x86/spinlock: Remove obsolete ticket spinlock macros and types
[linux-2.6-microblaze.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24
25 #include "../perf_event.h"
26
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
33         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
34         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
35         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
36         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
37         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
38         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
39         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
40 };
41
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50         EVENT_CONSTRAINT_END
51 };
52
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68         EVENT_CONSTRAINT_END
69 };
70
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84         EVENT_CONSTRAINT_END
85 };
86
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92         EVENT_EXTRA_END
93 };
94
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104         EVENT_CONSTRAINT_END
105 };
106
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121
122         /*
123          * When HT is off these events can only run on the bottom 4 counters
124          * When HT is on, they are impacted by the HT bug and require EXCL access
125          */
126         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130
131         EVENT_CONSTRAINT_END
132 };
133
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
141         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149
150         /*
151          * When HT is off these events can only run on the bottom 4 counters
152          * When HT is on, they are impacted by the HT bug and require EXCL access
153          */
154         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158
159         EVENT_CONSTRAINT_END
160 };
161
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168         EVENT_EXTRA_END
169 };
170
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173         EVENT_CONSTRAINT_END
174 };
175
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181         EVENT_CONSTRAINT_END
182 };
183
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189         EVENT_CONSTRAINT_END
190 };
191
192 static struct event_constraint intel_skl_event_constraints[] = {
193         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
194         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
195         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
196         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
197
198         /*
199          * when HT is off, these can only run on the bottom 4 counters
200          */
201         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
203         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
204         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
205         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
206
207         EVENT_CONSTRAINT_END
208 };
209
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213         EVENT_EXTRA_END
214 };
215
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221         EVENT_EXTRA_END
222 };
223
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229         EVENT_EXTRA_END
230 };
231
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236         /*
237          * Note the low 8 bits eventsel code is not a continuous field, containing
238          * some #GPing bits. These are masked out.
239          */
240         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241         EVENT_EXTRA_END
242 };
243
244 static struct event_constraint intel_icl_event_constraints[] = {
245         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
246         INTEL_UEVENT_CONSTRAINT(0x1c0, 0),      /* INST_RETIRED.PREC_DIST */
247         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
248         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
249         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
250         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
251         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
252         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
253         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
254         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
255         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
256         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
257         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
258         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
259         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
260         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
261         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
262         EVENT_CONSTRAINT_END
263 };
264
265 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
266         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
267         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
268         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
269         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
270         EVENT_EXTRA_END
271 };
272
273 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
274 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
275 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
276
277 static struct attribute *nhm_mem_events_attrs[] = {
278         EVENT_PTR(mem_ld_nhm),
279         NULL,
280 };
281
282 /*
283  * topdown events for Intel Core CPUs.
284  *
285  * The events are all in slots, which is a free slot in a 4 wide
286  * pipeline. Some events are already reported in slots, for cycle
287  * events we multiply by the pipeline width (4).
288  *
289  * With Hyper Threading on, topdown metrics are either summed or averaged
290  * between the threads of a core: (count_t0 + count_t1).
291  *
292  * For the average case the metric is always scaled to pipeline width,
293  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
294  */
295
296 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
297         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
298         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
299 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
300 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
301         "event=0xe,umask=0x1");                 /* uops_issued.any */
302 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
303         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
304 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
305         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
306 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
307         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
308         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
309 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
310         "4", "2");
311
312 static struct attribute *snb_events_attrs[] = {
313         EVENT_PTR(td_slots_issued),
314         EVENT_PTR(td_slots_retired),
315         EVENT_PTR(td_fetch_bubbles),
316         EVENT_PTR(td_total_slots),
317         EVENT_PTR(td_total_slots_scale),
318         EVENT_PTR(td_recovery_bubbles),
319         EVENT_PTR(td_recovery_bubbles_scale),
320         NULL,
321 };
322
323 static struct attribute *snb_mem_events_attrs[] = {
324         EVENT_PTR(mem_ld_snb),
325         EVENT_PTR(mem_st_snb),
326         NULL,
327 };
328
329 static struct event_constraint intel_hsw_event_constraints[] = {
330         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
331         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
332         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
333         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
334         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
335         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
336         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
337         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
338         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
339         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
340         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
341         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
342
343         /*
344          * When HT is off these events can only run on the bottom 4 counters
345          * When HT is on, they are impacted by the HT bug and require EXCL access
346          */
347         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
348         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
349         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
350         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
351
352         EVENT_CONSTRAINT_END
353 };
354
355 static struct event_constraint intel_bdw_event_constraints[] = {
356         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
357         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
358         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
359         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
360         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
361         /*
362          * when HT is off, these can only run on the bottom 4 counters
363          */
364         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
365         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
366         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
367         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
368         EVENT_CONSTRAINT_END
369 };
370
371 static u64 intel_pmu_event_map(int hw_event)
372 {
373         return intel_perfmon_event_map[hw_event];
374 }
375
376 /*
377  * Notes on the events:
378  * - data reads do not include code reads (comparable to earlier tables)
379  * - data counts include speculative execution (except L1 write, dtlb, bpu)
380  * - remote node access includes remote memory, remote cache, remote mmio.
381  * - prefetches are not included in the counts.
382  * - icache miss does not include decoded icache
383  */
384
385 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
386 #define SKL_DEMAND_RFO                  BIT_ULL(1)
387 #define SKL_ANY_RESPONSE                BIT_ULL(16)
388 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
389 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
390 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
391 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
392 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
393 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
394                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
395                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
396                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
397 #define SKL_SPL_HIT                     BIT_ULL(30)
398 #define SKL_SNOOP_NONE                  BIT_ULL(31)
399 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
400 #define SKL_SNOOP_MISS                  BIT_ULL(33)
401 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
402 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
403 #define SKL_SNOOP_HITM                  BIT_ULL(36)
404 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
405 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
406                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
407                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
408                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
409 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
410 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
411                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
412                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
413                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
414 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
415 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
416 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
417                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
418                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
419
420 static __initconst const u64 skl_hw_cache_event_ids
421                                 [PERF_COUNT_HW_CACHE_MAX]
422                                 [PERF_COUNT_HW_CACHE_OP_MAX]
423                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
424 {
425  [ C(L1D ) ] = {
426         [ C(OP_READ) ] = {
427                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
428                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
429         },
430         [ C(OP_WRITE) ] = {
431                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
432                 [ C(RESULT_MISS)   ] = 0x0,
433         },
434         [ C(OP_PREFETCH) ] = {
435                 [ C(RESULT_ACCESS) ] = 0x0,
436                 [ C(RESULT_MISS)   ] = 0x0,
437         },
438  },
439  [ C(L1I ) ] = {
440         [ C(OP_READ) ] = {
441                 [ C(RESULT_ACCESS) ] = 0x0,
442                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
443         },
444         [ C(OP_WRITE) ] = {
445                 [ C(RESULT_ACCESS) ] = -1,
446                 [ C(RESULT_MISS)   ] = -1,
447         },
448         [ C(OP_PREFETCH) ] = {
449                 [ C(RESULT_ACCESS) ] = 0x0,
450                 [ C(RESULT_MISS)   ] = 0x0,
451         },
452  },
453  [ C(LL  ) ] = {
454         [ C(OP_READ) ] = {
455                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
456                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
457         },
458         [ C(OP_WRITE) ] = {
459                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
460                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
461         },
462         [ C(OP_PREFETCH) ] = {
463                 [ C(RESULT_ACCESS) ] = 0x0,
464                 [ C(RESULT_MISS)   ] = 0x0,
465         },
466  },
467  [ C(DTLB) ] = {
468         [ C(OP_READ) ] = {
469                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
470                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
471         },
472         [ C(OP_WRITE) ] = {
473                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
474                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
475         },
476         [ C(OP_PREFETCH) ] = {
477                 [ C(RESULT_ACCESS) ] = 0x0,
478                 [ C(RESULT_MISS)   ] = 0x0,
479         },
480  },
481  [ C(ITLB) ] = {
482         [ C(OP_READ) ] = {
483                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
484                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
485         },
486         [ C(OP_WRITE) ] = {
487                 [ C(RESULT_ACCESS) ] = -1,
488                 [ C(RESULT_MISS)   ] = -1,
489         },
490         [ C(OP_PREFETCH) ] = {
491                 [ C(RESULT_ACCESS) ] = -1,
492                 [ C(RESULT_MISS)   ] = -1,
493         },
494  },
495  [ C(BPU ) ] = {
496         [ C(OP_READ) ] = {
497                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
498                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
499         },
500         [ C(OP_WRITE) ] = {
501                 [ C(RESULT_ACCESS) ] = -1,
502                 [ C(RESULT_MISS)   ] = -1,
503         },
504         [ C(OP_PREFETCH) ] = {
505                 [ C(RESULT_ACCESS) ] = -1,
506                 [ C(RESULT_MISS)   ] = -1,
507         },
508  },
509  [ C(NODE) ] = {
510         [ C(OP_READ) ] = {
511                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
512                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
513         },
514         [ C(OP_WRITE) ] = {
515                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
516                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
517         },
518         [ C(OP_PREFETCH) ] = {
519                 [ C(RESULT_ACCESS) ] = 0x0,
520                 [ C(RESULT_MISS)   ] = 0x0,
521         },
522  },
523 };
524
525 static __initconst const u64 skl_hw_cache_extra_regs
526                                 [PERF_COUNT_HW_CACHE_MAX]
527                                 [PERF_COUNT_HW_CACHE_OP_MAX]
528                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
529 {
530  [ C(LL  ) ] = {
531         [ C(OP_READ) ] = {
532                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
533                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
534                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
535                                        SKL_L3_MISS|SKL_ANY_SNOOP|
536                                        SKL_SUPPLIER_NONE,
537         },
538         [ C(OP_WRITE) ] = {
539                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
540                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
541                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
542                                        SKL_L3_MISS|SKL_ANY_SNOOP|
543                                        SKL_SUPPLIER_NONE,
544         },
545         [ C(OP_PREFETCH) ] = {
546                 [ C(RESULT_ACCESS) ] = 0x0,
547                 [ C(RESULT_MISS)   ] = 0x0,
548         },
549  },
550  [ C(NODE) ] = {
551         [ C(OP_READ) ] = {
552                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
553                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
554                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
555                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
556         },
557         [ C(OP_WRITE) ] = {
558                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
559                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
560                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
561                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
562         },
563         [ C(OP_PREFETCH) ] = {
564                 [ C(RESULT_ACCESS) ] = 0x0,
565                 [ C(RESULT_MISS)   ] = 0x0,
566         },
567  },
568 };
569
570 #define SNB_DMND_DATA_RD        (1ULL << 0)
571 #define SNB_DMND_RFO            (1ULL << 1)
572 #define SNB_DMND_IFETCH         (1ULL << 2)
573 #define SNB_DMND_WB             (1ULL << 3)
574 #define SNB_PF_DATA_RD          (1ULL << 4)
575 #define SNB_PF_RFO              (1ULL << 5)
576 #define SNB_PF_IFETCH           (1ULL << 6)
577 #define SNB_LLC_DATA_RD         (1ULL << 7)
578 #define SNB_LLC_RFO             (1ULL << 8)
579 #define SNB_LLC_IFETCH          (1ULL << 9)
580 #define SNB_BUS_LOCKS           (1ULL << 10)
581 #define SNB_STRM_ST             (1ULL << 11)
582 #define SNB_OTHER               (1ULL << 15)
583 #define SNB_RESP_ANY            (1ULL << 16)
584 #define SNB_NO_SUPP             (1ULL << 17)
585 #define SNB_LLC_HITM            (1ULL << 18)
586 #define SNB_LLC_HITE            (1ULL << 19)
587 #define SNB_LLC_HITS            (1ULL << 20)
588 #define SNB_LLC_HITF            (1ULL << 21)
589 #define SNB_LOCAL               (1ULL << 22)
590 #define SNB_REMOTE              (0xffULL << 23)
591 #define SNB_SNP_NONE            (1ULL << 31)
592 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
593 #define SNB_SNP_MISS            (1ULL << 33)
594 #define SNB_NO_FWD              (1ULL << 34)
595 #define SNB_SNP_FWD             (1ULL << 35)
596 #define SNB_HITM                (1ULL << 36)
597 #define SNB_NON_DRAM            (1ULL << 37)
598
599 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
600 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
601 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
602
603 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
604                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
605                                  SNB_HITM)
606
607 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
608 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
609
610 #define SNB_L3_ACCESS           SNB_RESP_ANY
611 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
612
613 static __initconst const u64 snb_hw_cache_extra_regs
614                                 [PERF_COUNT_HW_CACHE_MAX]
615                                 [PERF_COUNT_HW_CACHE_OP_MAX]
616                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
617 {
618  [ C(LL  ) ] = {
619         [ C(OP_READ) ] = {
620                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
621                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
622         },
623         [ C(OP_WRITE) ] = {
624                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
625                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
626         },
627         [ C(OP_PREFETCH) ] = {
628                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
629                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
630         },
631  },
632  [ C(NODE) ] = {
633         [ C(OP_READ) ] = {
634                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
635                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
636         },
637         [ C(OP_WRITE) ] = {
638                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
639                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
640         },
641         [ C(OP_PREFETCH) ] = {
642                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
643                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
644         },
645  },
646 };
647
648 static __initconst const u64 snb_hw_cache_event_ids
649                                 [PERF_COUNT_HW_CACHE_MAX]
650                                 [PERF_COUNT_HW_CACHE_OP_MAX]
651                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
652 {
653  [ C(L1D) ] = {
654         [ C(OP_READ) ] = {
655                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
656                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
657         },
658         [ C(OP_WRITE) ] = {
659                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
660                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
661         },
662         [ C(OP_PREFETCH) ] = {
663                 [ C(RESULT_ACCESS) ] = 0x0,
664                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
665         },
666  },
667  [ C(L1I ) ] = {
668         [ C(OP_READ) ] = {
669                 [ C(RESULT_ACCESS) ] = 0x0,
670                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
671         },
672         [ C(OP_WRITE) ] = {
673                 [ C(RESULT_ACCESS) ] = -1,
674                 [ C(RESULT_MISS)   ] = -1,
675         },
676         [ C(OP_PREFETCH) ] = {
677                 [ C(RESULT_ACCESS) ] = 0x0,
678                 [ C(RESULT_MISS)   ] = 0x0,
679         },
680  },
681  [ C(LL  ) ] = {
682         [ C(OP_READ) ] = {
683                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
684                 [ C(RESULT_ACCESS) ] = 0x01b7,
685                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
686                 [ C(RESULT_MISS)   ] = 0x01b7,
687         },
688         [ C(OP_WRITE) ] = {
689                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
690                 [ C(RESULT_ACCESS) ] = 0x01b7,
691                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
692                 [ C(RESULT_MISS)   ] = 0x01b7,
693         },
694         [ C(OP_PREFETCH) ] = {
695                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
696                 [ C(RESULT_ACCESS) ] = 0x01b7,
697                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
698                 [ C(RESULT_MISS)   ] = 0x01b7,
699         },
700  },
701  [ C(DTLB) ] = {
702         [ C(OP_READ) ] = {
703                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
704                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
705         },
706         [ C(OP_WRITE) ] = {
707                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
708                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
709         },
710         [ C(OP_PREFETCH) ] = {
711                 [ C(RESULT_ACCESS) ] = 0x0,
712                 [ C(RESULT_MISS)   ] = 0x0,
713         },
714  },
715  [ C(ITLB) ] = {
716         [ C(OP_READ) ] = {
717                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
718                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
719         },
720         [ C(OP_WRITE) ] = {
721                 [ C(RESULT_ACCESS) ] = -1,
722                 [ C(RESULT_MISS)   ] = -1,
723         },
724         [ C(OP_PREFETCH) ] = {
725                 [ C(RESULT_ACCESS) ] = -1,
726                 [ C(RESULT_MISS)   ] = -1,
727         },
728  },
729  [ C(BPU ) ] = {
730         [ C(OP_READ) ] = {
731                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
732                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
733         },
734         [ C(OP_WRITE) ] = {
735                 [ C(RESULT_ACCESS) ] = -1,
736                 [ C(RESULT_MISS)   ] = -1,
737         },
738         [ C(OP_PREFETCH) ] = {
739                 [ C(RESULT_ACCESS) ] = -1,
740                 [ C(RESULT_MISS)   ] = -1,
741         },
742  },
743  [ C(NODE) ] = {
744         [ C(OP_READ) ] = {
745                 [ C(RESULT_ACCESS) ] = 0x01b7,
746                 [ C(RESULT_MISS)   ] = 0x01b7,
747         },
748         [ C(OP_WRITE) ] = {
749                 [ C(RESULT_ACCESS) ] = 0x01b7,
750                 [ C(RESULT_MISS)   ] = 0x01b7,
751         },
752         [ C(OP_PREFETCH) ] = {
753                 [ C(RESULT_ACCESS) ] = 0x01b7,
754                 [ C(RESULT_MISS)   ] = 0x01b7,
755         },
756  },
757
758 };
759
760 /*
761  * Notes on the events:
762  * - data reads do not include code reads (comparable to earlier tables)
763  * - data counts include speculative execution (except L1 write, dtlb, bpu)
764  * - remote node access includes remote memory, remote cache, remote mmio.
765  * - prefetches are not included in the counts because they are not
766  *   reliably counted.
