ARM: s3c64xx: bring back notes from removed debug-macro.S
[linux-2.6-microblaze.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24
25 #include "../perf_event.h"
26
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
33         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
34         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
35         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
36         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
37         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
38         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
39         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
40 };
41
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50         EVENT_CONSTRAINT_END
51 };
52
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68         EVENT_CONSTRAINT_END
69 };
70
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84         EVENT_CONSTRAINT_END
85 };
86
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92         EVENT_EXTRA_END
93 };
94
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104         EVENT_CONSTRAINT_END
105 };
106
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121
122         /*
123          * When HT is off these events can only run on the bottom 4 counters
124          * When HT is on, they are impacted by the HT bug and require EXCL access
125          */
126         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130
131         EVENT_CONSTRAINT_END
132 };
133
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
141         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149
150         /*
151          * When HT is off these events can only run on the bottom 4 counters
152          * When HT is on, they are impacted by the HT bug and require EXCL access
153          */
154         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158
159         EVENT_CONSTRAINT_END
160 };
161
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168         EVENT_EXTRA_END
169 };
170
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173         EVENT_CONSTRAINT_END
174 };
175
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181         EVENT_CONSTRAINT_END
182 };
183
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189         EVENT_CONSTRAINT_END
190 };
191
192 static struct event_constraint intel_skl_event_constraints[] = {
193         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
194         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
195         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
196         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
197
198         /*
199          * when HT is off, these can only run on the bottom 4 counters
200          */
201         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
203         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
204         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
205         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
206
207         EVENT_CONSTRAINT_END
208 };
209
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213         EVENT_EXTRA_END
214 };
215
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221         EVENT_EXTRA_END
222 };
223
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229         EVENT_EXTRA_END
230 };
231
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236         /*
237          * Note the low 8 bits eventsel code is not a continuous field, containing
238          * some #GPing bits. These are masked out.
239          */
240         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241         EVENT_EXTRA_END
242 };
243
244 static struct event_constraint intel_icl_event_constraints[] = {
245         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
246         INTEL_UEVENT_CONSTRAINT(0x1c0, 0),      /* INST_RETIRED.PREC_DIST */
247         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
248         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
249         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
250         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
251         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
252         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
253         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
254         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
255         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
256         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
257         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
258         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
259         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
260         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
261         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
262         EVENT_CONSTRAINT_END
263 };
264
265 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
266         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
267         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
268         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
269         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
270         EVENT_EXTRA_END
271 };
272
273 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
274 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
275 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
276
277 static struct attribute *nhm_mem_events_attrs[] = {
278         EVENT_PTR(mem_ld_nhm),
279         NULL,
280 };
281
282 /*
283  * topdown events for Intel Core CPUs.
284  *
285  * The events are all in slots, which is a free slot in a 4 wide
286  * pipeline. Some events are already reported in slots, for cycle
287  * events we multiply by the pipeline width (4).
288  *
289  * With Hyper Threading on, topdown metrics are either summed or averaged
290  * between the threads of a core: (count_t0 + count_t1).
291  *
292  * For the average case the metric is always scaled to pipeline width,
293  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
294  */
295
296 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
297         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
298         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
299 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
300 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
301         "event=0xe,umask=0x1");                 /* uops_issued.any */
302 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
303         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
304 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
305         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
306 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
307         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
308         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
309 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
310         "4", "2");
311
312 static struct attribute *snb_events_attrs[] = {
313         EVENT_PTR(td_slots_issued),
314         EVENT_PTR(td_slots_retired),
315         EVENT_PTR(td_fetch_bubbles),
316         EVENT_PTR(td_total_slots),
317         EVENT_PTR(td_total_slots_scale),
318         EVENT_PTR(td_recovery_bubbles),
319         EVENT_PTR(td_recovery_bubbles_scale),
320         NULL,
321 };
322
323 static struct attribute *snb_mem_events_attrs[] = {
324         EVENT_PTR(mem_ld_snb),
325         EVENT_PTR(mem_st_snb),
326         NULL,
327 };
328
329 static struct event_constraint intel_hsw_event_constraints[] = {
330         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
331         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
332         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
333         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
334         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
335         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
336         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
337         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
338         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
339         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
340         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
341         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
342
343         /*
344          * When HT is off these events can only run on the bottom 4 counters
345          * When HT is on, they are impacted by the HT bug and require EXCL access
346          */
347         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
348         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
349         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
350         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
351
352         EVENT_CONSTRAINT_END
353 };
354
355 static struct event_constraint intel_bdw_event_constraints[] = {
356         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
357         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
358         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
359         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
360         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
361         /*
362          * when HT is off, these can only run on the bottom 4 counters
363          */
364         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
365         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
366         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
367         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
368         EVENT_CONSTRAINT_END
369 };
370
371 static u64 intel_pmu_event_map(int hw_event)
372 {
373         return intel_perfmon_event_map[hw_event];
374 }
375
376 /*
377  * Notes on the events:
378  * - data reads do not include code reads (comparable to earlier tables)
379  * - data counts include speculative execution (except L1 write, dtlb, bpu)
380  * - remote node access includes remote memory, remote cache, remote mmio.
381  * - prefetches are not included in the counts.
382  * - icache miss does not include decoded icache
383  */
384
385 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
386 #define SKL_DEMAND_RFO                  BIT_ULL(1)
387 #define SKL_ANY_RESPONSE                BIT_ULL(16)
388 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
389 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
390 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
391 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
392 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
393 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
394                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
395                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
396                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
397 #define SKL_SPL_HIT                     BIT_ULL(30)
398 #define SKL_SNOOP_NONE                  BIT_ULL(31)
399 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
400 #define SKL_SNOOP_MISS                  BIT_ULL(33)
401 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
402 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
403 #define SKL_SNOOP_HITM                  BIT_ULL(36)
404 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
405 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
406                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
407                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
408                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
409 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
410 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
411                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
412                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
413                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
414 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
415 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
416 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
417                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
418                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
419
420 static __initconst const u64 skl_hw_cache_event_ids
421                                 [PERF_COUNT_HW_CACHE_MAX]
422                                 [PERF_COUNT_HW_CACHE_OP_MAX]
423                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
424 {
425  [ C(L1D ) ] = {
426         [ C(OP_READ) ] = {
427                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
428                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
429         },
430         [ C(OP_WRITE) ] = {
431                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
432                 [ C(RESULT_MISS)   ] = 0x0,
433         },
434         [ C(OP_PREFETCH) ] = {
435                 [ C(RESULT_ACCESS) ] = 0x0,
436                 [ C(RESULT_MISS)   ] = 0x0,
437         },
438  },
439  [ C(L1I ) ] = {
440         [ C(OP_READ) ] = {
441                 [ C(RESULT_ACCESS) ] = 0x0,
442                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
443         },
444         [ C(OP_WRITE) ] = {
445                 [ C(RESULT_ACCESS) ] = -1,
446                 [ C(RESULT_MISS)   ] = -1,
447         },
448         [ C(OP_PREFETCH) ] = {
449                 [ C(RESULT_ACCESS) ] = 0x0,
450                 [ C(RESULT_MISS)   ] = 0x0,
451         },
452  },
453  [ C(LL  ) ] = {
454         [ C(OP_READ) ] = {
455                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
456                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
457         },
458         [ C(OP_WRITE) ] = {
459                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
460                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
461         },
462         [ C(OP_PREFETCH) ] = {
463                 [ C(RESULT_ACCESS) ] = 0x0,
464                 [ C(RESULT_MISS)   ] = 0x0,
465         },
466  },
467  [ C(DTLB) ] = {
468         [ C(OP_READ) ] = {
469                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
470                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
471         },
472         [ C(OP_WRITE) ] = {
473                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
474                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
475         },
476         [ C(OP_PREFETCH) ] = {
477                 [ C(RESULT_ACCESS) ] = 0x0,
478                 [ C(RESULT_MISS)   ] = 0x0,
479         },
480  },
481  [ C(ITLB) ] = {
482         [ C(OP_READ) ] = {
483                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
484                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
485         },
486         [ C(OP_WRITE) ] = {
487                 [ C(RESULT_ACCESS) ] = -1,
488                 [ C(RESULT_MISS)   ] = -1,
489         },
490         [ C(OP_PREFETCH) ] = {
491                 [ C(RESULT_ACCESS) ] = -1,
492                 [ C(RESULT_MISS)   ] = -1,
493         },
494  },
495  [ C(BPU ) ] = {
496         [ C(OP_READ) ] = {
497                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
498                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
499         },
500         [ C(OP_WRITE) ] = {
501                 [ C(RESULT_ACCESS) ] = -1,
502                 [ C(RESULT_MISS)   ] = -1,
503         },
504         [ C(OP_PREFETCH) ] = {
505                 [ C(RESULT_ACCESS) ] = -1,
506                 [ C(RESULT_MISS)   ] = -1,
507         },
508  },
509  [ C(NODE) ] = {
510         [ C(OP_READ) ] = {
511                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
512                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
513         },
514         [ C(OP_WRITE) ] = {
515                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
516                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
517         },
518         [ C(OP_PREFETCH) ] = {
519                 [ C(RESULT_ACCESS) ] = 0x0,
520                 [ C(RESULT_MISS)   ] = 0x0,
521         },
522  },
523 };
524
525 static __initconst const u64 skl_hw_cache_extra_regs
526                                 [PERF_COUNT_HW_CACHE_MAX]
527                                 [PERF_COUNT_HW_CACHE_OP_MAX]
528                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
529 {
530  [ C(LL  ) ] = {
531         [ C(OP_READ) ] = {
532                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
533                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
534                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
535                                        SKL_L3_MISS|SKL_ANY_SNOOP|
536                                        SKL_SUPPLIER_NONE,
537         },
538         [ C(OP_WRITE) ] = {
539                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
540                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
541                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
542                                        SKL_L3_MISS|SKL_ANY_SNOOP|
543                                        SKL_SUPPLIER_NONE,
544         },
545         [ C(OP_PREFETCH) ] = {
546                 [ C(RESULT_ACCESS) ] = 0x0,
547                 [ C(RESULT_MISS)   ] = 0x0,
548         },
549  },
550  [ C(NODE) ] = {
551         [ C(OP_READ) ] = {
552                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
553                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
554                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
555                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
556         },
557         [ C(OP_WRITE) ] = {
558                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
559                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
560                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
561                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
562         },
563         [ C(OP_PREFETCH) ] = {
564                 [ C(RESULT_ACCESS) ] = 0x0,
565                 [ C(RESULT_MISS)   ] = 0x0,
566         },
567  },
568 };
569
570 #define SNB_DMND_DATA_RD        (1ULL << 0)
571 #define SNB_DMND_RFO            (1ULL << 1)
572 #define SNB_DMND_IFETCH         (1ULL << 2)
573 #define SNB_DMND_WB             (1ULL << 3)
574 #define SNB_PF_DATA_RD          (1ULL << 4)
575 #define SNB_PF_RFO              (1ULL << 5)
576 #define SNB_PF_IFETCH           (1ULL << 6)
577 #define SNB_LLC_DATA_RD         (1ULL << 7)
578 #define SNB_LLC_RFO             (1ULL << 8)
579 #define SNB_LLC_IFETCH          (1ULL << 9)
580 #define SNB_BUS_LOCKS           (1ULL << 10)
581 #define SNB_STRM_ST             (1ULL << 11)
582 #define SNB_OTHER               (1ULL << 15)
583 #define SNB_RESP_ANY            (1ULL << 16)
584 #define SNB_NO_SUPP             (1ULL << 17)
585 #define SNB_LLC_HITM            (1ULL << 18)
586 #define SNB_LLC_HITE            (1ULL << 19)
587 #define SNB_LLC_HITS            (1ULL << 20)
588 #define SNB_LLC_HITF            (1ULL << 21)
589 #define SNB_LOCAL               (1ULL << 22)
590 #define SNB_REMOTE              (0xffULL << 23)
591 #define SNB_SNP_NONE            (1ULL << 31)
592 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
593 #define SNB_SNP_MISS            (1ULL << 33)
594 #define SNB_NO_FWD              (1ULL << 34)
595 #define SNB_SNP_FWD             (1ULL << 35)
596 #define SNB_HITM                (1ULL << 36)
597 #define SNB_NON_DRAM            (1ULL << 37)
598
599 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
600 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
601 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
602
603 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
604                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
605                                  SNB_HITM)
606
607 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
608 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
609
610 #define SNB_L3_ACCESS           SNB_RESP_ANY
611 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
612
613 static __initconst const u64 snb_hw_cache_extra_regs
614                                 [PERF_COUNT_HW_CACHE_MAX]
615                                 [PERF_COUNT_HW_CACHE_OP_MAX]
616                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
617 {
618  [ C(LL  ) ] = {
619         [ C(OP_READ) ] = {
620                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
621                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
622         },
623         [ C(OP_WRITE) ] = {
624                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
625                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
626         },
627         [ C(OP_PREFETCH) ] = {
628                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
629                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
630         },
631  },
632  [ C(NODE) ] = {
633         [ C(OP_READ) ] = {
634                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
635                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
636         },
637         [ C(OP_WRITE) ] = {
638                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
639                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
640         },
641         [ C(OP_PREFETCH) ] = {
642                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
643                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
644         },
645  },
646 };
647
648 static __initconst const u64 snb_hw_cache_event_ids
649                                 [PERF_COUNT_HW_CACHE_MAX]
650                                 [PERF_COUNT_HW_CACHE_OP_MAX]
651                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
652 {
653  [ C(L1D) ] = {
654         [ C(OP_READ) ] = {
655                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
656                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
657         },
658         [ C(OP_WRITE) ] = {
659                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
660                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
661         },
662         [ C(OP_PREFETCH) ] = {
663                 [ C(RESULT_ACCESS) ] = 0x0,
664                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
665         },
666  },
667  [ C(L1I ) ] = {
668         [ C(OP_READ) ] = {
669                 [ C(RESULT_ACCESS) ] = 0x0,
670                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
671         },
672         [ C(OP_WRITE) ] = {
673                 [ C(RESULT_ACCESS) ] = -1,
674                 [ C(RESULT_MISS)   ] = -1,
675         },
676         [ C(OP_PREFETCH) ] = {
677                 [ C(RESULT_ACCESS) ] = 0x0,
678                 [ C(RESULT_MISS)   ] = 0x0,
679         },
680  },
681  [ C(LL  ) ] = {
682         [ C(OP_READ) ] = {
683                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
684                 [ C(RESULT_ACCESS) ] = 0x01b7,
685                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
686                 [ C(RESULT_MISS)   ] = 0x01b7,
687         },
688         [ C(OP_WRITE) ] = {
689                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
690                 [ C(RESULT_ACCESS) ] = 0x01b7,
691                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
692                 [ C(RESULT_MISS)   ] = 0x01b7,
693         },
694         [ C(OP_PREFETCH) ] = {
695                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
696                 [ C(RESULT_ACCESS) ] = 0x01b7,
697                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
698                 [ C(RESULT_MISS)   ] = 0x01b7,
699         },
700  },
701  [ C(DTLB) ] = {
702         [ C(OP_READ) ] = {
703                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
704                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
705         },
706         [ C(OP_WRITE) ] = {
707                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
708                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
709         },
710         [ C(OP_PREFETCH) ] = {
711                 [ C(RESULT_ACCESS) ] = 0x0,
712                 [ C(RESULT_MISS)   ] = 0x0,
713         },
714  },
715  [ C(ITLB) ] = {
716         [ C(OP_READ) ] = {
717                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
718                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
719         },
720         [ C(OP_WRITE) ] = {
721                 [ C(RESULT_ACCESS) ] = -1,
722                 [ C(RESULT_MISS)   ] = -1,
723         },
724         [ C(OP_PREFETCH) ] = {
725                 [ C(RESULT_ACCESS) ] = -1,
726                 [ C(RESULT_MISS)   ] = -1,
727         },
728  },
729  [ C(BPU ) ] = {
730         [ C(OP_READ) ] = {
731                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
732                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
733         },
734         [ C(OP_WRITE) ] = {
735                 [ C(RESULT_ACCESS) ] = -1,
736                 [ C(RESULT_MISS)   ] = -1,
737         },
738         [ C(OP_PREFETCH) ] = {
739                 [ C(RESULT_ACCESS) ] = -1,
740                 [ C(RESULT_MISS)   ] = -1,
741         },
742  },
743  [ C(NODE) ] = {
744         [ C(OP_READ) ] = {
745                 [ C(RESULT_ACCESS) ] = 0x01b7,
746                 [ C(RESULT_MISS)   ] = 0x01b7,
747         },
748         [ C(OP_WRITE) ] = {
749                 [ C(RESULT_ACCESS) ] = 0x01b7,
750                 [ C(RESULT_MISS)   ] = 0x01b7,
751         },
752         [ C(OP_PREFETCH) ] = {
753                 [ C(RESULT_ACCESS) ] = 0x01b7,
754                 [ C(RESULT_MISS)   ] = 0x01b7,
755         },
756  },
757
758 };
759
760 /*
761  * Notes on the events:
762  * - data reads do not include code reads (comparable to earlier tables)
763  * - data counts include speculative execution (except L1 write, dtlb, bpu)
764  * - remote node access includes remote memory, remote cache, remote mmio.
765  * - prefetches are not included in the counts because they are not
766  *   reliably counted.
