712         if (val > 1)
4713                 return -EINVAL;
4714
4715         mutex_lock(&freeze_on_smi_mutex);
4716
4717         if (x86_pmu.attr_freeze_on_smi == val)
4718                 goto done;
4719
4720         x86_pmu.attr_freeze_on_smi = val;
4721
4722         get_online_cpus();
4723         on_each_cpu(flip_smm_bit, &val, 1);
4724         put_online_cpus();
4725 done:
4726         mutex_unlock(&freeze_on_smi_mutex);
4727
4728         return count;
4729 }
4730
4731 static void update_tfa_sched(void *ignored)
4732 {
4733         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4734
4735         /*
4736          * check if PMC3 is used
4737          * and if so force schedule out for all event types all contexts
4738          */
4739         if (test_bit(3, cpuc->active_mask))
4740                 perf_pmu_resched(x86_get_pmu());
4741 }
4742
4743 static ssize_t show_sysctl_tfa(struct device *cdev,
4744                               struct device_attribute *attr,
4745                               char *buf)
4746 {
4747         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
4748 }
4749
4750 static ssize_t set_sysctl_tfa(struct device *cdev,
4751                               struct device_attribute *attr,
4752                               const char *buf, size_t count)
4753 {
4754         bool val;
4755         ssize_t ret;
4756
4757         ret = kstrtobool(buf, &val);
4758         if (ret)
4759                 return ret;
4760
4761         /* no change */
4762         if (val == allow_tsx_force_abort)
4763                 return count;
4764
4765         allow_tsx_force_abort = val;
4766
4767         get_online_cpus();
4768         on_each_cpu(update_tfa_sched, NULL, 1);
4769         put_online_cpus();
4770
4771         return count;
4772 }
4773
4774
4775 static DEVICE_ATTR_RW(freeze_on_smi);
4776
4777 static ssize_t branches_show(struct device *cdev,
4778                              struct device_attribute *attr,
4779                              char *buf)
4780 {
4781         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4782 }
4783
4784 static DEVICE_ATTR_RO(branches);
4785
4786 static struct attribute *lbr_attrs[] = {
4787         &dev_attr_branches.attr,
4788         NULL
4789 };
4790
4791 static char pmu_name_str[30];
4792
4793 static ssize_t pmu_name_show(struct device *cdev,
4794                              struct device_attribute *attr,
4795                              char *buf)
4796 {
4797         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4798 }
4799
4800 static DEVICE_ATTR_RO(pmu_name);
4801
4802 static struct attribute *intel_pmu_caps_attrs[] = {
4803        &dev_attr_pmu_name.attr,
4804        NULL
4805 };
4806
4807 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
4808                    show_sysctl_tfa,
4809                    set_sysctl_tfa);
4810
4811 static struct attribute *intel_pmu_attrs[] = {
4812         &dev_attr_freeze_on_smi.attr,
4813         &dev_attr_allow_tsx_force_abort.attr,
4814         NULL,
4815 };
4816
4817 static umode_t
4818 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4819 {
4820         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
4821 }
4822
4823 static umode_t
4824 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4825 {
4826         return x86_pmu.pebs ? attr->mode : 0;
4827 }
4828
4829 static umode_t
4830 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4831 {
4832         return x86_pmu.lbr_nr ? attr->mode : 0;
4833 }
4834
4835 static umode_t
4836 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4837 {
4838         return x86_pmu.version >= 2 ? attr->mode : 0;
4839 }
4840
4841 static umode_t
4842 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4843 {
4844         if (attr == &dev_attr_allow_tsx_force_abort.attr)
4845                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
4846
4847         return attr->mode;
4848 }
4849
4850 static struct attribute_group group_events_td  = {
4851         .name = "events",
4852 };
4853
4854 static struct attribute_group group_events_mem = {
4855         .name       = "events",
4856         .is_visible = pebs_is_visible,
4857 };
4858
4859 static struct attribute_group group_events_tsx = {
4860         .name       = "events",
4861         .is_visible = tsx_is_visible,
4862 };
4863
4864 static struct attribute_group group_caps_gen = {
4865         .name  = "caps",
4866         .attrs = intel_pmu_caps_attrs,
4867 };
4868
4869 static struct attribute_group group_caps_lbr = {
4870         .name       = "caps",
4871         .attrs      = lbr_attrs,
4872         .is_visible = lbr_is_visible,
4873 };
4874
4875 static struct attribute_group group_format_extra = {
4876         .name       = "format",
4877         .is_visible = exra_is_visible,
4878 };
4879
4880 static struct attribute_group group_format_extra_skl = {
4881         .name       = "format",
4882         .is_visible = exra_is_visible,
4883 };
4884
4885 static struct attribute_group group_default = {
4886         .attrs      = intel_pmu_attrs,
4887         .is_visible = default_is_visible,
4888 };
4889
