273c62e8154632f524e04e16630bcdb6c958b8c0
[linux-2.6-microblaze.git] / arch / x86 / events / intel / core.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21
22 #include "../perf_event.h"
23
24 /*
25  * Intel PerfMon, used on Core and later.
26  */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
30         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
31         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
32         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
33         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
34         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
35         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
36         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
37 };
38
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47         EVENT_CONSTRAINT_END
48 };
49
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65         EVENT_CONSTRAINT_END
66 };
67
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81         EVENT_CONSTRAINT_END
82 };
83
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89         EVENT_EXTRA_END
90 };
91
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101         EVENT_CONSTRAINT_END
102 };
103
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118
119         /*
120          * When HT is off these events can only run on the bottom 4 counters
121          * When HT is on, they are impacted by the HT bug and require EXCL access
122          */
123         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127
128         EVENT_CONSTRAINT_END
129 };
130
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146
147         /*
148          * When HT is off these events can only run on the bottom 4 counters
149          * When HT is on, they are impacted by the HT bug and require EXCL access
150          */
151         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155
156         EVENT_CONSTRAINT_END
157 };
158
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165         EVENT_EXTRA_END
166 };
167
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170         EVENT_CONSTRAINT_END
171 };
172
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178         EVENT_CONSTRAINT_END
179 };
180
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186         EVENT_CONSTRAINT_END
187 };
188
189 static struct event_constraint intel_skl_event_constraints[] = {
190         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
191         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
192         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
193         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
194
195         /*
196          * when HT is off, these can only run on the bottom 4 counters
197          */
198         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
199         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
200         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
201         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
203
204         EVENT_CONSTRAINT_END
205 };
206
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210         EVENT_EXTRA_END
211 };
212
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218         EVENT_EXTRA_END
219 };
220
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226         EVENT_EXTRA_END
227 };
228
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233         /*
234          * Note the low 8 bits eventsel code is not a continuous field, containing
235          * some #GPing bits. These are masked out.
236          */
237         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238         EVENT_EXTRA_END
239 };
240
241 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
244
245 static struct attribute *nhm_mem_events_attrs[] = {
246         EVENT_PTR(mem_ld_nhm),
247         NULL,
248 };
249
250 /*
251  * topdown events for Intel Core CPUs.
252  *
253  * The events are all in slots, which is a free slot in a 4 wide
254  * pipeline. Some events are already reported in slots, for cycle
255  * events we multiply by the pipeline width (4).
256  *
257  * With Hyper Threading on, topdown metrics are either summed or averaged
258  * between the threads of a core: (count_t0 + count_t1).
259  *
260  * For the average case the metric is always scaled to pipeline width,
261  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262  */
263
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
266         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269         "event=0xe,umask=0x1");                 /* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
276         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278         "4", "2");
279
280 static struct attribute *snb_events_attrs[] = {
281         EVENT_PTR(td_slots_issued),
282         EVENT_PTR(td_slots_retired),
283         EVENT_PTR(td_fetch_bubbles),
284         EVENT_PTR(td_total_slots),
285         EVENT_PTR(td_total_slots_scale),
286         EVENT_PTR(td_recovery_bubbles),
287         EVENT_PTR(td_recovery_bubbles_scale),
288         NULL,
289 };
290
291 static struct attribute *snb_mem_events_attrs[] = {
292         EVENT_PTR(mem_ld_snb),
293         EVENT_PTR(mem_st_snb),
294         NULL,
295 };
296
297 static struct event_constraint intel_hsw_event_constraints[] = {
298         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
299         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
300         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
301         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
302         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
303         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
304         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
305         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
306         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
307         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
308         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
309         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
310
311         /*
312          * When HT is off these events can only run on the bottom 4 counters
313          * When HT is on, they are impacted by the HT bug and require EXCL access
314          */
315         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
316         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
317         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
318         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
319
320         EVENT_CONSTRAINT_END
321 };
322
323 static struct event_constraint intel_bdw_event_constraints[] = {
324         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
325         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
326         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
327         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
328         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
329         /*
330          * when HT is off, these can only run on the bottom 4 counters
331          */
332         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
333         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
334         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
335         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
336         EVENT_CONSTRAINT_END
337 };
338
339 static u64 intel_pmu_event_map(int hw_event)
340 {
341         return intel_perfmon_event_map[hw_event];
342 }
343
344 /*
345  * Notes on the events:
346  * - data reads do not include code reads (comparable to earlier tables)
347  * - data counts include speculative execution (except L1 write, dtlb, bpu)
348  * - remote node access includes remote memory, remote cache, remote mmio.