767  */
768
769 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
770 #define HSW_DEMAND_RFO                  BIT_ULL(1)
771 #define HSW_ANY_RESPONSE                BIT_ULL(16)
772 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
773 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
774 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
775 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
776 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
777 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
778                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
779                                          HSW_L3_MISS_REMOTE_HOP2P)
780 #define HSW_SNOOP_NONE                  BIT_ULL(31)
781 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
782 #define HSW_SNOOP_MISS                  BIT_ULL(33)
783 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
784 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
785 #define HSW_SNOOP_HITM                  BIT_ULL(36)
786 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
787 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
788                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
789                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
790                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
791 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
792 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
793 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
794 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
795                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
796 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
797
798 #define BDW_L3_MISS_LOCAL               BIT(26)
799 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
800                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
801                                          HSW_L3_MISS_REMOTE_HOP2P)
802
803
804 static __initconst const u64 hsw_hw_cache_event_ids
805                                 [PERF_COUNT_HW_CACHE_MAX]
806                                 [PERF_COUNT_HW_CACHE_OP_MAX]
807                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
808 {
809  [ C(L1D ) ] = {
810         [ C(OP_READ) ] = {
811                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
812                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
813         },
814         [ C(OP_WRITE) ] = {
815                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
816                 [ C(RESULT_MISS)   ] = 0x0,
817         },
818         [ C(OP_PREFETCH) ] = {
819                 [ C(RESULT_ACCESS) ] = 0x0,
820                 [ C(RESULT_MISS)   ] = 0x0,
821         },
822  },
823  [ C(L1I ) ] = {
824         [ C(OP_READ) ] = {
825                 [ C(RESULT_ACCESS) ] = 0x0,
826                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
827         },
828         [ C(OP_WRITE) ] = {
829                 [ C(RESULT_ACCESS) ] = -1,
830                 [ C(RESULT_MISS)   ] = -1,
831         },
832         [ C(OP_PREFETCH) ] = {
833                 [ C(RESULT_ACCESS) ] = 0x0,
834                 [ C(RESULT_MISS)   ] = 0x0,
835         },
836  },
837  [ C(LL  ) ] = {
838         [ C(OP_READ) ] = {
839                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
840                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
841         },
842         [ C(OP_WRITE) ] = {
843                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
844                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
845         },
846         [ C(OP_PREFETCH) ] = {
847                 [ C(RESULT_ACCESS) ] = 0x0,
848                 [ C(RESULT_MISS)   ] = 0x0,
849         },
850  },
851  [ C(DTLB) ] = {
852         [ C(OP_READ) ] = {
853                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
854                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
855         },
856         [ C(OP_WRITE) ] = {
857                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
858                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
859         },
860         [ C(OP_PREFETCH) ] = {
861                 [ C(RESULT_ACCESS) ] = 0x0,
862                 [ C(RESULT_MISS)   ] = 0x0,
863         },
864  },
865  [ C(ITLB) ] = {
866         [ C(OP_READ) ] = {
867                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
868                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
869         },
870         [ C(OP_WRITE) ] = {
871                 [ C(RESULT_ACCESS) ] = -1,
872                 [ C(RESULT_MISS)   ] = -1,
873         },
874         [ C(OP_PREFETCH) ] = {
875                 [ C(RESULT_ACCESS) ] = -1,
876                 [ C(RESULT_MISS)   ] = -1,
877         },
878  },
879  [ C(BPU ) ] = {
880         [ C(OP_READ) ] = {
881                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
882                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
883         },
884         [ C(OP_WRITE) ] = {
885                 [ C(RESULT_ACCESS) ] = -1,
886                 [ C(RESULT_MISS)   ] = -1,
887         },
888         [ C(OP_PREFETCH) ] = {
889                 [ C(RESULT_ACCESS) ] = -1,
890                 [ C(RESULT_MISS)   ] = -1,
891         },
892  },
893  [ C(NODE) ] = {
894         [ C(OP_READ) ] = {
895                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
896                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
897         },
898         [ C(OP_WRITE) ] = {
899                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
900                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
901         },
902         [ C(OP_PREFETCH) ] = {
903                 [ C(RESULT_ACCESS) ] = 0x0,
904                 [ C(RESULT_MISS)   ] = 0x0,
905         },
906  },
907 };
908
909 static __initconst const u64 hsw_hw_cache_extra_regs
910                                 [PERF_COUNT_HW_CACHE_MAX]
911                                 [PERF_COUNT_HW_CACHE_OP_MAX]
912                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
913 {
914  [ C(LL  ) ] = {
915         [ C(OP_READ) ] = {
916                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
917                                        HSW_LLC_ACCESS,
918                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
919                                        HSW_L3_MISS|HSW_ANY_SNOOP,
920         },
921         [ C(OP_WRITE) ] = {
922                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
923                                        HSW_LLC_ACCESS,
924                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
925                                        HSW_L3_MISS|HSW_ANY_SNOOP,
926         },
927         [ C(OP_PREFETCH) ] = {
928                 [ C(RESULT_ACCESS) ] = 0x0,
929                 [ C(RESULT_MISS)   ] = 0x0,
930         },
931  },
932  [ C(NODE) ] = {
933         [ C(OP_READ) ] = {
934                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
935                                        HSW_L3_MISS_LOCAL_DRAM|
936                                        HSW_SNOOP_DRAM,
937                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
938                                        HSW_L3_MISS_REMOTE|
939                                        HSW_SNOOP_DRAM,
940         },
941         [ C(OP_WRITE) ] = {
942                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
943                                        HSW_L3_MISS_LOCAL_DRAM|
944                                        HSW_SNOOP_DRAM,
945                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
946                                        HSW_L3_MISS_REMOTE|
947                                        HSW_SNOOP_DRAM,
948         },
949         [ C(OP_PREFETCH) ] = {
950                 [ C(RESULT_ACCESS) ] = 0x0,
951                 [ C(RESULT_MISS)   ] = 0x0,
952         },
953  },
954 };
955
956 static __initconst const u64 westmere_hw_cache_event_ids
957                                 [PERF_COUNT_HW_CACHE_MAX]
958                                 [PERF_COUNT_HW_CACHE_OP_MAX]
959                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
960 {
961  [ C(L1D) ] = {
962         [ C(OP_READ) ] = {
963                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
964                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
965         },
966         [ C(OP_WRITE) ] = {
967                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
968                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
969         },
970         [ C(OP_PREFETCH) ] = {
971                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
972                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
973         },
974  },
975  [ C(L1I ) ] = {
976         [ C(OP_READ) ] = {
977                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
978                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
979         },
980         [ C(OP_WRITE) ] = {
981                 [ C(RESULT_ACCESS) ] = -1,
982                 [ C(RESULT_MISS)   ] = -1,
983         },
984         [ C(OP_PREFETCH) ] = {
985                 [ C(RESULT_ACCESS) ] = 0x0,
986                 [ C(RESULT_MISS)   ] = 0x0,
987         },
988  },
989  [ C(LL  ) ] = {
990         [ C(OP_READ) ] = {
991                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
992                 [ C(RESULT_ACCESS) ] = 0x01b7,
993                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
994                 [ C(RESULT_MISS)   ] = 0x01b7,
995         },
996         /*
997          * Use RFO, not WRITEBACK, because a write miss would typically occur
998          * on RFO.
999          */
1000         [ C(OP_WRITE) ] = {
1001                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1002                 [ C(RESULT_ACCESS) ] = 0x01b7,
1003                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1004                 [ C(RESULT_MISS)   ] = 0x01b7,
1005         },
1006         [ C(OP_PREFETCH) ] = {
1007                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1008                 [ C(RESULT_ACCESS) ] = 0x01b7,
1009                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1010                 [ C(RESULT_MISS)   ] = 0x01b7,
1011         },
1012  },
1013  [ C(DTLB) ] = {
1014         [ C(OP_READ) ] = {
1015                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1016                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1017         },
1018         [ C(OP_WRITE) ] = {
1019                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1020                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1021         },
1022         [ C(OP_PREFETCH) ] = {
1023                 [ C(RESULT_ACCESS) ] = 0x0,
1024                 [ C(RESULT_MISS)   ] = 0x0,
1025         },
1026  },
1027  [ C(ITLB) ] = {
1028         [ C(OP_READ) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1030                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1031         },
1032         [ C(OP_WRITE) ] = {
1033                 [ C(RESULT_ACCESS) ] = -1,
1034                 [ C(RESULT_MISS)   ] = -1,
1035         },
1036         [ C(OP_PREFETCH) ] = {
1037                 [ C(RESULT_ACCESS) ] = -1,
1038                 [ C(RESULT_MISS)   ] = -1,
1039         },
1040  },
1041  [ C(BPU ) ] = {
1042         [ C(OP_READ) ] = {
1043                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1044                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1045         },
1046         [ C(OP_WRITE) ] = {
1047                 [ C(RESULT_ACCESS) ] = -1,
1048                 [ C(RESULT_MISS)   ] = -1,
1049         },
1050         [ C(OP_PREFETCH) ] = {
1051                 [ C(RESULT_ACCESS) ] = -1,
1052                 [ C(RESULT_MISS)   ] = -1,
1053         },
1054  },
1055  [ C(NODE) ] = {
1056         [ C(OP_READ) ] = {
1057                 [ C(RESULT_ACCESS) ] = 0x01b7,
1058                 [ C(RESULT_MISS)   ] = 0x01b7,
1059         },
1060         [ C(OP_WRITE) ] = {
1061                 [ C(RESULT_ACCESS) ] = 0x01b7,
1062                 [ C(RESULT_MISS)   ] = 0x01b7,
1063         },
1064         [ C(OP_PREFETCH) ] = {
1065                 [ C(RESULT_ACCESS) ] = 0x01b7,
1066                 [ C(RESULT_MISS)   ] = 0x01b7,
1067         },
1068  },
1069 };
1070
1071 /*
1072  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1073  * See IA32 SDM Vol 3B 30.6.1.3
1074  */
1075
1076 #define NHM_DMND_DATA_RD        (1 << 0)
1077 #define NHM_DMND_RFO            (1 << 1)
1078 #define NHM_DMND_IFETCH         (1 << 2)
1079 #define NHM_DMND_WB             (1 << 3)
1080 #define NHM_PF_DATA_RD          (1 << 4)
1081 #define NHM_PF_DATA_RFO         (1 << 5)
1082 #define NHM_PF_IFETCH           (1 << 6)
1083 #define NHM_OFFCORE_OTHER       (1 << 7)
1084 #define NHM_UNCORE_HIT          (1 << 8)
1085 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1086 #define NHM_OTHER_CORE_HITM     (1 << 10)
1087                                 /* reserved */
1088 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1089 #define NHM_REMOTE_DRAM         (1 << 13)
1090 #define NHM_LOCAL_DRAM          (1 << 14)
1091 #define NHM_NON_DRAM            (1 << 15)
1092
1093 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1094 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1095
1096 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1097 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1098 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1099
1100 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1101 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1102 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1103
1104 static __initconst const u64 nehalem_hw_cache_extra_regs
1105                                 [PERF_COUNT_HW_CACHE_MAX]
1106                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1107                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1108 {
1109  [ C(LL  ) ] = {
1110         [ C(OP_READ) ] = {
1111                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1112                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1113         },
1114         [ C(OP_WRITE) ] = {
1115                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1116                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1117         },
1118         [ C(OP_PREFETCH) ] = {
1119                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1120                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1121         },
1122  },
1123  [ C(NODE) ] = {
1124         [ C(OP_READ) ] = {
1125                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1126                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1127         },
1128         [ C(OP_WRITE) ] = {
1129                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1130                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1131         },
1132         [ C(OP_PREFETCH) ] = {
1133                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1134                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1135         },
1136  },
1137 };
1138
1139 static __initconst const u64 nehalem_hw_cache_event_ids
1140                                 [PERF_COUNT_HW_CACHE_MAX]
1141                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1142                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1143 {
1144  [ C(L1D) ] = {
1145         [ C(OP_READ) ] = {
1146                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1147                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1148         },
1149         [ C(OP_WRITE) ] = {
1150                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1151                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1152         },
1153         [ C(OP_PREFETCH) ] = {
1154                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1155                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1156         },
1157  },
1158  [ C(L1I ) ] = {
1159         [ C(OP_READ) ] = {
1160                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1161                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1162         },
1163         [ C(OP_WRITE) ] = {
1164                 [ C(RESULT_ACCESS) ] = -1,
1165                 [ C(RESULT_MISS)   ] = -1,
1166         },
1167         [ C(OP_PREFETCH) ] = {
1168                 [ C(RESULT_ACCESS) ] = 0x0,
1169                 [ C(RESULT_MISS)   ] = 0x0,
1170         },
1171  },
1172  [ C(LL  ) ] = {
1173         [ C(OP_READ) ] = {
1174                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1175                 [ C(RESULT_ACCESS) ] = 0x01b7,
1176                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1177                 [ C(RESULT_MISS)   ] = 0x01b7,
1178         },
1179         /*
1180          * Use RFO, not WRITEBACK, because a write miss would typically occur
1181          * on RFO.
1182          */
1183         [ C(OP_WRITE) ] = {
1184                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1185                 [ C(RESULT_ACCESS) ] = 0x01b7,
1186                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1187                 [ C(RESULT_MISS)   ] = 0x01b7,
1188         },
1189         [ C(OP_PREFETCH) ] = {
1190                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1191                 [ C(RESULT_ACCESS) ] = 0x01b7,
1192                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1193                 [ C(RESULT_MISS)   ] = 0x01b7,
1194         },
1195  },
1196  [ C(DTLB) ] = {
1197         [ C(OP_READ) ] = {
1198                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1199                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1200         },
1201         [ C(OP_WRITE) ] = {
1202                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1203                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1204         },
1205         [ C(OP_PREFETCH) ] = {
1206                 [ C(RESULT_ACCESS) ] = 0x0,
1207                 [ C(RESULT_MISS)   ] = 0x0,
1208         },
1209  },
1210  [ C(ITLB) ] = {
1211         [ C(OP_READ) ] = {
1212                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1213                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1214         },
1215         [ C(OP_WRITE) ] = {
1216                 [ C(RESULT_ACCESS) ] = -1,
1217                 [ C(RESULT_MISS)   ] = -1,
1218         },
1219         [ C(OP_PREFETCH) ] = {
1220                 [ C(RESULT_ACCESS) ] = -1,
1221                 [ C(RESULT_MISS)   ] = -1,
1222         },
1223  },
1224  [ C(BPU ) ] = {
1225         [ C(OP_READ) ] = {
1226                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1227                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1228         },
1229         [ C(OP_WRITE) ] = {
1230                 [ C(RESULT_ACCESS) ] = -1,
1231                 [ C(RESULT_MISS)   ] = -1,
1232         },
1233         [ C(OP_PREFETCH) ] = {
1234                 [ C(RESULT_ACCESS) ] = -1,
1235                 [ C(RESULT_MISS)   ] = -1,
1236         },
1237  },
1238  [ C(NODE) ] = {
1239         [ C(OP_READ) ] = {
1240                 [ C(RESULT_ACCESS) ] = 0x01b7,
1241                 [ C(RESULT_MISS)   ] = 0x01b7,
1242         },
1243         [ C(OP_WRITE) ] = {
1244                 [ C(RESULT_ACCESS) ] = 0x01b7,
1245                 [ C(RESULT_MISS)   ] = 0x01b7,
1246         },
1247         [ C(OP_PREFETCH) ] = {
1248                 [ C(RESULT_ACCESS) ] = 0x01b7,
1249                 [ C(RESULT_MISS)   ] = 0x01b7,
1250         },
1251  },
1252 };
1253
1254 static __initconst const u64 core2_hw_cache_event_ids
1255                                 [PERF_COUNT_HW_CACHE_MAX]
1256                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1257                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1258 {
1259  [ C(L1D) ] = {
1260         [ C(OP_READ) ] = {
1261                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1262                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1263         },
1264         [ C(OP_WRITE) ] = {
1265                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1266                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1267         },
1268         [ C(OP_PREFETCH) ] = {
1269                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1270                 [ C(RESULT_MISS)   ] = 0,
1271         },
1272  },
1273  [ C(L1I ) ] = {
1274         [ C(OP_READ) ] = {
1275                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1276                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1277         },
1278         [ C(OP_WRITE) ] = {
1279                 [ C(RESULT_ACCESS) ] = -1,
1280                 [ C(RESULT_MISS)   ] = -1,
1281         },
1282         [ C(OP_PREFETCH) ] = {
1283                 [ C(RESULT_ACCESS) ] = 0,
1284                 [ C(RESULT_MISS)   ] = 0,
1285         },
1286  },
1287  [ C(LL  ) ] = {
1288         [ C(OP_READ) ] = {
1289                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1290                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1291         },
1292         [ C(OP_WRITE) ] = {
1293                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1294                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1295         },
1296         [ C(OP_PREFETCH) ] = {
1297                 [ C(RESULT_ACCESS) ] = 0,
1298                 [ C(RESULT_MISS)   ] = 0,
1299         },
1300  },
1301  [ C(DTLB) ] = {
1302         [ C(OP_READ) ] = {
1303                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1304                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1305         },
1306         [ C(OP_WRITE) ] = {
1307                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1308                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1309         },
1310         [ C(OP_PREFETCH) ] = {
1311                 [ C(RESULT_ACCESS) ] = 0,
1312                 [ C(RESULT_MISS)   ] = 0,
1313         },
1314  },
1315  [ C(ITLB) ] = {
1316         [ C(OP_READ) ] = {
1317                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1318                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1319         },
1320         [ C(OP_WRITE) ] = {
1321                 [ C(RESULT_ACCESS) ] = -1,
1322                 [ C(RESULT_MISS)   ] = -1,
1323         },
1324         [ C(OP_PREFETCH) ] = {
1325                 [ C(RESULT_ACCESS) ] = -1,
1326                 [ C(RESULT_MISS)   ] = -1,
1327         },
1328  },
1329  [ C(BPU ) ] = {
1330         [ C(OP_READ) ] = {
1331                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1332                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1333         },
1334         [ C(OP_WRITE) ] = {
1335                 [ C(RESULT_ACCESS) ] = -1,
1336                 [ C(RESULT_MISS)   ] = -1,
1337         },
1338         [ C(OP_PREFETCH) ] = {
1339                 [ C(RESULT_ACCESS) ] = -1,
1340                 [ C(RESULT_MISS)   ] = -1,
1341         },
1342  },
1343 };
1344
1345 static __initconst const u64 atom_hw_cache_event_ids
1346                                 [PERF_COUNT_HW_CACHE_MAX]
1347                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1348                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1349 {
1350  [ C(L1D) ] = {
1351         [ C(OP_READ) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1353                 [ C(RESULT_MISS)   ] = 0,
1354         },
1355         [ C(OP_WRITE) ] = {
1356                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1357                 [ C(RESULT_MISS)   ] = 0,
1358         },
1359         [ C(OP_PREFETCH) ] = {
1360                 [ C(RESULT_ACCESS) ] = 0x0,
1361                 [ C(RESULT_MISS)   ] = 0,
1362         },
1363  },
1364  [ C(L1I ) ] = {
1365         [ C(OP_READ) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1367                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1368         },
1369         [ C(OP_WRITE) ] = {
1370                 [ C(RESULT_ACCESS) ] = -1,
1371                 [ C(RESULT_MISS)   ] = -1,
1372         },
1373         [ C(OP_PREFETCH) ] = {
1374                 [ C(RESULT_ACCESS) ] = 0,
1375                 [ C(RESULT_MISS)   ] = 0,
1376         },
1377  },
1378  [ C(LL  ) ] = {
1379         [ C(OP_READ) ] = {
1380                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1381                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1382         },
1383         [ C(OP_WRITE) ] = {
1384                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1385                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1386         },
1387         [ C(OP_PREFETCH) ] = {
1388                 [ C(RESULT_ACCESS) ] = 0,
1389                 [ C(RESULT_MISS)   ] = 0,
1390         },
1391  },
1392  [ C(DTLB) ] = {
1393         [ C(OP_READ) ] = {
1394                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1395                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1396         },
1397         [ C(OP_WRITE) ] = {
1398                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1399                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1400         },
1401         [ C(OP_PREFETCH) ] = {
1402                 [ C(RESULT_ACCESS) ] = 0,
1403                 [ C(RESULT_MISS)   ] = 0,
1404         },
1405  },
1406  [ C(ITLB) ] = {
1407         [ C(OP_READ) ] = {
1408                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1409                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1410         },
1411         [ C(OP_WRITE) ] = {
1412                 [ C(RESULT_ACCESS) ] = -1,
1413                 [ C(RESULT_MISS)   ] = -1,
1414         },
1415         [ C(OP_PREFETCH) ] = {
1416                 [ C(RESULT_ACCESS) ] = -1,
1417                 [ C(RESULT_MISS)   ] = -1,
1418         },
1419  },
1420  [ C(BPU ) ] = {
1421         [ C(OP_READ) ] = {
1422                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1423                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1424         },