4890 static const struct attribute_group *attr_update[] = {
4891         &group_events_td,
4892         &group_events_mem,
4893         &group_events_tsx,
4894         &group_caps_gen,
4895         &group_caps_lbr,
4896         &group_format_extra,
4897         &group_format_extra_skl,
4898         &group_default,
4899         NULL,
4900 };
4901
4902 static struct attribute *empty_attrs;
4903
4904 __init int intel_pmu_init(void)
4905 {
4906         struct attribute **extra_skl_attr = &empty_attrs;
4907         struct attribute **extra_attr = &empty_attrs;
4908         struct attribute **td_attr    = &empty_attrs;
4909         struct attribute **mem_attr   = &empty_attrs;
4910         struct attribute **tsx_attr   = &empty_attrs;
4911         union cpuid10_edx edx;
4912         union cpuid10_eax eax;
4913         union cpuid10_ebx ebx;
4914         struct event_constraint *c;
4915         unsigned int unused;
4916         struct extra_reg *er;
4917         bool pmem = false;
4918         int version, i;
4919         char *name;
4920
4921         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4922                 switch (boot_cpu_data.x86) {
4923                 case 0x6:
4924                         return p6_pmu_init();
4925                 case 0xb:
4926                         return knc_pmu_init();
4927                 case 0xf:
4928                         return p4_pmu_init();
4929                 }
4930                 return -ENODEV;
4931         }
4932
4933         /*
4934          * Check whether the Architectural PerfMon supports
4935          * Branch Misses Retired hw_event or not.
4936          */
4937         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4938         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4939                 return -ENODEV;
4940
4941         version = eax.split.version_id;
4942         if (version < 2)
4943                 x86_pmu = core_pmu;
4944         else
4945                 x86_pmu = intel_pmu;
4946
4947         x86_pmu.version                 = version;
4948         x86_pmu.num_counters            = eax.split.num_counters;
4949         x86_pmu.cntval_bits             = eax.split.bit_width;
4950         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
4951
4952         x86_pmu.events_maskl            = ebx.full;
4953         x86_pmu.events_mask_len         = eax.split.mask_length;
4954
4955         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4956
4957         /*
4958          * Quirk: v2 perfmon does not report fixed-purpose events, so
4959          * assume at least 3 events, when not running in a hypervisor:
4960          */
4961         if (version > 1) {
4962                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4963
4964                 x86_pmu.num_counters_fixed =
4965                         max((int)edx.split.num_counters_fixed, assume);
4966         }
4967
4968         if (version >= 4)
4969                 x86_pmu.counter_freezing = !disable_counter_freezing;
4970
4971         if (boot_cpu_has(X86_FEATURE_PDCM)) {
4972                 u64 capabilities;
4973
4974                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4975                 x86_pmu.intel_cap.capabilities = capabilities;
4976         }
4977
4978         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
4979                 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
4980                 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
4981         }
4982
4983         if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
4984                 intel_pmu_arch_lbr_init();
4985
4986         intel_ds_init();
4987
4988         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4989
4990         /*
4991          * Install the hw-cache-events table:
4992          */
4993         switch (boot_cpu_data.x86_model) {
4994         case INTEL_FAM6_CORE_YONAH:
4995                 pr_cont("Core events, ");
4996                 name = "core";
4997                 break;
4998
4999         case INTEL_FAM6_CORE2_MEROM:
5000                 x86_add_quirk(intel_clovertown_quirk);
5001                 fallthrough;
5002
5003         case INTEL_FAM6_CORE2_MEROM_L:
5004         case INTEL_FAM6_CORE2_PENRYN:
5005         case INTEL_FAM6_CORE2_DUNNINGTON:
5006                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5007                        sizeof(hw_cache_event_ids));
5008
5009                 intel_pmu_lbr_init_core();
5010
5011                 x86_pmu.event_constraints = intel_core2_event_constraints;
5012                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5013                 pr_cont("Core2 events, ");
5014                 name = "core2";
5015                 break;
5016
5017         case INTEL_FAM6_NEHALEM:
5018         case INTEL_FAM6_NEHALEM_EP:
5019         case INTEL_FAM6_NEHALEM_EX:
5020                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5021                        sizeof(hw_cache_event_ids));
5022                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5023                        sizeof(hw_cache_extra_regs));
5024