767  */
768
769 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
770 #define HSW_DEMAND_RFO                  BIT_ULL(1)
771 #define HSW_ANY_RESPONSE                BIT_ULL(16)
772 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
773 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
774 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
775 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
776 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
777 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
778                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
779                                          HSW_L3_MISS_REMOTE_HOP2P)
780 #define HSW_SNOOP_NONE                  BIT_ULL(31)
781 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
782 #define HSW_SNOOP_MISS                  BIT_ULL(33)
783 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
784 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
785 #define HSW_SNOOP_HITM                  BIT_ULL(36)
786 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
787 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
788                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
789                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
790                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
791 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
792 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
793 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
794 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
795                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
796 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
797
798 #define BDW_L3_MISS_LOCAL               BIT(26)
799 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
800                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
801                                          HSW_L3_MISS_REMOTE_HOP2P)
802
803
804 static __initconst const u64 hsw_hw_cache_event_ids
805                                 [PERF_COUNT_HW_CACHE_MAX]
806                                 [PERF_COUNT_HW_CACHE_OP_MAX]
807                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
808 {
809  [ C(L1D ) ] = {
810         [ C(OP_READ) ] = {
811                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
812                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
813         },
814         [ C(OP_WRITE) ] = {
815                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
816                 [ C(RESULT_MISS)   ] = 0x0,
817         },
818         [ C(OP_PREFETCH) ] = {
819                 [ C(RESULT_ACCESS) ] = 0x0,
820                 [ C(RESULT_MISS)   ] = 0x0,
821         },
822  },
823  [ C(L1I ) ] = {
824         [ C(OP_READ) ] = {
825                 [ C(RESULT_ACCESS) ] = 0x0,
826                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
827         },
828         [ C(OP_WRITE) ] = {
829                 [ C(RESULT_ACCESS) ] = -1,
830                 [ C(RESULT_MISS)   ] = -1,
831         },
832         [ C(OP_PREFETCH) ] = {
833                 [ C(RESULT_ACCESS) ] = 0x0,
834                 [ C(RESULT_MISS)   ] = 0x0,
835         },
836  },
837  [ C(LL  ) ] = {
838         [ C(OP_READ) ] = {
839                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
840                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
841         },
842         [ C(OP_WRITE) ] = {
843                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
844                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
845         },
846         [ C(OP_PREFETCH) ] = {
847                 [ C(RESULT_ACCESS) ] = 0x0,
848                 [ C(RESULT_MISS)   ] = 0x0,
849         },
850  },
851  [ C(DTLB) ] = {
852         [ C(OP_READ) ] = {
853                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
854                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
855         },
856         [ C(OP_WRITE) ] = {
857                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
858                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
859         },
860         [ C(OP_PREFETCH) ] = {
861                 [ C(RESULT_ACCESS) ] = 0x0,
862                 [ C(RESULT_MISS)   ] = 0x0,
863         },
864  },
865  [ C(ITLB) ] = {
866         [ C(OP_READ) ] = {
867                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
868                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
869         },
870         [ C(OP_WRITE) ] = {
871                 [ C(RESULT_ACCESS) ] = -1,
872                 [ C(RESULT_MISS)   ] = -1,
873         },
874         [ C(OP_PREFETCH) ] = {
875                 [ C(RESULT_ACCESS) ] = -1,
876                 [ C(RESULT_MISS)   ] = -1,
877         },
878  },
879  [ C(BPU ) ] = {
880         [ C(OP_READ) ] = {
881                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
882                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
883         },
884         [ C(OP_WRITE) ] = {
885                 [ C(RESULT_ACCESS) ] = -1,
886                 [ C(RESULT_MISS)   ] = -1,
887         },
888         [ C(OP_PREFETCH) ] = {
889                 [ C(RESULT_ACCESS) ] = -1,
890                 [ C(RESULT_MISS)   ] = -1,
891         },
892  },
893  [ C(NODE) ] = {
894         [ C(OP_READ) ] = {
895                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
896                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
897         },
898         [ C(OP_WRITE) ] = {
899                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
900                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
901         },
902         [ C(OP_PREFETCH) ] = {
903                 [ C(RESULT_ACCESS) ] = 0x0,
904                 [ C(RESULT_MISS)   ] = 0x0,
905         },
906  },
907 };
908
909 static __initconst const u64 hsw_hw_cache_extra_regs
910                                 [PERF_COUNT_HW_CACHE_MAX]
911                                 [PERF_COUNT_HW_CACHE_OP_MAX]
912                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
913 {
914  [ C(LL  ) ] = {
915         [ C(OP_READ) ] = {
916                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
917                                        HSW_LLC_ACCESS,
918                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
919                                        HSW_L3_MISS|HSW_ANY_SNOOP,
920         },
921         [ C(OP_WRITE) ] = {
922                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
923                                        HSW_LLC_ACCESS,
924                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
925                                        HSW_L3_MISS|HSW_ANY_SNOOP,
926         },
927         [ C(OP_PREFETCH) ] = {
928                 [ C(RESULT_ACCESS) ] = 0x0,
929                 [ C(RESULT_MISS)   ] = 0x0,
930         },
931  },
932  [ C(NODE) ] = {
933         [ C(OP_READ) ] = {
934                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
935                                        HSW_L3_MISS_LOCAL_DRAM|
936                                        HSW_SNOOP_DRAM,
937                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
938                                        HSW_L3_MISS_REMOTE|
939                                        HSW_SNOOP_DRAM,
940         },
941         [ C(OP_WRITE) ] = {
942                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
943                                        HSW_L3_MISS_LOCAL_DRAM|
944                                        HSW_SNOOP_DRAM,
945                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
946                                        HSW_L3_MISS_REMOTE|
947                                        HSW_SNOOP_DRAM,
948         },
949         [ C(OP_PREFETCH) ] = {
950                 [ C(RESULT_ACCESS) ] = 0x0,
951                 [ C(RESULT_MISS)   ] = 0x0,
952         },
953  },
954 };
955
956 static __initconst const u64 westmere_hw_cache_event_ids
957                                 [PERF_COUNT_HW_CACHE_MAX]
958                                 [PERF_COUNT_HW_CACHE_OP_MAX]
959                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
960 {
961  [ C(L1D) ] = {
962         [ C(OP_READ) ] = {
963                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
964                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
965         },
966         [ C(OP_WRITE) ] = {
967                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
968                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
969         },
970         [ C(OP_PREFETCH) ] = {
971                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
972                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
973         },
974  },
975  [ C(L1I ) ] = {
976         [ C(OP_READ) ] = {
977                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
978                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
979         },
980         [ C(OP_WRITE) ] = {
981                 [ C(RESULT_ACCESS) ] = -1,
982                 [ C(RESULT_MISS)   ] = -1,
983         },
984         [ C(OP_PREFETCH) ] = {
985                 [ C(RESULT_ACCESS) ] = 0x0,
986                 [ C(RESULT_MISS)   ] = 0x0,
987         },
988  },
989  [ C(LL  ) ] = {
990         [ C(OP_READ) ] = {
991                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
992                 [ C(RESULT_ACCESS) ] = 0x01b7,
993                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
994                 [ C(RESULT_MISS)   ] = 0x01b7,
995         },
996         /*
997          * Use RFO, not WRITEBACK, because a write miss would typically occur
998          * on RFO.
999          */
1000         [ C(OP_WRITE) ] = {
1001                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1002                 [ C(RESULT_ACCESS) ] = 0x01b7,
1003                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1004                 [ C(RESULT_MISS)   ] = 0x01b7,
1005         },
1006         [ C(OP_PREFETCH) ] = {
1007                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1008                 [ C(RESULT_ACCESS) ] = 0x01b7,
1009                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1010                 [ C(RESULT_MISS)   ] = 0x01b7,
1011         },
1012  },
1013  [ C(DTLB) ] = {
1014         [ C(OP_READ) ] = {
1015                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1016                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1017         },
1018         [ C(OP_WRITE) ] = {
1019                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1020                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1021         },
1022         [ C(OP_PREFETCH) ] = {
1023                 [ C(RESULT_ACCESS) ] = 0x0,
1024                 [ C(RESULT_MISS)   ] = 0x0,
1025         },
1026  },
1027  [ C(ITLB) ] = {
1028         [ C(OP_READ) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1030                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1031         },
1032         [ C(OP_WRITE) ] = {
1033                 [ C(RESULT_ACCESS) ] = -1,
1034                 [ C(RESULT_MISS)   ] = -1,
1035         },
1036         [ C(OP_PREFETCH) ] = {
1037                 [ C(RESULT_ACCESS) ] = -1,
1038                 [ C(RESULT_MISS)   ] = -1,
1039         },
1040  },
1041  [ C(BPU ) ] = {
1042         [ C(OP_READ) ] = {
1043                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1044                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1045         },
1046         [ C(OP_WRITE) ] = {
1047                 [ C(RESULT_ACCESS) ] = -1,
1048                 [ C(RESULT_MISS)   ] = -1,
1049         },
1050         [ C(OP_PREFETCH) ] = {
1051                 [ C(RESULT_ACCESS) ] = -1,
1052                 [ C(RESULT_MISS)   ] = -1,
1053         },
1054  },
1055  [ C(NODE) ] = {
1056         [ C(OP_READ) ] = {
1057                 [ C(RESULT_ACCESS) ] = 0x01b7,
1058                 [ C(RESULT_MISS)   ] = 0x01b7,
1059         },
1060         [ C(OP_WRITE) ] = {
1061                 [ C(RESULT_ACCESS) ] = 0x01b7,
1062                 [ C(RESULT_MISS)   ] = 0x01b7,
1063         },
1064         [ C(OP_PREFETCH) ] = {
1065                 [ C(RESULT_ACCESS) ] = 0x01b7,
1066                 [ C(RESULT_MISS)   ] = 0x01b7,
1067         },
1068  },
1069 };
1070
1071 /*
1072  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1073  * See IA32 SDM Vol 3B 30.6.1.3
1074  */
1075
1076 #define NHM_DMND_DATA_RD        (1 << 0)
1077 #define NHM_DMND_RFO            (1 << 1)
1078 #define NHM_DMND_IFETCH         (1 << 2)
1079 #define NHM_DMND_WB             (1 << 3)
1080 #define NHM_PF_DATA_RD          (1 << 4)
1081 #define NHM_PF_DATA_RFO         (1 << 5)
1082 #define NHM_PF_IFETCH           (1 << 6)
1083 #define NHM_OFFCORE_OTHER       (1 << 7)
1084 #define NHM_UNCORE_HIT          (1 << 8)
1085 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1086 #define NHM_OTHER_CORE_HITM     (1 << 10)
1087                                 /* reserved */
1088 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1089 #define NHM_REMOTE_DRAM         (1 << 13)
1090 #define NHM_LOCAL_DRAM          (1 << 14)
1091 #define NHM_NON_DRAM            (1 << 15)
1092
1093 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1094 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1095
1096 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1097 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1098 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1099
1100 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1101 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1102 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1103
1104 static __initconst const u64 nehalem_hw_cache_extra_regs
1105                                 [PERF_COUNT_HW_CACHE_MAX]
1106                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1107                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1108 {
1109  [ C(LL  ) ] = {
1110         [ C(OP_READ) ] = {
1111                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1112                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1113         },
1114         [ C(OP_WRITE) ] = {
1115                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1116                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1117         },
1118         [ C(OP_PREFETCH) ] = {
1119                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1120                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1121         },
1122  },
1123  [ C(NODE) ] = {
1124         [ C(OP_READ) ] = {
1125                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1126                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1127         },
1128         [ C(OP_WRITE) ] = {
1129                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1130                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1131         },
1132         [ C(OP_PREFETCH) ] = {
1133                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1134                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1135         },
1136  },
1137 };
1138
1139 static __initconst const u64 nehalem_hw_cache_event_ids
1140                                 [PERF_COUNT_HW_CACHE_MAX]
1141                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1142                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1143 {
1144  [ C(L1D) ] = {
1145         [ C(OP_READ) ] = {
1146                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1147                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1148         },
1149         [ C(OP_WRITE) ] = {
1150                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1151                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1152         },
1153         [ C(OP_PREFETCH) ] = {
1154                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1155                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1156         },
1157  },
1158  [ C(L1I ) ] = {
1159         [ C(OP_READ) ] = {
1160                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1161                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1162         },
1163         [ C(OP_WRITE) ] = {
1164                 [ C(RESULT_ACCESS) ] = -1,
1165                 [ C(RESULT_MISS)   ] = -1,
1166         },
1167         [ C(OP_PREFETCH) ] = {
1168                 [ C(RESULT_ACCESS) ] = 0x0,
1169                 [ C(RESULT_MISS)   ] = 0x0,
1170         },
1171  },
1172  [ C(LL  ) ] = {
1173         [ C(OP_READ) ] = {
1174                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1175                 [ C(RESULT_ACCESS) ] = 0x01b7,
1176                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1177                 [ C(RESULT_MISS)   ] = 0x01b7,
1178         },
1179         /*
1180          * Use RFO, not WRITEBACK, because a write miss would typically occur
1181          * on RFO.
1182          */
1183         [ C(OP_WRITE) ] = {
1184                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1185                 [ C(RESULT_ACCESS) ] = 0x01b7,
1186                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1187                 [ C(RESULT_MISS)   ] = 0x01b7,
1188         },
1189         [ C(OP_PREFETCH) ] = {
1190                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1191                 [ C(RESULT_ACCESS) ] = 0x01b7,
1192                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1193                 [ C(RESULT_MISS)   ] = 0x01b7,
1194         },
1195  },
1196  [ C(DTLB) ] = {
1197         [ C(OP_READ) ] = {
1198                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1199                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1200         },
1201         [ C(OP_WRITE) ] = {
1202                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1203                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1204         },
1205         [ C(OP_PREFETCH) ] = {
1206                 [ C(RESULT_ACCESS) ] = 0x0,
1207                 [ C(RESULT_MISS)   ] = 0x0,
1208         },
1209  },
1210  [ C(ITLB) ] = {
1211         [ C(OP_READ) ] = {
1212                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1213                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1214         },
1215         [ C(OP_WRITE) ] = {
1216                 [ C(RESULT_ACCESS) ] = -1,
1217                 [ C(RESULT_MISS)   ] = -1,
1218         },
1219         [ C(OP_PREFETCH) ] = {
1220                 [ C(RESULT_ACCESS) ] = -1,
1221                 [ C(RESULT_MISS)   ] = -1,
1222         },
1223  },
1224  [ C(BPU ) ] = {
1225         [ C(OP_READ) ] = {
1226                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1227                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1228         },
1229         [ C(OP_WRITE) ] = {
1230                 [ C(RESULT_ACCESS) ] = -1,
1231                 [ C(RESULT_MISS)   ] = -1,
1232         },
1233         [ C(OP_PREFETCH) ] = {
1234                 [ C(RESULT_ACCESS) ] = -1,
1235                 [ C(RESULT_MISS)   ] = -1,
1236         },
1237  },
1238  [ C(NODE) ] = {
1239         [ C(OP_READ) ] = {
1240                 [ C(RESULT_ACCESS) ] = 0x01b7,
1241                 [ C(RESULT_MISS)   ] = 0x01b7,
1242         },
1243         [ C(OP_WRITE) ] = {
1244                 [ C(RESULT_ACCESS) ] = 0x01b7,
1245                 [ C(RESULT_MISS)   ] = 0x01b7,
1246         },
1247         [ C(OP_PREFETCH) ] = {
1248                 [ C(RESULT_ACCESS) ] = 0x01b7,
1249                 [ C(RESULT_MISS)   ] = 0x01b7,
1250         },
1251  },
1252 };
1253
1254 static __initconst const u64 core2_hw_cache_event_ids
1255                                 [PERF_COUNT_HW_CACHE_MAX]
1256                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1257                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1258 {
1259  [ C(L1D) ] = {
1260         [ C(OP_READ) ] = {
1261                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1262                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1263         },
1264         [ C(OP_WRITE) ] = {
1265                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1266                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1267         },
1268         [ C(OP_PREFETCH) ] = {
1269                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1270                 [ C(RESULT_MISS)   ] = 0,
1271         },
1272  },
1273  [ C(L1I ) ] = {
1274         [ C(OP_READ) ] = {
1275                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1276                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1277         },
1278         [ C(OP_WRITE) ] = {
1279                 [ C(RESULT_ACCESS) ] = -1,
1280                 [ C(RESULT_MISS)   ] = -1,
1281         },
1282         [ C(OP_PREFETCH) ] = {
1283                 [ C(RESULT_ACCESS) ] = 0,
1284                 [ C(RESULT_MISS)   ] = 0,
1285         },
1286  },
1287  [ C(LL  ) ] = {
1288         [ C(OP_READ) ] = {
1289                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1290                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1291         },
1292         [ C(OP_WRITE) ] = {
1293                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1294                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1295         },
1296         [ C(OP_PREFETCH) ] = {
1297                 [ C(RESULT_ACCESS) ] = 0,
1298                 [ C(RESULT_MISS)   ] = 0,
1299         },
1300  },
1301  [ C(DTLB) ] = {
1302         [ C(OP_READ) ] = {
1303                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1304                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1305         },
1306         [ C(OP_WRITE) ] = {
1307                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1308                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1309         },
1310         [ C(OP_PREFETCH) ] = {
1311                 [ C(RESULT_ACCESS) ] = 0,
1312                 [ C(RESULT_MISS)   ] = 0,
1313         },
1314  },
1315  [ C(ITLB) ] = {
1316         [ C(OP_READ) ] = {
1317                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1318                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1319         },
1320         [ C(OP_WRITE) ] = {
1321                 [ C(RESULT_ACCESS) ] = -1,
1322                 [ C(RESULT_MISS)   ] = -1,
1323         },
1324         [ C(OP_PREFETCH) ] = {
1325                 [ C(RESULT_ACCESS) ] = -1,
1326                 [ C(RESULT_MISS)   ] = -1,
1327         },
1328  },
1329  [ C(BPU ) ] = {
1330         [ C(OP_READ) ] = {
1331                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1332                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1333         },
1334         [ C(OP_WRITE) ] = {
1335                 [ C(RESULT_ACCESS) ] = -1,
1336                 [ C(RESULT_MISS)   ] = -1,
1337         },
1338         [ C(OP_PREFETCH) ] = {
1339                 [ C(RESULT_ACCESS) ] = -1,
1340                 [ C(RESULT_MISS)   ] = -1,
1341         },
1342  },
1343 };
1344
1345 static __initconst const u64 atom_hw_cache_event_ids
1346                                 [PERF_COUNT_HW_CACHE_MAX]
1347                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1348                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1349 {
1350  [ C(L1D) ] = {
1351         [ C(OP_READ) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1353                 [ C(RESULT_MISS)   ] = 0,
1354         },
1355         [ C(OP_WRITE) ] = {
1356                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1357                 [ C(RESULT_MISS)   ] = 0,
1358         },
1359         [ C(OP_PREFETCH) ] = {
1360                 [ C(RESULT_ACCESS) ] = 0x0,
1361                 [ C(RESULT_MISS)   ] = 0,
1362         },
1363  },
1364  [ C(L1I ) ] = {
1365         [ C(OP_READ) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1367                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1368         },
1369         [ C(OP_WRITE) ] = {
1370                 [ C(RESULT_ACCESS) ] = -1,
1371                 [ C(RESULT_MISS)   ] = -1,
1372         },
1373         [ C(OP_PREFETCH) ] = {
1374                 [ C(RESULT_ACCESS) ] = 0,
1375                 [ C(RESULT_MISS)   ] = 0,
1376         },
1377  },
1378  [ C(LL  ) ] = {
1379         [ C(OP_READ) ] = {
1380                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1381                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1382         },
1383         [ C(OP_WRITE) ] = {
1384                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1385                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1386         },
1387         [ C(OP_PREFETCH) ] = {
1388                 [ C(RESULT_ACCESS) ] = 0,
1389                 [ C(RESULT_MISS)   ] = 0,
1390         },
1391  },
1392  [ C(DTLB) ] = {
1393         [ C(OP_READ) ] = {
1394                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1395                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1396         },
1397         [ C(OP_WRITE) ] = {
1398                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1399                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1400         },
1401         [ C(OP_PREFETCH) ] = {
1402                 [ C(RESULT_ACCESS) ] = 0,
1403                 [ C(RESULT_MISS)   ] = 0,
1404         },
1405  },
1406  [ C(ITLB) ] = {
1407         [ C(OP_READ) ] = {
1408                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1409                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1410         },
1411         [ C(OP_WRITE) ] = {
1412                 [ C(RESULT_ACCESS) ] = -1,
1413                 [ C(RESULT_MISS)   ] = -1,
1414         },
1415         [ C(OP_PREFETCH) ] = {
1416                 [ C(RESULT_ACCESS) ] = -1,
1417                 [ C(RESULT_MISS)   ] = -1,
1418         },
1419  },
1420  [ C(BPU ) ] = {
1421         [ C(OP_READ) ] = {