1425         [ C(OP_WRITE) ] = {
1426                 [ C(RESULT_ACCESS) ] = -1,
1427                 [ C(RESULT_MISS)   ] = -1,
1428         },
1429         [ C(OP_PREFETCH) ] = {
1430                 [ C(RESULT_ACCESS) ] = -1,
1431                 [ C(RESULT_MISS)   ] = -1,
1432         },
1433  },
1434 };
1435
1436 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1437 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1438 /* no_alloc_cycles.not_delivered */
1439 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1440                "event=0xca,umask=0x50");
1441 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1442 /* uops_retired.all */
1443 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1444                "event=0xc2,umask=0x10");
1445 /* uops_retired.all */
1446 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1447                "event=0xc2,umask=0x10");
1448
1449 static struct attribute *slm_events_attrs[] = {
1450         EVENT_PTR(td_total_slots_slm),
1451         EVENT_PTR(td_total_slots_scale_slm),
1452         EVENT_PTR(td_fetch_bubbles_slm),
1453         EVENT_PTR(td_fetch_bubbles_scale_slm),
1454         EVENT_PTR(td_slots_issued_slm),
1455         EVENT_PTR(td_slots_retired_slm),
1456         NULL
1457 };
1458
1459 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1460 {
1461         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1462         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1463         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1464         EVENT_EXTRA_END
1465 };
1466
1467 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1468 #define SLM_DMND_WRITE          SNB_DMND_RFO
1469 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1470
1471 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1472 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1473 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1474
1475 static __initconst const u64 slm_hw_cache_extra_regs
1476                                 [PERF_COUNT_HW_CACHE_MAX]
1477                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1478                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1479 {
1480  [ C(LL  ) ] = {
1481         [ C(OP_READ) ] = {
1482                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1483                 [ C(RESULT_MISS)   ] = 0,
1484         },
1485         [ C(OP_WRITE) ] = {
1486                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1487                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1488         },
1489         [ C(OP_PREFETCH) ] = {
1490                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1491                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1492         },
1493  },
1494 };
1495
1496 static __initconst const u64 slm_hw_cache_event_ids
1497                                 [PERF_COUNT_HW_CACHE_MAX]
1498                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1499                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1500 {
1501  [ C(L1D) ] = {
1502         [ C(OP_READ) ] = {
1503                 [ C(RESULT_ACCESS) ] = 0,
1504                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1505         },
1506         [ C(OP_WRITE) ] = {
1507                 [ C(RESULT_ACCESS) ] = 0,
1508                 [ C(RESULT_MISS)   ] = 0,
1509         },
1510         [ C(OP_PREFETCH) ] = {
1511                 [ C(RESULT_ACCESS) ] = 0,
1512                 [ C(RESULT_MISS)   ] = 0,
1513         },
1514  },
1515  [ C(L1I ) ] = {
1516         [ C(OP_READ) ] = {
1517                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1518                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1519         },
1520         [ C(OP_WRITE) ] = {
1521                 [ C(RESULT_ACCESS) ] = -1,
1522                 [ C(RESULT_MISS)   ] = -1,
1523         },
1524         [ C(OP_PREFETCH) ] = {
1525                 [ C(RESULT_ACCESS) ] = 0,
1526                 [ C(RESULT_MISS)   ] = 0,
1527         },
1528  },
1529  [ C(LL  ) ] = {
1530         [ C(OP_READ) ] = {
1531                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1532                 [ C(RESULT_ACCESS) ] = 0x01b7,
1533                 [ C(RESULT_MISS)   ] = 0,
1534         },
1535         [ C(OP_WRITE) ] = {
1536                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1537                 [ C(RESULT_ACCESS) ] = 0x01b7,
1538                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1539                 [ C(RESULT_MISS)   ] = 0x01b7,
1540         },
1541         [ C(OP_PREFETCH) ] = {
1542                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1543                 [ C(RESULT_ACCESS) ] = 0x01b7,
1544                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1545                 [ C(RESULT_MISS)   ] = 0x01b7,
1546         },
1547  },
1548  [ C(DTLB) ] = {
1549         [ C(OP_READ) ] = {
1550                 [ C(RESULT_ACCESS) ] = 0,
1551                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1552         },
1553         [ C(OP_WRITE) ] = {
1554                 [ C(RESULT_ACCESS) ] = 0,
1555                 [ C(RESULT_MISS)   ] = 0,
1556         },
1557         [ C(OP_PREFETCH) ] = {
1558                 [ C(RESULT_ACCESS) ] = 0,
1559                 [ C(RESULT_MISS)   ] = 0,
1560         },
1561  },
1562  [ C(ITLB) ] = {
1563         [ C(OP_READ) ] = {
1564                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1565                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1566         },
1567         [ C(OP_WRITE) ] = {
1568                 [ C(RESULT_ACCESS) ] = -1,
1569                 [ C(RESULT_MISS)   ] = -1,
1570         },
1571         [ C(OP_PREFETCH) ] = {
1572                 [ C(RESULT_ACCESS) ] = -1,
1573                 [ C(RESULT_MISS)   ] = -1,
1574         },
1575  },
1576  [ C(BPU ) ] = {
1577         [ C(OP_READ) ] = {
1578                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1579                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1580         },
1581         [ C(OP_WRITE) ] = {
1582                 [ C(RESULT_ACCESS) ] = -1,
1583                 [ C(RESULT_MISS)   ] = -1,
1584         },
1585         [ C(OP_PREFETCH) ] = {
1586                 [ C(RESULT_ACCESS) ] = -1,
1587                 [ C(RESULT_MISS)   ] = -1,
1588         },
1589  },
1590 };
1591
1592 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1593 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1594 /* UOPS_NOT_DELIVERED.ANY */
1595 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1596 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1597 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1598 /* UOPS_RETIRED.ANY */
1599 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1600 /* UOPS_ISSUED.ANY */
1601 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1602
1603 static struct attribute *glm_events_attrs[] = {
1604         EVENT_PTR(td_total_slots_glm),
1605         EVENT_PTR(td_total_slots_scale_glm),
1606         EVENT_PTR(td_fetch_bubbles_glm),
1607         EVENT_PTR(td_recovery_bubbles_glm),
1608         EVENT_PTR(td_slots_issued_glm),
1609         EVENT_PTR(td_slots_retired_glm),
1610         NULL
1611 };
1612
1613 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1614         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1615         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1616         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1617         EVENT_EXTRA_END
1618 };
1619
1620 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1621 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1622 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1623 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1624 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1625 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1626 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1627 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1628 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1629 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1630
1631 static __initconst const u64 glm_hw_cache_event_ids
1632                                 [PERF_COUNT_HW_CACHE_MAX]
1633                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1634                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1635         [C(L1D)] = {
1636                 [C(OP_READ)] = {
1637                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1638                         [C(RESULT_MISS)]        = 0x0,
1639                 },
1640                 [C(OP_WRITE)] = {
1641                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1642                         [C(RESULT_MISS)]        = 0x0,
1643                 },
1644                 [C(OP_PREFETCH)] = {
1645                         [C(RESULT_ACCESS)]      = 0x0,
1646                         [C(RESULT_MISS)]        = 0x0,
1647                 },
1648         },
1649         [C(L1I)] = {
1650                 [C(OP_READ)] = {
1651                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1652                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1653                 },
1654                 [C(OP_WRITE)] = {
1655                         [C(RESULT_ACCESS)]      = -1,
1656                         [C(RESULT_MISS)]        = -1,
1657                 },
1658                 [C(OP_PREFETCH)] = {
1659                         [C(RESULT_ACCESS)]      = 0x0,
1660                         [C(RESULT_MISS)]        = 0x0,
1661                 },
1662         },
1663         [C(LL)] = {
1664                 [C(OP_READ)] = {
1665                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1666                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1667                 },
1668                 [C(OP_WRITE)] = {
1669                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1670                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1671                 },
1672                 [C(OP_PREFETCH)] = {
1673                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1674                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1675                 },
1676         },
1677         [C(DTLB)] = {
1678                 [C(OP_READ)] = {
1679                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1680                         [C(RESULT_MISS)]        = 0x0,
1681                 },
1682                 [C(OP_WRITE)] = {
1683                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1684                         [C(RESULT_MISS)]        = 0x0,
1685                 },
1686                 [C(OP_PREFETCH)] = {
1687                         [C(RESULT_ACCESS)]      = 0x0,
1688                         [C(RESULT_MISS)]        = 0x0,
1689                 },
1690         },
1691         [C(ITLB)] = {
1692                 [C(OP_READ)] = {
1693                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1694                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1695                 },
1696                 [C(OP_WRITE)] = {
1697                         [C(RESULT_ACCESS)]      = -1,
1698                         [C(RESULT_MISS)]        = -1,
1699                 },
1700                 [C(OP_PREFETCH)] = {
1701                         [C(RESULT_ACCESS)]      = -1,
1702                         [C(RESULT_MISS)]        = -1,
1703                 },
1704         },
1705         [C(BPU)] = {
1706                 [C(OP_READ)] = {
1707                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1708                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1709                 },
1710                 [C(OP_WRITE)] = {
1711                         [C(RESULT_ACCESS)]      = -1,
1712                         [C(RESULT_MISS)]        = -1,
1713                 },
1714                 [C(OP_PREFETCH)] = {
1715                         [C(RESULT_ACCESS)]      = -1,
1716                         [C(RESULT_MISS)]        = -1,
1717                 },
1718         },
1719 };
1720
1721 static __initconst const u64 glm_hw_cache_extra_regs
1722                                 [PERF_COUNT_HW_CACHE_MAX]
1723                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1724                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1725         [C(LL)] = {
1726                 [C(OP_READ)] = {
1727                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1728                                                   GLM_LLC_ACCESS,
1729                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1730                                                   GLM_LLC_MISS,
1731                 },
1732                 [C(OP_WRITE)] = {
1733                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1734                                                   GLM_LLC_ACCESS,
1735                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1736                                                   GLM_LLC_MISS,
1737                 },
1738                 [C(OP_PREFETCH)] = {
1739                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1740                                                   GLM_LLC_ACCESS,
1741                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1742                                                   GLM_LLC_MISS,
1743                 },
1744         },
1745 };
1746
1747 static __initconst const u64 glp_hw_cache_event_ids
1748                                 [PERF_COUNT_HW_CACHE_MAX]
1749                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1750                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1751         [C(L1D)] = {
1752                 [C(OP_READ)] = {
1753                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1754                         [C(RESULT_MISS)]        = 0x0,
1755                 },
1756                 [C(OP_WRITE)] = {
1757                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1758                         [C(RESULT_MISS)]        = 0x0,
1759                 },
1760                 [C(OP_PREFETCH)] = {
1761                         [C(RESULT_ACCESS)]      = 0x0,
1762                         [C(RESULT_MISS)]        = 0x0,
1763                 },
1764         },
1765         [C(L1I)] = {
1766                 [C(OP_READ)] = {
1767                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1768                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1769                 },
1770                 [C(OP_WRITE)] = {
1771                         [C(RESULT_ACCESS)]      = -1,
1772                         [C(RESULT_MISS)]        = -1,
1773                 },
1774                 [C(OP_PREFETCH)] = {
1775                         [C(RESULT_ACCESS)]      = 0x0,
1776                         [C(RESULT_MISS)]        = 0x0,
1777                 },
1778         },
1779         [C(LL)] = {
1780                 [C(OP_READ)] = {
1781                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1782                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1783                 },
1784                 [C(OP_WRITE)] = {
1785                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1786                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1787                 },
1788                 [C(OP_PREFETCH)] = {
1789                         [C(RESULT_ACCESS)]      = 0x0,
1790                         [C(RESULT_MISS)]        = 0x0,
1791                 },
1792         },
1793         [C(DTLB)] = {
1794                 [C(OP_READ)] = {
1795                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1796                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1797                 },
1798                 [C(OP_WRITE)] = {
1799                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1800                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1801                 },
1802                 [C(OP_PREFETCH)] = {
1803                         [C(RESULT_ACCESS)]      = 0x0,
1804                         [C(RESULT_MISS)]        = 0x0,
1805                 },
1806         },
1807         [C(ITLB)] = {
1808                 [C(OP_READ)] = {
1809                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1810                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1811                 },
1812                 [C(OP_WRITE)] = {
1813                         [C(RESULT_ACCESS)]      = -1,
1814                         [C(RESULT_MISS)]        = -1,
1815                 },
1816                 [C(OP_PREFETCH)] = {
1817                         [C(RESULT_ACCESS)]      = -1,
1818                         [C(RESULT_MISS)]        = -1,
1819                 },
1820         },
1821         [C(BPU)] = {
1822                 [C(OP_READ)] = {
1823                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1824                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1825                 },
1826                 [C(OP_WRITE)] = {
1827                         [C(RESULT_ACCESS)]      = -1,
1828                         [C(RESULT_MISS)]        = -1,
1829                 },
1830                 [C(OP_PREFETCH)] = {
1831                         [C(RESULT_ACCESS)]      = -1,
1832                         [C(RESULT_MISS)]        = -1,
1833                 },
1834         },
1835 };
1836
1837 static __initconst const u64 glp_hw_cache_extra_regs
1838                                 [PERF_COUNT_HW_CACHE_MAX]
1839                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1840                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1841         [C(LL)] = {
1842                 [C(OP_READ)] = {
1843                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1844                                                   GLM_LLC_ACCESS,
1845                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1846                                                   GLM_LLC_MISS,
1847                 },
1848                 [C(OP_WRITE)] = {
1849                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1850                                                   GLM_LLC_ACCESS,
1851                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1852                                                   GLM_LLC_MISS,
1853                 },
1854                 [C(OP_PREFETCH)] = {
1855                         [C(RESULT_ACCESS)]      = 0x0,
1856                         [C(RESULT_MISS)]        = 0x0,
1857                 },
1858         },
1859 };
1860
1861 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
1862 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
1863 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
1864 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
1865 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
1866                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
1867 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
1868
1869 static __initconst const u64 tnt_hw_cache_extra_regs
1870                                 [PERF_COUNT_HW_CACHE_MAX]
1871                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1872                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1873         [C(LL)] = {
1874                 [C(OP_READ)] = {
1875                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
1876                                                   TNT_LLC_ACCESS,
1877                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
1878                                                   TNT_LLC_MISS,
1879                 },
1880                 [C(OP_WRITE)] = {
1881                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
1882                                                   TNT_LLC_ACCESS,
1883                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
1884                                                   TNT_LLC_MISS,
1885                 },
1886                 [C(OP_PREFETCH)] = {
1887                         [C(RESULT_ACCESS)]      = 0x0,
1888                         [C(RESULT_MISS)]        = 0x0,
1889                 },
1890         },
1891 };
1892
1893 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
1894         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1895         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
1896         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
1897         EVENT_EXTRA_END
1898 };
1899
1900 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1901 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1902 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1903 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1904 #define KNL_DDR_LOCAL           BIT_ULL(23)
1905 #define KNL_DDR_FAR             BIT_ULL(24)
1906 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1907                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1908 #define KNL_L2_READ             SLM_DMND_READ
1909 #define KNL_L2_WRITE            SLM_DMND_WRITE
1910 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1911 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1912 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1913                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1914                                                   SNB_NON_DRAM)
1915
1916 static __initconst const u64 knl_hw_cache_extra_regs
1917                                 [PERF_COUNT_HW_CACHE_MAX]
1918                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1919                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1920         [C(LL)] = {
1921                 [C(OP_READ)] = {
1922                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1923                         [C(RESULT_MISS)]   = 0,
1924                 },
1925                 [C(OP_WRITE)] = {
1926                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1927                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1928                 },
1929                 [C(OP_PREFETCH)] = {
1930                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1931                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1932                 },
1933         },
1934 };
1935
1936 /*
1937  * Used from PMIs where the LBRs are already disabled.
1938  *
1939  * This function could be called consecutively. It is required to remain in
1940  * disabled state if called consecutively.
1941  *
1942  * During consecutive calls, the same disable value will be written to related
1943  * registers, so the PMU state remains unchanged.
1944  *
1945  * intel_bts events don't coexist with intel PMU's BTS events because of
1946  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1947  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1948  *
1949  * Avoid PEBS_ENABLE MSR access in PMIs.
1950  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
1951  * It doesn't matter if the PEBS is enabled or not.
1952  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
1953  * access PEBS_ENABLE MSR in disable_all()/enable_all().
1954  * However, there are some cases which may change PEBS status, e.g. PMI
1955  * throttle. The PEBS_ENABLE should be updated where the status changes.
1956  */
1957 static void __intel_pmu_disable_all(void)
1958 {
1959         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1960
1961         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1962
1963         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1964                 intel_pmu_disable_bts();
1965 }
1966
1967 static void intel_pmu_disable_all(void)
1968 {
1969         __intel_pmu_disable_all();
1970         intel_pmu_pebs_disable_all();
1971         intel_pmu_lbr_disable_all();
1972 }
1973
1974 static void __intel_pmu_enable_all(int added, bool pmi)
1975 {
1976         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1977
1978         intel_pmu_lbr_enable_all(pmi);
1979         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1980                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1981
1982         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1983                 struct perf_event *event =
1984                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1985
1986                 if (WARN_ON_ONCE(!event))
1987                         return;
1988
1989                 intel_pmu_enable_bts(event->hw.config);
1990         }
1991 }
1992
1993 static void intel_pmu_enable_all(int added)
1994 {
1995         intel_pmu_pebs_enable_all();
1996         __intel_pmu_enable_all(added, false);
1997 }
1998
1999 /*
2000  * Workaround for:
2001  *   Intel Errata AAK100 (model 26)
2002  *   Intel Errata AAP53  (model 30)
2003  *   Intel Errata BD53   (model 44)
2004  *
2005  * The official story:
2006  *   These chips need to be 'reset' when adding counters by programming the
2007  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2008  *   in sequence on the same PMC or on different PMCs.
2009  *
2010  * In practise it appears some of these events do in fact count, and
2011  * we need to program all 4 events.
2012  */
2013 static void intel_pmu_nhm_workaround(void)
2014 {
2015         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2016         static const unsigned long nhm_magic[4] = {
2017                 0x4300B5,
2018                 0x4300D2,
2019                 0x4300B1,
2020                 0x4300B1
2021         };
2022         struct perf_event *event;
2023         int i;
2024
2025         /*
2026          * The Errata requires below steps:
2027          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2028          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2029          *    the corresponding PMCx;
2030          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2031          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2032          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2033          */
2034
2035         /*
2036          * The real steps we choose are a little different from above.
2037          * A) To reduce MSR operations, we don't run step 1) as they
2038          *    are already cleared before this function is called;
2039          * B) Call x86_perf_event_update to save PMCx before configuring
2040          *    PERFEVTSELx with magic number;
2041          * C) With step 5), we do clear only when the PERFEVTSELx is
2042          *    not used currently.