349  * - prefetches are not included in the counts.
350  * - icache miss does not include decoded icache
351  */
352
353 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
354 #define SKL_DEMAND_RFO                  BIT_ULL(1)
355 #define SKL_ANY_RESPONSE                BIT_ULL(16)
356 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
357 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
358 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
359 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
360 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
361 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
362                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
363                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
364                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
365 #define SKL_SPL_HIT                     BIT_ULL(30)
366 #define SKL_SNOOP_NONE                  BIT_ULL(31)
367 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
368 #define SKL_SNOOP_MISS                  BIT_ULL(33)
369 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
370 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
371 #define SKL_SNOOP_HITM                  BIT_ULL(36)
372 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
373 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
374                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
375                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
376                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
377 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
378 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
379                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
380                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
381                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
382 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
383 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
384 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
385                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
386                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
387
388 static __initconst const u64 skl_hw_cache_event_ids
389                                 [PERF_COUNT_HW_CACHE_MAX]
390                                 [PERF_COUNT_HW_CACHE_OP_MAX]
391                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
392 {
393  [ C(L1D ) ] = {
394         [ C(OP_READ) ] = {
395                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
396                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
397         },
398         [ C(OP_WRITE) ] = {
399                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
400                 [ C(RESULT_MISS)   ] = 0x0,
401         },
402         [ C(OP_PREFETCH) ] = {
403                 [ C(RESULT_ACCESS) ] = 0x0,
404                 [ C(RESULT_MISS)   ] = 0x0,
405         },
406  },
407  [ C(L1I ) ] = {
408         [ C(OP_READ) ] = {
409                 [ C(RESULT_ACCESS) ] = 0x0,
410                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
411         },
412         [ C(OP_WRITE) ] = {
413                 [ C(RESULT_ACCESS) ] = -1,
414                 [ C(RESULT_MISS)   ] = -1,
415         },
416         [ C(OP_PREFETCH) ] = {
417                 [ C(RESULT_ACCESS) ] = 0x0,
418                 [ C(RESULT_MISS)   ] = 0x0,
419         },
420  },
421  [ C(LL  ) ] = {
422         [ C(OP_READ) ] = {
423                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
424                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
425         },
426         [ C(OP_WRITE) ] = {
427                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
428                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
429         },
430         [ C(OP_PREFETCH) ] = {
431                 [ C(RESULT_ACCESS) ] = 0x0,
432                 [ C(RESULT_MISS)   ] = 0x0,
433         },
434  },
435  [ C(DTLB) ] = {
436         [ C(OP_READ) ] = {
437                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
438                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
439         },
440         [ C(OP_WRITE) ] = {
441                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
442                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
443         },
444         [ C(OP_PREFETCH) ] = {
445                 [ C(RESULT_ACCESS) ] = 0x0,
446                 [ C(RESULT_MISS)   ] = 0x0,
447         },
448  },
449  [ C(ITLB) ] = {
450         [ C(OP_READ) ] = {
451                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
452                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
453         },
454         [ C(OP_WRITE) ] = {
455                 [ C(RESULT_ACCESS) ] = -1,
456                 [ C(RESULT_MISS)   ] = -1,
457         },
458         [ C(OP_PREFETCH) ] = {
459                 [ C(RESULT_ACCESS) ] = -1,
460                 [ C(RESULT_MISS)   ] = -1,
461         },
462  },
463  [ C(BPU ) ] = {
464         [ C(OP_READ) ] = {
465                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
466                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
467         },
468         [ C(OP_WRITE) ] = {
469                 [ C(RESULT_ACCESS) ] = -1,