1422                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1423                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1424         },
1425         [ C(OP_WRITE) ] = {
1426                 [ C(RESULT_ACCESS) ] = -1,
1427                 [ C(RESULT_MISS)   ] = -1,
1428         },
1429         [ C(OP_PREFETCH) ] = {
1430                 [ C(RESULT_ACCESS) ] = -1,
1431                 [ C(RESULT_MISS)   ] = -1,
1432         },
1433  },
1434 };
1435
1436 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1437 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1438 /* no_alloc_cycles.not_delivered */
1439 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1440                "event=0xca,umask=0x50");
1441 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1442 /* uops_retired.all */
1443 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1444                "event=0xc2,umask=0x10");
1445 /* uops_retired.all */
1446 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1447                "event=0xc2,umask=0x10");
1448
1449 static struct attribute *slm_events_attrs[] = {
1450         EVENT_PTR(td_total_slots_slm),
1451         EVENT_PTR(td_total_slots_scale_slm),
1452         EVENT_PTR(td_fetch_bubbles_slm),
1453         EVENT_PTR(td_fetch_bubbles_scale_slm),
1454         EVENT_PTR(td_slots_issued_slm),
1455         EVENT_PTR(td_slots_retired_slm),
1456         NULL
1457 };
1458
1459 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1460 {
1461         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1462         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1463         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1464         EVENT_EXTRA_END
1465 };
1466
1467 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1468 #define SLM_DMND_WRITE          SNB_DMND_RFO
1469 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1470
1471 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1472 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1473 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1474
1475 static __initconst const u64 slm_hw_cache_extra_regs
1476                                 [PERF_COUNT_HW_CACHE_MAX]
1477                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1478                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1479 {
1480  [ C(LL  ) ] = {
1481         [ C(OP_READ) ] = {
1482                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1483                 [ C(RESULT_MISS)   ] = 0,
1484         },
1485         [ C(OP_WRITE) ] = {
1486                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1487                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1488         },
1489         [ C(OP_PREFETCH) ] = {
1490                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1491                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1492         },
1493  },
1494 };
1495
1496 static __initconst const u64 slm_hw_cache_event_ids
1497                                 [PERF_COUNT_HW_CACHE_MAX]
1498                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1499                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1500 {
1501  [ C(L1D) ] = {
1502         [ C(OP_READ) ] = {
1503                 [ C(RESULT_ACCESS) ] = 0,
1504                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1505         },
1506         [ C(OP_WRITE) ] = {
1507                 [ C(RESULT_ACCESS) ] = 0,
1508                 [ C(RESULT_MISS)   ] = 0,
1509         },
1510         [ C(OP_PREFETCH) ] = {
1511                 [ C(RESULT_ACCESS) ] = 0,
1512                 [ C(RESULT_MISS)   ] = 0,
1513         },
1514  },
1515  [ C(L1I ) ] = {
1516         [ C(OP_READ) ] = {
1517                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1518                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1519         },
1520         [ C(OP_WRITE) ] = {
1521                 [ C(RESULT_ACCESS) ] = -1,
1522                 [ C(RESULT_MISS)   ] = -1,
1523         },
1524         [ C(OP_PREFETCH) ] = {
1525                 [ C(RESULT_ACCESS) ] = 0,
1526                 [ C(RESULT_MISS)   ] = 0,
1527         },
1528  },
1529  [ C(LL  ) ] = {
1530         [ C(OP_READ) ] = {
1531                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1532                 [ C(RESULT_ACCESS) ] = 0x01b7,
1533                 [ C(RESULT_MISS)   ] = 0,
1534         },
1535         [ C(OP_WRITE) ] = {
1536                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1537                 [ C(RESULT_ACCESS) ] = 0x01b7,
1538                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1539                 [ C(RESULT_MISS)   ] = 0x01b7,
1540         },
1541         [ C(OP_PREFETCH) ] = {
1542                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1543                 [ C(RESULT_ACCESS) ] = 0x01b7,
1544                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1545                 [ C(RESULT_MISS)   ] = 0x01b7,
1546         },
1547  },
1548  [ C(DTLB) ] = {
1549         [ C(OP_READ) ] = {
1550                 [ C(RESULT_ACCESS) ] = 0,
1551                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1552         },
1553         [ C(OP_WRITE) ] = {
1554                 [ C(RESULT_ACCESS) ] = 0,
1555                 [ C(RESULT_MISS)   ] = 0,
1556         },
1557         [ C(OP_PREFETCH) ] = {
1558                 [ C(RESULT_ACCESS) ] = 0,
1559                 [ C(RESULT_MISS)   ] = 0,
1560         },
1561  },
1562  [ C(ITLB) ] = {
1563         [ C(OP_READ) ] = {
1564                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1565                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1566         },
1567         [ C(OP_WRITE) ] = {
1568                 [ C(RESULT_ACCESS) ] = -1,
1569                 [ C(RESULT_MISS)   ] = -1,
1570         },
1571         [ C(OP_PREFETCH) ] = {
1572                 [ C(RESULT_ACCESS) ] = -1,
1573                 [ C(RESULT_MISS)   ] = -1,
1574         },
1575  },
1576  [ C(BPU ) ] = {
1577         [ C(OP_READ) ] = {
1578                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1579                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1580         },
1581         [ C(OP_WRITE) ] = {
1582                 [ C(RESULT_ACCESS) ] = -1,
1583                 [ C(RESULT_MISS)   ] = -1,
1584         },
1585         [ C(OP_PREFETCH) ] = {
1586                 [ C(RESULT_ACCESS) ] = -1,
1587                 [ C(RESULT_MISS)   ] = -1,
1588         },
1589  },
1590 };
1591
1592 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1593 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1594 /* UOPS_NOT_DELIVERED.ANY */
1595 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1596 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1597 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1598 /* UOPS_RETIRED.ANY */
1599 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1600 /* UOPS_ISSUED.ANY */
1601 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1602
1603 static struct attribute *glm_events_attrs[] = {
1604         EVENT_PTR(td_total_slots_glm),
1605         EVENT_PTR(td_total_slots_scale_glm),
1606         EVENT_PTR(td_fetch_bubbles_glm),
1607         EVENT_PTR(td_recovery_bubbles_glm),
1608         EVENT_PTR(td_slots_issued_glm),
1609         EVENT_PTR(td_slots_retired_glm),
1610         NULL
1611 };
1612
1613 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1614         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1615         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1616         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1617         EVENT_EXTRA_END
1618 };
1619
1620 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1621 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1622 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1623 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1624 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1625 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1626 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1627 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1628 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1629 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1630
1631 static __initconst const u64 glm_hw_cache_event_ids
1632                                 [PERF_COUNT_HW_CACHE_MAX]
1633                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1634                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1635         [C(L1D)] = {
1636                 [C(OP_READ)] = {
1637                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1638                         [C(RESULT_MISS)]        = 0x0,
1639                 },
1640                 [C(OP_WRITE)] = {
1641                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1642                         [C(RESULT_MISS)]        = 0x0,
1643                 },
1644                 [C(OP_PREFETCH)] = {
1645                         [C(RESULT_ACCESS)]      = 0x0,
1646                         [C(RESULT_MISS)]        = 0x0,
1647                 },
1648         },
1649         [C(L1I)] = {
1650                 [C(OP_READ)] = {
1651                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1652                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1653                 },
1654                 [C(OP_WRITE)] = {
1655                         [C(RESULT_ACCESS)]      = -1,
1656                         [C(RESULT_MISS)]        = -1,
1657                 },
1658                 [C(OP_PREFETCH)] = {
1659                         [C(RESULT_ACCESS)]      = 0x0,
1660                         [C(RESULT_MISS)]        = 0x0,
1661                 },
1662         },
1663         [C(LL)] = {
1664                 [C(OP_READ)] = {
1665                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1666                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1667                 },
1668                 [C(OP_WRITE)] = {
1669                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1670                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1671                 },
1672                 [C(OP_PREFETCH)] = {
1673                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1674                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1675                 },
1676         },
1677         [C(DTLB)] = {
1678                 [C(OP_READ)] = {
1679                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1680                         [C(RESULT_MISS)]        = 0x0,
1681                 },
1682                 [C(OP_WRITE)] = {
1683                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1684                         [C(RESULT_MISS)]        = 0x0,
1685                 },
1686                 [C(OP_PREFETCH)] = {
1687                         [C(RESULT_ACCESS)]      = 0x0,
1688                         [C(RESULT_MISS)]        = 0x0,
1689                 },
1690         },
1691         [C(ITLB)] = {
1692                 [C(OP_READ)] = {
1693                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1694                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1695                 },
1696                 [C(OP_WRITE)] = {
1697                         [C(RESULT_ACCESS)]      = -1,
1698                         [C(RESULT_MISS)]        = -1,
1699                 },
1700                 [C(OP_PREFETCH)] = {
1701                         [C(RESULT_ACCESS)]      = -1,
1702                         [C(RESULT_MISS)]        = -1,
1703                 },
1704         },
1705         [C(BPU)] = {
1706                 [C(OP_READ)] = {
1707                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1708                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1709                 },
1710                 [C(OP_WRITE)] = {
1711                         [C(RESULT_ACCESS)]      = -1,
1712                         [C(RESULT_MISS)]        = -1,
1713                 },
1714                 [C(OP_PREFETCH)] = {
1715                         [C(RESULT_ACCESS)]      = -1,
1716                         [C(RESULT_MISS)]        = -1,
1717                 },
1718         },
1719 };
1720
1721 static __initconst const u64 glm_hw_cache_extra_regs
1722                                 [PERF_COUNT_HW_CACHE_MAX]
1723                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1724                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1725         [C(LL)] = {
1726                 [C(OP_READ)] = {
1727                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1728                                                   GLM_LLC_ACCESS,
1729                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1730                                                   GLM_LLC_MISS,
1731                 },
1732                 [C(OP_WRITE)] = {
1733                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1734                                                   GLM_LLC_ACCESS,
1735                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1736                                                   GLM_LLC_MISS,
1737                 },
1738                 [C(OP_PREFETCH)] = {
1739                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1740                                                   GLM_LLC_ACCESS,
1741                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1742                                                   GLM_LLC_MISS,
1743                 },
1744         },
1745 };
1746
1747 static __initconst const u64 glp_hw_cache_event_ids
1748                                 [PERF_COUNT_HW_CACHE_MAX]
1749                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1750                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1751         [C(L1D)] = {
1752                 [C(OP_READ)] = {
1753                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1754                         [C(RESULT_MISS)]        = 0x0,
1755                 },
1756                 [C(OP_WRITE)] = {
1757                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1758                         [C(RESULT_MISS)]        = 0x0,
1759                 },
1760                 [C(OP_PREFETCH)] = {
1761                         [C(RESULT_ACCESS)]      = 0x0,
1762                         [C(RESULT_MISS)]        = 0x0,
1763                 },
1764         },
1765         [C(L1I)] = {
1766                 [C(OP_READ)] = {
1767                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1768                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1769                 },
1770                 [C(OP_WRITE)] = {
1771                         [C(RESULT_ACCESS)]      = -1,
1772                         [C(RESULT_MISS)]        = -1,
1773                 },
1774                 [C(OP_PREFETCH)] = {
1775                         [C(RESULT_ACCESS)]      = 0x0,
1776                         [C(RESULT_MISS)]        = 0x0,
1777                 },
1778         },
1779         [C(LL)] = {
1780                 [C(OP_READ)] = {
1781                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1782                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1783                 },
1784                 [C(OP_WRITE)] = {
1785                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1786                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1787                 },
1788                 [C(OP_PREFETCH)] = {
1789                         [C(RESULT_ACCESS)]      = 0x0,
1790                         [C(RESULT_MISS)]        = 0x0,
1791                 },
1792         },
1793         [C(DTLB)] = {
1794                 [C(OP_READ)] = {
1795                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1796                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1797                 },
1798                 [C(OP_WRITE)] = {
1799                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1800                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1801                 },
1802                 [C(OP_PREFETCH)] = {
1803                         [C(RESULT_ACCESS)]      = 0x0,
1804                         [C(RESULT_MISS)]        = 0x0,
1805                 },
1806         },
1807         [C(ITLB)] = {
1808                 [C(OP_READ)] = {
1809                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1810                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1811                 },
1812                 [C(OP_WRITE)] = {
1813                         [C(RESULT_ACCESS)]      = -1,
1814                         [C(RESULT_MISS)]        = -1,
1815                 },
1816                 [C(OP_PREFETCH)] = {
1817                         [C(RESULT_ACCESS)]      = -1,
1818                         [C(RESULT_MISS)]        = -1,
1819                 },
1820         },
1821         [C(BPU)] = {
1822                 [C(OP_READ)] = {
1823                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1824                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1825                 },
1826                 [C(OP_WRITE)] = {
1827                         [C(RESULT_ACCESS)]      = -1,
1828                         [C(RESULT_MISS)]        = -1,
1829                 },
1830                 [C(OP_PREFETCH)] = {
1831                         [C(RESULT_ACCESS)]      = -1,
1832                         [C(RESULT_MISS)]        = -1,
1833                 },
1834         },
1835 };
1836
1837 static __initconst const u64 glp_hw_cache_extra_regs
1838                                 [PERF_COUNT_HW_CACHE_MAX]
1839                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1840                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1841         [C(LL)] = {
1842                 [C(OP_READ)] = {
1843                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1844                                                   GLM_LLC_ACCESS,
1845                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1846                                                   GLM_LLC_MISS,
1847                 },
1848                 [C(OP_WRITE)] = {
1849                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1850                                                   GLM_LLC_ACCESS,
1851                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1852                                                   GLM_LLC_MISS,
1853                 },
1854                 [C(OP_PREFETCH)] = {
1855                         [C(RESULT_ACCESS)]      = 0x0,
1856                         [C(RESULT_MISS)]        = 0x0,
1857                 },
1858         },
1859 };
1860
1861 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
1862 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
1863 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
1864 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
1865 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
1866                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
1867 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
1868
1869 static __initconst const u64 tnt_hw_cache_extra_regs
1870                                 [PERF_COUNT_HW_CACHE_MAX]
1871                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1872                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1873         [C(LL)] = {
1874                 [C(OP_READ)] = {
1875                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
1876                                                   TNT_LLC_ACCESS,
1877                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
1878                                                   TNT_LLC_MISS,
1879                 },
1880                 [C(OP_WRITE)] = {
1881                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
1882                                                   TNT_LLC_ACCESS,
1883                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
1884                                                   TNT_LLC_MISS,
1885                 },
1886                 [C(OP_PREFETCH)] = {
1887                         [C(RESULT_ACCESS)]      = 0x0,
1888                         [C(RESULT_MISS)]        = 0x0,
1889                 },
1890         },
1891 };
1892
1893 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
1894         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1895         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffffff9fffull, RSP_0),
1896         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xffffff9fffull, RSP_1),
1897         EVENT_EXTRA_END
1898 };
1899
1900 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1901 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1902 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1903 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1904 #define KNL_DDR_LOCAL           BIT_ULL(23)
1905 #define KNL_DDR_FAR             BIT_ULL(24)
1906 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1907                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1908 #define KNL_L2_READ             SLM_DMND_READ
1909 #define KNL_L2_WRITE            SLM_DMND_WRITE
1910 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1911 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1912 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1913                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1914                                                   SNB_NON_DRAM)
1915
1916 static __initconst const u64 knl_hw_cache_extra_regs
1917                                 [PERF_COUNT_HW_CACHE_MAX]
1918                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1919                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1920         [C(LL)] = {
1921                 [C(OP_READ)] = {
1922                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1923                         [C(RESULT_MISS)]   = 0,
1924                 },
1925                 [C(OP_WRITE)] = {
1926                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1927                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1928                 },
1929                 [C(OP_PREFETCH)] = {
1930                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1931                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1932                 },
1933         },
1934 };
1935
1936 /*
1937  * Used from PMIs where the LBRs are already disabled.
1938  *
1939  * This function could be called consecutively. It is required to remain in
1940  * disabled state if called consecutively.
1941  *
1942  * During consecutive calls, the same disable value will be written to related
1943  * registers, so the PMU state remains unchanged.
1944  *
1945  * intel_bts events don't coexist with intel PMU's BTS events because of
1946  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1947  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1948  *
1949  * Avoid PEBS_ENABLE MSR access in PMIs.
1950  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
1951  * It doesn't matter if the PEBS is enabled or not.
1952  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
1953  * access PEBS_ENABLE MSR in disable_all()/enable_all().
1954  * However, there are some cases which may change PEBS status, e.g. PMI
1955  * throttle. The PEBS_ENABLE should be updated where the status changes.
1956  */
1957 static void __intel_pmu_disable_all(void)
1958 {
1959         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1960
1961         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1962
1963         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1964                 intel_pmu_disable_bts();
1965 }
1966
1967 static void intel_pmu_disable_all(void)
1968 {
1969         __intel_pmu_disable_all();
1970         intel_pmu_pebs_disable_all();
1971         intel_pmu_lbr_disable_all();
1972 }
1973
1974 static void __intel_pmu_enable_all(int added, bool pmi)
1975 {
1976         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1977
1978         intel_pmu_lbr_enable_all(pmi);
1979         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1980                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1981
1982         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1983                 struct perf_event *event =
1984                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1985
1986                 if (WARN_ON_ONCE(!event))
1987                         return;
1988
1989                 intel_pmu_enable_bts(event->hw.config);
1990         }
1991 }
1992
1993 static void intel_pmu_enable_all(int added)
1994 {
1995         intel_pmu_pebs_enable_all();
1996         __intel_pmu_enable_all(added, false);
1997 }
1998
1999 /*
2000  * Workaround for:
2001  *   Intel Errata AAK100 (model 26)
2002  *   Intel Errata AAP53  (model 30)
2003  *   Intel Errata BD53   (model 44)
2004  *
2005  * The official story:
2006  *   These chips need to be 'reset' when adding counters by programming the
2007  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2008  *   in sequence on the same PMC or on different PMCs.
2009  *
2010  * In practise it appears some of these events do in fact count, and
2011  * we need to program all 4 events.
2012  */
2013 static void intel_pmu_nhm_workaround(void)
2014 {
2015         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2016         static const unsigned long nhm_magic[4] = {
2017                 0x4300B5,
2018                 0x4300D2,
2019                 0x4300B1,
2020                 0x4300B1
2021         };
2022         struct perf_event *event;
2023         int i;
2024
2025         /*
2026          * The Errata requires below steps:
2027          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2028          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2029          *    the corresponding PMCx;
2030          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2031          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2032          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2033          */
2034
2035         /*
2036          * The real steps we choose are a little different from above.