2043          * D) Call x86_perf_event_set_period to restore PMCx;
2044          */
2045
2046         /* We always operate 4 pairs of PERF Counters */
2047         for (i = 0; i < 4; i++) {
2048                 event = cpuc->events[i];
2049                 if (event)
2050                         x86_perf_event_update(event);
2051         }
2052
2053         for (i = 0; i < 4; i++) {
2054                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2055                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2056         }
2057
2058         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2059         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2060
2061         for (i = 0; i < 4; i++) {
2062                 event = cpuc->events[i];
2063
2064                 if (event) {
2065                         x86_perf_event_set_period(event);
2066                         __x86_pmu_enable_event(&event->hw,
2067                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2068                 } else
2069                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2070         }
2071 }
2072
2073 static void intel_pmu_nhm_enable_all(int added)
2074 {
2075         if (added)
2076                 intel_pmu_nhm_workaround();
2077         intel_pmu_enable_all(added);
2078 }
2079
2080 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2081 {
2082         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2083
2084         if (cpuc->tfa_shadow != val) {
2085                 cpuc->tfa_shadow = val;
2086                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2087         }
2088 }
2089
2090 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2091 {
2092         /*
2093          * We're going to use PMC3, make sure TFA is set before we touch it.
2094          */
2095         if (cntr == 3)
2096                 intel_set_tfa(cpuc, true);
2097 }
2098
2099 static void intel_tfa_pmu_enable_all(int added)
2100 {
2101         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2102
2103         /*
2104          * If we find PMC3 is no longer used when we enable the PMU, we can
2105          * clear TFA.
2106          */
2107         if (!test_bit(3, cpuc->active_mask))
2108                 intel_set_tfa(cpuc, false);
2109
2110         intel_pmu_enable_all(added);
2111 }
2112
2113 static void enable_counter_freeze(void)
2114 {
2115         update_debugctlmsr(get_debugctlmsr() |
2116                         DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2117 }
2118
2119 static void disable_counter_freeze(void)
2120 {
2121         update_debugctlmsr(get_debugctlmsr() &
2122                         ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2123 }
2124
2125 static inline u64 intel_pmu_get_status(void)
2126 {
2127         u64 status;
2128
2129         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2130
2131         return status;
2132 }
2133
2134 static inline void intel_pmu_ack_status(u64 ack)
2135 {
2136         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2137 }
2138
2139 static inline bool event_is_checkpointed(struct perf_event *event)
2140 {
2141         return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2142 }
2143
2144 static inline void intel_set_masks(struct perf_event *event, int idx)
2145 {
2146         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2147
2148         if (event->attr.exclude_host)
2149                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2150         if (event->attr.exclude_guest)
2151                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2152         if (event_is_checkpointed(event))
2153                 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2154 }
2155
2156 static inline void intel_clear_masks(struct perf_event *event, int idx)
2157 {
2158         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2159
2160         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2161         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2162         __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2163 }
2164
2165 static void intel_pmu_disable_fixed(struct perf_event *event)
2166 {
2167         struct hw_perf_event *hwc = &event->hw;
2168         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2169         u64 ctrl_val, mask;
2170
2171         mask = 0xfULL << (idx * 4);
2172
2173         rdmsrl(hwc->config_base, ctrl_val);
2174         ctrl_val &= ~mask;
2175         wrmsrl(hwc->config_base, ctrl_val);
2176 }
2177
2178 static void intel_pmu_disable_event(struct perf_event *event)
2179 {
2180         struct hw_perf_event *hwc = &event->hw;
2181         int idx = hwc->idx;
2182
2183         if (idx < INTEL_PMC_IDX_FIXED) {
2184                 intel_clear_masks(event, idx);
2185                 x86_pmu_disable_event(event);
2186         } else if (idx < INTEL_PMC_IDX_FIXED_BTS) {
2187                 intel_clear_masks(event, idx);
2188                 intel_pmu_disable_fixed(event);
2189         } else if (idx == INTEL_PMC_IDX_FIXED_BTS) {
2190                 intel_pmu_disable_bts();
2191                 intel_pmu_drain_bts_buffer();
2192         } else if (idx == INTEL_PMC_IDX_FIXED_VLBR)
2193                 intel_clear_masks(event, idx);
2194
2195         /*
2196          * Needs to be called after x86_pmu_disable_event,
2197          * so we don't trigger the event without PEBS bit set.
2198          */
2199         if (unlikely(event->attr.precise_ip))
2200                 intel_pmu_pebs_disable(event);
2201 }
2202
2203 static void intel_pmu_del_event(struct perf_event *event)
2204 {
2205         if (needs_branch_stack(event))
2206                 intel_pmu_lbr_del(event);
2207         if (event->attr.precise_ip)
2208                 intel_pmu_pebs_del(event);
2209 }
2210
2211 static void intel_pmu_read_event(struct perf_event *event)
2212 {
2213         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2214                 intel_pmu_auto_reload_read(event);
2215         else
2216                 x86_perf_event_update(event);
2217 }
2218
2219 static void intel_pmu_enable_fixed(struct perf_event *event)
2220 {
2221         struct hw_perf_event *hwc = &event->hw;
2222         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2223         u64 ctrl_val, mask, bits = 0;
2224
2225         /*
2226          * Enable IRQ generation (0x8), if not PEBS,
2227          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2228          * if requested:
2229          */
2230         if (!event->attr.precise_ip)
2231                 bits |= 0x8;
2232         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2233                 bits |= 0x2;
2234         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2235                 bits |= 0x1;
2236
2237         /*
2238          * ANY bit is supported in v3 and up
2239          */
2240         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2241                 bits |= 0x4;
2242
2243         bits <<= (idx * 4);
2244         mask = 0xfULL << (idx * 4);
2245
2246         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2247                 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2248                 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2249         }
2250
2251         rdmsrl(hwc->config_base, ctrl_val);
2252         ctrl_val &= ~mask;
2253         ctrl_val |= bits;
2254         wrmsrl(hwc->config_base, ctrl_val);
2255 }
2256
2257 static void intel_pmu_enable_event(struct perf_event *event)
2258 {
2259         struct hw_perf_event *hwc = &event->hw;
2260         int idx = hwc->idx;
2261
2262         if (unlikely(event->attr.precise_ip))
2263                 intel_pmu_pebs_enable(event);
2264
2265         if (idx < INTEL_PMC_IDX_FIXED) {
2266                 intel_set_masks(event, idx);
2267                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2268         } else if (idx < INTEL_PMC_IDX_FIXED_BTS) {
2269                 intel_set_masks(event, idx);
2270                 intel_pmu_enable_fixed(event);
2271         } else if (idx == INTEL_PMC_IDX_FIXED_BTS) {
2272                 if (!__this_cpu_read(cpu_hw_events.enabled))
2273                         return;
2274                 intel_pmu_enable_bts(hwc->config);
2275         } else if (idx == INTEL_PMC_IDX_FIXED_VLBR)
2276                 intel_set_masks(event, idx);
2277 }
2278
2279 static void intel_pmu_add_event(struct perf_event *event)
2280 {
2281         if (event->attr.precise_ip)
2282                 intel_pmu_pebs_add(event);
2283         if (needs_branch_stack(event))
2284                 intel_pmu_lbr_add(event);
2285 }
2286
2287 /*
2288  * Save and restart an expired event. Called by NMI contexts,
2289  * so it has to be careful about preempting normal event ops:
2290  */
2291 int intel_pmu_save_and_restart(struct perf_event *event)
2292 {
2293         x86_perf_event_update(event);
2294         /*
2295          * For a checkpointed counter always reset back to 0.  This
2296          * avoids a situation where the counter overflows, aborts the
2297          * transaction and is then set back to shortly before the
2298          * overflow, and overflows and aborts again.
2299          */
2300         if (unlikely(event_is_checkpointed(event))) {
2301                 /* No race with NMIs because the counter should not be armed */
2302                 wrmsrl(event->hw.event_base, 0);
2303                 local64_set(&event->hw.prev_count, 0);
2304         }
2305         return x86_perf_event_set_period(event);
2306 }
2307
2308 static void intel_pmu_reset(void)
2309 {
2310         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2311         unsigned long flags;
2312         int idx;
2313
2314         if (!x86_pmu.num_counters)
2315                 return;
2316
2317         local_irq_save(flags);
2318
2319         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2320
2321         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2322                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2323                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2324         }
2325         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2326                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2327
2328         if (ds)
2329                 ds->bts_index = ds->bts_buffer_base;
2330
2331         /* Ack all overflows and disable fixed counters */
2332         if (x86_pmu.version >= 2) {
2333                 intel_pmu_ack_status(intel_pmu_get_status());
2334                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2335         }
2336
2337         /* Reset LBRs and LBR freezing */
2338         if (x86_pmu.lbr_nr) {
2339                 update_debugctlmsr(get_debugctlmsr() &
2340                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2341         }
2342
2343         local_irq_restore(flags);
2344 }
2345
2346 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2347 {
2348         struct perf_sample_data data;
2349         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2350         int bit;
2351         int handled = 0;
2352
2353         inc_irq_stat(apic_perf_irqs);
2354
2355         /*
2356          * Ignore a range of extra bits in status that do not indicate
2357          * overflow by themselves.
2358          */
2359         status &= ~(GLOBAL_STATUS_COND_CHG |
2360                     GLOBAL_STATUS_ASIF |
2361                     GLOBAL_STATUS_LBRS_FROZEN);
2362         if (!status)
2363                 return 0;
2364         /*
2365          * In case multiple PEBS events are sampled at the same time,
2366          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2367          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2368          * having their bits set in the status register. This is a sign
2369          * that there was at least one PEBS record pending at the time
2370          * of the PMU interrupt. PEBS counters must only be processed
2371          * via the drain_pebs() calls and not via the regular sample
2372          * processing loop coming after that the function, otherwise
2373          * phony regular samples may be generated in the sampling buffer
2374          * not marked with the EXACT tag. Another possibility is to have
2375          * one PEBS event and at least one non-PEBS event whic hoverflows
2376          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2377          * not be set, yet the overflow status bit for the PEBS counter will
2378          * be on Skylake.
2379          *
2380          * To avoid this problem, we systematically ignore the PEBS-enabled
2381          * counters from the GLOBAL_STATUS mask and we always process PEBS
2382          * events via drain_pebs().
2383          */
2384         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2385                 status &= ~cpuc->pebs_enabled;
2386         else
2387                 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2388
2389         /*
2390          * PEBS overflow sets bit 62 in the global status register
2391          */
2392         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2393                 u64 pebs_enabled = cpuc->pebs_enabled;
2394
2395                 handled++;
2396                 x86_pmu.drain_pebs(regs);
2397                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2398
2399                 /*
2400                  * PMI throttle may be triggered, which stops the PEBS event.
2401                  * Although cpuc->pebs_enabled is updated accordingly, the
2402                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
2403                  * cpuc->enabled has been forced to 0 in PMI.
2404                  * Update the MSR if pebs_enabled is changed.
2405                  */
2406                 if (pebs_enabled != cpuc->pebs_enabled)
2407                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2408         }
2409
2410         /*
2411          * Intel PT
2412          */
2413         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2414                 handled++;
2415                 if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2416                         perf_guest_cbs->handle_intel_pt_intr))
2417                         perf_guest_cbs->handle_intel_pt_intr();
2418                 else
2419                         intel_pt_interrupt();
2420         }
2421
2422         /*
2423          * Checkpointed counters can lead to 'spurious' PMIs because the
2424          * rollback caused by the PMI will have cleared the overflow status
2425          * bit. Therefore always force probe these counters.
2426          */
2427         status |= cpuc->intel_cp_status;
2428
2429         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2430                 struct perf_event *event = cpuc->events[bit];
2431
2432                 handled++;
2433
2434                 if (!test_bit(bit, cpuc->active_mask))
2435                         continue;
2436
2437                 if (!intel_pmu_save_and_restart(event))
2438                         continue;
2439
2440                 perf_sample_data_init(&data, 0, event->hw.last_period);
2441
2442                 if (has_branch_stack(event))
2443                         data.br_stack = &cpuc->lbr_stack;
2444
2445                 if (perf_event_overflow(event, &data, regs))
2446                         x86_pmu_stop(event, 0);
2447         }
2448
2449         return handled;
2450 }
2451
2452 static bool disable_counter_freezing = true;
2453 static int __init intel_perf_counter_freezing_setup(char *s)
2454 {
2455         bool res;
2456
2457         if (kstrtobool(s, &res))
2458                 return -EINVAL;
2459
2460         disable_counter_freezing = !res;
2461         return 1;
2462 }
2463 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2464
2465 /*
2466  * Simplified handler for Arch Perfmon v4:
2467  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2468  * This is done automatically on PMU ack.
2469  * - Ack the PMU only after the APIC.
2470  */
2471
2472 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2473 {
2474         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2475         int handled = 0;
2476         bool bts = false;
2477         u64 status;
2478         int pmu_enabled = cpuc->enabled;
2479         int loops = 0;
2480
2481         /* PMU has been disabled because of counter freezing */
2482         cpuc->enabled = 0;
2483         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2484                 bts = true;
2485                 intel_bts_disable_local();
2486                 handled = intel_pmu_drain_bts_buffer();
2487                 handled += intel_bts_interrupt();
2488         }
2489         status = intel_pmu_get_status();
2490         if (!status)
2491                 goto done;
2492 again:
2493         intel_pmu_lbr_read();
2494         if (++loops > 100) {
2495                 static bool warned;
2496
2497                 if (!warned) {
2498                         WARN(1, "perfevents: irq loop stuck!\n");
2499                         perf_event_print_debug();
2500                         warned = true;
2501                 }
2502                 intel_pmu_reset();
2503                 goto done;
2504         }
2505
2506
2507         handled += handle_pmi_common(regs, status);
2508 done:
2509         /* Ack the PMI in the APIC */
2510         apic_write(APIC_LVTPC, APIC_DM_NMI);
2511
2512         /*
2513          * The counters start counting immediately while ack the status.
2514          * Make it as close as possible to IRET. This avoids bogus
2515          * freezing on Skylake CPUs.
2516          */
2517         if (status) {
2518                 intel_pmu_ack_status(status);
2519         } else {
2520                 /*
2521                  * CPU may issues two PMIs very close to each other.
2522                  * When the PMI handler services the first one, the
2523                  * GLOBAL_STATUS is already updated to reflect both.
2524                  * When it IRETs, the second PMI is immediately
2525                  * handled and it sees clear status. At the meantime,
2526                  * there may be a third PMI, because the freezing bit
2527                  * isn't set since the ack in first PMI handlers.
2528                  * Double check if there is more work to be done.
2529                  */
2530                 status = intel_pmu_get_status();
2531                 if (status)
2532                         goto again;
2533         }
2534
2535         if (bts)
2536                 intel_bts_enable_local();
2537         cpuc->enabled = pmu_enabled;
2538         return handled;
2539 }
2540
2541 /*
2542  * This handler is triggered by the local APIC, so the APIC IRQ handling
2543  * rules apply:
2544  */
2545 static int intel_pmu_handle_irq(struct pt_regs *regs)
2546 {
2547         struct cpu_hw_events *cpuc;
2548         int loops;
2549         u64 status;
2550         int handled;
2551         int pmu_enabled;
2552
2553         cpuc = this_cpu_ptr(&cpu_hw_events);
2554
2555         /*
2556          * Save the PMU state.
2557          * It needs to be restored when leaving the handler.
2558          */
2559         pmu_enabled = cpuc->enabled;
2560         /*
2561          * No known reason to not always do late ACK,
2562          * but just in case do it opt-in.
2563          */
2564         if (!x86_pmu.late_ack)
2565                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2566         intel_bts_disable_local();
2567         cpuc->enabled = 0;
2568         __intel_pmu_disable_all();
2569         handled = intel_pmu_drain_bts_buffer();
2570         handled += intel_bts_interrupt();
2571         status = intel_pmu_get_status();
2572         if (!status)
2573                 goto done;
2574
2575         loops = 0;
2576 again:
2577         intel_pmu_lbr_read();
2578         intel_pmu_ack_status(status);
2579         if (++loops > 100) {
2580                 static bool warned;
2581
2582                 if (!warned) {
2583                         WARN(1, "perfevents: irq loop stuck!\n");
2584                         perf_event_print_debug();
2585                         warned = true;
2586                 }
2587                 intel_pmu_reset();
2588                 goto done;
2589         }
2590
2591         handled += handle_pmi_common(regs, status);
2592
2593         /*
2594          * Repeat if there is more work to be done:
2595          */
2596         status = intel_pmu_get_status();
2597         if (status)
2598                 goto again;
2599
2600 done:
2601         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2602         cpuc->enabled = pmu_enabled;
2603         if (pmu_enabled)
2604                 __intel_pmu_enable_all(0, true);
2605         intel_bts_enable_local();
2606
2607         /*
2608          * Only unmask the NMI after the overflow counters
2609          * have been reset. This avoids spurious NMIs on
2610          * Haswell CPUs.
2611          */
2612         if (x86_pmu.late_ack)
2613                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2614         return handled;
2615 }
2616
2617 static struct event_constraint *
2618 intel_bts_constraints(struct perf_event *event)
2619 {
2620         if (unlikely(intel_pmu_has_bts(event)))
2621                 return &bts_constraint;
2622
2623         return NULL;
2624 }
2625
2626 /*
2627  * Note: matches a fake event, like Fixed2.
2628  */
2629 static struct event_constraint *
2630 intel_vlbr_constraints(struct perf_event *event)
2631 {
2632         struct event_constraint *c = &vlbr_constraint;
2633
2634         if (unlikely(constraint_match(c, event->hw.config)))
2635                 return c;
2636
2637         return NULL;
2638 }
2639
2640 static int intel_alt_er(int idx, u64 config)
2641 {
2642         int alt_idx = idx;
2643
2644         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2645                 return idx;
2646
2647         if (idx == EXTRA_REG_RSP_0)
2648                 alt_idx = EXTRA_REG_RSP_1;
2649
2650         if (idx == EXTRA_REG_RSP_1)
2651                 alt_idx = EXTRA_REG_RSP_0;
2652
2653         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2654                 return idx;
2655
2656         return alt_idx;
2657 }
2658
2659 static void intel_fixup_er(struct perf_event *event, int idx)
2660 {
2661         event->hw.extra_reg.idx = idx;
2662
2663         if (idx == EXTRA_REG_RSP_0) {
2664                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2665                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2666                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2667         } else if (idx == EXTRA_REG_RSP_1) {
2668                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2669                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2670                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2671         }
2672 }
2673
2674 /*
2675  * manage allocation of shared extra msr for certain events
2676  *
2677  * sharing can be:
2678  * per-cpu: to be shared between the various events on a single PMU
2679  * per-core: per-cpu + shared by HT threads
2680  */
2681 static struct event_constraint *
2682 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2683                                    struct perf_event *event,
2684                                    struct hw_perf_event_extra *reg)
2685 {
2686         struct event_constraint *c = &emptyconstraint;
2687         struct er_account *era;
2688         unsigned long flags;
2689         int idx = reg->idx;
2690
2691         /*
2692          * reg->alloc can be set due to existing state, so for fake cpuc we
2693          * need to ignore this, otherwise we might fail to allocate proper fake
2694          * state for this extra reg constraint. Also see the comment below.