470                 [ C(RESULT_MISS)   ] = -1,
471         },
472         [ C(OP_PREFETCH) ] = {
473                 [ C(RESULT_ACCESS) ] = -1,
474                 [ C(RESULT_MISS)   ] = -1,
475         },
476  },
477  [ C(NODE) ] = {
478         [ C(OP_READ) ] = {
479                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
480                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
481         },
482         [ C(OP_WRITE) ] = {
483                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
484                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
485         },
486         [ C(OP_PREFETCH) ] = {
487                 [ C(RESULT_ACCESS) ] = 0x0,
488                 [ C(RESULT_MISS)   ] = 0x0,
489         },
490  },
491 };
492
493 static __initconst const u64 skl_hw_cache_extra_regs
494                                 [PERF_COUNT_HW_CACHE_MAX]
495                                 [PERF_COUNT_HW_CACHE_OP_MAX]
496                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
497 {
498  [ C(LL  ) ] = {
499         [ C(OP_READ) ] = {
500                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
501                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
502                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
503                                        SKL_L3_MISS|SKL_ANY_SNOOP|
504                                        SKL_SUPPLIER_NONE,
505         },
506         [ C(OP_WRITE) ] = {
507                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
508                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
509                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
510                                        SKL_L3_MISS|SKL_ANY_SNOOP|
511                                        SKL_SUPPLIER_NONE,
512         },
513         [ C(OP_PREFETCH) ] = {
514                 [ C(RESULT_ACCESS) ] = 0x0,
515                 [ C(RESULT_MISS)   ] = 0x0,
516         },
517  },
518  [ C(NODE) ] = {
519         [ C(OP_READ) ] = {
520                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
521                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
522                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
523                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
524         },
525         [ C(OP_WRITE) ] = {
526                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
527                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
528                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
529                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
530         },
531         [ C(OP_PREFETCH) ] = {
532                 [ C(RESULT_ACCESS) ] = 0x0,
533                 [ C(RESULT_MISS)   ] = 0x0,
534         },
535  },
536 };
537
538 #define SNB_DMND_DATA_RD        (1ULL << 0)
539 #define SNB_DMND_RFO            (1ULL << 1)
540 #define SNB_DMND_IFETCH         (1ULL << 2)
541 #define SNB_DMND_WB             (1ULL << 3)
542 #define SNB_PF_DATA_RD          (1ULL << 4)
543 #define SNB_PF_RFO              (1ULL << 5)
544 #define SNB_PF_IFETCH           (1ULL << 6)
545 #define SNB_LLC_DATA_RD         (1ULL << 7)
546 #define SNB_LLC_RFO             (1ULL << 8)
547 #define SNB_LLC_IFETCH          (1ULL << 9)
548 #define SNB_BUS_LOCKS           (1ULL << 10)
549 #define SNB_STRM_ST             (1ULL << 11)
550 #define SNB_OTHER               (1ULL << 15)
551 #define SNB_RESP_ANY            (1ULL << 16)
552 #define SNB_NO_SUPP             (1ULL << 17)
553 #define SNB_LLC_HITM            (1ULL << 18)
554 #define SNB_LLC_HITE            (1ULL << 19)
555 #define SNB_LLC_HITS            (1ULL << 20)
556 #define SNB_LLC_HITF            (1ULL << 21)
557 #define SNB_LOCAL               (1ULL << 22)
558 #define SNB_REMOTE              (0xffULL << 23)
559 #define SNB_SNP_NONE            (1ULL << 31)
560 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
561 #define SNB_SNP_MISS            (1ULL << 33)
562 #define SNB_NO_FWD              (1ULL << 34)
563 #define SNB_SNP_FWD             (1ULL << 35)
564 #define SNB_HITM                (1ULL << 36)
565 #define SNB_NON_DRAM            (1ULL << 37)
566
567 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
568 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
569 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
570
571 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
572                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
573                                  SNB_HITM)
574
575 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
576 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
577
578 #define SNB_L3_ACCESS           SNB_RESP_ANY
579 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
580
581 static __initconst const u64 snb_hw_cache_extra_regs
582                                 [PERF_COUNT_HW_CACHE_MAX]
583                                 [PERF_COUNT_HW_CACHE_OP_MAX]
584                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
585 {
586  [ C(LL  ) ] = {
587         [ C(OP_READ) ] = {
588                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
589                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
590         },
591         [ C(OP_WRITE) ] = {
592                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