2037          * A) To reduce MSR operations, we don't run step 1) as they
2038          *    are already cleared before this function is called;
2039          * B) Call x86_perf_event_update to save PMCx before configuring
2040          *    PERFEVTSELx with magic number;
2041          * C) With step 5), we do clear only when the PERFEVTSELx is
2042          *    not used currently.
2043          * D) Call x86_perf_event_set_period to restore PMCx;
2044          */
2045
2046         /* We always operate 4 pairs of PERF Counters */
2047         for (i = 0; i < 4; i++) {
2048                 event = cpuc->events[i];
2049                 if (event)
2050                         x86_perf_event_update(event);
2051         }
2052
2053         for (i = 0; i < 4; i++) {
2054                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2055                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2056         }
2057
2058         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2059         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2060
2061         for (i = 0; i < 4; i++) {
2062                 event = cpuc->events[i];
2063
2064                 if (event) {
2065                         x86_perf_event_set_period(event);
2066                         __x86_pmu_enable_event(&event->hw,
2067                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2068                 } else
2069                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2070         }
2071 }
2072
2073 static void intel_pmu_nhm_enable_all(int added)
2074 {
2075         if (added)
2076                 intel_pmu_nhm_workaround();
2077         intel_pmu_enable_all(added);
2078 }
2079
2080 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2081 {
2082         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2083
2084         if (cpuc->tfa_shadow != val) {
2085                 cpuc->tfa_shadow = val;
2086                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2087         }
2088 }
2089
2090 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2091 {
2092         /*
2093          * We're going to use PMC3, make sure TFA is set before we touch it.
2094          */
2095         if (cntr == 3)
2096                 intel_set_tfa(cpuc, true);
2097 }
2098
2099 static void intel_tfa_pmu_enable_all(int added)
2100 {
2101         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2102
2103         /*
2104          * If we find PMC3 is no longer used when we enable the PMU, we can
2105          * clear TFA.
2106          */
2107         if (!test_bit(3, cpuc->active_mask))
2108                 intel_set_tfa(cpuc, false);
2109
2110         intel_pmu_enable_all(added);
2111 }
2112
2113 static void enable_counter_freeze(void)
2114 {
2115         update_debugctlmsr(get_debugctlmsr() |
2116                         DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2117 }
2118
2119 static void disable_counter_freeze(void)
2120 {
2121         update_debugctlmsr(get_debugctlmsr() &
2122                         ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2123 }
2124
2125 static inline u64 intel_pmu_get_status(void)
2126 {
2127         u64 status;
2128
2129         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2130
2131         return status;
2132 }
2133
2134 static inline void intel_pmu_ack_status(u64 ack)
2135 {
2136         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2137 }
2138
2139 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2140 {
2141         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2142         u64 ctrl_val, mask;
2143
2144         mask = 0xfULL << (idx * 4);
2145
2146         rdmsrl(hwc->config_base, ctrl_val);
2147         ctrl_val &= ~mask;
2148         wrmsrl(hwc->config_base, ctrl_val);
2149 }
2150
2151 static inline bool event_is_checkpointed(struct perf_event *event)
2152 {
2153         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2154 }
2155
2156 static void intel_pmu_disable_event(struct perf_event *event)
2157 {
2158         struct hw_perf_event *hwc = &event->hw;
2159         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2160
2161         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2162                 intel_pmu_disable_bts();
2163                 intel_pmu_drain_bts_buffer();
2164                 return;
2165         }
2166
2167         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2168         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2169         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2170
2171         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL))
2172                 intel_pmu_disable_fixed(hwc);
2173         else
2174                 x86_pmu_disable_event(event);
2175
2176         /*
2177          * Needs to be called after x86_pmu_disable_event,
2178          * so we don't trigger the event without PEBS bit set.
2179          */
2180         if (unlikely(event->attr.precise_ip))
2181                 intel_pmu_pebs_disable(event);
2182 }
2183
2184 static void intel_pmu_del_event(struct perf_event *event)
2185 {
2186         if (needs_branch_stack(event))
2187                 intel_pmu_lbr_del(event);
2188         if (event->attr.precise_ip)
2189                 intel_pmu_pebs_del(event);
2190 }
2191
2192 static void intel_pmu_read_event(struct perf_event *event)
2193 {
2194         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2195                 intel_pmu_auto_reload_read(event);
2196         else
2197                 x86_perf_event_update(event);
2198 }
2199
2200 static void intel_pmu_enable_fixed(struct perf_event *event)
2201 {
2202         struct hw_perf_event *hwc = &event->hw;
2203         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2204         u64 ctrl_val, mask, bits = 0;
2205
2206         /*
2207          * Enable IRQ generation (0x8), if not PEBS,
2208          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2209          * if requested:
2210          */
2211         if (!event->attr.precise_ip)
2212                 bits |= 0x8;
2213         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2214                 bits |= 0x2;
2215         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2216                 bits |= 0x1;
2217
2218         /*
2219          * ANY bit is supported in v3 and up
2220          */
2221         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2222                 bits |= 0x4;
2223
2224         bits <<= (idx * 4);
2225         mask = 0xfULL << (idx * 4);
2226
2227         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2228                 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2229                 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2230         }
2231
2232         rdmsrl(hwc->config_base, ctrl_val);
2233         ctrl_val &= ~mask;
2234         ctrl_val |= bits;
2235         wrmsrl(hwc->config_base, ctrl_val);
2236 }
2237
2238 static void intel_pmu_enable_event(struct perf_event *event)
2239 {
2240         struct hw_perf_event *hwc = &event->hw;
2241         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2242
2243         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2244                 if (!__this_cpu_read(cpu_hw_events.enabled))
2245                         return;
2246
2247                 intel_pmu_enable_bts(hwc->config);
2248                 return;
2249         }
2250
2251         if (event->attr.exclude_host)
2252                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2253         if (event->attr.exclude_guest)
2254                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2255
2256         if (unlikely(event_is_checkpointed(event)))
2257                 cpuc->intel_cp_status |= (1ull << hwc->idx);
2258
2259         if (unlikely(event->attr.precise_ip))
2260                 intel_pmu_pebs_enable(event);
2261
2262         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2263                 intel_pmu_enable_fixed(event);
2264                 return;
2265         }
2266
2267         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2268 }
2269
2270 static void intel_pmu_add_event(struct perf_event *event)
2271 {
2272         if (event->attr.precise_ip)
2273                 intel_pmu_pebs_add(event);
2274         if (needs_branch_stack(event))
2275                 intel_pmu_lbr_add(event);
2276 }
2277
2278 /*
2279  * Save and restart an expired event. Called by NMI contexts,
2280  * so it has to be careful about preempting normal event ops:
2281  */
2282 int intel_pmu_save_and_restart(struct perf_event *event)
2283 {
2284         x86_perf_event_update(event);
2285         /*
2286          * For a checkpointed counter always reset back to 0.  This
2287          * avoids a situation where the counter overflows, aborts the
2288          * transaction and is then set back to shortly before the
2289          * overflow, and overflows and aborts again.
2290          */
2291         if (unlikely(event_is_checkpointed(event))) {
2292                 /* No race with NMIs because the counter should not be armed */
2293                 wrmsrl(event->hw.event_base, 0);
2294                 local64_set(&event->hw.prev_count, 0);
2295         }
2296         return x86_perf_event_set_period(event);
2297 }
2298
2299 static void intel_pmu_reset(void)
2300 {
2301         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2302         unsigned long flags;
2303         int idx;
2304
2305         if (!x86_pmu.num_counters)
2306                 return;
2307
2308         local_irq_save(flags);
2309
2310         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2311
2312         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2313                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2314                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2315         }
2316         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2317                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2318
2319         if (ds)
2320                 ds->bts_index = ds->bts_buffer_base;
2321
2322         /* Ack all overflows and disable fixed counters */
2323         if (x86_pmu.version >= 2) {
2324                 intel_pmu_ack_status(intel_pmu_get_status());
2325                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2326         }
2327
2328         /* Reset LBRs and LBR freezing */
2329         if (x86_pmu.lbr_nr) {
2330                 update_debugctlmsr(get_debugctlmsr() &
2331                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2332         }
2333
2334         local_irq_restore(flags);
2335 }
2336
2337 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2338 {
2339         struct perf_sample_data data;
2340         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2341         int bit;
2342         int handled = 0;
2343
2344         inc_irq_stat(apic_perf_irqs);
2345
2346         /*
2347          * Ignore a range of extra bits in status that do not indicate
2348          * overflow by themselves.
2349          */
2350         status &= ~(GLOBAL_STATUS_COND_CHG |
2351                     GLOBAL_STATUS_ASIF |
2352                     GLOBAL_STATUS_LBRS_FROZEN);
2353         if (!status)
2354                 return 0;
2355         /*
2356          * In case multiple PEBS events are sampled at the same time,
2357          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2358          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2359          * having their bits set in the status register. This is a sign
2360          * that there was at least one PEBS record pending at the time
2361          * of the PMU interrupt. PEBS counters must only be processed
2362          * via the drain_pebs() calls and not via the regular sample
2363          * processing loop coming after that the function, otherwise
2364          * phony regular samples may be generated in the sampling buffer
2365          * not marked with the EXACT tag. Another possibility is to have
2366          * one PEBS event and at least one non-PEBS event whic hoverflows
2367          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2368          * not be set, yet the overflow status bit for the PEBS counter will
2369          * be on Skylake.
2370          *
2371          * To avoid this problem, we systematically ignore the PEBS-enabled
2372          * counters from the GLOBAL_STATUS mask and we always process PEBS
2373          * events via drain_pebs().
2374          */
2375         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2376                 status &= ~cpuc->pebs_enabled;
2377         else
2378                 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2379
2380         /*
2381          * PEBS overflow sets bit 62 in the global status register
2382          */
2383         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2384                 u64 pebs_enabled = cpuc->pebs_enabled;
2385
2386                 handled++;
2387                 x86_pmu.drain_pebs(regs);
2388                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2389
2390                 /*
2391                  * PMI throttle may be triggered, which stops the PEBS event.
2392                  * Although cpuc->pebs_enabled is updated accordingly, the
2393                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
2394                  * cpuc->enabled has been forced to 0 in PMI.
2395                  * Update the MSR if pebs_enabled is changed.
2396                  */
2397                 if (pebs_enabled != cpuc->pebs_enabled)
2398                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2399         }
2400
2401         /*
2402          * Intel PT
2403          */
2404         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2405                 handled++;
2406                 if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2407                         perf_guest_cbs->handle_intel_pt_intr))
2408                         perf_guest_cbs->handle_intel_pt_intr();
2409                 else
2410                         intel_pt_interrupt();
2411         }
2412
2413         /*
2414          * Checkpointed counters can lead to 'spurious' PMIs because the
2415          * rollback caused by the PMI will have cleared the overflow status
2416          * bit. Therefore always force probe these counters.
2417          */
2418         status |= cpuc->intel_cp_status;
2419
2420         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2421                 struct perf_event *event = cpuc->events[bit];
2422
2423                 handled++;
2424
2425                 if (!test_bit(bit, cpuc->active_mask))
2426                         continue;
2427
2428                 if (!intel_pmu_save_and_restart(event))
2429                         continue;
2430
2431                 perf_sample_data_init(&data, 0, event->hw.last_period);
2432
2433                 if (has_branch_stack(event))
2434                         data.br_stack = &cpuc->lbr_stack;
2435
2436                 if (perf_event_overflow(event, &data, regs))
2437                         x86_pmu_stop(event, 0);
2438         }
2439
2440         return handled;
2441 }
2442
2443 static bool disable_counter_freezing = true;
2444 static int __init intel_perf_counter_freezing_setup(char *s)
2445 {
2446         bool res;
2447
2448         if (kstrtobool(s, &res))
2449                 return -EINVAL;
2450
2451         disable_counter_freezing = !res;
2452         return 1;
2453 }
2454 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2455
2456 /*
2457  * Simplified handler for Arch Perfmon v4:
2458  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2459  * This is done automatically on PMU ack.
2460  * - Ack the PMU only after the APIC.
2461  */
2462
2463 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2464 {
2465         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2466         int handled = 0;
2467         bool bts = false;
2468         u64 status;
2469         int pmu_enabled = cpuc->enabled;
2470         int loops = 0;
2471
2472         /* PMU has been disabled because of counter freezing */
2473         cpuc->enabled = 0;
2474         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2475                 bts = true;
2476                 intel_bts_disable_local();
2477                 handled = intel_pmu_drain_bts_buffer();
2478                 handled += intel_bts_interrupt();
2479         }
2480         status = intel_pmu_get_status();
2481         if (!status)
2482                 goto done;
2483 again:
2484         intel_pmu_lbr_read();
2485         if (++loops > 100) {
2486                 static bool warned;
2487
2488                 if (!warned) {
2489                         WARN(1, "perfevents: irq loop stuck!\n");
2490                         perf_event_print_debug();
2491                         warned = true;
2492                 }
2493                 intel_pmu_reset();
2494                 goto done;
2495         }
2496
2497
2498         handled += handle_pmi_common(regs, status);
2499 done:
2500         /* Ack the PMI in the APIC */
2501         apic_write(APIC_LVTPC, APIC_DM_NMI);
2502
2503         /*
2504          * The counters start counting immediately while ack the status.
2505          * Make it as close as possible to IRET. This avoids bogus
2506          * freezing on Skylake CPUs.
2507          */
2508         if (status) {
2509                 intel_pmu_ack_status(status);
2510         } else {
2511                 /*
2512                  * CPU may issues two PMIs very close to each other.
2513                  * When the PMI handler services the first one, the
2514                  * GLOBAL_STATUS is already updated to reflect both.
2515                  * When it IRETs, the second PMI is immediately
2516                  * handled and it sees clear status. At the meantime,
2517                  * there may be a third PMI, because the freezing bit
2518                  * isn't set since the ack in first PMI handlers.
2519                  * Double check if there is more work to be done.
2520                  */
2521                 status = intel_pmu_get_status();
2522                 if (status)
2523                         goto again;
2524         }
2525
2526         if (bts)
2527                 intel_bts_enable_local();
2528         cpuc->enabled = pmu_enabled;
2529         return handled;
2530 }
2531
2532 /*
2533  * This handler is triggered by the local APIC, so the APIC IRQ handling
2534  * rules apply:
2535  */
2536 static int intel_pmu_handle_irq(struct pt_regs *regs)
2537 {
2538         struct cpu_hw_events *cpuc;
2539         int loops;
2540         u64 status;
2541         int handled;
2542         int pmu_enabled;
2543
2544         cpuc = this_cpu_ptr(&cpu_hw_events);
2545
2546         /*
2547          * Save the PMU state.
2548          * It needs to be restored when leaving the handler.
2549          */
2550         pmu_enabled = cpuc->enabled;
2551         /*
2552          * No known reason to not always do late ACK,
2553          * but just in case do it opt-in.
2554          */
2555         if (!x86_pmu.late_ack)
2556                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2557         intel_bts_disable_local();
2558         cpuc->enabled = 0;
2559         __intel_pmu_disable_all();
2560         handled = intel_pmu_drain_bts_buffer();
2561         handled += intel_bts_interrupt();
2562         status = intel_pmu_get_status();
2563         if (!status)
2564                 goto done;
2565
2566         loops = 0;
2567 again:
2568         intel_pmu_lbr_read();
2569         intel_pmu_ack_status(status);
2570         if (++loops > 100) {
2571                 static bool warned;
2572
2573                 if (!warned) {
2574                         WARN(1, "perfevents: irq loop stuck!\n");
2575                         perf_event_print_debug();
2576                         warned = true;
2577                 }
2578                 intel_pmu_reset();
2579                 goto done;
2580         }
2581
2582         handled += handle_pmi_common(regs, status);
2583
2584         /*
2585          * Repeat if there is more work to be done:
2586          */
2587         status = intel_pmu_get_status();
2588         if (status)
2589                 goto again;
2590
2591 done:
2592         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2593         cpuc->enabled = pmu_enabled;
2594         if (pmu_enabled)
2595                 __intel_pmu_enable_all(0, true);
2596         intel_bts_enable_local();
2597
2598         /*
2599          * Only unmask the NMI after the overflow counters
2600          * have been reset. This avoids spurious NMIs on
2601          * Haswell CPUs.
2602          */
2603         if (x86_pmu.late_ack)
2604                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2605         return handled;
2606 }
2607
2608 static struct event_constraint *
2609 intel_bts_constraints(struct perf_event *event)
2610 {
2611         if (unlikely(intel_pmu_has_bts(event)))
2612                 return &bts_constraint;
2613
2614         return NULL;
2615 }
2616
2617 static int intel_alt_er(int idx, u64 config)
2618 {
2619         int alt_idx = idx;
2620
2621         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2622                 return idx;
2623
2624         if (idx == EXTRA_REG_RSP_0)
2625                 alt_idx = EXTRA_REG_RSP_1;
2626
2627         if (idx == EXTRA_REG_RSP_1)
2628                 alt_idx = EXTRA_REG_RSP_0;
2629
2630         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2631                 return idx;
2632
2633         return alt_idx;
2634 }
2635
2636 static void intel_fixup_er(struct perf_event *event, int idx)
2637 {
2638         event->hw.extra_reg.idx = idx;
2639
2640         if (idx == EXTRA_REG_RSP_0) {
2641                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2642                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2643                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2644         } else if (idx == EXTRA_REG_RSP_1) {
2645                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2646                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2647                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2648         }
2649 }
2650
2651 /*
2652  * manage allocation of shared extra msr for certain events
2653  *
2654  * sharing can be:
2655  * per-cpu: to be shared between the various events on a single PMU
2656  * per-core: per-cpu + shared by HT threads
2657  */
2658 static struct event_constraint *
2659 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2660                                    struct perf_event *event,
2661                                    struct hw_perf_event_extra *reg)
2662 {
2663         struct event_constraint *c = &emptyconstraint;
2664         struct er_account *era;
2665         unsigned long flags;
2666         int idx = reg->idx;
2667
2668         /*
2669          * reg->alloc can be set due to existing state, so for fake cpuc we
2670          * need to ignore this, otherwise we might fail to allocate proper fake
2671          * state for this extra reg constraint. Also see the comment below.
2672          */
2673         if (reg->alloc && !cpuc->is_fake)
2674                 return NULL; /* call x86_get_event_constraint() */
2675
2676 again:
2677         era = &cpuc->shared_regs->regs[idx];
2678         /*
2679          * we use spin_lock_irqsave() to avoid lockdep issues when
2680          * passing a fake cpuc
2681          */
2682         raw_spin_lock_irqsave(&era->lock, flags);
2683
2684         if (!atomic_read(&era->ref) || era->config == reg->config) {
2685
2686                 /*
2687                  * If its a fake cpuc -- as per validate_{group,event}() we
2688                  * shouldn't touch event state and we can avoid doing so
2689                  * since both will only call get_event_constraints() once
2690                  * on each event, this avoids the need for reg->alloc.