5025                 intel_pmu_lbr_init_nhm();
5026
5027                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
5028                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5029                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5030                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
5031                 x86_pmu.limit_period = nhm_limit_period;
5032
5033                 mem_attr = nhm_mem_events_attrs;
5034
5035                 /* UOPS_ISSUED.STALLED_CYCLES */
5036                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5037                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5038                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5039                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5040                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5041
5042                 intel_pmu_pebs_data_source_nhm();
5043                 x86_add_quirk(intel_nehalem_quirk);
5044                 x86_pmu.pebs_no_tlb = 1;
5045                 extra_attr = nhm_format_attr;
5046
5047                 pr_cont("Nehalem events, ");
5048                 name = "nehalem";
5049                 break;
5050
5051         case INTEL_FAM6_ATOM_BONNELL:
5052         case INTEL_FAM6_ATOM_BONNELL_MID:
5053         case INTEL_FAM6_ATOM_SALTWELL:
5054         case INTEL_FAM6_ATOM_SALTWELL_MID:
5055         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5056                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5057                        sizeof(hw_cache_event_ids));
5058
5059                 intel_pmu_lbr_init_atom();
5060
5061                 x86_pmu.event_constraints = intel_gen_event_constraints;
5062                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5063                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5064                 pr_cont("Atom events, ");
5065                 name = "bonnell";
5066                 break;
5067
5068         case INTEL_FAM6_ATOM_SILVERMONT:
5069         case INTEL_FAM6_ATOM_SILVERMONT_D:
5070         case INTEL_FAM6_ATOM_SILVERMONT_MID:
5071         case INTEL_FAM6_ATOM_AIRMONT:
5072         case INTEL_FAM6_ATOM_AIRMONT_MID:
5073                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5074                         sizeof(hw_cache_event_ids));
5075                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5076                        sizeof(hw_cache_extra_regs));
5077
5078                 intel_pmu_lbr_init_slm();
5079
5080                 x86_pmu.event_constraints = intel_slm_event_constraints;
5081                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5082                 x86_pmu.extra_regs = intel_slm_extra_regs;
5083                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5084                 td_attr = slm_events_attrs;
5085                 extra_attr = slm_format_attr;
5086                 pr_cont("Silvermont events, ");
5087                 name = "silvermont";
5088                 break;
5089
5090         case INTEL_FAM6_ATOM_GOLDMONT:
5091         case INTEL_FAM6_ATOM_GOLDMONT_D:
5092                 x86_add_quirk(intel_counter_freezing_quirk);
5093                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5094                        sizeof(hw_cache_event_ids));
5095                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5096                        sizeof(hw_cache_extra_regs));
5097
5098                 intel_pmu_lbr_init_skl();
5099
5100                 x86_pmu.event_constraints = intel_slm_event_constraints;
5101                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5102                 x86_pmu.extra_regs = intel_glm_extra_regs;
5103                 /*
5104                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5105                  * for precise cycles.
5106                  * :pp is identical to :ppp
5107                  */
5108                 x86_pmu.pebs_aliases = NULL;
5109                 x86_pmu.pebs_prec_dist = true;
5110                 x86_pmu.lbr_pt_coexist = true;
5111                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5112                 td_attr = glm_events_attrs;
5113                 extra_attr = slm_format_attr;
5114                 pr_cont("Goldmont events, ");
5115                 name = "goldmont";
5116                 break;
5117
5118         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5119                 x86_add_quirk(intel_counter_freezing_quirk);
5120                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5121                        sizeof(hw_cache_event_ids));
5122                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5123                        sizeof(hw_cache_extra_regs));
5124
5125                 intel_pmu_lbr_init_skl();
5126
5127                 x86_pmu.event_constraints = intel_slm_event_constraints;
5128                 x86_pmu.extra_regs = intel_glm_extra_regs;
5129                 /*
5130                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5131                  * for precise cycles.