2695          */
2696         if (reg->alloc && !cpuc->is_fake)
2697                 return NULL; /* call x86_get_event_constraint() */
2698
2699 again:
2700         era = &cpuc->shared_regs->regs[idx];
2701         /*
2702          * we use spin_lock_irqsave() to avoid lockdep issues when
2703          * passing a fake cpuc
2704          */
2705         raw_spin_lock_irqsave(&era->lock, flags);
2706
2707         if (!atomic_read(&era->ref) || era->config == reg->config) {
2708
2709                 /*
2710                  * If its a fake cpuc -- as per validate_{group,event}() we
2711                  * shouldn't touch event state and we can avoid doing so
2712                  * since both will only call get_event_constraints() once
2713                  * on each event, this avoids the need for reg->alloc.
2714                  *
2715                  * Not doing the ER fixup will only result in era->reg being
2716                  * wrong, but since we won't actually try and program hardware
2717                  * this isn't a problem either.
2718                  */
2719                 if (!cpuc->is_fake) {
2720                         if (idx != reg->idx)
2721                                 intel_fixup_er(event, idx);
2722
2723                         /*
2724                          * x86_schedule_events() can call get_event_constraints()
2725                          * multiple times on events in the case of incremental
2726                          * scheduling(). reg->alloc ensures we only do the ER
2727                          * allocation once.
2728                          */
2729                         reg->alloc = 1;
2730                 }
2731
2732                 /* lock in msr value */
2733                 era->config = reg->config;
2734                 era->reg = reg->reg;
2735
2736                 /* one more user */
2737                 atomic_inc(&era->ref);
2738
2739                 /*
2740                  * need to call x86_get_event_constraint()
2741                  * to check if associated event has constraints
2742                  */
2743                 c = NULL;
2744         } else {
2745                 idx = intel_alt_er(idx, reg->config);
2746                 if (idx != reg->idx) {
2747                         raw_spin_unlock_irqrestore(&era->lock, flags);
2748                         goto again;
2749                 }
2750         }
2751         raw_spin_unlock_irqrestore(&era->lock, flags);
2752
2753         return c;
2754 }
2755
2756 static void
2757 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2758                                    struct hw_perf_event_extra *reg)
2759 {
2760         struct er_account *era;
2761
2762         /*
2763          * Only put constraint if extra reg was actually allocated. Also takes
2764          * care of event which do not use an extra shared reg.
2765          *
2766          * Also, if this is a fake cpuc we shouldn't touch any event state
2767          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2768          * either since it'll be thrown out.
2769          */
2770         if (!reg->alloc || cpuc->is_fake)
2771                 return;
2772
2773         era = &cpuc->shared_regs->regs[reg->idx];
2774
2775         /* one fewer user */
2776         atomic_dec(&era->ref);
2777
2778         /* allocate again next time */
2779         reg->alloc = 0;
2780 }
2781
2782 static struct event_constraint *
2783 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2784                               struct perf_event *event)
2785 {
2786         struct event_constraint *c = NULL, *d;
2787         struct hw_perf_event_extra *xreg, *breg;
2788
2789         xreg = &event->hw.extra_reg;
2790         if (xreg->idx != EXTRA_REG_NONE) {
2791                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2792                 if (c == &emptyconstraint)
2793                         return c;
2794         }
2795         breg = &event->hw.branch_reg;
2796         if (breg->idx != EXTRA_REG_NONE) {
2797                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2798                 if (d == &emptyconstraint) {
2799                         __intel_shared_reg_put_constraints(cpuc, xreg);
2800                         c = d;
2801                 }
2802         }
2803         return c;
2804 }
2805
2806 struct event_constraint *
2807 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2808                           struct perf_event *event)
2809 {
2810         struct event_constraint *c;
2811
2812         if (x86_pmu.event_constraints) {
2813                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2814                         if (constraint_match(c, event->hw.config)) {
2815                                 event->hw.flags |= c->flags;
2816                                 return c;
2817                         }
2818                 }
2819         }
2820
2821         return &unconstrained;
2822 }
2823
2824 static struct event_constraint *
2825 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2826                             struct perf_event *event)
2827 {
2828         struct event_constraint *c;
2829
2830         c = intel_vlbr_constraints(event);
2831         if (c)
2832                 return c;
2833
2834         c = intel_bts_constraints(event);
2835         if (c)
2836                 return c;
2837
2838         c = intel_shared_regs_constraints(cpuc, event);
2839         if (c)
2840                 return c;
2841
2842         c = intel_pebs_constraints(event);
2843         if (c)
2844                 return c;
2845
2846         return x86_get_event_constraints(cpuc, idx, event);
2847 }
2848
2849 static void
2850 intel_start_scheduling(struct cpu_hw_events *cpuc)
2851 {
2852         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2853         struct intel_excl_states *xl;
2854         int tid = cpuc->excl_thread_id;
2855
2856         /*
2857          * nothing needed if in group validation mode
2858          */
2859         if (cpuc->is_fake || !is_ht_workaround_enabled())
2860                 return;
2861
2862         /*
2863          * no exclusion needed
2864          */
2865         if (WARN_ON_ONCE(!excl_cntrs))
2866                 return;
2867
2868         xl = &excl_cntrs->states[tid];
2869
2870         xl->sched_started = true;
2871         /*
2872          * lock shared state until we are done scheduling
2873          * in stop_event_scheduling()
2874          * makes scheduling appear as a transaction
2875          */
2876         raw_spin_lock(&excl_cntrs->lock);
2877 }
2878
2879 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2880 {
2881         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2882         struct event_constraint *c = cpuc->event_constraint[idx];
2883         struct intel_excl_states *xl;
2884         int tid = cpuc->excl_thread_id;
2885
2886         if (cpuc->is_fake || !is_ht_workaround_enabled())
2887                 return;
2888
2889         if (WARN_ON_ONCE(!excl_cntrs))
2890                 return;
2891
2892         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2893                 return;
2894
2895         xl = &excl_cntrs->states[tid];
2896
2897         lockdep_assert_held(&excl_cntrs->lock);
2898
2899         if (c->flags & PERF_X86_EVENT_EXCL)
2900                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2901         else
2902                 xl->state[cntr] = INTEL_EXCL_SHARED;
2903 }
2904
2905 static void
2906 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2907 {
2908         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2909         struct intel_excl_states *xl;
2910         int tid = cpuc->excl_thread_id;
2911
2912         /*
2913          * nothing needed if in group validation mode
2914          */
2915         if (cpuc->is_fake || !is_ht_workaround_enabled())
2916                 return;
2917         /*
2918          * no exclusion needed
2919          */
2920         if (WARN_ON_ONCE(!excl_cntrs))
2921                 return;
2922
2923         xl = &excl_cntrs->states[tid];
2924
2925         xl->sched_started = false;
2926         /*
2927          * release shared state lock (acquired in intel_start_scheduling())
2928          */
2929         raw_spin_unlock(&excl_cntrs->lock);
2930 }
2931
2932 static struct event_constraint *
2933 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
2934 {
2935         WARN_ON_ONCE(!cpuc->constraint_list);
2936
2937         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2938                 struct event_constraint *cx;
2939
2940                 /*
2941                  * grab pre-allocated constraint entry
2942                  */
2943                 cx = &cpuc->constraint_list[idx];
2944
2945                 /*
2946                  * initialize dynamic constraint
2947                  * with static constraint
2948                  */
2949                 *cx = *c;
2950
2951                 /*
2952                  * mark constraint as dynamic
2953                  */
2954                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2955                 c = cx;
2956         }
2957
2958         return c;
2959 }
2960
2961 static struct event_constraint *
2962 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2963                            int idx, struct event_constraint *c)
2964 {
2965         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2966         struct intel_excl_states *xlo;
2967         int tid = cpuc->excl_thread_id;
2968         int is_excl, i, w;
2969
2970         /*
2971          * validating a group does not require
2972          * enforcing cross-thread  exclusion
2973          */
2974         if (cpuc->is_fake || !is_ht_workaround_enabled())
2975                 return c;
2976
2977         /*
2978          * no exclusion needed
2979          */
2980         if (WARN_ON_ONCE(!excl_cntrs))
2981                 return c;
2982
2983         /*
2984          * because we modify the constraint, we need
2985          * to make a copy. Static constraints come
2986          * from static const tables.
2987          *
2988          * only needed when constraint has not yet
2989          * been cloned (marked dynamic)
2990          */
2991         c = dyn_constraint(cpuc, c, idx);
2992
2993         /*
2994          * From here on, the constraint is dynamic.
2995          * Either it was just allocated above, or it
2996          * was allocated during a earlier invocation
2997          * of this function
2998          */
2999
3000         /*
3001          * state of sibling HT
3002          */
3003         xlo = &excl_cntrs->states[tid ^ 1];
3004
3005         /*
3006          * event requires exclusive counter access
3007          * across HT threads
3008          */
3009         is_excl = c->flags & PERF_X86_EVENT_EXCL;
3010         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3011                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3012                 if (!cpuc->n_excl++)
3013                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3014         }
3015
3016         /*
3017          * Modify static constraint with current dynamic
3018          * state of thread
3019          *
3020          * EXCLUSIVE: sibling counter measuring exclusive event
3021          * SHARED   : sibling counter measuring non-exclusive event
3022          * UNUSED   : sibling counter unused
3023          */
3024         w = c->weight;
3025         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3026                 /*
3027                  * exclusive event in sibling counter
3028                  * our corresponding counter cannot be used
3029                  * regardless of our event
3030                  */
3031                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3032                         __clear_bit(i, c->idxmsk);
3033                         w--;
3034                         continue;
3035                 }
3036                 /*
3037                  * if measuring an exclusive event, sibling
3038                  * measuring non-exclusive, then counter cannot
3039                  * be used
3040                  */
3041                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3042                         __clear_bit(i, c->idxmsk);
3043                         w--;
3044                         continue;
3045                 }
3046         }
3047
3048         /*
3049          * if we return an empty mask, then switch
3050          * back to static empty constraint to avoid
3051          * the cost of freeing later on
3052          */
3053         if (!w)
3054                 c = &emptyconstraint;
3055
3056         c->weight = w;
3057
3058         return c;
3059 }
3060
3061 static struct event_constraint *
3062 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3063                             struct perf_event *event)
3064 {
3065         struct event_constraint *c1, *c2;
3066
3067         c1 = cpuc->event_constraint[idx];
3068
3069         /*
3070          * first time only
3071          * - static constraint: no change across incremental scheduling calls
3072          * - dynamic constraint: handled by intel_get_excl_constraints()
3073          */
3074         c2 = __intel_get_event_constraints(cpuc, idx, event);
3075         if (c1) {
3076                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3077                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3078                 c1->weight = c2->weight;
3079                 c2 = c1;
3080         }
3081
3082         if (cpuc->excl_cntrs)
3083                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3084
3085         return c2;
3086 }
3087
3088 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3089                 struct perf_event *event)
3090 {
3091         struct hw_perf_event *hwc = &event->hw;
3092         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3093         int tid = cpuc->excl_thread_id;
3094         struct intel_excl_states *xl;
3095
3096         /*
3097          * nothing needed if in group validation mode
3098          */
3099         if (cpuc->is_fake)
3100                 return;
3101
3102         if (WARN_ON_ONCE(!excl_cntrs))
3103                 return;
3104
3105         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3106                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3107                 if (!--cpuc->n_excl)
3108                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3109         }
3110
3111         /*
3112          * If event was actually assigned, then mark the counter state as
3113          * unused now.
3114          */
3115         if (hwc->idx >= 0) {
3116                 xl = &excl_cntrs->states[tid];
3117
3118                 /*
3119                  * put_constraint may be called from x86_schedule_events()
3120                  * which already has the lock held so here make locking
3121                  * conditional.
3122                  */
3123                 if (!xl->sched_started)
3124                         raw_spin_lock(&excl_cntrs->lock);
3125
3126                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3127
3128                 if (!xl->sched_started)
3129                         raw_spin_unlock(&excl_cntrs->lock);
3130         }
3131 }
3132
3133 static void
3134 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3135                                         struct perf_event *event)
3136 {
3137         struct hw_perf_event_extra *reg;
3138
3139         reg = &event->hw.extra_reg;
3140         if (reg->idx != EXTRA_REG_NONE)
3141                 __intel_shared_reg_put_constraints(cpuc, reg);
3142
3143         reg = &event->hw.branch_reg;
3144         if (reg->idx != EXTRA_REG_NONE)
3145                 __intel_shared_reg_put_constraints(cpuc, reg);
3146 }
3147
3148 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3149                                         struct perf_event *event)
3150 {
3151         intel_put_shared_regs_event_constraints(cpuc, event);
3152
3153         /*
3154          * is PMU has exclusive counter restrictions, then
3155          * all events are subject to and must call the
3156          * put_excl_constraints() routine
3157          */
3158         if (cpuc->excl_cntrs)
3159                 intel_put_excl_constraints(cpuc, event);
3160 }
3161
3162 static void intel_pebs_aliases_core2(struct perf_event *event)
3163 {
3164         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3165                 /*
3166                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3167                  * (0x003c) so that we can use it with PEBS.
3168                  *
3169                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3170                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3171                  * (0x00c0), which is a PEBS capable event, to get the same
3172                  * count.
3173                  *
3174                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3175                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3176                  * larger than the maximum number of instructions that can be
3177                  * retired per cycle (4) and then inverting the condition, we
3178                  * count all cycles that retire 16 or less instructions, which
3179                  * is every cycle.
3180                  *
3181                  * Thereby we gain a PEBS capable cycle counter.
3182                  */
3183                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3184
3185                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3186                 event->hw.config = alt_config;
3187         }
3188 }
3189
3190 static void intel_pebs_aliases_snb(struct perf_event *event)
3191 {
3192         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3193                 /*
3194                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3195                  * (0x003c) so that we can use it with PEBS.
3196                  *
3197                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3198                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3199                  * (0x01c2), which is a PEBS capable event, to get the same
3200                  * count.
3201                  *
3202                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3203                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3204                  * larger than the maximum number of micro-ops that can be
3205                  * retired per cycle (4) and then inverting the condition, we
3206                  * count all cycles that retire 16 or less micro-ops, which
3207                  * is every cycle.
3208                  *
3209                  * Thereby we gain a PEBS capable cycle counter.
3210                  */
3211                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3212
3213                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3214                 event->hw.config = alt_config;
3215         }
3216 }
3217
3218 static void intel_pebs_aliases_precdist(struct perf_event *event)
3219 {
3220         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3221                 /*
3222                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3223                  * (0x003c) so that we can use it with PEBS.
3224                  *
3225                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3226                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3227                  * (0x01c0), which is a PEBS capable event, to get the same
3228                  * count.
3229                  *
3230                  * The PREC_DIST event has special support to minimize sample
3231                  * shadowing effects. One drawback is that it can be
3232                  * only programmed on counter 1, but that seems like an
3233                  * acceptable trade off.
3234                  */
3235                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3236
3237                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3238                 event->hw.config = alt_config;
3239         }
3240 }
3241
3242 static void intel_pebs_aliases_ivb(struct perf_event *event)
3243 {
3244         if (event->attr.precise_ip < 3)
3245                 return intel_pebs_aliases_snb(event);
3246         return intel_pebs_aliases_precdist(event);
3247 }
3248
3249 static void intel_pebs_aliases_skl(struct perf_event *event)
3250 {
3251         if (event->attr.precise_ip < 3)
3252                 return intel_pebs_aliases_core2(event);
3253         return intel_pebs_aliases_precdist(event);
3254 }
3255
3256 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3257 {
3258         unsigned long flags = x86_pmu.large_pebs_flags;
3259
3260         if (event->attr.use_clockid)
3261                 flags &= ~PERF_SAMPLE_TIME;
3262         if (!event->attr.exclude_kernel)
3263                 flags &= ~PERF_SAMPLE_REGS_USER;
3264         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3265                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3266         return flags;
3267 }
3268
3269 static int intel_pmu_bts_config(struct perf_event *event)
3270 {
3271         struct perf_event_attr *attr = &event->attr;
3272
3273         if (unlikely(intel_pmu_has_bts(event))) {
3274                 /* BTS is not supported by this architecture. */
3275                 if (!x86_pmu.bts_active)
3276                         return -EOPNOTSUPP;
3277
3278                 /* BTS is currently only allowed for user-mode. */
3279                 if (!attr->exclude_kernel)
3280                         return -EOPNOTSUPP;
3281
3282                 /* BTS is not allowed for precise events. */
3283                 if (attr->precise_ip)
3284                         return -EOPNOTSUPP;
3285
3286                 /* disallow bts if conflicting events are present */
3287                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3288                         return -EBUSY;
3289
3290                 event->destroy = hw_perf_lbr_event_destroy;
3291         }
3292
3293         return 0;
3294 }
3295
3296 static int core_pmu_hw_config(struct perf_event *event)
3297 {
3298         int ret = x86_pmu_hw_config(event);
3299
3300         if (ret)
3301                 return ret;
3302
3303         return intel_pmu_bts_config(event);
3304 }
3305
3306 static int intel_pmu_hw_config(struct perf_event *event)
3307 {
3308         int ret = x86_pmu_hw_config(event);
3309
3310         if (ret)
3311                 return ret;
3312
3313         ret = intel_pmu_bts_config(event);
3314         if (ret)
3315                 return ret;
3316
3317         if (event->attr.precise_ip) {
3318                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3319                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3320                         if (!(event->attr.sample_type &
3321                               ~intel_pmu_large_pebs_flags(event)))
3322                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3323                 }
3324                 if (x86_pmu.pebs_aliases)
3325                         x86_pmu.pebs_aliases(event);
3326
3327                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3328                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3329         }
3330
3331         if (needs_branch_stack(event)) {
3332                 ret = intel_pmu_setup_lbr_filter(event);
3333                 if (ret)
3334                         return ret;
3335
3336                 /*
3337                  * BTS is set up earlier in this path, so don't account twice
3338                  */
3339                 if (!unlikely(intel_pmu_has_bts(event))) {
3340                         /* disallow lbr if conflicting events are present */
3341                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3342                                 return -EBUSY;
3343
3344                         event->destroy = hw_perf_lbr_event_destroy;
3345                 }
3346         }
3347
3348         if (event->attr.aux_output) {
3349                 if (!event->attr.precise_ip)
3350                         return -EINVAL;
3351
3352                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3353         }
3354
3355         if (event->attr.type != PERF_TYPE_RAW)
3356                 return 0;
3357
3358         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3359                 return 0;
3360
3361         if (x86_pmu.version < 3)
3362                 return -EINVAL;
3363
3364         ret = perf_allow_cpu(&event->attr);
3365         if (ret)
3366                 return ret;
3367
3368         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3369
3370         return 0;
3371 }
3372
3373 #ifdef CONFIG_RETPOLINE
3374 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr);
3375 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr);
3376 #endif
3377
3378 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3379 {
3380 #ifdef CONFIG_RETPOLINE
3381         if (x86_pmu.guest_get_msrs == intel_guest_get_msrs)
3382                 return intel_guest_get_msrs(nr);
3383         else if (x86_pmu.guest_get_msrs == core_guest_get_msrs)
3384                 return core_guest_get_msrs(nr);
3385 #endif
3386         if (x86_pmu.guest_get_msrs)
3387                 return x86_pmu.guest_get_msrs(nr);
3388         *nr = 0;
3389         return NULL;
3390 }
3391 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3392
3393 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3394 {
3395         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3396         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3397
3398         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3399         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3400         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3401         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3402                 arr[0].guest &= ~cpuc->pebs_enabled;
3403         else
3404                 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3405         *nr = 1;
3406
3407         if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3408                 /*
3409                  * If PMU counter has PEBS enabled it is not enough to
3410                  * disable counter on a guest entry since PEBS memory
3411                  * write can overshoot guest entry and corrupt guest
3412                  * memory. Disabling PEBS solves the problem.