593                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
594         },
595         [ C(OP_PREFETCH) ] = {
596                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
597                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
598         },
599  },
600  [ C(NODE) ] = {
601         [ C(OP_READ) ] = {
602                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
603                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
604         },
605         [ C(OP_WRITE) ] = {
606                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
607                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
608         },
609         [ C(OP_PREFETCH) ] = {
610                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
611                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
612         },
613  },
614 };
615
616 static __initconst const u64 snb_hw_cache_event_ids
617                                 [PERF_COUNT_HW_CACHE_MAX]
618                                 [PERF_COUNT_HW_CACHE_OP_MAX]
619                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
620 {
621  [ C(L1D) ] = {
622         [ C(OP_READ) ] = {
623                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
624                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
625         },
626         [ C(OP_WRITE) ] = {
627                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
628                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
629         },
630         [ C(OP_PREFETCH) ] = {
631                 [ C(RESULT_ACCESS) ] = 0x0,
632                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
633         },
634  },
635  [ C(L1I ) ] = {
636         [ C(OP_READ) ] = {
637                 [ C(RESULT_ACCESS) ] = 0x0,
638                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
639         },
640         [ C(OP_WRITE) ] = {
641                 [ C(RESULT_ACCESS) ] = -1,
642                 [ C(RESULT_MISS)   ] = -1,
643         },
644         [ C(OP_PREFETCH) ] = {
645                 [ C(RESULT_ACCESS) ] = 0x0,
646                 [ C(RESULT_MISS)   ] = 0x0,
647         },
648  },
649  [ C(LL  ) ] = {
650         [ C(OP_READ) ] = {
651                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
652                 [ C(RESULT_ACCESS) ] = 0x01b7,
653                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
654                 [ C(RESULT_MISS)   ] = 0x01b7,
655         },
656         [ C(OP_WRITE) ] = {
657                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
658                 [ C(RESULT_ACCESS) ] = 0x01b7,
659                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
660                 [ C(RESULT_MISS)   ] = 0x01b7,
661         },
662         [ C(OP_PREFETCH) ] = {
663                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
664                 [ C(RESULT_ACCESS) ] = 0x01b7,
665                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
666                 [ C(RESULT_MISS)   ] = 0x01b7,
667         },
668  },
669  [ C(DTLB) ] = {
670         [ C(OP_READ) ] = {
671                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
672                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
673         },
674         [ C(OP_WRITE) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
676                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
677         },
678         [ C(OP_PREFETCH) ] = {
679                 [ C(RESULT_ACCESS) ] = 0x0,
680                 [ C(RESULT_MISS)   ] = 0x0,
681         },
682  },
683  [ C(ITLB) ] = {
684         [ C(OP_READ) ] = {
685                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
686                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
687         },
688         [ C(OP_WRITE) ] = {
689                 [ C(RESULT_ACCESS) ] = -1,
690                 [ C(RESULT_MISS)   ] = -1,
691         },
692         [ C(OP_PREFETCH) ] = {
693                 [ C(RESULT_ACCESS) ] = -1,
694                 [ C(RESULT_MISS)   ] = -1,
695         },
696  },
697  [ C(BPU ) ] = {
698         [ C(OP_READ) ] = {
699                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
700                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
701         },
702         [ C(OP_WRITE) ] = {
703                 [ C(RESULT_ACCESS) ] = -1,
704                 [ C(RESULT_MISS)   ] = -1,
705         },
706         [ C(OP_PREFETCH) ] = {
707                 [ C(RESULT_ACCESS) ] = -1,
708                 [ C(RESULT_MISS)   ] = -1,
709         },
710  },
711  [ C(NODE) ] = {
712         [ C(OP_READ) ] = {
713                 [ C(RESULT_ACCESS) ] = 0x01b7,
714                 [ C(RESULT_MISS)   ] = 0x01b7,
715         },
716         [ C(OP_WRITE) ] = {
717                 [ C(RESULT_ACCESS) ] = 0x01b7,
718                 [ C(RESULT_MISS)   ] = 0x01b7,
719         },
720         [ C(OP_PREFETCH) ] = {
721                 [ C(RESULT_ACCESS) ] = 0x01b7,
722                 [ C(RESULT_MISS)   ] = 0x01b7,
723         },
724  },
725
726 };
727
728 /*
729  * Notes on the events:
730  * - data reads do not include code reads (comparable to earlier tables)
731  * - data counts include speculative execution (except L1 write, dtlb, bpu)
732  * - remote node access includes remote memory, remote cache, remote mmio.