2691                  *
2692                  * Not doing the ER fixup will only result in era->reg being
2693                  * wrong, but since we won't actually try and program hardware
2694                  * this isn't a problem either.
2695                  */
2696                 if (!cpuc->is_fake) {
2697                         if (idx != reg->idx)
2698                                 intel_fixup_er(event, idx);
2699
2700                         /*
2701                          * x86_schedule_events() can call get_event_constraints()
2702                          * multiple times on events in the case of incremental
2703                          * scheduling(). reg->alloc ensures we only do the ER
2704                          * allocation once.
2705                          */
2706                         reg->alloc = 1;
2707                 }
2708
2709                 /* lock in msr value */
2710                 era->config = reg->config;
2711                 era->reg = reg->reg;
2712
2713                 /* one more user */
2714                 atomic_inc(&era->ref);
2715
2716                 /*
2717                  * need to call x86_get_event_constraint()
2718                  * to check if associated event has constraints
2719                  */
2720                 c = NULL;
2721         } else {
2722                 idx = intel_alt_er(idx, reg->config);
2723                 if (idx != reg->idx) {
2724                         raw_spin_unlock_irqrestore(&era->lock, flags);
2725                         goto again;
2726                 }
2727         }
2728         raw_spin_unlock_irqrestore(&era->lock, flags);
2729
2730         return c;
2731 }
2732
2733 static void
2734 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2735                                    struct hw_perf_event_extra *reg)
2736 {
2737         struct er_account *era;
2738
2739         /*
2740          * Only put constraint if extra reg was actually allocated. Also takes
2741          * care of event which do not use an extra shared reg.
2742          *
2743          * Also, if this is a fake cpuc we shouldn't touch any event state
2744          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2745          * either since it'll be thrown out.
2746          */
2747         if (!reg->alloc || cpuc->is_fake)
2748                 return;
2749
2750         era = &cpuc->shared_regs->regs[reg->idx];
2751
2752         /* one fewer user */
2753         atomic_dec(&era->ref);
2754
2755         /* allocate again next time */
2756         reg->alloc = 0;
2757 }
2758
2759 static struct event_constraint *
2760 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2761                               struct perf_event *event)
2762 {
2763         struct event_constraint *c = NULL, *d;
2764         struct hw_perf_event_extra *xreg, *breg;
2765
2766         xreg = &event->hw.extra_reg;
2767         if (xreg->idx != EXTRA_REG_NONE) {
2768                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2769                 if (c == &emptyconstraint)
2770                         return c;
2771         }
2772         breg = &event->hw.branch_reg;
2773         if (breg->idx != EXTRA_REG_NONE) {
2774                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2775                 if (d == &emptyconstraint) {
2776                         __intel_shared_reg_put_constraints(cpuc, xreg);
2777                         c = d;
2778                 }
2779         }
2780         return c;
2781 }
2782
2783 struct event_constraint *
2784 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2785                           struct perf_event *event)
2786 {
2787         struct event_constraint *c;
2788
2789         if (x86_pmu.event_constraints) {
2790                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2791                         if (constraint_match(c, event->hw.config)) {
2792                                 event->hw.flags |= c->flags;
2793                                 return c;
2794                         }
2795                 }
2796         }
2797
2798         return &unconstrained;
2799 }
2800
2801 static struct event_constraint *
2802 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2803                             struct perf_event *event)
2804 {
2805         struct event_constraint *c;
2806
2807         c = intel_bts_constraints(event);
2808         if (c)
2809                 return c;
2810
2811         c = intel_shared_regs_constraints(cpuc, event);
2812         if (c)
2813                 return c;
2814
2815         c = intel_pebs_constraints(event);
2816         if (c)
2817                 return c;
2818
2819         return x86_get_event_constraints(cpuc, idx, event);
2820 }
2821
2822 static void
2823 intel_start_scheduling(struct cpu_hw_events *cpuc)
2824 {
2825         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2826         struct intel_excl_states *xl;
2827         int tid = cpuc->excl_thread_id;
2828
2829         /*
2830          * nothing needed if in group validation mode
2831          */
2832         if (cpuc->is_fake || !is_ht_workaround_enabled())
2833                 return;
2834
2835         /*
2836          * no exclusion needed
2837          */
2838         if (WARN_ON_ONCE(!excl_cntrs))
2839                 return;
2840
2841         xl = &excl_cntrs->states[tid];
2842
2843         xl->sched_started = true;
2844         /*
2845          * lock shared state until we are done scheduling
2846          * in stop_event_scheduling()
2847          * makes scheduling appear as a transaction
2848          */
2849         raw_spin_lock(&excl_cntrs->lock);
2850 }
2851
2852 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2853 {
2854         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2855         struct event_constraint *c = cpuc->event_constraint[idx];
2856         struct intel_excl_states *xl;
2857         int tid = cpuc->excl_thread_id;
2858
2859         if (cpuc->is_fake || !is_ht_workaround_enabled())
2860                 return;
2861
2862         if (WARN_ON_ONCE(!excl_cntrs))
2863                 return;
2864
2865         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2866                 return;
2867
2868         xl = &excl_cntrs->states[tid];
2869
2870         lockdep_assert_held(&excl_cntrs->lock);
2871
2872         if (c->flags & PERF_X86_EVENT_EXCL)
2873                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2874         else
2875                 xl->state[cntr] = INTEL_EXCL_SHARED;
2876 }
2877
2878 static void
2879 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2880 {
2881         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2882         struct intel_excl_states *xl;
2883         int tid = cpuc->excl_thread_id;
2884
2885         /*
2886          * nothing needed if in group validation mode
2887          */
2888         if (cpuc->is_fake || !is_ht_workaround_enabled())
2889                 return;
2890         /*
2891          * no exclusion needed
2892          */
2893         if (WARN_ON_ONCE(!excl_cntrs))
2894                 return;
2895
2896         xl = &excl_cntrs->states[tid];
2897
2898         xl->sched_started = false;
2899         /*
2900          * release shared state lock (acquired in intel_start_scheduling())
2901          */
2902         raw_spin_unlock(&excl_cntrs->lock);
2903 }
2904
2905 static struct event_constraint *
2906 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
2907 {
2908         WARN_ON_ONCE(!cpuc->constraint_list);
2909
2910         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2911                 struct event_constraint *cx;
2912
2913                 /*
2914                  * grab pre-allocated constraint entry
2915                  */
2916                 cx = &cpuc->constraint_list[idx];
2917
2918                 /*
2919                  * initialize dynamic constraint
2920                  * with static constraint
2921                  */
2922                 *cx = *c;
2923
2924                 /*
2925                  * mark constraint as dynamic
2926                  */
2927                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2928                 c = cx;
2929         }
2930
2931         return c;
2932 }
2933
2934 static struct event_constraint *
2935 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2936                            int idx, struct event_constraint *c)
2937 {
2938         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2939         struct intel_excl_states *xlo;
2940         int tid = cpuc->excl_thread_id;
2941         int is_excl, i, w;
2942
2943         /*
2944          * validating a group does not require
2945          * enforcing cross-thread  exclusion
2946          */
2947         if (cpuc->is_fake || !is_ht_workaround_enabled())
2948                 return c;
2949
2950         /*
2951          * no exclusion needed
2952          */
2953         if (WARN_ON_ONCE(!excl_cntrs))
2954                 return c;
2955
2956         /*
2957          * because we modify the constraint, we need
2958          * to make a copy. Static constraints come
2959          * from static const tables.
2960          *
2961          * only needed when constraint has not yet
2962          * been cloned (marked dynamic)
2963          */
2964         c = dyn_constraint(cpuc, c, idx);
2965
2966         /*
2967          * From here on, the constraint is dynamic.
2968          * Either it was just allocated above, or it
2969          * was allocated during a earlier invocation
2970          * of this function
2971          */
2972
2973         /*
2974          * state of sibling HT
2975          */
2976         xlo = &excl_cntrs->states[tid ^ 1];
2977
2978         /*
2979          * event requires exclusive counter access
2980          * across HT threads
2981          */
2982         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2983         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2984                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2985                 if (!cpuc->n_excl++)
2986                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2987         }
2988
2989         /*
2990          * Modify static constraint with current dynamic
2991          * state of thread
2992          *
2993          * EXCLUSIVE: sibling counter measuring exclusive event
2994          * SHARED   : sibling counter measuring non-exclusive event
2995          * UNUSED   : sibling counter unused
2996          */
2997         w = c->weight;
2998         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2999                 /*
3000                  * exclusive event in sibling counter
3001                  * our corresponding counter cannot be used
3002                  * regardless of our event
3003                  */
3004                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3005                         __clear_bit(i, c->idxmsk);
3006                         w--;
3007                         continue;
3008                 }
3009                 /*
3010                  * if measuring an exclusive event, sibling
3011                  * measuring non-exclusive, then counter cannot
3012                  * be used
3013                  */
3014                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3015                         __clear_bit(i, c->idxmsk);
3016                         w--;
3017                         continue;
3018                 }
3019         }
3020
3021         /*
3022          * if we return an empty mask, then switch
3023          * back to static empty constraint to avoid
3024          * the cost of freeing later on
3025          */
3026         if (!w)
3027                 c = &emptyconstraint;
3028
3029         c->weight = w;
3030
3031         return c;
3032 }
3033
3034 static struct event_constraint *
3035 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3036                             struct perf_event *event)
3037 {
3038         struct event_constraint *c1, *c2;
3039
3040         c1 = cpuc->event_constraint[idx];
3041
3042         /*
3043          * first time only
3044          * - static constraint: no change across incremental scheduling calls
3045          * - dynamic constraint: handled by intel_get_excl_constraints()
3046          */
3047         c2 = __intel_get_event_constraints(cpuc, idx, event);
3048         if (c1) {
3049                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3050                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3051                 c1->weight = c2->weight;
3052                 c2 = c1;
3053         }
3054
3055         if (cpuc->excl_cntrs)
3056                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3057
3058         return c2;
3059 }
3060
3061 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3062                 struct perf_event *event)
3063 {
3064         struct hw_perf_event *hwc = &event->hw;
3065         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3066         int tid = cpuc->excl_thread_id;
3067         struct intel_excl_states *xl;
3068
3069         /*
3070          * nothing needed if in group validation mode
3071          */
3072         if (cpuc->is_fake)
3073                 return;
3074
3075         if (WARN_ON_ONCE(!excl_cntrs))
3076                 return;
3077
3078         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3079                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3080                 if (!--cpuc->n_excl)
3081                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3082         }
3083
3084         /*
3085          * If event was actually assigned, then mark the counter state as
3086          * unused now.
3087          */
3088         if (hwc->idx >= 0) {
3089                 xl = &excl_cntrs->states[tid];
3090
3091                 /*
3092                  * put_constraint may be called from x86_schedule_events()
3093                  * which already has the lock held so here make locking
3094                  * conditional.
3095                  */
3096                 if (!xl->sched_started)
3097                         raw_spin_lock(&excl_cntrs->lock);
3098
3099                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3100
3101                 if (!xl->sched_started)
3102                         raw_spin_unlock(&excl_cntrs->lock);
3103         }
3104 }
3105
3106 static void
3107 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3108                                         struct perf_event *event)
3109 {
3110         struct hw_perf_event_extra *reg;
3111
3112         reg = &event->hw.extra_reg;
3113         if (reg->idx != EXTRA_REG_NONE)
3114                 __intel_shared_reg_put_constraints(cpuc, reg);
3115
3116         reg = &event->hw.branch_reg;
3117         if (reg->idx != EXTRA_REG_NONE)
3118                 __intel_shared_reg_put_constraints(cpuc, reg);
3119 }
3120
3121 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3122                                         struct perf_event *event)
3123 {
3124         intel_put_shared_regs_event_constraints(cpuc, event);
3125
3126         /*
3127          * is PMU has exclusive counter restrictions, then
3128          * all events are subject to and must call the
3129          * put_excl_constraints() routine
3130          */
3131         if (cpuc->excl_cntrs)
3132                 intel_put_excl_constraints(cpuc, event);
3133 }
3134
3135 static void intel_pebs_aliases_core2(struct perf_event *event)
3136 {
3137         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3138                 /*
3139                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3140                  * (0x003c) so that we can use it with PEBS.
3141                  *
3142                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3143                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3144                  * (0x00c0), which is a PEBS capable event, to get the same
3145                  * count.
3146                  *
3147                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3148                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3149                  * larger than the maximum number of instructions that can be
3150                  * retired per cycle (4) and then inverting the condition, we
3151                  * count all cycles that retire 16 or less instructions, which
3152                  * is every cycle.
3153                  *
3154                  * Thereby we gain a PEBS capable cycle counter.
3155                  */
3156                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3157
3158                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3159                 event->hw.config = alt_config;
3160         }
3161 }
3162
3163 static void intel_pebs_aliases_snb(struct perf_event *event)
3164 {
3165         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3166                 /*
3167                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3168                  * (0x003c) so that we can use it with PEBS.
3169                  *
3170                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3171                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3172                  * (0x01c2), which is a PEBS capable event, to get the same
3173                  * count.
3174                  *
3175                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3176                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3177                  * larger than the maximum number of micro-ops that can be
3178                  * retired per cycle (4) and then inverting the condition, we
3179                  * count all cycles that retire 16 or less micro-ops, which
3180                  * is every cycle.
3181                  *
3182                  * Thereby we gain a PEBS capable cycle counter.
3183                  */
3184                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3185
3186                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3187                 event->hw.config = alt_config;
3188         }
3189 }
3190
3191 static void intel_pebs_aliases_precdist(struct perf_event *event)
3192 {
3193         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3194                 /*
3195                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3196                  * (0x003c) so that we can use it with PEBS.
3197                  *
3198                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3199                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3200                  * (0x01c0), which is a PEBS capable event, to get the same
3201                  * count.
3202                  *
3203                  * The PREC_DIST event has special support to minimize sample
3204                  * shadowing effects. One drawback is that it can be
3205                  * only programmed on counter 1, but that seems like an
3206                  * acceptable trade off.
3207                  */
3208                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3209
3210                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3211                 event->hw.config = alt_config;
3212         }
3213 }
3214
3215 static void intel_pebs_aliases_ivb(struct perf_event *event)
3216 {
3217         if (event->attr.precise_ip < 3)
3218                 return intel_pebs_aliases_snb(event);
3219         return intel_pebs_aliases_precdist(event);
3220 }
3221
3222 static void intel_pebs_aliases_skl(struct perf_event *event)
3223 {
3224         if (event->attr.precise_ip < 3)
3225                 return intel_pebs_aliases_core2(event);
3226         return intel_pebs_aliases_precdist(event);
3227 }
3228
3229 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3230 {
3231         unsigned long flags = x86_pmu.large_pebs_flags;
3232
3233         if (event->attr.use_clockid)
3234                 flags &= ~PERF_SAMPLE_TIME;
3235         if (!event->attr.exclude_kernel)
3236                 flags &= ~PERF_SAMPLE_REGS_USER;
3237         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3238                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3239         return flags;
3240 }
3241
3242 static int intel_pmu_bts_config(struct perf_event *event)
3243 {
3244         struct perf_event_attr *attr = &event->attr;
3245
3246         if (unlikely(intel_pmu_has_bts(event))) {
3247                 /* BTS is not supported by this architecture. */
3248                 if (!x86_pmu.bts_active)
3249                         return -EOPNOTSUPP;
3250
3251                 /* BTS is currently only allowed for user-mode. */
3252                 if (!attr->exclude_kernel)
3253                         return -EOPNOTSUPP;
3254
3255                 /* BTS is not allowed for precise events. */
3256                 if (attr->precise_ip)
3257                         return -EOPNOTSUPP;
3258
3259                 /* disallow bts if conflicting events are present */
3260                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3261                         return -EBUSY;
3262
3263                 event->destroy = hw_perf_lbr_event_destroy;
3264         }
3265
3266         return 0;
3267 }
3268
3269 static int core_pmu_hw_config(struct perf_event *event)
3270 {
3271         int ret = x86_pmu_hw_config(event);
3272
3273         if (ret)
3274                 return ret;
3275
3276         return intel_pmu_bts_config(event);
3277 }
3278
3279 static int intel_pmu_hw_config(struct perf_event *event)
3280 {
3281         int ret = x86_pmu_hw_config(event);
3282
3283         if (ret)
3284                 return ret;
3285
3286         ret = intel_pmu_bts_config(event);
3287         if (ret)
3288                 return ret;
3289
3290         if (event->attr.precise_ip) {
3291                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3292                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3293                         if (!(event->attr.sample_type &
3294                               ~intel_pmu_large_pebs_flags(event)))
3295                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3296                 }
3297                 if (x86_pmu.pebs_aliases)
3298                         x86_pmu.pebs_aliases(event);
3299
3300                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3301                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3302         }
3303
3304         if (needs_branch_stack(event)) {
3305                 ret = intel_pmu_setup_lbr_filter(event);
3306                 if (ret)
3307                         return ret;
3308
3309                 /*
3310                  * BTS is set up earlier in this path, so don't account twice
3311                  */
3312                 if (!unlikely(intel_pmu_has_bts(event))) {
3313                         /* disallow lbr if conflicting events are present */
3314                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3315                                 return -EBUSY;
3316
3317                         event->destroy = hw_perf_lbr_event_destroy;
3318                 }
3319         }
3320
3321         if (event->attr.aux_output) {
3322                 if (!event->attr.precise_ip)
3323                         return -EINVAL;
3324
3325                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3326         }
3327
3328         if (event->attr.type != PERF_TYPE_RAW)
3329                 return 0;
3330
3331         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3332                 return 0;
3333
3334         if (x86_pmu.version < 3)
3335                 return -EINVAL;
3336
3337         ret = perf_allow_cpu(&event->attr);
3338         if (ret)
3339                 return ret;
3340
3341         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3342
3343         return 0;
3344 }
3345
3346 #ifdef CONFIG_RETPOLINE
3347 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr);
3348 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr);
3349 #endif
3350
3351 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3352 {
3353 #ifdef CONFIG_RETPOLINE
3354         if (x86_pmu.guest_get_msrs == intel_guest_get_msrs)
3355                 return intel_guest_get_msrs(nr);
3356         else if (x86_pmu.guest_get_msrs == core_guest_get_msrs)
3357                 return core_guest_get_msrs(nr);
3358 #endif
3359         if (x86_pmu.guest_get_msrs)
3360                 return x86_pmu.guest_get_msrs(nr);
3361         *nr = 0;
3362         return NULL;
3363 }
3364 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3365
3366 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3367 {
3368         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3369         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3370
3371         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3372         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3373         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3374         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3375                 arr[0].guest &= ~cpuc->pebs_enabled;
3376         else
3377                 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3378         *nr = 1;
3379
3380         if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3381                 /*
3382                  * If PMU counter has PEBS enabled it is not enough to
3383                  * disable counter on a guest entry since PEBS memory
3384                  * write can overshoot guest entry and corrupt guest
3385                  * memory. Disabling PEBS solves the problem.