3413                  *
3414                  * Don't do this if the CPU already enforces it.
3415                  */
3416                 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3417                 arr[1].host = cpuc->pebs_enabled;
3418                 arr[1].guest = 0;
3419                 *nr = 2;
3420         }
3421
3422         return arr;
3423 }
3424
3425 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3426 {
3427         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3428         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3429         int idx;
3430
3431         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3432                 struct perf_event *event = cpuc->events[idx];
3433
3434                 arr[idx].msr = x86_pmu_config_addr(idx);
3435                 arr[idx].host = arr[idx].guest = 0;
3436
3437                 if (!test_bit(idx, cpuc->active_mask))
3438                         continue;
3439
3440                 arr[idx].host = arr[idx].guest =
3441                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3442
3443                 if (event->attr.exclude_host)
3444                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3445                 else if (event->attr.exclude_guest)
3446                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3447         }
3448
3449         *nr = x86_pmu.num_counters;
3450         return arr;
3451 }
3452
3453 static void core_pmu_enable_event(struct perf_event *event)
3454 {
3455         if (!event->attr.exclude_host)
3456                 x86_pmu_enable_event(event);
3457 }
3458
3459 static void core_pmu_enable_all(int added)
3460 {
3461         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3462         int idx;
3463
3464         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3465                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3466
3467                 if (!test_bit(idx, cpuc->active_mask) ||
3468                                 cpuc->events[idx]->attr.exclude_host)
3469                         continue;
3470
3471                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3472         }
3473 }
3474
3475 static int hsw_hw_config(struct perf_event *event)
3476 {
3477         int ret = intel_pmu_hw_config(event);
3478
3479         if (ret)
3480                 return ret;
3481         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3482                 return 0;
3483         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3484
3485         /*
3486          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3487          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3488          * this combination.
3489          */
3490         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3491              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3492               event->attr.precise_ip > 0))
3493                 return -EOPNOTSUPP;
3494
3495         if (event_is_checkpointed(event)) {
3496                 /*
3497                  * Sampling of checkpointed events can cause situations where
3498                  * the CPU constantly aborts because of a overflow, which is
3499                  * then checkpointed back and ignored. Forbid checkpointing
3500                  * for sampling.
3501                  *
3502                  * But still allow a long sampling period, so that perf stat
3503                  * from KVM works.
3504                  */
3505                 if (event->attr.sample_period > 0 &&
3506                     event->attr.sample_period < 0x7fffffff)
3507                         return -EOPNOTSUPP;
3508         }
3509         return 0;
3510 }
3511
3512 static struct event_constraint counter0_constraint =
3513                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3514
3515 static struct event_constraint counter2_constraint =
3516                         EVENT_CONSTRAINT(0, 0x4, 0);
3517
3518 static struct event_constraint fixed0_constraint =
3519                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3520
3521 static struct event_constraint fixed0_counter0_constraint =
3522                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3523
3524 static struct event_constraint *
3525 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3526                           struct perf_event *event)
3527 {
3528         struct event_constraint *c;
3529
3530         c = intel_get_event_constraints(cpuc, idx, event);
3531
3532         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3533         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3534                 if (c->idxmsk64 & (1U << 2))
3535                         return &counter2_constraint;
3536                 return &emptyconstraint;
3537         }
3538
3539         return c;
3540 }
3541
3542 static struct event_constraint *
3543 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3544                           struct perf_event *event)
3545 {
3546         /*
3547          * Fixed counter 0 has less skid.
3548          * Force instruction:ppp in Fixed counter 0
3549          */
3550         if ((event->attr.precise_ip == 3) &&
3551             constraint_match(&fixed0_constraint, event->hw.config))
3552                 return &fixed0_constraint;
3553
3554         return hsw_get_event_constraints(cpuc, idx, event);
3555 }
3556
3557 static struct event_constraint *
3558 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3559                           struct perf_event *event)
3560 {
3561         struct event_constraint *c;
3562
3563         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3564         if (event->attr.precise_ip == 3)
3565                 return &counter0_constraint;
3566
3567         c = intel_get_event_constraints(cpuc, idx, event);
3568
3569         return c;
3570 }
3571
3572 static struct event_constraint *
3573 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3574                           struct perf_event *event)
3575 {
3576         struct event_constraint *c;
3577
3578         /*
3579          * :ppp means to do reduced skid PEBS,
3580          * which is available on PMC0 and fixed counter 0.
3581          */
3582         if (event->attr.precise_ip == 3) {
3583                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
3584                 if (constraint_match(&fixed0_constraint, event->hw.config))
3585                         return &fixed0_counter0_constraint;
3586
3587                 return &counter0_constraint;
3588         }
3589
3590         c = intel_get_event_constraints(cpuc, idx, event);
3591
3592         return c;
3593 }
3594
3595 static bool allow_tsx_force_abort = true;
3596
3597 static struct event_constraint *
3598 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3599                           struct perf_event *event)
3600 {
3601         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3602
3603         /*
3604          * Without TFA we must not use PMC3.
3605          */
3606         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
3607                 c = dyn_constraint(cpuc, c, idx);
3608                 c->idxmsk64 &= ~(1ULL << 3);
3609                 c->weight--;
3610         }
3611
3612         return c;
3613 }
3614
3615 /*
3616  * Broadwell:
3617  *
3618  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3619  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3620  * the two to enforce a minimum period of 128 (the smallest value that has bits
3621  * 0-5 cleared and >= 100).
3622  *
3623  * Because of how the code in x86_perf_event_set_period() works, the truncation
3624  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3625  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3626  *
3627  * Therefore the effective (average) period matches the requested period,
3628  * despite coarser hardware granularity.
3629  */
3630 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3631 {
3632         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3633                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
3634                 if (left < 128)
3635                         left = 128;
3636                 left &= ~0x3fULL;
3637         }
3638         return left;
3639 }
3640
3641 static u64 nhm_limit_period(struct perf_event *event, u64 left)
3642 {
3643         return max(left, 32ULL);
3644 }
3645
3646 PMU_FORMAT_ATTR(event,  "config:0-7"    );
3647 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3648 PMU_FORMAT_ATTR(edge,   "config:18"     );
3649 PMU_FORMAT_ATTR(pc,     "config:19"     );
3650 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3651 PMU_FORMAT_ATTR(inv,    "config:23"     );
3652 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3653 PMU_FORMAT_ATTR(in_tx,  "config:32");
3654 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3655
3656 static struct attribute *intel_arch_formats_attr[] = {
3657         &format_attr_event.attr,
3658         &format_attr_umask.attr,
3659         &format_attr_edge.attr,
3660         &format_attr_pc.attr,
3661         &format_attr_inv.attr,
3662         &format_attr_cmask.attr,
3663         NULL,
3664 };
3665
3666 ssize_t intel_event_sysfs_show(char *page, u64 config)
3667 {
3668         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3669
3670         return x86_event_sysfs_show(page, config, event);
3671 }
3672
3673 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3674 {
3675         struct intel_shared_regs *regs;
3676         int i;
3677
3678         regs = kzalloc_node(sizeof(struct intel_shared_regs),
3679                             GFP_KERNEL, cpu_to_node(cpu));
3680         if (regs) {
3681                 /*
3682                  * initialize the locks to keep lockdep happy
3683                  */
3684                 for (i = 0; i < EXTRA_REG_MAX; i++)
3685                         raw_spin_lock_init(&regs->regs[i].lock);
3686
3687                 regs->core_id = -1;
3688         }
3689         return regs;
3690 }
3691
3692 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3693 {
3694         struct intel_excl_cntrs *c;
3695
3696         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3697                          GFP_KERNEL, cpu_to_node(cpu));
3698         if (c) {
3699                 raw_spin_lock_init(&c->lock);
3700                 c->core_id = -1;
3701         }
3702         return c;
3703 }
3704
3705
3706 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
3707 {
3708         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
3709
3710         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3711                 cpuc->shared_regs = allocate_shared_regs(cpu);
3712                 if (!cpuc->shared_regs)
3713                         goto err;
3714         }
3715
3716         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
3717                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3718
3719                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
3720                 if (!cpuc->constraint_list)
3721                         goto err_shared_regs;
3722         }
3723
3724         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3725                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3726                 if (!cpuc->excl_cntrs)
3727                         goto err_constraint_list;
3728
3729                 cpuc->excl_thread_id = 0;
3730         }
3731
3732         return 0;
3733
3734 err_constraint_list:
3735         kfree(cpuc->constraint_list);
3736         cpuc->constraint_list = NULL;
3737
3738 err_shared_regs:
3739         kfree(cpuc->shared_regs);
3740         cpuc->shared_regs = NULL;
3741
3742 err:
3743         return -ENOMEM;
3744 }
3745
3746 static int intel_pmu_cpu_prepare(int cpu)
3747 {
3748         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
3749 }
3750
3751 static void flip_smm_bit(void *data)
3752 {
3753         unsigned long set = *(unsigned long *)data;
3754
3755         if (set > 0) {
3756                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3757                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3758         } else {
3759                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3760                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3761         }
3762 }
3763
3764 static void intel_pmu_cpu_starting(int cpu)
3765 {
3766         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3767         int core_id = topology_core_id(cpu);
3768         int i;
3769
3770         init_debug_store_on_cpu(cpu);
3771         /*
3772          * Deal with CPUs that don't clear their LBRs on power-up.
3773          */
3774         intel_pmu_lbr_reset();
3775
3776         cpuc->lbr_sel = NULL;
3777
3778         if (x86_pmu.flags & PMU_FL_TFA) {
3779                 WARN_ON_ONCE(cpuc->tfa_shadow);
3780                 cpuc->tfa_shadow = ~0ULL;
3781                 intel_set_tfa(cpuc, false);
3782         }
3783
3784         if (x86_pmu.version > 1)
3785                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3786
3787         if (x86_pmu.counter_freezing)
3788                 enable_counter_freeze();
3789
3790         if (!cpuc->shared_regs)
3791                 return;
3792
3793         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3794                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3795                         struct intel_shared_regs *pc;
3796
3797                         pc = per_cpu(cpu_hw_events, i).shared_regs;
3798                         if (pc && pc->core_id == core_id) {
3799                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3800                                 cpuc->shared_regs = pc;
3801                                 break;
3802                         }
3803                 }
3804                 cpuc->shared_regs->core_id = core_id;
3805                 cpuc->shared_regs->refcnt++;
3806         }
3807
3808         if (x86_pmu.lbr_sel_map)
3809                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3810
3811         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3812                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3813                         struct cpu_hw_events *sibling;
3814                         struct intel_excl_cntrs *c;
3815
3816                         sibling = &per_cpu(cpu_hw_events, i);
3817                         c = sibling->excl_cntrs;
3818                         if (c && c->core_id == core_id) {
3819                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3820                                 cpuc->excl_cntrs = c;
3821                                 if (!sibling->excl_thread_id)
3822                                         cpuc->excl_thread_id = 1;
3823                                 break;
3824                         }
3825                 }
3826                 cpuc->excl_cntrs->core_id = core_id;
3827                 cpuc->excl_cntrs->refcnt++;
3828         }
3829 }
3830
3831 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
3832 {
3833         struct intel_excl_cntrs *c;
3834
3835         c = cpuc->excl_cntrs;
3836         if (c) {
3837                 if (c->core_id == -1 || --c->refcnt == 0)
3838                         kfree(c);
3839                 cpuc->excl_cntrs = NULL;
3840         }
3841
3842         kfree(cpuc->constraint_list);
3843         cpuc->constraint_list = NULL;
3844 }
3845
3846 static void intel_pmu_cpu_dying(int cpu)
3847 {
3848         fini_debug_store_on_cpu(cpu);
3849
3850         if (x86_pmu.counter_freezing)
3851                 disable_counter_freeze();
3852 }
3853
3854 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
3855 {
3856         struct intel_shared_regs *pc;
3857
3858         pc = cpuc->shared_regs;
3859         if (pc) {
3860                 if (pc->core_id == -1 || --pc->refcnt == 0)
3861                         kfree(pc);
3862                 cpuc->shared_regs = NULL;
3863         }
3864
3865         free_excl_cntrs(cpuc);
3866 }
3867
3868 static void intel_pmu_cpu_dead(int cpu)
3869 {
3870         intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
3871 }
3872
3873 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3874                                  bool sched_in)
3875 {
3876         intel_pmu_pebs_sched_task(ctx, sched_in);
3877         intel_pmu_lbr_sched_task(ctx, sched_in);
3878 }
3879
3880 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
3881                                     struct perf_event_context *next)
3882 {
3883         intel_pmu_lbr_swap_task_ctx(prev, next);
3884 }
3885
3886 static int intel_pmu_check_period(struct perf_event *event, u64 value)
3887 {
3888         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
3889 }
3890
3891 static int intel_pmu_aux_output_match(struct perf_event *event)
3892 {
3893         if (!x86_pmu.intel_cap.pebs_output_pt_available)
3894                 return 0;
3895
3896         return is_intel_pt_event(event);
3897 }
3898
3899 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3900
3901 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3902
3903 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3904
3905 static struct attribute *intel_arch3_formats_attr[] = {
3906         &format_attr_event.attr,
3907         &format_attr_umask.attr,
3908         &format_attr_edge.attr,
3909         &format_attr_pc.attr,
3910         &format_attr_any.attr,
3911         &format_attr_inv.attr,
3912         &format_attr_cmask.attr,
3913         NULL,
3914 };
3915
3916 static struct attribute *hsw_format_attr[] = {
3917         &format_attr_in_tx.attr,
3918         &format_attr_in_tx_cp.attr,
3919         &format_attr_offcore_rsp.attr,
3920         &format_attr_ldlat.attr,
3921         NULL
3922 };
3923
3924 static struct attribute *nhm_format_attr[] = {
3925         &format_attr_offcore_rsp.attr,
3926         &format_attr_ldlat.attr,
3927         NULL
3928 };
3929
3930 static struct attribute *slm_format_attr[] = {
3931         &format_attr_offcore_rsp.attr,
3932         NULL
3933 };
3934
3935 static struct attribute *skl_format_attr[] = {
3936         &format_attr_frontend.attr,
3937         NULL,
3938 };
3939
3940 static __initconst const struct x86_pmu core_pmu = {
3941         .name                   = "core",
3942         .handle_irq             = x86_pmu_handle_irq,
3943         .disable_all            = x86_pmu_disable_all,
3944         .enable_all             = core_pmu_enable_all,
3945         .enable                 = core_pmu_enable_event,
3946         .disable                = x86_pmu_disable_event,
3947         .hw_config              = core_pmu_hw_config,
3948         .schedule_events        = x86_schedule_events,
3949         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3950         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3951         .event_map              = intel_pmu_event_map,
3952         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3953         .apic                   = 1,
3954         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3955
3956         /*
3957          * Intel PMCs cannot be accessed sanely above 32-bit width,
3958          * so we install an artificial 1<<31 period regardless of
3959          * the generic event period:
3960          */
3961         .max_period             = (1ULL<<31) - 1,
3962         .get_event_constraints  = intel_get_event_constraints,
3963         .put_event_constraints  = intel_put_event_constraints,
3964         .event_constraints      = intel_core_event_constraints,
3965         .guest_get_msrs         = core_guest_get_msrs,
3966         .format_attrs           = intel_arch_formats_attr,
3967         .events_sysfs_show      = intel_event_sysfs_show,
3968
3969         /*
3970          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3971          * together with PMU version 1 and thus be using core_pmu with
3972          * shared_regs. We need following callbacks here to allocate
3973          * it properly.
3974          */
3975         .cpu_prepare            = intel_pmu_cpu_prepare,
3976         .cpu_starting           = intel_pmu_cpu_starting,
3977         .cpu_dying              = intel_pmu_cpu_dying,
3978         .cpu_dead               = intel_pmu_cpu_dead,
3979
3980         .check_period           = intel_pmu_check_period,
3981
3982         .lbr_reset              = intel_pmu_lbr_reset_64,
3983         .lbr_read               = intel_pmu_lbr_read_64,
3984         .lbr_save               = intel_pmu_lbr_save,
3985         .lbr_restore            = intel_pmu_lbr_restore,
3986 };
3987
3988 static __initconst const struct x86_pmu intel_pmu = {
3989         .name                   = "Intel",
3990         .handle_irq             = intel_pmu_handle_irq,
3991         .disable_all            = intel_pmu_disable_all,
3992         .enable_all             = intel_pmu_enable_all,
3993         .enable                 = intel_pmu_enable_event,
3994         .disable                = intel_pmu_disable_event,
3995         .add                    = intel_pmu_add_event,
3996         .del                    = intel_pmu_del_event,
3997         .read                   = intel_pmu_read_event,
3998         .hw_config              = intel_pmu_hw_config,
3999         .schedule_events        = x86_schedule_events,
4000         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4001         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4002         .event_map              = intel_pmu_event_map,
4003         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4004         .apic                   = 1,
4005         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4006         /*
4007          * Intel PMCs cannot be accessed sanely above 32 bit width,
4008          * so we install an artificial 1<<31 period regardless of
4009          * the generic event period:
4010          */
4011         .max_period             = (1ULL << 31) - 1,
4012         .get_event_constraints  = intel_get_event_constraints,
4013         .put_event_constraints  = intel_put_event_constraints,
4014         .pebs_aliases           = intel_pebs_aliases_core2,
4015
4016         .format_attrs           = intel_arch3_formats_attr,
4017         .events_sysfs_show      = intel_event_sysfs_show,
4018
4019         .cpu_prepare            = intel_pmu_cpu_prepare,
4020         .cpu_starting           = intel_pmu_cpu_starting,
4021         .cpu_dying              = intel_pmu_cpu_dying,
4022         .cpu_dead               = intel_pmu_cpu_dead,
4023
4024         .guest_get_msrs         = intel_guest_get_msrs,
4025         .sched_task             = intel_pmu_sched_task,
4026         .swap_task_ctx          = intel_pmu_swap_task_ctx,
4027
4028         .check_period           = intel_pmu_check_period,
4029
4030         .aux_output_match       = intel_pmu_aux_output_match,
4031
4032         .lbr_reset              = intel_pmu_lbr_reset_64,
4033         .lbr_read               = intel_pmu_lbr_read_64,
4034         .lbr_save               = intel_pmu_lbr_save,
4035         .lbr_restore            = intel_pmu_lbr_restore,
4036 };
4037
4038 static __init void intel_clovertown_quirk(void)
4039 {
4040         /*
4041          * PEBS is unreliable due to:
4042          *
4043          *   AJ67  - PEBS may experience CPL leaks
4044          *   AJ68  - PEBS PMI may be delayed by one event
4045          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4046          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4047          *
4048          * AJ67 could be worked around by restricting the OS/USR flags.