733  * - prefetches are not included in the counts because they are not
734  *   reliably counted.
735  */
736
737 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
738 #define HSW_DEMAND_RFO                  BIT_ULL(1)
739 #define HSW_ANY_RESPONSE                BIT_ULL(16)
740 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
741 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
742 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
743 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
744 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
745 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
746                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
747                                          HSW_L3_MISS_REMOTE_HOP2P)
748 #define HSW_SNOOP_NONE                  BIT_ULL(31)
749 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
750 #define HSW_SNOOP_MISS                  BIT_ULL(33)
751 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
752 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
753 #define HSW_SNOOP_HITM                  BIT_ULL(36)
754 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
755 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
756                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
757                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
758                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
759 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
760 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
761 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
762 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
763                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
764 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
765
766 #define BDW_L3_MISS_LOCAL               BIT(26)
767 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
768                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
769                                          HSW_L3_MISS_REMOTE_HOP2P)
770
771
772 static __initconst const u64 hsw_hw_cache_event_ids
773                                 [PERF_COUNT_HW_CACHE_MAX]
774                                 [PERF_COUNT_HW_CACHE_OP_MAX]
775                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
776 {
777  [ C(L1D ) ] = {
778         [ C(OP_READ) ] = {
779                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
780                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
781         },
782         [ C(OP_WRITE) ] = {
783                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
784                 [ C(RESULT_MISS)   ] = 0x0,
785         },
786         [ C(OP_PREFETCH) ] = {
787                 [ C(RESULT_ACCESS) ] = 0x0,
788                 [ C(RESULT_MISS)   ] = 0x0,
789         },
790  },
791  [ C(L1I ) ] = {
792         [ C(OP_READ) ] = {
793                 [ C(RESULT_ACCESS) ] = 0x0,
794                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
795         },
796         [ C(OP_WRITE) ] = {
797                 [ C(RESULT_ACCESS) ] = -1,
798                 [ C(RESULT_MISS)   ] = -1,
799         },
800         [ C(OP_PREFETCH) ] = {
801                 [ C(RESULT_ACCESS) ] = 0x0,
802                 [ C(RESULT_MISS)   ] = 0x0,
803         },
804  },
805  [ C(LL  ) ] = {
806         [ C(OP_READ) ] = {
807                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
808                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
809         },
810         [ C(OP_WRITE) ] = {
811                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
812                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
813         },
814         [ C(OP_PREFETCH) ] = {
815                 [ C(RESULT_ACCESS) ] = 0x0,
816                 [ C(RESULT_MISS)   ] = 0x0,
817         },
818  },
819  [ C(DTLB) ] = {
820         [ C(OP_READ) ] = {
821                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
822                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
823         },
824         [ C(OP_WRITE) ] = {
825                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
826                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
827         },
828         [ C(OP_PREFETCH) ] = {
829                 [ C(RESULT_ACCESS) ] = 0x0,
830                 [ C(RESULT_MISS)   ] = 0x0,
831         },
832  },
833  [ C(ITLB) ] = {
834         [ C(OP_READ) ] = {
835                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
836                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
837         },
838         [ C(OP_WRITE) ] = {
839                 [ C(RESULT_ACCESS) ] = -1,
840                 [ C(RESULT_MISS)   ] = -1,
841         },
842         [ C(OP_PREFETCH) ] = {
843                 [ C(RESULT_ACCESS) ] = -1,
844                 [ C(RESULT_MISS)   ] = -1,
845         },
846  },
847  [ C(BPU ) ] = {