3386                  *
3387                  * Don't do this if the CPU already enforces it.
3388                  */
3389                 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3390                 arr[1].host = cpuc->pebs_enabled;
3391                 arr[1].guest = 0;
3392                 *nr = 2;
3393         }
3394
3395         return arr;
3396 }
3397
3398 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3399 {
3400         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3401         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3402         int idx;
3403
3404         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3405                 struct perf_event *event = cpuc->events[idx];
3406
3407                 arr[idx].msr = x86_pmu_config_addr(idx);
3408                 arr[idx].host = arr[idx].guest = 0;
3409
3410                 if (!test_bit(idx, cpuc->active_mask))
3411                         continue;
3412
3413                 arr[idx].host = arr[idx].guest =
3414                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3415
3416                 if (event->attr.exclude_host)
3417                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3418                 else if (event->attr.exclude_guest)
3419                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3420         }
3421
3422         *nr = x86_pmu.num_counters;
3423         return arr;
3424 }
3425
3426 static void core_pmu_enable_event(struct perf_event *event)
3427 {
3428         if (!event->attr.exclude_host)
3429                 x86_pmu_enable_event(event);
3430 }
3431
3432 static void core_pmu_enable_all(int added)
3433 {
3434         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3435         int idx;
3436
3437         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3438                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3439
3440                 if (!test_bit(idx, cpuc->active_mask) ||
3441                                 cpuc->events[idx]->attr.exclude_host)
3442                         continue;
3443
3444                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3445         }
3446 }
3447
3448 static int hsw_hw_config(struct perf_event *event)
3449 {
3450         int ret = intel_pmu_hw_config(event);
3451
3452         if (ret)
3453                 return ret;
3454         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3455                 return 0;
3456         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3457
3458         /*
3459          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3460          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3461          * this combination.
3462          */
3463         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3464              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3465               event->attr.precise_ip > 0))
3466                 return -EOPNOTSUPP;
3467
3468         if (event_is_checkpointed(event)) {
3469                 /*
3470                  * Sampling of checkpointed events can cause situations where
3471                  * the CPU constantly aborts because of a overflow, which is
3472                  * then checkpointed back and ignored. Forbid checkpointing
3473                  * for sampling.
3474                  *
3475                  * But still allow a long sampling period, so that perf stat
3476                  * from KVM works.
3477                  */
3478                 if (event->attr.sample_period > 0 &&
3479                     event->attr.sample_period < 0x7fffffff)
3480                         return -EOPNOTSUPP;
3481         }
3482         return 0;
3483 }
3484
3485 static struct event_constraint counter0_constraint =
3486                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3487
3488 static struct event_constraint counter2_constraint =
3489                         EVENT_CONSTRAINT(0, 0x4, 0);
3490
3491 static struct event_constraint fixed0_constraint =
3492                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3493
3494 static struct event_constraint fixed0_counter0_constraint =
3495                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3496
3497 static struct event_constraint *
3498 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3499                           struct perf_event *event)
3500 {
3501         struct event_constraint *c;
3502
3503         c = intel_get_event_constraints(cpuc, idx, event);
3504
3505         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3506         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3507                 if (c->idxmsk64 & (1U << 2))
3508                         return &counter2_constraint;
3509                 return &emptyconstraint;
3510         }
3511
3512         return c;
3513 }
3514
3515 static struct event_constraint *
3516 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3517                           struct perf_event *event)
3518 {
3519         /*
3520          * Fixed counter 0 has less skid.
3521          * Force instruction:ppp in Fixed counter 0
3522          */
3523         if ((event->attr.precise_ip == 3) &&
3524             constraint_match(&fixed0_constraint, event->hw.config))
3525                 return &fixed0_constraint;
3526
3527         return hsw_get_event_constraints(cpuc, idx, event);
3528 }
3529
3530 static struct event_constraint *
3531 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3532                           struct perf_event *event)
3533 {
3534         struct event_constraint *c;
3535
3536         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3537         if (event->attr.precise_ip == 3)
3538                 return &counter0_constraint;
3539
3540         c = intel_get_event_constraints(cpuc, idx, event);
3541
3542         return c;
3543 }
3544
3545 static struct event_constraint *
3546 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3547                           struct perf_event *event)
3548 {
3549         struct event_constraint *c;
3550
3551         /*
3552          * :ppp means to do reduced skid PEBS,
3553          * which is available on PMC0 and fixed counter 0.
3554          */
3555         if (event->attr.precise_ip == 3) {
3556                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
3557                 if (constraint_match(&fixed0_constraint, event->hw.config))
3558                         return &fixed0_counter0_constraint;
3559
3560                 return &counter0_constraint;
3561         }
3562
3563         c = intel_get_event_constraints(cpuc, idx, event);
3564
3565         return c;
3566 }
3567
3568 static bool allow_tsx_force_abort = true;
3569
3570 static struct event_constraint *
3571 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3572                           struct perf_event *event)
3573 {
3574         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3575
3576         /*
3577          * Without TFA we must not use PMC3.
3578          */
3579         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
3580                 c = dyn_constraint(cpuc, c, idx);
3581                 c->idxmsk64 &= ~(1ULL << 3);
3582                 c->weight--;
3583         }
3584
3585         return c;
3586 }
3587
3588 /*
3589  * Broadwell:
3590  *
3591  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3592  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3593  * the two to enforce a minimum period of 128 (the smallest value that has bits
3594  * 0-5 cleared and >= 100).
3595  *
3596  * Because of how the code in x86_perf_event_set_period() works, the truncation
3597  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3598  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3599  *
3600  * Therefore the effective (average) period matches the requested period,
3601  * despite coarser hardware granularity.
3602  */
3603 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3604 {
3605         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3606                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
3607                 if (left < 128)
3608                         left = 128;
3609                 left &= ~0x3fULL;
3610         }
3611         return left;
3612 }
3613
3614 static u64 nhm_limit_period(struct perf_event *event, u64 left)
3615 {
3616         return max(left, 32ULL);
3617 }
3618
3619 PMU_FORMAT_ATTR(event,  "config:0-7"    );
3620 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3621 PMU_FORMAT_ATTR(edge,   "config:18"     );
3622 PMU_FORMAT_ATTR(pc,     "config:19"     );
3623 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3624 PMU_FORMAT_ATTR(inv,    "config:23"     );
3625 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3626 PMU_FORMAT_ATTR(in_tx,  "config:32");
3627 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3628
3629 static struct attribute *intel_arch_formats_attr[] = {
3630         &format_attr_event.attr,
3631         &format_attr_umask.attr,
3632         &format_attr_edge.attr,
3633         &format_attr_pc.attr,
3634         &format_attr_inv.attr,
3635         &format_attr_cmask.attr,
3636         NULL,
3637 };
3638
3639 ssize_t intel_event_sysfs_show(char *page, u64 config)
3640 {
3641         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3642
3643         return x86_event_sysfs_show(page, config, event);
3644 }
3645
3646 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3647 {
3648         struct intel_shared_regs *regs;
3649         int i;
3650
3651         regs = kzalloc_node(sizeof(struct intel_shared_regs),
3652                             GFP_KERNEL, cpu_to_node(cpu));
3653         if (regs) {
3654                 /*
3655                  * initialize the locks to keep lockdep happy
3656                  */
3657                 for (i = 0; i < EXTRA_REG_MAX; i++)
3658                         raw_spin_lock_init(&regs->regs[i].lock);
3659
3660                 regs->core_id = -1;
3661         }
3662         return regs;
3663 }
3664
3665 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3666 {
3667         struct intel_excl_cntrs *c;
3668
3669         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3670                          GFP_KERNEL, cpu_to_node(cpu));
3671         if (c) {
3672                 raw_spin_lock_init(&c->lock);
3673                 c->core_id = -1;
3674         }
3675         return c;
3676 }
3677
3678
3679 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
3680 {
3681         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
3682
3683         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3684                 cpuc->shared_regs = allocate_shared_regs(cpu);
3685                 if (!cpuc->shared_regs)
3686                         goto err;
3687         }
3688
3689         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
3690                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3691
3692                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
3693                 if (!cpuc->constraint_list)
3694                         goto err_shared_regs;
3695         }
3696
3697         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3698                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3699                 if (!cpuc->excl_cntrs)
3700                         goto err_constraint_list;
3701
3702                 cpuc->excl_thread_id = 0;
3703         }
3704
3705         return 0;
3706
3707 err_constraint_list:
3708         kfree(cpuc->constraint_list);
3709         cpuc->constraint_list = NULL;
3710
3711 err_shared_regs:
3712         kfree(cpuc->shared_regs);
3713         cpuc->shared_regs = NULL;
3714
3715 err:
3716         return -ENOMEM;
3717 }
3718
3719 static int intel_pmu_cpu_prepare(int cpu)
3720 {
3721         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
3722 }
3723
3724 static void flip_smm_bit(void *data)
3725 {
3726         unsigned long set = *(unsigned long *)data;
3727
3728         if (set > 0) {
3729                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3730                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3731         } else {
3732                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3733                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3734         }
3735 }
3736
3737 static void intel_pmu_cpu_starting(int cpu)
3738 {
3739         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3740         int core_id = topology_core_id(cpu);
3741         int i;
3742
3743         init_debug_store_on_cpu(cpu);
3744         /*
3745          * Deal with CPUs that don't clear their LBRs on power-up.
3746          */
3747         intel_pmu_lbr_reset();
3748
3749         cpuc->lbr_sel = NULL;
3750
3751         if (x86_pmu.flags & PMU_FL_TFA) {
3752                 WARN_ON_ONCE(cpuc->tfa_shadow);
3753                 cpuc->tfa_shadow = ~0ULL;
3754                 intel_set_tfa(cpuc, false);
3755         }
3756
3757         if (x86_pmu.version > 1)
3758                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3759
3760         if (x86_pmu.counter_freezing)
3761                 enable_counter_freeze();
3762
3763         if (!cpuc->shared_regs)
3764                 return;
3765
3766         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3767                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3768                         struct intel_shared_regs *pc;
3769
3770                         pc = per_cpu(cpu_hw_events, i).shared_regs;
3771                         if (pc && pc->core_id == core_id) {
3772                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3773                                 cpuc->shared_regs = pc;
3774                                 break;
3775                         }
3776                 }
3777                 cpuc->shared_regs->core_id = core_id;
3778                 cpuc->shared_regs->refcnt++;
3779         }
3780
3781         if (x86_pmu.lbr_sel_map)
3782                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3783
3784         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3785                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3786                         struct cpu_hw_events *sibling;
3787                         struct intel_excl_cntrs *c;
3788
3789                         sibling = &per_cpu(cpu_hw_events, i);
3790                         c = sibling->excl_cntrs;
3791                         if (c && c->core_id == core_id) {
3792                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3793                                 cpuc->excl_cntrs = c;
3794                                 if (!sibling->excl_thread_id)
3795                                         cpuc->excl_thread_id = 1;
3796                                 break;
3797                         }
3798                 }
3799                 cpuc->excl_cntrs->core_id = core_id;
3800                 cpuc->excl_cntrs->refcnt++;
3801         }
3802 }
3803
3804 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
3805 {
3806         struct intel_excl_cntrs *c;
3807
3808         c = cpuc->excl_cntrs;
3809         if (c) {
3810                 if (c->core_id == -1 || --c->refcnt == 0)
3811                         kfree(c);
3812                 cpuc->excl_cntrs = NULL;
3813         }
3814
3815         kfree(cpuc->constraint_list);
3816         cpuc->constraint_list = NULL;
3817 }
3818
3819 static void intel_pmu_cpu_dying(int cpu)
3820 {
3821         fini_debug_store_on_cpu(cpu);
3822
3823         if (x86_pmu.counter_freezing)
3824                 disable_counter_freeze();
3825 }
3826
3827 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
3828 {
3829         struct intel_shared_regs *pc;
3830
3831         pc = cpuc->shared_regs;
3832         if (pc) {
3833                 if (pc->core_id == -1 || --pc->refcnt == 0)
3834                         kfree(pc);
3835                 cpuc->shared_regs = NULL;
3836         }
3837
3838         free_excl_cntrs(cpuc);
3839 }
3840
3841 static void intel_pmu_cpu_dead(int cpu)
3842 {
3843         intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
3844 }
3845
3846 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3847                                  bool sched_in)
3848 {
3849         intel_pmu_pebs_sched_task(ctx, sched_in);
3850         intel_pmu_lbr_sched_task(ctx, sched_in);
3851 }
3852
3853 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
3854                                     struct perf_event_context *next)
3855 {
3856         intel_pmu_lbr_swap_task_ctx(prev, next);
3857 }
3858
3859 static int intel_pmu_check_period(struct perf_event *event, u64 value)
3860 {
3861         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
3862 }
3863
3864 static int intel_pmu_aux_output_match(struct perf_event *event)
3865 {
3866         if (!x86_pmu.intel_cap.pebs_output_pt_available)
3867                 return 0;
3868
3869         return is_intel_pt_event(event);
3870 }
3871
3872 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3873
3874 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3875
3876 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3877
3878 static struct attribute *intel_arch3_formats_attr[] = {
3879         &format_attr_event.attr,
3880         &format_attr_umask.attr,
3881         &format_attr_edge.attr,
3882         &format_attr_pc.attr,
3883         &format_attr_any.attr,
3884         &format_attr_inv.attr,
3885         &format_attr_cmask.attr,
3886         NULL,
3887 };
3888
3889 static struct attribute *hsw_format_attr[] = {
3890         &format_attr_in_tx.attr,
3891         &format_attr_in_tx_cp.attr,
3892         &format_attr_offcore_rsp.attr,
3893         &format_attr_ldlat.attr,
3894         NULL
3895 };
3896
3897 static struct attribute *nhm_format_attr[] = {
3898         &format_attr_offcore_rsp.attr,
3899         &format_attr_ldlat.attr,
3900         NULL
3901 };
3902
3903 static struct attribute *slm_format_attr[] = {
3904         &format_attr_offcore_rsp.attr,
3905         NULL
3906 };
3907
3908 static struct attribute *skl_format_attr[] = {
3909         &format_attr_frontend.attr,
3910         NULL,
3911 };
3912
3913 static __initconst const struct x86_pmu core_pmu = {
3914         .name                   = "core",
3915         .handle_irq             = x86_pmu_handle_irq,
3916         .disable_all            = x86_pmu_disable_all,
3917         .enable_all             = core_pmu_enable_all,
3918         .enable                 = core_pmu_enable_event,
3919         .disable                = x86_pmu_disable_event,
3920         .hw_config              = core_pmu_hw_config,
3921         .schedule_events        = x86_schedule_events,
3922         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3923         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3924         .event_map              = intel_pmu_event_map,
3925         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3926         .apic                   = 1,
3927         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3928
3929         /*
3930          * Intel PMCs cannot be accessed sanely above 32-bit width,
3931          * so we install an artificial 1<<31 period regardless of
3932          * the generic event period:
3933          */
3934         .max_period             = (1ULL<<31) - 1,
3935         .get_event_constraints  = intel_get_event_constraints,
3936         .put_event_constraints  = intel_put_event_constraints,
3937         .event_constraints      = intel_core_event_constraints,
3938         .guest_get_msrs         = core_guest_get_msrs,
3939         .format_attrs           = intel_arch_formats_attr,
3940         .events_sysfs_show      = intel_event_sysfs_show,
3941
3942         /*
3943          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3944          * together with PMU version 1 and thus be using core_pmu with
3945          * shared_regs. We need following callbacks here to allocate
3946          * it properly.
3947          */
3948         .cpu_prepare            = intel_pmu_cpu_prepare,
3949         .cpu_starting           = intel_pmu_cpu_starting,
3950         .cpu_dying              = intel_pmu_cpu_dying,
3951         .cpu_dead               = intel_pmu_cpu_dead,
3952
3953         .check_period           = intel_pmu_check_period,
3954 };
3955
3956 static __initconst const struct x86_pmu intel_pmu = {
3957         .name                   = "Intel",
3958         .handle_irq             = intel_pmu_handle_irq,
3959         .disable_all            = intel_pmu_disable_all,
3960         .enable_all             = intel_pmu_enable_all,
3961         .enable                 = intel_pmu_enable_event,
3962         .disable                = intel_pmu_disable_event,
3963         .add                    = intel_pmu_add_event,
3964         .del                    = intel_pmu_del_event,
3965         .read                   = intel_pmu_read_event,
3966         .hw_config              = intel_pmu_hw_config,
3967         .schedule_events        = x86_schedule_events,
3968         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3969         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3970         .event_map              = intel_pmu_event_map,
3971         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3972         .apic                   = 1,
3973         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3974         /*
3975          * Intel PMCs cannot be accessed sanely above 32 bit width,
3976          * so we install an artificial 1<<31 period regardless of
3977          * the generic event period:
3978          */
3979         .max_period             = (1ULL << 31) - 1,
3980         .get_event_constraints  = intel_get_event_constraints,
3981         .put_event_constraints  = intel_put_event_constraints,
3982         .pebs_aliases           = intel_pebs_aliases_core2,
3983
3984         .format_attrs           = intel_arch3_formats_attr,
3985         .events_sysfs_show      = intel_event_sysfs_show,
3986
3987         .cpu_prepare            = intel_pmu_cpu_prepare,
3988         .cpu_starting           = intel_pmu_cpu_starting,
3989         .cpu_dying              = intel_pmu_cpu_dying,
3990         .cpu_dead               = intel_pmu_cpu_dead,
3991
3992         .guest_get_msrs         = intel_guest_get_msrs,
3993         .sched_task             = intel_pmu_sched_task,
3994         .swap_task_ctx          = intel_pmu_swap_task_ctx,
3995
3996         .check_period           = intel_pmu_check_period,
3997
3998         .aux_output_match       = intel_pmu_aux_output_match,
3999 };
4000
4001 static __init void intel_clovertown_quirk(void)
4002 {
4003         /*
4004          * PEBS is unreliable due to:
4005          *
4006          *   AJ67  - PEBS may experience CPL leaks
4007          *   AJ68  - PEBS PMI may be delayed by one event
4008          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4009          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4010          *
4011          * AJ67 could be worked around by restricting the OS/USR flags.
4012          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4013          *
4014          * AJ106 could possibly be worked around by not allowing LBR
4015          *       usage from PEBS, including the fixup.
4016          * AJ68  could possibly be worked around by always programming
4017          *       a pebs_event_reset[0] value and coping with the lost events.
4018          *
4019          * But taken together it might just make sense to not enable PEBS on
4020          * these chips.