4049          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4050          *
4051          * AJ106 could possibly be worked around by not allowing LBR
4052          *       usage from PEBS, including the fixup.
4053          * AJ68  could possibly be worked around by always programming
4054          *       a pebs_event_reset[0] value and coping with the lost events.
4055          *
4056          * But taken together it might just make sense to not enable PEBS on
4057          * these chips.
4058          */
4059         pr_warn("PEBS disabled due to CPU errata\n");
4060         x86_pmu.pebs = 0;
4061         x86_pmu.pebs_constraints = NULL;
4062 }
4063
4064 static const struct x86_cpu_desc isolation_ucodes[] = {
4065         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
4066         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
4067         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
4068         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
4069         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
4070         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
4071         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
4072         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
4073         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
4074         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
4075         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
4076         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           2, 0x0b000014),
4077         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
4078         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
4079         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
4080         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
4081         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
4082         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
4083         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
4084         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
4085         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
4086         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
4087         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
4088         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
4089         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
4090         {}
4091 };
4092
4093 static void intel_check_pebs_isolation(void)
4094 {
4095         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4096 }
4097
4098 static __init void intel_pebs_isolation_quirk(void)
4099 {
4100         WARN_ON_ONCE(x86_pmu.check_microcode);
4101         x86_pmu.check_microcode = intel_check_pebs_isolation;
4102         intel_check_pebs_isolation();
4103 }
4104
4105 static const struct x86_cpu_desc pebs_ucodes[] = {
4106         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
4107         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
4108         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
4109         {}
4110 };
4111
4112 static bool intel_snb_pebs_broken(void)
4113 {
4114         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4115 }
4116
4117 static void intel_snb_check_microcode(void)
4118 {
4119         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4120                 return;
4121
4122         /*
4123          * Serialized by the microcode lock..
4124          */
4125         if (x86_pmu.pebs_broken) {
4126                 pr_info("PEBS enabled due to microcode update\n");
4127                 x86_pmu.pebs_broken = 0;
4128         } else {
4129                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4130                 x86_pmu.pebs_broken = 1;
4131         }
4132 }
4133
4134 static bool is_lbr_from(unsigned long msr)
4135 {
4136         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4137
4138         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4139 }
4140
4141 /*
4142  * Under certain circumstances, access certain MSR may cause #GP.
4143  * The function tests if the input MSR can be safely accessed.
4144  */
4145 static bool check_msr(unsigned long msr, u64 mask)
4146 {
4147         u64 val_old, val_new, val_tmp;
4148
4149         /*
4150          * Disable the check for real HW, so we don't
4151          * mess with potentionaly enabled registers:
4152          */
4153         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4154                 return true;
4155
4156         /*
4157          * Read the current value, change it and read it back to see if it
4158          * matches, this is needed to detect certain hardware emulators
4159          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4160          */
4161         if (rdmsrl_safe(msr, &val_old))
4162                 return false;
4163
4164         /*
4165          * Only change the bits which can be updated by wrmsrl.
4166          */
4167         val_tmp = val_old ^ mask;
4168
4169         if (is_lbr_from(msr))
4170                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4171
4172         if (wrmsrl_safe(msr, val_tmp) ||
4173             rdmsrl_safe(msr, &val_new))
4174                 return false;
4175
4176         /*
4177          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4178          * should equal rdmsrl()'s even with the quirk.
4179          */
4180         if (val_new != val_tmp)
4181                 return false;
4182
4183         if (is_lbr_from(msr))
4184                 val_old = lbr_from_signext_quirk_wr(val_old);
4185
4186         /* Here it's sure that the MSR can be safely accessed.
4187          * Restore the old value and return.
4188          */
4189         wrmsrl(msr, val_old);
4190
4191         return true;
4192 }
4193
4194 static __init void intel_sandybridge_quirk(void)
4195 {
4196         x86_pmu.check_microcode = intel_snb_check_microcode;
4197         cpus_read_lock();
4198         intel_snb_check_microcode();
4199         cpus_read_unlock();
4200 }
4201
4202 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4203         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4204         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4205         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4206         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4207         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4208         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4209         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4210 };
4211
4212 static __init void intel_arch_events_quirk(void)
4213 {
4214         int bit;
4215
4216         /* disable event that reported as not presend by cpuid */
4217         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4218                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4219                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4220                         intel_arch_events_map[bit].name);
4221         }
4222 }
4223
4224 static __init void intel_nehalem_quirk(void)
4225 {
4226         union cpuid10_ebx ebx;
4227
4228         ebx.full = x86_pmu.events_maskl;
4229         if (ebx.split.no_branch_misses_retired) {
4230                 /*
4231                  * Erratum AAJ80 detected, we work it around by using
4232                  * the BR_MISP_EXEC.ANY event. This will over-count
4233                  * branch-misses, but it's still much better than the
4234                  * architectural event which is often completely bogus:
4235                  */
4236                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4237                 ebx.split.no_branch_misses_retired = 0;
4238                 x86_pmu.events_maskl = ebx.full;
4239                 pr_info("CPU erratum AAJ80 worked around\n");
4240         }
4241 }
4242
4243 static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4244         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,         2, 0x0000000e),
4245         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,         9, 0x0000002e),
4246         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,        10, 0x00000008),
4247         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D,       1, 0x00000028),
4248         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,    1, 0x00000028),
4249         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,    8, 0x00000006),
4250         {}
4251 };
4252
4253 static bool intel_counter_freezing_broken(void)
4254 {
4255         return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4256 }
4257
4258 static __init void intel_counter_freezing_quirk(void)
4259 {
4260         /* Check if it's already disabled */
4261         if (disable_counter_freezing)
4262                 return;
4263
4264         /*
4265          * If the system starts with the wrong ucode, leave the
4266          * counter-freezing feature permanently disabled.
4267          */
4268         if (intel_counter_freezing_broken()) {
4269                 pr_info("PMU counter freezing disabled due to CPU errata,"
4270                         "please upgrade microcode\n");
4271                 x86_pmu.counter_freezing = false;
4272                 x86_pmu.handle_irq = intel_pmu_handle_irq;
4273         }
4274 }
4275
4276 /*
4277  * enable software workaround for errata:
4278  * SNB: BJ122
4279  * IVB: BV98
4280  * HSW: HSD29
4281  *
4282  * Only needed when HT is enabled. However detecting
4283  * if HT is enabled is difficult (model specific). So instead,
4284  * we enable the workaround in the early boot, and verify if
4285  * it is needed in a later initcall phase once we have valid
4286  * topology information to check if HT is actually enabled
4287  */
4288 static __init void intel_ht_bug(void)
4289 {
4290         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4291
4292         x86_pmu.start_scheduling = intel_start_scheduling;
4293         x86_pmu.commit_scheduling = intel_commit_scheduling;
4294         x86_pmu.stop_scheduling = intel_stop_scheduling;
4295 }
4296
4297 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
4298 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
4299
4300 /* Haswell special events */
4301 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
4302 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
4303 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
4304 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
4305 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
4306 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
4307 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
4308 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
4309 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
4310 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
4311 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
4312 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
4313
4314 static struct attribute *hsw_events_attrs[] = {
4315         EVENT_PTR(td_slots_issued),
4316         EVENT_PTR(td_slots_retired),
4317         EVENT_PTR(td_fetch_bubbles),
4318         EVENT_PTR(td_total_slots),
4319         EVENT_PTR(td_total_slots_scale),
4320         EVENT_PTR(td_recovery_bubbles),
4321         EVENT_PTR(td_recovery_bubbles_scale),
4322         NULL
4323 };
4324
4325 static struct attribute *hsw_mem_events_attrs[] = {
4326         EVENT_PTR(mem_ld_hsw),
4327         EVENT_PTR(mem_st_hsw),
4328         NULL,
4329 };
4330
4331 static struct attribute *hsw_tsx_events_attrs[] = {
4332         EVENT_PTR(tx_start),
4333         EVENT_PTR(tx_commit),
4334         EVENT_PTR(tx_abort),
4335         EVENT_PTR(tx_capacity),
4336         EVENT_PTR(tx_conflict),
4337         EVENT_PTR(el_start),
4338         EVENT_PTR(el_commit),
4339         EVENT_PTR(el_abort),
4340         EVENT_PTR(el_capacity),
4341         EVENT_PTR(el_conflict),
4342         EVENT_PTR(cycles_t),
4343         EVENT_PTR(cycles_ct),
4344         NULL
4345 };
4346
4347 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4348 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4349 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4350 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4351
4352 static struct attribute *icl_events_attrs[] = {
4353         EVENT_PTR(mem_ld_hsw),
4354         EVENT_PTR(mem_st_hsw),
4355         NULL,
4356 };
4357
4358 static struct attribute *icl_tsx_events_attrs[] = {
4359         EVENT_PTR(tx_start),
4360         EVENT_PTR(tx_abort),
4361         EVENT_PTR(tx_commit),
4362         EVENT_PTR(tx_capacity_read),
4363         EVENT_PTR(tx_capacity_write),
4364         EVENT_PTR(tx_conflict),
4365         EVENT_PTR(el_start),
4366         EVENT_PTR(el_abort),
4367         EVENT_PTR(el_commit),
4368         EVENT_PTR(el_capacity_read),
4369         EVENT_PTR(el_capacity_write),
4370         EVENT_PTR(el_conflict),
4371         EVENT_PTR(cycles_t),
4372         EVENT_PTR(cycles_ct),
4373         NULL,
4374 };
4375
4376 static ssize_t freeze_on_smi_show(struct device *cdev,
4377                                   struct device_attribute *attr,
4378                                   char *buf)
4379 {
4380         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4381 }
4382
4383 static DEFINE_MUTEX(freeze_on_smi_mutex);
4384
4385 static ssize_t freeze_on_smi_store(struct device *cdev,
4386                                    struct device_attribute *attr,
4387                                    const char *buf, size_t count)
4388 {
4389         unsigned long val;
4390         ssize_t ret;
4391
4392         ret = kstrtoul(buf, 0, &val);
4393         if (ret)
4394                 return ret;
4395
4396         if (val > 1)
4397                 return -EINVAL;
4398
4399         mutex_lock(&freeze_on_smi_mutex);
4400
4401         if (x86_pmu.attr_freeze_on_smi == val)
4402                 goto done;
4403
4404         x86_pmu.attr_freeze_on_smi = val;
4405
4406         get_online_cpus();
4407         on_each_cpu(flip_smm_bit, &val, 1);
4408         put_online_cpus();
4409 done:
4410         mutex_unlock(&freeze_on_smi_mutex);
4411
4412         return count;
4413 }
4414
4415 static void update_tfa_sched(void *ignored)
4416 {
4417         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4418
4419         /*
4420          * check if PMC3 is used
4421          * and if so force schedule out for all event types all contexts
4422          */
4423         if (test_bit(3, cpuc->active_mask))
4424                 perf_pmu_resched(x86_get_pmu());
4425 }
4426
4427 static ssize_t show_sysctl_tfa(struct device *cdev,
4428                               struct device_attribute *attr,
4429                               char *buf)
4430 {
4431         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
4432 }
4433
4434 static ssize_t set_sysctl_tfa(struct device *cdev,
4435                               struct device_attribute *attr,
4436                               const char *buf, size_t count)
4437 {
4438         bool val;
4439         ssize_t ret;
4440
4441         ret = kstrtobool(buf, &val);
4442         if (ret)
4443                 return ret;
4444
4445         /* no change */
4446         if (val == allow_tsx_force_abort)
4447                 return count;
4448
4449         allow_tsx_force_abort = val;
4450
4451         get_online_cpus();
4452         on_each_cpu(update_tfa_sched, NULL, 1);
4453         put_online_cpus();
4454
4455         return count;
4456 }
4457
4458
4459 static DEVICE_ATTR_RW(freeze_on_smi);
4460
4461 static ssize_t branches_show(struct device *cdev,
4462                              struct device_attribute *attr,
4463                              char *buf)
4464 {
4465         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4466 }
4467
4468 static DEVICE_ATTR_RO(branches);
4469
4470 static struct attribute *lbr_attrs[] = {
4471         &dev_attr_branches.attr,
4472         NULL
4473 };
4474
4475 static char pmu_name_str[30];
4476
4477 static ssize_t pmu_name_show(struct device *cdev,
4478                              struct device_attribute *attr,
4479                              char *buf)
4480 {
4481         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4482 }
4483
4484 static DEVICE_ATTR_RO(pmu_name);
4485
4486 static struct attribute *intel_pmu_caps_attrs[] = {
4487        &dev_attr_pmu_name.attr,
4488        NULL
4489 };
4490
4491 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
4492                    show_sysctl_tfa,
4493                    set_sysctl_tfa);
4494
4495 static struct attribute *intel_pmu_attrs[] = {
4496         &dev_attr_freeze_on_smi.attr,
4497         &dev_attr_allow_tsx_force_abort.attr,
4498         NULL,
4499 };
4500
4501 static umode_t
4502 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4503 {
4504         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
4505 }
4506
4507 static umode_t
4508 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4509 {
4510         return x86_pmu.pebs ? attr->mode : 0;
4511 }
4512
4513 static umode_t
4514 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4515 {
4516         return x86_pmu.lbr_nr ? attr->mode : 0;
4517 }
4518
4519 static umode_t
4520 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4521 {
4522         return x86_pmu.version >= 2 ? attr->mode : 0;
4523 }
4524
4525 static umode_t
4526 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4527 {
4528         if (attr == &dev_attr_allow_tsx_force_abort.attr)
4529                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
4530
4531         return attr->mode;
4532 }
4533
4534 static struct attribute_group group_events_td  = {
4535         .name = "events",
4536 };
4537
4538 static struct attribute_group group_events_mem = {
4539         .name       = "events",
4540         .is_visible = pebs_is_visible,
4541 };
4542
4543 static struct attribute_group group_events_tsx = {
4544         .name       = "events",
4545         .is_visible = tsx_is_visible,
4546 };
4547
4548 static struct attribute_group group_caps_gen = {
4549         .name  = "caps",
4550         .attrs = intel_pmu_caps_attrs,
4551 };
4552
4553 static struct attribute_group group_caps_lbr = {
4554         .name       = "caps",
4555         .attrs      = lbr_attrs,
4556         .is_visible = lbr_is_visible,
4557 };
4558
4559 static struct attribute_group group_format_extra = {
4560         .name       = "format",
4561         .is_visible = exra_is_visible,
4562 };
4563
4564 static struct attribute_group group_format_extra_skl = {
4565         .name       = "format",
4566         .is_visible = exra_is_visible,
4567 };
4568
4569 static struct attribute_group group_default = {
4570         .attrs      = intel_pmu_attrs,
4571         .is_visible = default_is_visible,
4572 };
4573
4574 static const struct attribute_group *attr_update[] = {
4575         &group_events_td,
4576         &group_events_mem,
4577         &group_events_tsx,
4578         &group_caps_gen,
4579         &group_caps_lbr,
4580         &group_format_extra,
4581         &group_format_extra_skl,
4582         &group_default,
4583         NULL,
4584 };
4585
4586 static struct attribute *empty_attrs;
4587
4588 __init int intel_pmu_init(void)
4589 {
4590         struct attribute **extra_skl_attr = &empty_attrs;
4591         struct attribute **extra_attr = &empty_attrs;
4592         struct attribute **td_attr    = &empty_attrs;
4593         struct attribute **mem_attr   = &empty_attrs;
4594         struct attribute **tsx_attr   = &empty_attrs;
4595         union cpuid10_edx edx;
4596         union cpuid10_eax eax;
4597         union cpuid10_ebx ebx;
4598         struct event_constraint *c;
4599         unsigned int unused;
4600         struct extra_reg *er;
4601         bool pmem = false;
4602         int version, i;
4603         char *name;
4604
4605         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4606                 switch (boot_cpu_data.x86) {
4607                 case 0x6:
4608                         return p6_pmu_init();
4609                 case 0xb:
4610                         return knc_pmu_init();
4611                 case 0xf:
4612                         return p4_pmu_init();
4613                 }
4614                 return -ENODEV;
4615         }
4616
4617         /*
4618          * Check whether the Architectural PerfMon supports
4619          * Branch Misses Retired hw_event or not.
4620          */
4621         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4622         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4623                 return -ENODEV;
4624
4625         version = eax.split.version_id;
4626         if (version < 2)
4627                 x86_pmu = core_pmu;
4628         else
4629                 x86_pmu = intel_pmu;
4630
4631         x86_pmu.version                 = version;
4632         x86_pmu.num_counters            = eax.split.num_counters;
4633         x86_pmu.cntval_bits             = eax.split.bit_width;
4634         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
4635
4636         x86_pmu.events_maskl            = ebx.full;
4637         x86_pmu.events_mask_len         = eax.split.mask_length;
4638
4639         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4640
4641         /*
4642          * Quirk: v2 perfmon does not report fixed-purpose events, so
4643          * assume at least 3 events, when not running in a hypervisor:
4644          */
4645         if (version > 1) {
4646                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4647
4648                 x86_pmu.num_counters_fixed =
4649                         max((int)edx.split.num_counters_fixed, assume);
4650         }
4651
4652         if (version >= 4)
4653                 x86_pmu.counter_freezing = !disable_counter_freezing;
4654
4655         if (boot_cpu_has(X86_FEATURE_PDCM)) {
4656                 u64 capabilities;
4657
4658                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4659                 x86_pmu.intel_cap.capabilities = capabilities;
4660         }
4661
4662         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
4663                 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
4664                 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
4665         }
4666
4667         if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
4668                 intel_pmu_arch_lbr_init();
4669
4670         intel_ds_init();
4671
4672         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4673
4674         /*
4675          * Install the hw-cache-events table:
4676          */
4677         switch (boot_cpu_data.x86_model) {
4678         case INTEL_FAM6_CORE_YONAH:
4679                 pr_cont("Core events, ");
4680                 name = "core";
4681                 break;
4682
4683         case INTEL_FAM6_CORE2_MEROM:
4684                 x86_add_quirk(intel_clovertown_quirk);
4685                 /* fall through */
4686
4687         case INTEL_FAM6_CORE2_MEROM_L:
4688         case INTEL_FAM6_CORE2_PENRYN:
4689         case INTEL_FAM6_CORE2_DUNNINGTON:
4690                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4691                        sizeof(hw_cache_event_ids));
4692
4693                 intel_pmu_lbr_init_core();
4694
4695                 x86_pmu.event_constraints = intel_core2_event_constraints;
4696                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4697                 pr_cont("Core2 events, ");
4698                 name = "core2";
4699                 break;
4700
4701         case INTEL_FAM6_NEHALEM:
4702         case INTEL_FAM6_NEHALEM_EP:
4703         case INTEL_FAM6_NEHALEM_EX:
4704                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4705                        sizeof(hw_cache_event_ids));
4706                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4707                        sizeof(hw_cache_extra_regs));
4708
4709                 intel_pmu_lbr_init_nhm();
4710
4711                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
4712                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4713                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4714                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
4715                 x86_pmu.limit_period = nhm_limit_period;
4716
4717                 mem_attr = nhm_mem_events_attrs;
4718
4719                 /* UOPS_ISSUED.STALLED_CYCLES */
4720                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4721                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4722                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4723                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4724                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4725
4726                 intel_pmu_pebs_data_source_nhm();
4727                 x86_add_quirk(intel_nehalem_quirk);
4728                 x86_pmu.pebs_no_tlb = 1;
4729                 extra_attr = nhm_format_attr;
4730
4731                 pr_cont("Nehalem events, ");
4732                 name = "nehalem";
4733                 break;
4734
4735         case INTEL_FAM6_ATOM_BONNELL:
4736         case INTEL_FAM6_ATOM_BONNELL_MID:
4737         case INTEL_FAM6_ATOM_SALTWELL:
4738         case INTEL_FAM6_ATOM_SALTWELL_MID:
4739         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4740                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4741                        sizeof(hw_cache_event_ids));
4742
4743                 intel_pmu_lbr_init_atom();
4744
4745                 x86_pmu.event_constraints = intel_gen_event_constraints;
4746                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4747                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4748                 pr_cont("Atom events, ");
4749                 name = "bonnell";
4750                 break;
4751
4752         case INTEL_FAM6_ATOM_SILVERMONT:
4753         case INTEL_FAM6_ATOM_SILVERMONT_D:
4754         case INTEL_FAM6_ATOM_SILVERMONT_MID:
4755         case INTEL_FAM6_ATOM_AIRMONT:
4756         case INTEL_FAM6_ATOM_AIRMONT_MID:
4757                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4758                         sizeof(hw_cache_event_ids));
4759                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4760                        sizeof(hw_cache_extra_regs));
4761
4762                 intel_pmu_lbr_init_slm();
4763
4764                 x86_pmu.event_constraints = intel_slm_event_constraints;
4765                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4766                 x86_pmu.extra_regs = intel_slm_extra_regs;
4767                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4768                 td_attr = slm_events_attrs;
4769                 extra_attr = slm_format_attr;
4770                 pr_cont("Silvermont events, ");
4771                 name = "silvermont";
4772                 break;
4773
4774         case INTEL_FAM6_ATOM_GOLDMONT:
4775         case INTEL_FAM6_ATOM_GOLDMONT_D:
4776                 x86_add_quirk(intel_counter_freezing_quirk);
4777                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4778                        sizeof(hw_cache_event_ids));
4779                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4780                        sizeof(hw_cache_extra_regs));
4781
4782                 intel_pmu_lbr_init_skl();
4783
4784                 x86_pmu.event_constraints = intel_slm_event_constraints;
4785                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4786                 x86_pmu.extra_regs = intel_glm_extra_regs;
4787                 /*
4788                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4789                  * for precise cycles.