848         [ C(OP_READ) ] = {
849                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
850                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
851         },
852         [ C(OP_WRITE) ] = {
853                 [ C(RESULT_ACCESS) ] = -1,
854                 [ C(RESULT_MISS)   ] = -1,
855         },
856         [ C(OP_PREFETCH) ] = {
857                 [ C(RESULT_ACCESS) ] = -1,
858                 [ C(RESULT_MISS)   ] = -1,
859         },
860  },
861  [ C(NODE) ] = {
862         [ C(OP_READ) ] = {
863                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
864                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
865         },
866         [ C(OP_WRITE) ] = {
867                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
868                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
869         },
870         [ C(OP_PREFETCH) ] = {
871                 [ C(RESULT_ACCESS) ] = 0x0,
872                 [ C(RESULT_MISS)   ] = 0x0,
873         },
874  },
875 };
876
877 static __initconst const u64 hsw_hw_cache_extra_regs
878                                 [PERF_COUNT_HW_CACHE_MAX]
879                                 [PERF_COUNT_HW_CACHE_OP_MAX]
880                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
881 {
882  [ C(LL  ) ] = {
883         [ C(OP_READ) ] = {
884                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
885                                        HSW_LLC_ACCESS,
886                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
887                                        HSW_L3_MISS|HSW_ANY_SNOOP,
888         },
889         [ C(OP_WRITE) ] = {
890                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
891                                        HSW_LLC_ACCESS,
892                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
893                                        HSW_L3_MISS|HSW_ANY_SNOOP,
894         },
895         [ C(OP_PREFETCH) ] = {
896                 [ C(RESULT_ACCESS) ] = 0x0,
897                 [ C(RESULT_MISS)   ] = 0x0,
898         },
899  },
900  [ C(NODE) ] = {
901         [ C(OP_READ) ] = {
902                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
903                                        HSW_L3_MISS_LOCAL_DRAM|
904                                        HSW_SNOOP_DRAM,
905                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
906                                        HSW_L3_MISS_REMOTE|
907                                        HSW_SNOOP_DRAM,
908         },
909         [ C(OP_WRITE) ] = {
910                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
911                                        HSW_L3_MISS_LOCAL_DRAM|
912                                        HSW_SNOOP_DRAM,
913                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
914                                        HSW_L3_MISS_REMOTE|
915                                        HSW_SNOOP_DRAM,
916         },
917         [ C(OP_PREFETCH) ] = {
918                 [ C(RESULT_ACCESS) ] = 0x0,
919                 [ C(RESULT_MISS)   ] = 0x0,
920         },
921  },
922 };
923
924 static __initconst const u64 westmere_hw_cache_event_ids
925                                 [PERF_COUNT_HW_CACHE_MAX]
926                                 [PERF_COUNT_HW_CACHE_OP_MAX]
927                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
928 {
929  [ C(L1D) ] = {
930         [ C(OP_READ) ] = {
931                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
932                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
933         },
934         [ C(OP_WRITE) ] = {
935                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
936                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
937         },
938         [ C(OP_PREFETCH) ] = {
939                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
940                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
941         },
942  },
943  [ C(L1I ) ] = {
944         [ C(OP_READ) ] = {
945                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
946                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
947         },
948         [ C(OP_WRITE) ] = {
949                 [ C(RESULT_ACCESS) ] = -1,
950                 [ C(RESULT_MISS)   ] = -1,
951         },
952         [ C(OP_PREFETCH) ] = {
953                 [ C(RESULT_ACCESS) ] = 0x0,
954                 [ C(RESULT_MISS)   ] = 0x0,
955         },
956  },
957  [ C(LL  ) ] = {
958         [ C(OP_READ) ] = {
959                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
960                 [ C(RESULT_ACCESS) ] = 0x01b7,
961                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
962                 [ C(RESULT_MISS)   ] = 0x01b7,
963         },
964         /*
965          * Use RFO, not WRITEBACK, because a write miss would typically occur
966          * on RFO.