5132                  */
5133                 x86_pmu.pebs_aliases = NULL;
5134                 x86_pmu.pebs_prec_dist = true;
5135                 x86_pmu.lbr_pt_coexist = true;
5136                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5137                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
5138                 x86_pmu.get_event_constraints = glp_get_event_constraints;
5139                 td_attr = glm_events_attrs;
5140                 /* Goldmont Plus has 4-wide pipeline */
5141                 event_attr_td_total_slots_scale_glm.event_str = "4";
5142                 extra_attr = slm_format_attr;
5143                 pr_cont("Goldmont plus events, ");
5144                 name = "goldmont_plus";
5145                 break;
5146
5147         case INTEL_FAM6_ATOM_TREMONT_D:
5148         case INTEL_FAM6_ATOM_TREMONT:
5149         case INTEL_FAM6_ATOM_TREMONT_L:
5150                 x86_pmu.late_ack = true;
5151                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5152                        sizeof(hw_cache_event_ids));
5153                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5154                        sizeof(hw_cache_extra_regs));
5155                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5156
5157                 intel_pmu_lbr_init_skl();
5158
5159                 x86_pmu.event_constraints = intel_slm_event_constraints;
5160                 x86_pmu.extra_regs = intel_tnt_extra_regs;
5161                 /*
5162                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5163                  * for precise cycles.
5164                  */
5165                 x86_pmu.pebs_aliases = NULL;
5166                 x86_pmu.pebs_prec_dist = true;
5167                 x86_pmu.lbr_pt_coexist = true;
5168                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5169                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
5170                 extra_attr = slm_format_attr;
5171                 pr_cont("Tremont events, ");
5172                 name = "Tremont";
5173                 break;
5174
5175         case INTEL_FAM6_WESTMERE:
5176         case INTEL_FAM6_WESTMERE_EP:
5177         case INTEL_FAM6_WESTMERE_EX:
5178                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5179                        sizeof(hw_cache_event_ids));
5180                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5181                        sizeof(hw_cache_extra_regs));
5182
5183                 intel_pmu_lbr_init_nhm();
5184
5185                 x86_pmu.event_constraints = intel_westmere_event_constraints;
5186                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5187                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5188                 x86_pmu.extra_regs = intel_westmere_extra_regs;
5189                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5190
5191                 mem_attr = nhm_mem_events_attrs;
5192
5193                 /* UOPS_ISSUED.STALLED_CYCLES */
5194                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5195                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5196                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5197                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5198                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5199
5200                 intel_pmu_pebs_data_source_nhm();
5201                 extra_attr = nhm_format_attr;
5202                 pr_cont("Westmere events, ");
5203                 name = "westmere";
5204                 break;
5205
5206         case INTEL_FAM6_SANDYBRIDGE:
5207         case INTEL_FAM6_SANDYBRIDGE_X:
5208                 x86_add_quirk(intel_sandybridge_quirk);
5209                 x86_add_quirk(intel_ht_bug);
5210                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5211                        sizeof(hw_cache_event_ids));
5212                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5213                        sizeof(hw_cache_extra_regs));
5214
5215                 intel_pmu_lbr_init_snb();
5216
5217                 x86_pmu.event_constraints = intel_snb_event_constraints;
5218                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5219                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5220                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5221                         x86_pmu.extra_regs = intel_snbep_extra_regs;
5222                 else
5223                         x86_pmu.extra_regs = intel_snb_extra_regs;
5224
5225
5226                 /* all extra regs are per-cpu when HT is on */
5227                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5228                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5229
5230                 td_attr  = snb_events_attrs;
5231                 mem_attr = snb_mem_events_attrs;
5232
5233                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5234                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5235                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5236                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5237                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5238                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5239
5240                 extra_attr = nhm_format_attr;
5241
5242                 pr_cont("SandyBridge events, ");
5243                 name = "sandybridge";
5244                 break;
5245
5246         case INTEL_FAM6_IVYBRIDGE:
5247         case INTEL_FAM6_IVYBRIDGE_X:
5248                 x86_add_quirk(intel_ht_bug);
5249                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5250                        sizeof(hw_cache_event_ids));
5251                 /* dTLB-load-misses on IVB is different than SNB */
5252                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5253
5254                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5255                        sizeof(hw_cache_extra_regs));
5256
5257                 intel_pmu_lbr_init_snb();
5258
5259                 x86_pmu.event_constraints = intel_ivb_event_constraints;
5260                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5261                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5262                 x86_pmu.pebs_prec_dist = true;