4021          */
4022         pr_warn("PEBS disabled due to CPU errata\n");
4023         x86_pmu.pebs = 0;
4024         x86_pmu.pebs_constraints = NULL;
4025 }
4026
4027 static const struct x86_cpu_desc isolation_ucodes[] = {
4028         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
4029         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
4030         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
4031         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
4032         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
4033         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
4034         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
4035         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
4036         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
4037         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
4038         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
4039         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           2, 0x0b000014),
4040         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
4041         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
4042         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
4043         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
4044         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
4045         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
4046         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
4047         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
4048         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
4049         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
4050         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
4051         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
4052         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
4053         {}
4054 };
4055
4056 static void intel_check_pebs_isolation(void)
4057 {
4058         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4059 }
4060
4061 static __init void intel_pebs_isolation_quirk(void)
4062 {
4063         WARN_ON_ONCE(x86_pmu.check_microcode);
4064         x86_pmu.check_microcode = intel_check_pebs_isolation;
4065         intel_check_pebs_isolation();
4066 }
4067
4068 static const struct x86_cpu_desc pebs_ucodes[] = {
4069         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
4070         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
4071         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
4072         {}
4073 };
4074
4075 static bool intel_snb_pebs_broken(void)
4076 {
4077         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4078 }
4079
4080 static void intel_snb_check_microcode(void)
4081 {
4082         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4083                 return;
4084
4085         /*
4086          * Serialized by the microcode lock..
4087          */
4088         if (x86_pmu.pebs_broken) {
4089                 pr_info("PEBS enabled due to microcode update\n");
4090                 x86_pmu.pebs_broken = 0;
4091         } else {
4092                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4093                 x86_pmu.pebs_broken = 1;
4094         }
4095 }
4096
4097 static bool is_lbr_from(unsigned long msr)
4098 {
4099         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4100
4101         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4102 }
4103
4104 /*
4105  * Under certain circumstances, access certain MSR may cause #GP.
4106  * The function tests if the input MSR can be safely accessed.
4107  */
4108 static bool check_msr(unsigned long msr, u64 mask)
4109 {
4110         u64 val_old, val_new, val_tmp;
4111
4112         /*
4113          * Disable the check for real HW, so we don't
4114          * mess with potentionaly enabled registers:
4115          */
4116         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4117                 return true;
4118
4119         /*
4120          * Read the current value, change it and read it back to see if it
4121          * matches, this is needed to detect certain hardware emulators
4122          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4123          */
4124         if (rdmsrl_safe(msr, &val_old))
4125                 return false;
4126
4127         /*
4128          * Only change the bits which can be updated by wrmsrl.
4129          */
4130         val_tmp = val_old ^ mask;
4131
4132         if (is_lbr_from(msr))
4133                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4134
4135         if (wrmsrl_safe(msr, val_tmp) ||
4136             rdmsrl_safe(msr, &val_new))
4137                 return false;
4138
4139         /*
4140          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4141          * should equal rdmsrl()'s even with the quirk.
4142          */
4143         if (val_new != val_tmp)
4144                 return false;
4145
4146         if (is_lbr_from(msr))
4147                 val_old = lbr_from_signext_quirk_wr(val_old);
4148
4149         /* Here it's sure that the MSR can be safely accessed.
4150          * Restore the old value and return.
4151          */
4152         wrmsrl(msr, val_old);
4153
4154         return true;
4155 }
4156
4157 static __init void intel_sandybridge_quirk(void)
4158 {
4159         x86_pmu.check_microcode = intel_snb_check_microcode;
4160         cpus_read_lock();
4161         intel_snb_check_microcode();
4162         cpus_read_unlock();
4163 }
4164
4165 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4166         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4167         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4168         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4169         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4170         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4171         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4172         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4173 };
4174
4175 static __init void intel_arch_events_quirk(void)
4176 {
4177         int bit;
4178
4179         /* disable event that reported as not presend by cpuid */
4180         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4181                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4182                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4183                         intel_arch_events_map[bit].name);
4184         }
4185 }
4186
4187 static __init void intel_nehalem_quirk(void)
4188 {
4189         union cpuid10_ebx ebx;
4190
4191         ebx.full = x86_pmu.events_maskl;
4192         if (ebx.split.no_branch_misses_retired) {
4193                 /*
4194                  * Erratum AAJ80 detected, we work it around by using
4195                  * the BR_MISP_EXEC.ANY event. This will over-count
4196                  * branch-misses, but it's still much better than the
4197                  * architectural event which is often completely bogus:
4198                  */
4199                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4200                 ebx.split.no_branch_misses_retired = 0;
4201                 x86_pmu.events_maskl = ebx.full;
4202                 pr_info("CPU erratum AAJ80 worked around\n");
4203         }
4204 }
4205
4206 static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4207         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,         2, 0x0000000e),
4208         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,         9, 0x0000002e),
4209         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,        10, 0x00000008),
4210         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D,       1, 0x00000028),
4211         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,    1, 0x00000028),
4212         INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,    8, 0x00000006),
4213         {}
4214 };
4215
4216 static bool intel_counter_freezing_broken(void)
4217 {
4218         return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4219 }
4220
4221 static __init void intel_counter_freezing_quirk(void)
4222 {
4223         /* Check if it's already disabled */
4224         if (disable_counter_freezing)
4225                 return;
4226
4227         /*
4228          * If the system starts with the wrong ucode, leave the
4229          * counter-freezing feature permanently disabled.
4230          */
4231         if (intel_counter_freezing_broken()) {
4232                 pr_info("PMU counter freezing disabled due to CPU errata,"
4233                         "please upgrade microcode\n");
4234                 x86_pmu.counter_freezing = false;
4235                 x86_pmu.handle_irq = intel_pmu_handle_irq;
4236         }
4237 }
4238
4239 /*
4240  * enable software workaround for errata:
4241  * SNB: BJ122
4242  * IVB: BV98
4243  * HSW: HSD29
4244  *
4245  * Only needed when HT is enabled. However detecting
4246  * if HT is enabled is difficult (model specific). So instead,
4247  * we enable the workaround in the early boot, and verify if
4248  * it is needed in a later initcall phase once we have valid
4249  * topology information to check if HT is actually enabled
4250  */
4251 static __init void intel_ht_bug(void)
4252 {
4253         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4254
4255         x86_pmu.start_scheduling = intel_start_scheduling;
4256         x86_pmu.commit_scheduling = intel_commit_scheduling;
4257         x86_pmu.stop_scheduling = intel_stop_scheduling;
4258 }
4259
4260 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
4261 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
4262
4263 /* Haswell special events */
4264 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
4265 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
4266 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
4267 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
4268 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
4269 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
4270 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
4271 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
4272 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
4273 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
4274 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
4275 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
4276
4277 static struct attribute *hsw_events_attrs[] = {
4278         EVENT_PTR(td_slots_issued),
4279         EVENT_PTR(td_slots_retired),
4280         EVENT_PTR(td_fetch_bubbles),
4281         EVENT_PTR(td_total_slots),
4282         EVENT_PTR(td_total_slots_scale),
4283         EVENT_PTR(td_recovery_bubbles),
4284         EVENT_PTR(td_recovery_bubbles_scale),
4285         NULL
4286 };
4287
4288 static struct attribute *hsw_mem_events_attrs[] = {
4289         EVENT_PTR(mem_ld_hsw),
4290         EVENT_PTR(mem_st_hsw),
4291         NULL,
4292 };
4293
4294 static struct attribute *hsw_tsx_events_attrs[] = {
4295         EVENT_PTR(tx_start),
4296         EVENT_PTR(tx_commit),
4297         EVENT_PTR(tx_abort),
4298         EVENT_PTR(tx_capacity),
4299         EVENT_PTR(tx_conflict),
4300         EVENT_PTR(el_start),
4301         EVENT_PTR(el_commit),
4302         EVENT_PTR(el_abort),
4303         EVENT_PTR(el_capacity),
4304         EVENT_PTR(el_conflict),
4305         EVENT_PTR(cycles_t),
4306         EVENT_PTR(cycles_ct),
4307         NULL
4308 };
4309
4310 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4311 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4312 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4313 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4314
4315 static struct attribute *icl_events_attrs[] = {
4316         EVENT_PTR(mem_ld_hsw),
4317         EVENT_PTR(mem_st_hsw),
4318         NULL,
4319 };
4320
4321 static struct attribute *icl_tsx_events_attrs[] = {
4322         EVENT_PTR(tx_start),
4323         EVENT_PTR(tx_abort),
4324         EVENT_PTR(tx_commit),
4325         EVENT_PTR(tx_capacity_read),
4326         EVENT_PTR(tx_capacity_write),
4327         EVENT_PTR(tx_conflict),
4328         EVENT_PTR(el_start),
4329         EVENT_PTR(el_abort),
4330         EVENT_PTR(el_commit),
4331         EVENT_PTR(el_capacity_read),
4332         EVENT_PTR(el_capacity_write),
4333         EVENT_PTR(el_conflict),
4334         EVENT_PTR(cycles_t),
4335         EVENT_PTR(cycles_ct),
4336         NULL,
4337 };
4338
4339 static ssize_t freeze_on_smi_show(struct device *cdev,
4340                                   struct device_attribute *attr,
4341                                   char *buf)
4342 {
4343         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4344 }
4345
4346 static DEFINE_MUTEX(freeze_on_smi_mutex);
4347
4348 static ssize_t freeze_on_smi_store(struct device *cdev,
4349                                    struct device_attribute *attr,
4350                                    const char *buf, size_t count)
4351 {
4352         unsigned long val;
4353         ssize_t ret;
4354
4355         ret = kstrtoul(buf, 0, &val);
4356         if (ret)
4357                 return ret;
4358
4359         if (val > 1)
4360                 return -EINVAL;
4361
4362         mutex_lock(&freeze_on_smi_mutex);
4363
4364         if (x86_pmu.attr_freeze_on_smi == val)
4365                 goto done;
4366
4367         x86_pmu.attr_freeze_on_smi = val;
4368
4369         get_online_cpus();
4370         on_each_cpu(flip_smm_bit, &val, 1);
4371         put_online_cpus();
4372 done:
4373         mutex_unlock(&freeze_on_smi_mutex);
4374
4375         return count;
4376 }
4377
4378 static void update_tfa_sched(void *ignored)
4379 {
4380         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4381
4382         /*
4383          * check if PMC3 is used
4384          * and if so force schedule out for all event types all contexts
4385          */
4386         if (test_bit(3, cpuc->active_mask))
4387                 perf_pmu_resched(x86_get_pmu());
4388 }
4389
4390 static ssize_t show_sysctl_tfa(struct device *cdev,
4391                               struct device_attribute *attr,
4392                               char *buf)
4393 {
4394         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
4395 }
4396
4397 static ssize_t set_sysctl_tfa(struct device *cdev,
4398                               struct device_attribute *attr,
4399                               const char *buf, size_t count)
4400 {
4401         bool val;
4402         ssize_t ret;
4403
4404         ret = kstrtobool(buf, &val);
4405         if (ret)
4406                 return ret;
4407
4408         /* no change */
4409         if (val == allow_tsx_force_abort)
4410                 return count;
4411
4412         allow_tsx_force_abort = val;
4413
4414         get_online_cpus();
4415         on_each_cpu(update_tfa_sched, NULL, 1);
4416         put_online_cpus();
4417
4418         return count;
4419 }
4420
4421
4422 static DEVICE_ATTR_RW(freeze_on_smi);
4423
4424 static ssize_t branches_show(struct device *cdev,
4425                              struct device_attribute *attr,
4426                              char *buf)
4427 {
4428         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4429 }
4430
4431 static DEVICE_ATTR_RO(branches);
4432
4433 static struct attribute *lbr_attrs[] = {
4434         &dev_attr_branches.attr,
4435         NULL
4436 };
4437
4438 static char pmu_name_str[30];
4439
4440 static ssize_t pmu_name_show(struct device *cdev,
4441                              struct device_attribute *attr,
4442                              char *buf)
4443 {
4444         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4445 }
4446
4447 static DEVICE_ATTR_RO(pmu_name);
4448
4449 static struct attribute *intel_pmu_caps_attrs[] = {
4450        &dev_attr_pmu_name.attr,
4451        NULL
4452 };
4453
4454 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
4455                    show_sysctl_tfa,
4456                    set_sysctl_tfa);
4457
4458 static struct attribute *intel_pmu_attrs[] = {
4459         &dev_attr_freeze_on_smi.attr,
4460         &dev_attr_allow_tsx_force_abort.attr,
4461         NULL,
4462 };
4463
4464 static umode_t
4465 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4466 {
4467         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
4468 }
4469
4470 static umode_t
4471 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4472 {
4473         return x86_pmu.pebs ? attr->mode : 0;
4474 }
4475
4476 static umode_t
4477 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4478 {
4479         return x86_pmu.lbr_nr ? attr->mode : 0;
4480 }
4481
4482 static umode_t
4483 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4484 {
4485         return x86_pmu.version >= 2 ? attr->mode : 0;
4486 }
4487
4488 static umode_t
4489 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4490 {
4491         if (attr == &dev_attr_allow_tsx_force_abort.attr)
4492                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
4493
4494         return attr->mode;
4495 }
4496
4497 static struct attribute_group group_events_td  = {
4498         .name = "events",
4499 };
4500
4501 static struct attribute_group group_events_mem = {
4502         .name       = "events",
4503         .is_visible = pebs_is_visible,
4504 };
4505
4506 static struct attribute_group group_events_tsx = {
4507         .name       = "events",
4508         .is_visible = tsx_is_visible,
4509 };
4510
4511 static struct attribute_group group_caps_gen = {
4512         .name  = "caps",
4513         .attrs = intel_pmu_caps_attrs,
4514 };
4515
4516 static struct attribute_group group_caps_lbr = {
4517         .name       = "caps",
4518         .attrs      = lbr_attrs,
4519         .is_visible = lbr_is_visible,
4520 };
4521
4522 static struct attribute_group group_format_extra = {
4523         .name       = "format",
4524         .is_visible = exra_is_visible,
4525 };
4526
4527 static struct attribute_group group_format_extra_skl = {
4528         .name       = "format",
4529         .is_visible = exra_is_visible,
4530 };
4531
4532 static struct attribute_group group_default = {
4533         .attrs      = intel_pmu_attrs,
4534         .is_visible = default_is_visible,
4535 };
4536
4537 static const struct attribute_group *attr_update[] = {
4538         &group_events_td,
4539         &group_events_mem,
4540         &group_events_tsx,
4541         &group_caps_gen,
4542         &group_caps_lbr,
4543         &group_format_extra,
4544         &group_format_extra_skl,
4545         &group_default,
4546         NULL,
4547 };
4548
4549 static struct attribute *empty_attrs;
4550
4551 __init int intel_pmu_init(void)
4552 {
4553         struct attribute **extra_skl_attr = &empty_attrs;
4554         struct attribute **extra_attr = &empty_attrs;
4555         struct attribute **td_attr    = &empty_attrs;
4556         struct attribute **mem_attr   = &empty_attrs;
4557         struct attribute **tsx_attr   = &empty_attrs;
4558         union cpuid10_edx edx;
4559         union cpuid10_eax eax;
4560         union cpuid10_ebx ebx;
4561         struct event_constraint *c;
4562         unsigned int unused;
4563         struct extra_reg *er;
4564         bool pmem = false;
4565         int version, i;
4566         char *name;
4567
4568         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4569                 switch (boot_cpu_data.x86) {
4570                 case 0x6:
4571                         return p6_pmu_init();
4572                 case 0xb:
4573                         return knc_pmu_init();
4574                 case 0xf:
4575                         return p4_pmu_init();
4576                 }
4577                 return -ENODEV;
4578         }
4579
4580         /*
4581          * Check whether the Architectural PerfMon supports
4582          * Branch Misses Retired hw_event or not.
4583          */
4584         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4585         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4586                 return -ENODEV;
4587
4588         version = eax.split.version_id;
4589         if (version < 2)
4590                 x86_pmu = core_pmu;
4591         else
4592                 x86_pmu = intel_pmu;
4593
4594         x86_pmu.version                 = version;
4595         x86_pmu.num_counters            = eax.split.num_counters;
4596         x86_pmu.cntval_bits             = eax.split.bit_width;
4597         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
4598
4599         x86_pmu.events_maskl            = ebx.full;
4600         x86_pmu.events_mask_len         = eax.split.mask_length;
4601
4602         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4603
4604         /*
4605          * Quirk: v2 perfmon does not report fixed-purpose events, so
4606          * assume at least 3 events, when not running in a hypervisor:
4607          */
4608         if (version > 1) {
4609                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4610
4611                 x86_pmu.num_counters_fixed =
4612                         max((int)edx.split.num_counters_fixed, assume);
4613         }
4614
4615         if (version >= 4)
4616                 x86_pmu.counter_freezing = !disable_counter_freezing;
4617
4618         if (boot_cpu_has(X86_FEATURE_PDCM)) {
4619                 u64 capabilities;
4620
4621                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4622                 x86_pmu.intel_cap.capabilities = capabilities;
4623         }
4624
4625         intel_ds_init();
4626
4627         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4628
4629         /*
4630          * Install the hw-cache-events table:
4631          */
4632         switch (boot_cpu_data.x86_model) {
4633         case INTEL_FAM6_CORE_YONAH:
4634                 pr_cont("Core events, ");
4635                 name = "core";
4636                 break;
4637
4638         case INTEL_FAM6_CORE2_MEROM:
4639                 x86_add_quirk(intel_clovertown_quirk);
4640                 /* fall through */
4641
4642         case INTEL_FAM6_CORE2_MEROM_L:
4643         case INTEL_FAM6_CORE2_PENRYN:
4644         case INTEL_FAM6_CORE2_DUNNINGTON:
4645                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4646                        sizeof(hw_cache_event_ids));
4647
4648                 intel_pmu_lbr_init_core();
4649
4650                 x86_pmu.event_constraints = intel_core2_event_constraints;
4651                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4652                 pr_cont("Core2 events, ");
4653                 name = "core2";
4654                 break;
4655
4656         case INTEL_FAM6_NEHALEM:
4657         case INTEL_FAM6_NEHALEM_EP:
4658         case INTEL_FAM6_NEHALEM_EX:
4659                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4660                        sizeof(hw_cache_event_ids));
4661                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4662                        sizeof(hw_cache_extra_regs));
4663
4664                 intel_pmu_lbr_init_nhm();
4665
4666                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
4667                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4668                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4669                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
4670                 x86_pmu.limit_period = nhm_limit_period;
4671
4672                 mem_attr = nhm_mem_events_attrs;
4673
4674                 /* UOPS_ISSUED.STALLED_CYCLES */
4675                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4676                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4677                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4678                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4679                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4680
4681                 intel_pmu_pebs_data_source_nhm();
4682                 x86_add_quirk(intel_nehalem_quirk);
4683                 x86_pmu.pebs_no_tlb = 1;
4684                 extra_attr = nhm_format_attr;
4685
4686                 pr_cont("Nehalem events, ");
4687                 name = "nehalem";
4688                 break;
4689
4690         case INTEL_FAM6_ATOM_BONNELL:
4691         case INTEL_FAM6_ATOM_BONNELL_MID:
4692         case INTEL_FAM6_ATOM_SALTWELL:
4693         case INTEL_FAM6_ATOM_SALTWELL_MID:
4694         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4695                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4696                        sizeof(hw_cache_event_ids));
4697
4698                 intel_pmu_lbr_init_atom();
4699
4700                 x86_pmu.event_constraints = intel_gen_event_constraints;
4701                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4702                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4703                 pr_cont("Atom events, ");
4704                 name = "bonnell";
4705                 break;
4706
4707         case INTEL_FAM6_ATOM_SILVERMONT:
4708         case INTEL_FAM6_ATOM_SILVERMONT_D:
4709         case INTEL_FAM6_ATOM_SILVERMONT_MID:
4710         case INTEL_FAM6_ATOM_AIRMONT:
4711         case INTEL_FAM6_ATOM_AIRMONT_MID:
4712                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4713                         sizeof(hw_cache_event_ids));
4714                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4715                        sizeof(hw_cache_extra_regs));
4716
4717                 intel_pmu_lbr_init_slm();
4718
4719                 x86_pmu.event_constraints = intel_slm_event_constraints;
4720                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4721                 x86_pmu.extra_regs = intel_slm_extra_regs;
4722                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4723                 td_attr = slm_events_attrs;
4724                 extra_attr = slm_format_attr;
4725                 pr_cont("Silvermont events, ");
4726                 name = "silvermont";
4727                 break;
4728
4729         case INTEL_FAM6_ATOM_GOLDMONT:
4730         case INTEL_FAM6_ATOM_GOLDMONT_D:
4731                 x86_add_quirk(intel_counter_freezing_quirk);
4732                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4733                        sizeof(hw_cache_event_ids));
4734                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4735                        sizeof(hw_cache_extra_regs));
4736
4737                 intel_pmu_lbr_init_skl();
4738
4739                 x86_pmu.event_constraints = intel_slm_event_constraints;
4740                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4741                 x86_pmu.extra_regs = intel_glm_extra_regs;
4742                 /*
4743                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4744                  * for precise cycles.