967          */
968         [ C(OP_WRITE) ] = {
969                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
970                 [ C(RESULT_ACCESS) ] = 0x01b7,
971                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
972                 [ C(RESULT_MISS)   ] = 0x01b7,
973         },
974         [ C(OP_PREFETCH) ] = {
975                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
976                 [ C(RESULT_ACCESS) ] = 0x01b7,
977                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
978                 [ C(RESULT_MISS)   ] = 0x01b7,
979         },
980  },
981  [ C(DTLB) ] = {
982         [ C(OP_READ) ] = {
983                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
984                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
985         },
986         [ C(OP_WRITE) ] = {
987                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
988                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
989         },
990         [ C(OP_PREFETCH) ] = {
991                 [ C(RESULT_ACCESS) ] = 0x0,
992                 [ C(RESULT_MISS)   ] = 0x0,
993         },
994  },
995  [ C(ITLB) ] = {
996         [ C(OP_READ) ] = {
997                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
998                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
999         },
1000         [ C(OP_WRITE) ] = {
1001                 [ C(RESULT_ACCESS) ] = -1,
1002                 [ C(RESULT_MISS)   ] = -1,
1003         },
1004         [ C(OP_PREFETCH) ] = {
1005                 [ C(RESULT_ACCESS) ] = -1,
1006                 [ C(RESULT_MISS)   ] = -1,
1007         },
1008  },
1009  [ C(BPU ) ] = {
1010         [ C(OP_READ) ] = {
1011                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1012                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1013         },
1014         [ C(OP_WRITE) ] = {
1015                 [ C(RESULT_ACCESS) ] = -1,
1016                 [ C(RESULT_MISS)   ] = -1,
1017         },
1018         [ C(OP_PREFETCH) ] = {
1019                 [ C(RESULT_ACCESS) ] = -1,
1020                 [ C(RESULT_MISS)   ] = -1,
1021         },
1022  },
1023  [ C(NODE) ] = {
1024         [ C(OP_READ) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x01b7,
1026                 [ C(RESULT_MISS)   ] = 0x01b7,
1027         },
1028         [ C(OP_WRITE) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x01b7,
1030                 [ C(RESULT_MISS)   ] = 0x01b7,
1031         },
1032         [ C(OP_PREFETCH) ] = {
1033                 [ C(RESULT_ACCESS) ] = 0x01b7,
1034                 [ C(RESULT_MISS)   ] = 0x01b7,
1035         },
1036  },
1037 };
1038
1039 /*
1040  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1041  * See IA32 SDM Vol 3B 30.6.1.3
1042  */
1043
1044 #define NHM_DMND_DATA_RD        (1 << 0)
1045 #define NHM_DMND_RFO            (1 << 1)
1046 #define NHM_DMND_IFETCH         (1 << 2)
1047 #define NHM_DMND_WB             (1 << 3)
1048 #define NHM_PF_DATA_RD          (1 << 4)
1049 #define NHM_PF_DATA_RFO         (1 << 5)
1050 #define NHM_PF_IFETCH           (1 << 6)
1051 #define NHM_OFFCORE_OTHER       (1 << 7)
1052 #define NHM_UNCORE_HIT          (1 << 8)
1053 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1054 #define NHM_OTHER_CORE_HITM     (1 << 10)
1055                                 /* reserved */
1056 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1057 #define NHM_REMOTE_DRAM         (1 << 13)
1058 #define NHM_LOCAL_DRAM          (1 << 14)
1059 #define NHM_NON_DRAM            (1 << 15)
1060
1061 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1062 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1063
1064 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1065 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1066 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1067
1068 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1069 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1070 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1071
1072 static __initconst const u64 nehalem_hw_cache_extra_regs
1073                                 [PERF_COUNT_HW_CACHE_MAX]
1074                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1075                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1076 {
1077  [ C(LL  ) ] = {
1078         [ C(OP_READ) ] = {
1079                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1080                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1081         },
1082         [ C(OP_WRITE) ] = {
1083                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1084                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1085         },
1086         [ C(OP_PREFETCH) ] = {
1087                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1088                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1089         },
1090  },
1091  [ C(NODE) ] = {
1092         [ C(OP_READ) ] = {