5263                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5264                         x86_pmu.extra_regs = intel_snbep_extra_regs;
5265                 else
5266                         x86_pmu.extra_regs = intel_snb_extra_regs;
5267                 /* all extra regs are per-cpu when HT is on */
5268                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5269                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5270
5271                 td_attr  = snb_events_attrs;
5272                 mem_attr = snb_mem_events_attrs;
5273
5274                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5275                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5276                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5277
5278                 extra_attr = nhm_format_attr;
5279
5280                 pr_cont("IvyBridge events, ");
5281                 name = "ivybridge";
5282                 break;
5283
5284
5285         case INTEL_FAM6_HASWELL:
5286         case INTEL_FAM6_HASWELL_X:
5287         case INTEL_FAM6_HASWELL_L:
5288         case INTEL_FAM6_HASWELL_G:
5289                 x86_add_quirk(intel_ht_bug);
5290                 x86_add_quirk(intel_pebs_isolation_quirk);
5291                 x86_pmu.late_ack = true;
5292                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5293                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5294
5295                 intel_pmu_lbr_init_hsw();
5296
5297                 x86_pmu.event_constraints = intel_hsw_event_constraints;
5298                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5299                 x86_pmu.extra_regs = intel_snbep_extra_regs;
5300                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5301                 x86_pmu.pebs_prec_dist = true;
5302                 /* all extra regs are per-cpu when HT is on */
5303                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5304                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5305
5306                 x86_pmu.hw_config = hsw_hw_config;
5307                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5308                 x86_pmu.lbr_double_abort = true;
5309                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5310                         hsw_format_attr : nhm_format_attr;
5311                 td_attr  = hsw_events_attrs;
5312                 mem_attr = hsw_mem_events_attrs;
5313                 tsx_attr = hsw_tsx_events_attrs;
5314                 pr_cont("Haswell events, ");
5315                 name = "haswell";
5316                 break;
5317
5318         case INTEL_FAM6_BROADWELL:
5319         case INTEL_FAM6_BROADWELL_D:
5320         case INTEL_FAM6_BROADWELL_G:
5321         case INTEL_FAM6_BROADWELL_X:
5322                 x86_add_quirk(intel_pebs_isolation_quirk);
5323                 x86_pmu.late_ack = true;
5324                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5325                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5326
5327                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5328                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5329                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
5330                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5331                                                                           HSW_SNOOP_DRAM;
5332                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5333                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5334                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5335                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5336
5337                 intel_pmu_lbr_init_hsw();
5338
5339                 x86_pmu.event_constraints = intel_bdw_event_constraints;
5340                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5341                 x86_pmu.extra_regs = intel_snbep_extra_regs;
5342                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5343                 x86_pmu.pebs_prec_dist = true;
5344                 /* all extra regs are per-cpu when HT is on */
5345                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5346                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5347
5348                 x86_pmu.hw_config = hsw_hw_config;
5349                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5350                 x86_pmu.limit_period = bdw_limit_period;
5351                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5352                         hsw_format_attr : nhm_format_attr;
5353                 td_attr  = hsw_events_attrs;
5354                 mem_attr = hsw_mem_events_attrs;
5355                 tsx_attr = hsw_tsx_events_attrs;
5356                 pr_cont("Broadwell events, ");
5357                 name = "broadwell";
5358                 break;
5359
5360         case INTEL_FAM6_XEON_PHI_KNL:
5361         case INTEL_FAM6_XEON_PHI_KNM:
5362                 memcpy(hw_cache_event_ids,
5363                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5364                 memcpy(hw_cache_extra_regs,
5365                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5366                 intel_pmu_lbr_init_knl();
5367
5368                 x86_pmu.event_constraints = intel_slm_event_constraints;
5369                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5370                 x86_pmu.extra_regs = intel_knl_extra_regs;
5371
5372                 /* all extra regs are per-cpu when HT is on */
5373                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5374                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5375                 extra_attr = slm_format_attr;
5376                 pr_cont("Knights Landing/Mill events, ");
5377                 name = "knights-landing";
5378                 break;
5379
5380         case INTEL_FAM6_SKYLAKE_X:
5381                 pmem = true;
5382                 fallthrough;
5383         case INTEL_FAM6_SKYLAKE_L:
5384         case INTEL_FAM6_SKYLAKE:
5385         case INTEL_FAM6_KABYLAKE_L:
5386         case INTEL_FAM6_KABYLAKE:
5387         case INTEL_FAM6_COMETLAKE_L:
5388         case INTEL_FAM6_COMETLAKE:
5389                 x86_add_quirk(intel_pebs_isolation_quirk);
5390                 x86_pmu.late_ack = true;
5391                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5392                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5393                 intel_pmu_lbr_init_skl();