4790                  * :pp is identical to :ppp
4791                  */
4792                 x86_pmu.pebs_aliases = NULL;
4793                 x86_pmu.pebs_prec_dist = true;
4794                 x86_pmu.lbr_pt_coexist = true;
4795                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4796                 td_attr = glm_events_attrs;
4797                 extra_attr = slm_format_attr;
4798                 pr_cont("Goldmont events, ");
4799                 name = "goldmont";
4800                 break;
4801
4802         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4803                 x86_add_quirk(intel_counter_freezing_quirk);
4804                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4805                        sizeof(hw_cache_event_ids));
4806                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4807                        sizeof(hw_cache_extra_regs));
4808
4809                 intel_pmu_lbr_init_skl();
4810
4811                 x86_pmu.event_constraints = intel_slm_event_constraints;
4812                 x86_pmu.extra_regs = intel_glm_extra_regs;
4813                 /*
4814                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4815                  * for precise cycles.
4816                  */
4817                 x86_pmu.pebs_aliases = NULL;
4818                 x86_pmu.pebs_prec_dist = true;
4819                 x86_pmu.lbr_pt_coexist = true;
4820                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4821                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
4822                 x86_pmu.get_event_constraints = glp_get_event_constraints;
4823                 td_attr = glm_events_attrs;
4824                 /* Goldmont Plus has 4-wide pipeline */
4825                 event_attr_td_total_slots_scale_glm.event_str = "4";
4826                 extra_attr = slm_format_attr;
4827                 pr_cont("Goldmont plus events, ");
4828                 name = "goldmont_plus";
4829                 break;
4830
4831         case INTEL_FAM6_ATOM_TREMONT_D:
4832         case INTEL_FAM6_ATOM_TREMONT:
4833                 x86_pmu.late_ack = true;
4834                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4835                        sizeof(hw_cache_event_ids));
4836                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
4837                        sizeof(hw_cache_extra_regs));
4838                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
4839
4840                 intel_pmu_lbr_init_skl();
4841
4842                 x86_pmu.event_constraints = intel_slm_event_constraints;
4843                 x86_pmu.extra_regs = intel_tnt_extra_regs;
4844                 /*
4845                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4846                  * for precise cycles.
4847                  */
4848                 x86_pmu.pebs_aliases = NULL;
4849                 x86_pmu.pebs_prec_dist = true;
4850                 x86_pmu.lbr_pt_coexist = true;
4851                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4852                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
4853                 extra_attr = slm_format_attr;
4854                 pr_cont("Tremont events, ");
4855                 name = "Tremont";
4856                 break;
4857
4858         case INTEL_FAM6_WESTMERE:
4859         case INTEL_FAM6_WESTMERE_EP:
4860         case INTEL_FAM6_WESTMERE_EX:
4861                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4862                        sizeof(hw_cache_event_ids));
4863                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4864                        sizeof(hw_cache_extra_regs));
4865
4866                 intel_pmu_lbr_init_nhm();
4867
4868                 x86_pmu.event_constraints = intel_westmere_event_constraints;
4869                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4870                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4871                 x86_pmu.extra_regs = intel_westmere_extra_regs;
4872                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4873
4874                 mem_attr = nhm_mem_events_attrs;
4875
4876                 /* UOPS_ISSUED.STALLED_CYCLES */
4877                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4878                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4879                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4880                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4881                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4882
4883                 intel_pmu_pebs_data_source_nhm();
4884                 extra_attr = nhm_format_attr;
4885                 pr_cont("Westmere events, ");
4886                 name = "westmere";
4887                 break;
4888
4889         case INTEL_FAM6_SANDYBRIDGE:
4890         case INTEL_FAM6_SANDYBRIDGE_X:
4891                 x86_add_quirk(intel_sandybridge_quirk);
4892                 x86_add_quirk(intel_ht_bug);
4893                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4894                        sizeof(hw_cache_event_ids));
4895                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4896                        sizeof(hw_cache_extra_regs));
4897
4898                 intel_pmu_lbr_init_snb();
4899
4900                 x86_pmu.event_constraints = intel_snb_event_constraints;
4901                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4902                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4903                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4904                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4905                 else
4906                         x86_pmu.extra_regs = intel_snb_extra_regs;
4907
4908
4909                 /* all extra regs are per-cpu when HT is on */
4910                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4911                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4912
4913                 td_attr  = snb_events_attrs;
4914                 mem_attr = snb_mem_events_attrs;
4915
4916                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4917                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4918                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4919                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4920                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4921                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4922
4923                 extra_attr = nhm_format_attr;
4924
4925                 pr_cont("SandyBridge events, ");
4926                 name = "sandybridge";
4927                 break;
4928
4929         case INTEL_FAM6_IVYBRIDGE:
4930         case INTEL_FAM6_IVYBRIDGE_X:
4931                 x86_add_quirk(intel_ht_bug);
4932                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4933                        sizeof(hw_cache_event_ids));
4934                 /* dTLB-load-misses on IVB is different than SNB */
4935                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4936
4937                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4938                        sizeof(hw_cache_extra_regs));
4939
4940                 intel_pmu_lbr_init_snb();
4941
4942                 x86_pmu.event_constraints = intel_ivb_event_constraints;
4943                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4944                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4945                 x86_pmu.pebs_prec_dist = true;
4946                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4947                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4948                 else
4949                         x86_pmu.extra_regs = intel_snb_extra_regs;
4950                 /* all extra regs are per-cpu when HT is on */
4951                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4952                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4953
4954                 td_attr  = snb_events_attrs;
4955                 mem_attr = snb_mem_events_attrs;
4956
4957                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4958                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4959                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4960
4961                 extra_attr = nhm_format_attr;
4962
4963                 pr_cont("IvyBridge events, ");
4964                 name = "ivybridge";
4965                 break;
4966
4967
4968         case INTEL_FAM6_HASWELL:
4969         case INTEL_FAM6_HASWELL_X:
4970         case INTEL_FAM6_HASWELL_L:
4971         case INTEL_FAM6_HASWELL_G:
4972                 x86_add_quirk(intel_ht_bug);
4973                 x86_add_quirk(intel_pebs_isolation_quirk);
4974                 x86_pmu.late_ack = true;
4975                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4976                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4977
4978                 intel_pmu_lbr_init_hsw();
4979
4980                 x86_pmu.event_constraints = intel_hsw_event_constraints;
4981                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4982                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4983                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4984                 x86_pmu.pebs_prec_dist = true;
4985                 /* all extra regs are per-cpu when HT is on */
4986                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4987                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4988
4989                 x86_pmu.hw_config = hsw_hw_config;
4990                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4991                 x86_pmu.lbr_double_abort = true;
4992                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4993                         hsw_format_attr : nhm_format_attr;
4994                 td_attr  = hsw_events_attrs;
4995                 mem_attr = hsw_mem_events_attrs;
4996                 tsx_attr = hsw_tsx_events_attrs;
4997                 pr_cont("Haswell events, ");
4998                 name = "haswell";
4999                 break;
5000
5001         case INTEL_FAM6_BROADWELL:
5002         case INTEL_FAM6_BROADWELL_D:
5003         case INTEL_FAM6_BROADWELL_G:
5004         case INTEL_FAM6_BROADWELL_X:
5005                 x86_add_quirk(intel_pebs_isolation_quirk);
5006                 x86_pmu.late_ack = true;
5007                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5008                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5009
5010                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5011                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5012                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
5013                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5014                                                                           HSW_SNOOP_DRAM;
5015                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5016                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5017                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5018                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5019
5020                 intel_pmu_lbr_init_hsw();
5021
5022                 x86_pmu.event_constraints = intel_bdw_event_constraints;
5023                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5024                 x86_pmu.extra_regs = intel_snbep_extra_regs;
5025                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5026                 x86_pmu.pebs_prec_dist = true;
5027                 /* all extra regs are per-cpu when HT is on */
5028                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5029                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5030
5031                 x86_pmu.hw_config = hsw_hw_config;
5032                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5033                 x86_pmu.limit_period = bdw_limit_period;
5034                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5035                         hsw_format_attr : nhm_format_attr;
5036                 td_attr  = hsw_events_attrs;
5037                 mem_attr = hsw_mem_events_attrs;
5038                 tsx_attr = hsw_tsx_events_attrs;
5039                 pr_cont("Broadwell events, ");
5040                 name = "broadwell";
5041                 break;
5042
5043         case INTEL_FAM6_XEON_PHI_KNL:
5044         case INTEL_FAM6_XEON_PHI_KNM:
5045                 memcpy(hw_cache_event_ids,
5046                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5047                 memcpy(hw_cache_extra_regs,
5048                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5049                 intel_pmu_lbr_init_knl();
5050
5051                 x86_pmu.event_constraints = intel_slm_event_constraints;
5052                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5053                 x86_pmu.extra_regs = intel_knl_extra_regs;
5054
5055                 /* all extra regs are per-cpu when HT is on */
5056                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5057                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5058                 extra_attr = slm_format_attr;
5059                 pr_cont("Knights Landing/Mill events, ");
5060                 name = "knights-landing";
5061                 break;
5062
5063         case INTEL_FAM6_SKYLAKE_X:
5064                 pmem = true;
5065                 /* fall through */
5066         case INTEL_FAM6_SKYLAKE_L:
5067         case INTEL_FAM6_SKYLAKE:
5068         case INTEL_FAM6_KABYLAKE_L:
5069         case INTEL_FAM6_KABYLAKE:
5070         case INTEL_FAM6_COMETLAKE_L:
5071         case INTEL_FAM6_COMETLAKE:
5072                 x86_add_quirk(intel_pebs_isolation_quirk);
5073                 x86_pmu.late_ack = true;
5074                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5075                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5076                 intel_pmu_lbr_init_skl();
5077
5078                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5079                 event_attr_td_recovery_bubbles.event_str_noht =
5080                         "event=0xd,umask=0x1,cmask=1";
5081                 event_attr_td_recovery_bubbles.event_str_ht =
5082                         "event=0xd,umask=0x1,cmask=1,any=1";
5083
5084                 x86_pmu.event_constraints = intel_skl_event_constraints;
5085                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
5086                 x86_pmu.extra_regs = intel_skl_extra_regs;
5087                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
5088                 x86_pmu.pebs_prec_dist = true;
5089                 /* all extra regs are per-cpu when HT is on */
5090                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5091                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5092
5093                 x86_pmu.hw_config = hsw_hw_config;
5094                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5095                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5096                         hsw_format_attr : nhm_format_attr;
5097                 extra_skl_attr = skl_format_attr;
5098                 td_attr  = hsw_events_attrs;
5099                 mem_attr = hsw_mem_events_attrs;
5100                 tsx_attr = hsw_tsx_events_attrs;
5101                 intel_pmu_pebs_data_source_skl(pmem);
5102
5103                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
5104                         x86_pmu.flags |= PMU_FL_TFA;
5105                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
5106                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
5107                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
5108                 }
5109
5110                 pr_cont("Skylake events, ");
5111                 name = "skylake";
5112                 break;
5113
5114         case INTEL_FAM6_ICELAKE_X:
5115         case INTEL_FAM6_ICELAKE_D:
5116                 pmem = true;
5117                 /* fall through */
5118         case INTEL_FAM6_ICELAKE_L:
5119         case INTEL_FAM6_ICELAKE:
5120         case INTEL_FAM6_TIGERLAKE_L:
5121         case INTEL_FAM6_TIGERLAKE:
5122                 x86_pmu.late_ack = true;
5123                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5124                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5125                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5126                 intel_pmu_lbr_init_skl();
5127
5128                 x86_pmu.event_constraints = intel_icl_event_constraints;
5129                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
5130                 x86_pmu.extra_regs = intel_icl_extra_regs;
5131                 x86_pmu.pebs_aliases = NULL;
5132                 x86_pmu.pebs_prec_dist = true;
5133                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5134                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5135
5136                 x86_pmu.hw_config = hsw_hw_config;
5137                 x86_pmu.get_event_constraints = icl_get_event_constraints;
5138                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5139                         hsw_format_attr : nhm_format_attr;
5140                 extra_skl_attr = skl_format_attr;
5141                 mem_attr = icl_events_attrs;
5142                 tsx_attr = icl_tsx_events_attrs;
5143                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xca, .umask=0x02);
5144                 x86_pmu.lbr_pt_coexist = true;
5145                 intel_pmu_pebs_data_source_skl(pmem);
5146                 pr_cont("Icelake events, ");
5147                 name = "icelake";
5148                 break;
5149
5150         default:
5151                 switch (x86_pmu.version) {
5152                 case 1:
5153                         x86_pmu.event_constraints = intel_v1_event_constraints;
5154                         pr_cont("generic architected perfmon v1, ");
5155                         name = "generic_arch_v1";
5156                         break;
5157                 default:
5158                         /*
5159                          * default constraints for v2 and up
5160                          */
5161                         x86_pmu.event_constraints = intel_gen_event_constraints;
5162                         pr_cont("generic architected perfmon, ");
5163                         name = "generic_arch_v2+";
5164                         break;
5165                 }
5166         }
5167
5168         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
5169
5170
5171         group_events_td.attrs  = td_attr;
5172         group_events_mem.attrs = mem_attr;
5173         group_events_tsx.attrs = tsx_attr;
5174         group_format_extra.attrs = extra_attr;
5175         group_format_extra_skl.attrs = extra_skl_attr;
5176
5177         x86_pmu.attr_update = attr_update;
5178
5179         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
5180                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5181                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
5182                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
5183         }
5184         x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5185
5186         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5187                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5188                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
5189                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
5190         }
5191
5192         x86_pmu.intel_ctrl |=
5193                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
5194
5195         if (x86_pmu.event_constraints) {
5196                 /*
5197                  * event on fixed counter2 (REF_CYCLES) only works on this
5198                  * counter, so do not extend mask to generic counters
5199                  */
5200                 for_each_event_constraint(c, x86_pmu.event_constraints) {
5201                         if (c->cmask == FIXED_EVENT_FLAGS
5202                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
5203                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5204                         }
5205                         c->idxmsk64 &=
5206                                 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5207                         c->weight = hweight64(c->idxmsk64);
5208                 }
5209         }
5210
5211         /*
5212          * Access LBR MSR may cause #GP under certain circumstances.
5213          * E.g. KVM doesn't support LBR MSR
5214          * Check all LBT MSR here.
5215          * Disable LBR access if any LBR MSRs can not be accessed.
5216          */
5217         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
5218                 x86_pmu.lbr_nr = 0;
5219         for (i = 0; i < x86_pmu.lbr_nr; i++) {
5220                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
5221                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
5222                         x86_pmu.lbr_nr = 0;
5223         }
5224
5225         if (x86_pmu.lbr_nr)
5226                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5227
5228         /*
5229          * Access extra MSR may cause #GP under certain circumstances.
5230          * E.g. KVM doesn't support offcore event
5231          * Check all extra_regs here.
5232          */
5233         if (x86_pmu.extra_regs) {
5234                 for (er = x86_pmu.extra_regs; er->msr; er++) {
5235                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
5236                         /* Disable LBR select mapping */
5237                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5238                                 x86_pmu.lbr_sel_map = NULL;
5239                 }
5240         }
5241
5242         /* Support full width counters using alternative MSR range */
5243         if (x86_pmu.intel_cap.full_width_write) {
5244                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5245                 x86_pmu.perfctr = MSR_IA32_PMC0;
5246                 pr_cont("full-width counters, ");
5247         }
5248
5249         /*
5250          * For arch perfmon 4 use counter freezing to avoid
5251          * several MSR accesses in the PMI.
5252          */
5253         if (x86_pmu.counter_freezing)
5254                 x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
5255
5256         return 0;
5257 }
5258
5259 /*
5260  * HT bug: phase 2 init
5261  * Called once we have valid topology information to check
5262  * whether or not HT is enabled
5263  * If HT is off, then we disable the workaround
5264  */
5265 static __init int fixup_ht_bug(void)
5266 {
5267         int c;
5268         /*
5269          * problem not present on this CPU model, nothing to do
5270          */
5271         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
5272                 return 0;
5273
5274         if (topology_max_smt_threads() > 1) {
5275                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5276                 return 0;
5277         }
5278
5279         cpus_read_lock();
5280
5281         hardlockup_detector_perf_stop();
5282
5283         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
5284
5285         x86_pmu.start_scheduling = NULL;
5286         x86_pmu.commit_scheduling = NULL;
5287         x86_pmu.stop_scheduling = NULL;
5288
5289         hardlockup_detector_perf_restart();
5290
5291         for_each_online_cpu(c)
5292                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5293
5294         cpus_read_unlock();
5295         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5296         return 0;
5297 }
5298 subsys_initcall(fixup_ht_bug)