4745                  * :pp is identical to :ppp
4746                  */
4747                 x86_pmu.pebs_aliases = NULL;
4748                 x86_pmu.pebs_prec_dist = true;
4749                 x86_pmu.lbr_pt_coexist = true;
4750                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4751                 td_attr = glm_events_attrs;
4752                 extra_attr = slm_format_attr;
4753                 pr_cont("Goldmont events, ");
4754                 name = "goldmont";
4755                 break;
4756
4757         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4758                 x86_add_quirk(intel_counter_freezing_quirk);
4759                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4760                        sizeof(hw_cache_event_ids));
4761                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4762                        sizeof(hw_cache_extra_regs));
4763
4764                 intel_pmu_lbr_init_skl();
4765
4766                 x86_pmu.event_constraints = intel_slm_event_constraints;
4767                 x86_pmu.extra_regs = intel_glm_extra_regs;
4768                 /*
4769                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4770                  * for precise cycles.
4771                  */
4772                 x86_pmu.pebs_aliases = NULL;
4773                 x86_pmu.pebs_prec_dist = true;
4774                 x86_pmu.lbr_pt_coexist = true;
4775                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4776                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
4777                 x86_pmu.get_event_constraints = glp_get_event_constraints;
4778                 td_attr = glm_events_attrs;
4779                 /* Goldmont Plus has 4-wide pipeline */
4780                 event_attr_td_total_slots_scale_glm.event_str = "4";
4781                 extra_attr = slm_format_attr;
4782                 pr_cont("Goldmont plus events, ");
4783                 name = "goldmont_plus";
4784                 break;
4785
4786         case INTEL_FAM6_ATOM_TREMONT_D:
4787         case INTEL_FAM6_ATOM_TREMONT:
4788                 x86_pmu.late_ack = true;
4789                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4790                        sizeof(hw_cache_event_ids));
4791                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
4792                        sizeof(hw_cache_extra_regs));
4793                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
4794
4795                 intel_pmu_lbr_init_skl();
4796
4797                 x86_pmu.event_constraints = intel_slm_event_constraints;
4798                 x86_pmu.extra_regs = intel_tnt_extra_regs;
4799                 /*
4800                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4801                  * for precise cycles.
4802                  */
4803                 x86_pmu.pebs_aliases = NULL;
4804                 x86_pmu.pebs_prec_dist = true;
4805                 x86_pmu.lbr_pt_coexist = true;
4806                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4807                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
4808                 extra_attr = slm_format_attr;
4809                 pr_cont("Tremont events, ");
4810                 name = "Tremont";
4811                 break;
4812
4813         case INTEL_FAM6_WESTMERE:
4814         case INTEL_FAM6_WESTMERE_EP:
4815         case INTEL_FAM6_WESTMERE_EX:
4816                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4817                        sizeof(hw_cache_event_ids));
4818                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4819                        sizeof(hw_cache_extra_regs));
4820
4821                 intel_pmu_lbr_init_nhm();
4822
4823                 x86_pmu.event_constraints = intel_westmere_event_constraints;
4824                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4825                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4826                 x86_pmu.extra_regs = intel_westmere_extra_regs;
4827                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4828
4829                 mem_attr = nhm_mem_events_attrs;
4830
4831                 /* UOPS_ISSUED.STALLED_CYCLES */
4832                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4833                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4834                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4835                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4836                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4837
4838                 intel_pmu_pebs_data_source_nhm();
4839                 extra_attr = nhm_format_attr;
4840                 pr_cont("Westmere events, ");
4841                 name = "westmere";
4842                 break;
4843
4844         case INTEL_FAM6_SANDYBRIDGE:
4845         case INTEL_FAM6_SANDYBRIDGE_X:
4846                 x86_add_quirk(intel_sandybridge_quirk);
4847                 x86_add_quirk(intel_ht_bug);
4848                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4849                        sizeof(hw_cache_event_ids));
4850                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4851                        sizeof(hw_cache_extra_regs));
4852
4853                 intel_pmu_lbr_init_snb();
4854
4855                 x86_pmu.event_constraints = intel_snb_event_constraints;
4856                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4857                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4858                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4859                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4860                 else
4861                         x86_pmu.extra_regs = intel_snb_extra_regs;
4862
4863
4864                 /* all extra regs are per-cpu when HT is on */
4865                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4866                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4867
4868                 td_attr  = snb_events_attrs;
4869                 mem_attr = snb_mem_events_attrs;
4870
4871                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4872                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4873                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4874                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4875                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4876                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4877
4878                 extra_attr = nhm_format_attr;
4879
4880                 pr_cont("SandyBridge events, ");
4881                 name = "sandybridge";
4882                 break;
4883
4884         case INTEL_FAM6_IVYBRIDGE:
4885         case INTEL_FAM6_IVYBRIDGE_X:
4886                 x86_add_quirk(intel_ht_bug);
4887                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4888                        sizeof(hw_cache_event_ids));
4889                 /* dTLB-load-misses on IVB is different than SNB */
4890                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4891
4892                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4893                        sizeof(hw_cache_extra_regs));
4894
4895                 intel_pmu_lbr_init_snb();
4896
4897                 x86_pmu.event_constraints = intel_ivb_event_constraints;
4898                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4899                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4900                 x86_pmu.pebs_prec_dist = true;
4901                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4902                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4903                 else
4904                         x86_pmu.extra_regs = intel_snb_extra_regs;
4905                 /* all extra regs are per-cpu when HT is on */
4906                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4907                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4908
4909                 td_attr  = snb_events_attrs;
4910                 mem_attr = snb_mem_events_attrs;
4911
4912                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4913                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4914                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4915
4916                 extra_attr = nhm_format_attr;
4917
4918                 pr_cont("IvyBridge events, ");
4919                 name = "ivybridge";
4920                 break;
4921
4922
4923         case INTEL_FAM6_HASWELL:
4924         case INTEL_FAM6_HASWELL_X:
4925         case INTEL_FAM6_HASWELL_L:
4926         case INTEL_FAM6_HASWELL_G:
4927                 x86_add_quirk(intel_ht_bug);
4928                 x86_add_quirk(intel_pebs_isolation_quirk);
4929                 x86_pmu.late_ack = true;
4930                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4931                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4932
4933                 intel_pmu_lbr_init_hsw();
4934
4935                 x86_pmu.event_constraints = intel_hsw_event_constraints;
4936                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4937                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4938                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4939                 x86_pmu.pebs_prec_dist = true;
4940                 /* all extra regs are per-cpu when HT is on */
4941                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4942                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4943
4944                 x86_pmu.hw_config = hsw_hw_config;
4945                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4946                 x86_pmu.lbr_double_abort = true;
4947                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4948                         hsw_format_attr : nhm_format_attr;
4949                 td_attr  = hsw_events_attrs;
4950                 mem_attr = hsw_mem_events_attrs;
4951                 tsx_attr = hsw_tsx_events_attrs;
4952                 pr_cont("Haswell events, ");
4953                 name = "haswell";
4954                 break;
4955
4956         case INTEL_FAM6_BROADWELL:
4957         case INTEL_FAM6_BROADWELL_D:
4958         case INTEL_FAM6_BROADWELL_G:
4959         case INTEL_FAM6_BROADWELL_X:
4960                 x86_add_quirk(intel_pebs_isolation_quirk);
4961                 x86_pmu.late_ack = true;
4962                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4963                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4964
4965                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4966                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4967                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
4968                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4969                                                                           HSW_SNOOP_DRAM;
4970                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4971                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4972                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4973                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4974
4975                 intel_pmu_lbr_init_hsw();
4976
4977                 x86_pmu.event_constraints = intel_bdw_event_constraints;
4978                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4979                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4980                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4981                 x86_pmu.pebs_prec_dist = true;
4982                 /* all extra regs are per-cpu when HT is on */
4983                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4984                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4985
4986                 x86_pmu.hw_config = hsw_hw_config;
4987                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4988                 x86_pmu.limit_period = bdw_limit_period;
4989                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4990                         hsw_format_attr : nhm_format_attr;
4991                 td_attr  = hsw_events_attrs;
4992                 mem_attr = hsw_mem_events_attrs;
4993                 tsx_attr = hsw_tsx_events_attrs;
4994                 pr_cont("Broadwell events, ");
4995                 name = "broadwell";
4996                 break;
4997
4998         case INTEL_FAM6_XEON_PHI_KNL:
4999         case INTEL_FAM6_XEON_PHI_KNM:
5000                 memcpy(hw_cache_event_ids,
5001                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5002                 memcpy(hw_cache_extra_regs,
5003                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5004                 intel_pmu_lbr_init_knl();
5005
5006                 x86_pmu.event_constraints = intel_slm_event_constraints;
5007                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5008                 x86_pmu.extra_regs = intel_knl_extra_regs;
5009
5010                 /* all extra regs are per-cpu when HT is on */
5011                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5012                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5013                 extra_attr = slm_format_attr;
5014                 pr_cont("Knights Landing/Mill events, ");
5015                 name = "knights-landing";
5016                 break;
5017
5018         case INTEL_FAM6_SKYLAKE_X:
5019                 pmem = true;
5020                 /* fall through */
5021         case INTEL_FAM6_SKYLAKE_L:
5022         case INTEL_FAM6_SKYLAKE:
5023         case INTEL_FAM6_KABYLAKE_L:
5024         case INTEL_FAM6_KABYLAKE:
5025         case INTEL_FAM6_COMETLAKE_L:
5026         case INTEL_FAM6_COMETLAKE:
5027                 x86_add_quirk(intel_pebs_isolation_quirk);
5028                 x86_pmu.late_ack = true;
5029                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5030                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5031                 intel_pmu_lbr_init_skl();
5032
5033                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5034                 event_attr_td_recovery_bubbles.event_str_noht =
5035                         "event=0xd,umask=0x1,cmask=1";
5036                 event_attr_td_recovery_bubbles.event_str_ht =
5037                         "event=0xd,umask=0x1,cmask=1,any=1";
5038
5039                 x86_pmu.event_constraints = intel_skl_event_constraints;
5040                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
5041                 x86_pmu.extra_regs = intel_skl_extra_regs;
5042                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
5043                 x86_pmu.pebs_prec_dist = true;
5044                 /* all extra regs are per-cpu when HT is on */
5045                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5046                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5047
5048                 x86_pmu.hw_config = hsw_hw_config;
5049                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5050                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5051                         hsw_format_attr : nhm_format_attr;
5052                 extra_skl_attr = skl_format_attr;
5053                 td_attr  = hsw_events_attrs;
5054                 mem_attr = hsw_mem_events_attrs;
5055                 tsx_attr = hsw_tsx_events_attrs;
5056                 intel_pmu_pebs_data_source_skl(pmem);
5057
5058                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
5059                         x86_pmu.flags |= PMU_FL_TFA;
5060                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
5061                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
5062                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
5063                 }
5064
5065                 pr_cont("Skylake events, ");
5066                 name = "skylake";
5067                 break;
5068
5069         case INTEL_FAM6_ICELAKE_X:
5070         case INTEL_FAM6_ICELAKE_D:
5071                 pmem = true;
5072                 /* fall through */
5073         case INTEL_FAM6_ICELAKE_L:
5074         case INTEL_FAM6_ICELAKE:
5075         case INTEL_FAM6_TIGERLAKE_L:
5076         case INTEL_FAM6_TIGERLAKE:
5077                 x86_pmu.late_ack = true;
5078                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5079                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5080                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5081                 intel_pmu_lbr_init_skl();
5082
5083                 x86_pmu.event_constraints = intel_icl_event_constraints;
5084                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
5085                 x86_pmu.extra_regs = intel_icl_extra_regs;
5086                 x86_pmu.pebs_aliases = NULL;
5087                 x86_pmu.pebs_prec_dist = true;
5088                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5089                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5090
5091                 x86_pmu.hw_config = hsw_hw_config;
5092                 x86_pmu.get_event_constraints = icl_get_event_constraints;
5093                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5094                         hsw_format_attr : nhm_format_attr;
5095                 extra_skl_attr = skl_format_attr;
5096                 mem_attr = icl_events_attrs;
5097                 tsx_attr = icl_tsx_events_attrs;
5098                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xca, .umask=0x02);
5099                 x86_pmu.lbr_pt_coexist = true;
5100                 intel_pmu_pebs_data_source_skl(pmem);
5101                 pr_cont("Icelake events, ");
5102                 name = "icelake";
5103                 break;
5104
5105         default:
5106                 switch (x86_pmu.version) {
5107                 case 1:
5108                         x86_pmu.event_constraints = intel_v1_event_constraints;
5109                         pr_cont("generic architected perfmon v1, ");
5110                         name = "generic_arch_v1";
5111                         break;
5112                 default:
5113                         /*
5114                          * default constraints for v2 and up
5115                          */
5116                         x86_pmu.event_constraints = intel_gen_event_constraints;
5117                         pr_cont("generic architected perfmon, ");
5118                         name = "generic_arch_v2+";
5119                         break;
5120                 }
5121         }
5122
5123         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
5124
5125
5126         group_events_td.attrs  = td_attr;
5127         group_events_mem.attrs = mem_attr;
5128         group_events_tsx.attrs = tsx_attr;
5129         group_format_extra.attrs = extra_attr;
5130         group_format_extra_skl.attrs = extra_skl_attr;
5131
5132         x86_pmu.attr_update = attr_update;
5133
5134         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
5135                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5136                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
5137                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
5138         }
5139         x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5140
5141         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5142                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5143                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
5144                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
5145         }
5146
5147         x86_pmu.intel_ctrl |=
5148                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
5149
5150         if (x86_pmu.event_constraints) {
5151                 /*
5152                  * event on fixed counter2 (REF_CYCLES) only works on this
5153                  * counter, so do not extend mask to generic counters
5154                  */
5155                 for_each_event_constraint(c, x86_pmu.event_constraints) {
5156                         if (c->cmask == FIXED_EVENT_FLAGS
5157                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
5158                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5159                         }
5160                         c->idxmsk64 &=
5161                                 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5162                         c->weight = hweight64(c->idxmsk64);
5163                 }
5164         }
5165
5166         /*
5167          * Access LBR MSR may cause #GP under certain circumstances.
5168          * E.g. KVM doesn't support LBR MSR
5169          * Check all LBT MSR here.
5170          * Disable LBR access if any LBR MSRs can not be accessed.
5171          */
5172         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
5173                 x86_pmu.lbr_nr = 0;
5174         for (i = 0; i < x86_pmu.lbr_nr; i++) {
5175                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
5176                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
5177                         x86_pmu.lbr_nr = 0;
5178         }
5179
5180         if (x86_pmu.lbr_nr)
5181                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5182
5183         /*
5184          * Access extra MSR may cause #GP under certain circumstances.
5185          * E.g. KVM doesn't support offcore event
5186          * Check all extra_regs here.
5187          */
5188         if (x86_pmu.extra_regs) {
5189                 for (er = x86_pmu.extra_regs; er->msr; er++) {
5190                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
5191                         /* Disable LBR select mapping */
5192                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5193                                 x86_pmu.lbr_sel_map = NULL;
5194                 }
5195         }
5196
5197         /* Support full width counters using alternative MSR range */
5198         if (x86_pmu.intel_cap.full_width_write) {
5199                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5200                 x86_pmu.perfctr = MSR_IA32_PMC0;
5201                 pr_cont("full-width counters, ");
5202         }
5203
5204         /*
5205          * For arch perfmon 4 use counter freezing to avoid
5206          * several MSR accesses in the PMI.
5207          */
5208         if (x86_pmu.counter_freezing)
5209                 x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
5210
5211         return 0;
5212 }
5213
5214 /*
5215  * HT bug: phase 2 init
5216  * Called once we have valid topology information to check
5217  * whether or not HT is enabled
5218  * If HT is off, then we disable the workaround
5219  */
5220 static __init int fixup_ht_bug(void)
5221 {
5222         int c;
5223         /*
5224          * problem not present on this CPU model, nothing to do
5225          */
5226         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
5227                 return 0;
5228
5229         if (topology_max_smt_threads() > 1) {
5230                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5231                 return 0;
5232         }
5233
5234         cpus_read_lock();
5235
5236         hardlockup_detector_perf_stop();
5237
5238         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
5239
5240         x86_pmu.start_scheduling = NULL;
5241         x86_pmu.commit_scheduling = NULL;
5242         x86_pmu.stop_scheduling = NULL;
5243
5244         hardlockup_detector_perf_restart();
5245
5246         for_each_online_cpu(c)
5247                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5248
5249         cpus_read_unlock();
5250         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5251         return 0;
5252 }
5253 subsys_initcall(fixup_ht_bug)