5394
5395                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5396                 event_attr_td_recovery_bubbles.event_str_noht =
5397                         "event=0xd,umask=0x1,cmask=1";
5398                 event_attr_td_recovery_bubbles.event_str_ht =
5399                         "event=0xd,umask=0x1,cmask=1,any=1";
5400
5401                 x86_pmu.event_constraints = intel_skl_event_constraints;
5402                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
5403                 x86_pmu.extra_regs = intel_skl_extra_regs;
5404                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
5405                 x86_pmu.pebs_prec_dist = true;
5406                 /* all extra regs are per-cpu when HT is on */
5407                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5408                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5409
5410                 x86_pmu.hw_config = hsw_hw_config;
5411                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5412                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5413                         hsw_format_attr : nhm_format_attr;
5414                 extra_skl_attr = skl_format_attr;
5415                 td_attr  = hsw_events_attrs;
5416                 mem_attr = hsw_mem_events_attrs;
5417                 tsx_attr = hsw_tsx_events_attrs;
5418                 intel_pmu_pebs_data_source_skl(pmem);
5419
5420                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
5421                         x86_pmu.flags |= PMU_FL_TFA;
5422                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
5423                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
5424                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
5425                 }
5426
5427                 pr_cont("Skylake events, ");
5428                 name = "skylake";
5429                 break;
5430
5431         case INTEL_FAM6_ICELAKE_X:
5432         case INTEL_FAM6_ICELAKE_D:
5433                 pmem = true;
5434                 fallthrough;
5435         case INTEL_FAM6_ICELAKE_L:
5436         case INTEL_FAM6_ICELAKE:
5437         case INTEL_FAM6_TIGERLAKE_L:
5438         case INTEL_FAM6_TIGERLAKE:
5439                 x86_pmu.late_ack = true;
5440                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5441                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5442                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5443                 intel_pmu_lbr_init_skl();
5444
5445                 x86_pmu.event_constraints = intel_icl_event_constraints;
5446                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
5447                 x86_pmu.extra_regs = intel_icl_extra_regs;
5448                 x86_pmu.pebs_aliases = NULL;
5449                 x86_pmu.pebs_prec_dist = true;
5450                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5451                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5452
5453                 x86_pmu.hw_config = hsw_hw_config;
5454                 x86_pmu.get_event_constraints = icl_get_event_constraints;
5455                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5456                         hsw_format_attr : nhm_format_attr;
5457                 extra_skl_attr = skl_format_attr;
5458                 mem_attr = icl_events_attrs;
5459                 td_attr = icl_td_events_attrs;
5460                 tsx_attr = icl_tsx_events_attrs;
5461                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xca, .umask=0x02);
5462                 x86_pmu.lbr_pt_coexist = true;
5463                 intel_pmu_pebs_data_source_skl(pmem);
5464                 x86_pmu.update_topdown_event = icl_update_topdown_event;
5465                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
5466                 pr_cont("Icelake events, ");
5467                 name = "icelake";
5468                 break;
5469
5470         default:
5471                 switch (x86_pmu.version) {
5472                 case 1:
5473                         x86_pmu.event_constraints = intel_v1_event_constraints;
5474                         pr_cont("generic architected perfmon v1, ");
5475                         name = "generic_arch_v1";
5476                         break;
5477                 default:
5478                         /*
5479                          * default constraints for v2 and up
5480                          */
5481                         x86_pmu.event_constraints = intel_gen_event_constraints;
5482                         pr_cont("generic architected perfmon, ");
5483                         name = "generic_arch_v2+";
5484                         break;
5485                 }
5486         }
5487
5488         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
5489
5490
5491         group_events_td.attrs  = td_attr;
5492         group_events_mem.attrs = mem_attr;
5493         group_events_tsx.attrs = tsx_attr;
5494         group_format_extra.attrs = extra_attr;
5495         group_format_extra_skl.attrs = extra_skl_attr;
5496
5497         x86_pmu.attr_update = attr_update;
5498
5499         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
5500                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5501                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
5502                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
5503         }
5504         x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5505
5506         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5507                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5508                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
5509                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
5510         }
5511
5512         x86_pmu.intel_ctrl |=
5513                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
5514
5515         if (x86_pmu.event_constraints) {
5516                 /*
5517                  * event on fixed counter2 (REF_CYCLES) only works on this
5518                  * counter, so do not extend mask to generic counters
5519                  */
5520                 for_each_event_constraint(c, x86_pmu.event_constraints) {
5521                         /*
5522                          * Don't extend the topdown slots and metrics
5523                          * events to the generic counters.
5524                          */
5525                         if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5526                                 c->weight = hweight64(c->idxmsk64);
5527                                 continue;
5528                         }
5529
5530                         if (c->cmask == FIXED_EVENT_FLAGS
5531                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
5532                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5533                         }
5534                         c->idxmsk64 &=
5535                                 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5536                         c->weight = hweight64(c->idxmsk64);
5537                 }
5538         }
5539
5540         /*
5541          * Access LBR MSR may cause #GP under certain circumstances.
5542          * E.g. KVM doesn't support LBR MSR
5543          * Check all LBT MSR here.
5544          * Disable LBR access if any LBR MSRs can not be accessed.
5545          */
5546         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
5547                 x86_pmu.lbr_nr = 0;
5548         for (i = 0; i < x86_pmu.lbr_nr; i++) {
5549                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
5550                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
5551                         x86_pmu.lbr_nr = 0;
5552         }
5553
5554         if (x86_pmu.lbr_nr)
5555                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5556
5557         /*
5558          * Access extra MSR may cause #GP under certain circumstances.
5559          * E.g. KVM doesn't support offcore event
5560          * Check all extra_regs here.
5561          */
5562         if (x86_pmu.extra_regs) {
5563                 for (er = x86_pmu.extra_regs; er->msr; er++) {
5564                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
5565                         /* Disable LBR select mapping */
5566                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5567                                 x86_pmu.lbr_sel_map = NULL;
5568                 }
5569         }
5570
5571         /* Support full width counters using alternative MSR range */
5572         if (x86_pmu.intel_cap.full_width_write) {
5573                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5574                 x86_pmu.perfctr = MSR_IA32_PMC0;
5575                 pr_cont("full-width counters, ");
5576         }
5577
5578         /*
5579          * For arch perfmon 4 use counter freezing to avoid
5580          * several MSR accesses in the PMI.
5581          */
5582         if (x86_pmu.counter_freezing)
5583                 x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
5584
5585         if (x86_pmu.intel_cap.perf_metrics)
5586                 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5587
5588         return 0;
5589 }
5590
5591 /*
5592  * HT bug: phase 2 init
5593  * Called once we have valid topology information to check
5594  * whether or not HT is enabled
5595  * If HT is off, then we disable the workaround
5596  */
5597 static __init int fixup_ht_bug(void)
5598 {
5599         int c;
5600         /*
5601          * problem not present on this CPU model, nothing to do
5602          */
5603         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
5604                 return 0;
5605
5606         if (topology_max_smt_threads() > 1) {
5607                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5608                 return 0;
5609         }
5610
5611         cpus_read_lock();
5612
5613         hardlockup_detector_perf_stop();
5614
5615         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
5616
5617         x86_pmu.start_scheduling = NULL;
5618         x86_pmu.commit_scheduling = NULL;
5619         x86_pmu.stop_scheduling = NULL;
5620
5621         hardlockup_detector_perf_restart();
5622
5623         for_each_online_cpu(c)
5624                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5625
5626         cpus_read_unlock();
5627         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5628         return 0;
5629 }
5630 subsys_initcall(fixup_ht_bug)