1093                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1094                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1095         },
1096         [ C(OP_WRITE) ] = {
1097                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1098                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1099         },
1100         [ C(OP_PREFETCH) ] = {
1101                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1102                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1103         },
1104  },
1105 };
1106
1107 static __initconst const u64 nehalem_hw_cache_event_ids
1108                                 [PERF_COUNT_HW_CACHE_MAX]
1109                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1110                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1111 {
1112  [ C(L1D) ] = {
1113         [ C(OP_READ) ] = {
1114                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1115                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1116         },
1117         [ C(OP_WRITE) ] = {
1118                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1119                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1120         },
1121         [ C(OP_PREFETCH) ] = {
1122                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1123                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1124         },
1125  },
1126  [ C(L1I ) ] = {
1127         [ C(OP_READ) ] = {
1128                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1129                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1130         },
1131         [ C(OP_WRITE) ] = {
1132                 [ C(RESULT_ACCESS) ] = -1,
1133                 [ C(RESULT_MISS)   ] = -1,
1134         },
1135         [ C(OP_PREFETCH) ] = {
1136                 [ C(RESULT_ACCESS) ] = 0x0,
1137                 [ C(RESULT_MISS)   ] = 0x0,
1138         },
1139  },
1140  [ C(LL  ) ] = {
1141         [ C(OP_READ) ] = {
1142                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1143                 [ C(RESULT_ACCESS) ] = 0x01b7,
1144                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1145                 [ C(RESULT_MISS)   ] = 0x01b7,
1146         },
1147         /*
1148          * Use RFO, not WRITEBACK, because a write miss would typically occur
1149          * on RFO.
1150          */
1151         [ C(OP_WRITE) ] = {
1152                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1153                 [ C(RESULT_ACCESS) ] = 0x01b7,
1154                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1155                 [ C(RESULT_MISS)   ] = 0x01b7,
1156         },
1157         [ C(OP_PREFETCH) ] = {
1158                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1159                 [ C(RESULT_ACCESS) ] = 0x01b7,
1160                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1161                 [ C(RESULT_MISS)   ] = 0x01b7,
1162         },
1163  },
1164  [ C(DTLB) ] = {
1165         [ C(OP_READ) ] = {
1166                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1167                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1168         },
1169         [ C(OP_WRITE) ] = {
1170                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1171                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1172         },
1173         [ C(OP_PREFETCH) ] = {
1174                 [ C(RESULT_ACCESS) ] = 0x0,
1175                 [ C(RESULT_MISS)   ] = 0x0,
1176         },
1177  },
1178  [ C(ITLB) ] = {
1179         [ C(OP_READ) ] = {
1180                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1181                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1182         },
1183         [ C(OP_WRITE) ] = {
1184                 [ C(RESULT_ACCESS) ] = -1,
1185                 [ C(RESULT_MISS)   ] = -1,
1186         },
1187         [ C(OP_PREFETCH) ] = {
1188                 [ C(RESULT_ACCESS) ] = -1,
1189                 [ C(RESULT_MISS)   ] = -1,
1190         },
1191  },
1192  [ C(BPU ) ] = {
1193         [ C(OP_READ) ] = {
1194                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1195                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1196         },
1197         [ C(OP_WRITE) ] = {
1198                 [ C(RESULT_ACCESS) ] = -1,
1199                 [ C(RESULT_MISS)   ] = -1,
1200         },
1201         [ C(OP_PREFETCH) ] = {
1202                 [ C(RESULT_ACCESS) ] = -1,
1203                 [ C(RESULT_MISS)   ] = -1,
1204         },
1205  },
1206  [ C(NODE) ] = {
1207         [ C(OP_READ) ] = {
1208                 [ C(RESULT_ACCESS) ] = 0x01b7,
1209                 [ C(RESULT_MISS)   ] = 0x01b7,
1210         },
1211         [ C(OP_WRITE) ] = {
1212                 [ C(RESULT_ACCESS) ] = 0x01b7,
1213                 [ C(RESULT_MISS)   ] = 0x01b7,
1214         },
1215         [ C(OP_PREFETCH) ] = {
1216                 [ C(RESULT_ACCESS) ] = 0x01b7,
1217                 [ C(RESULT_MISS)   ] = 0x01b7,
1218         },
1219  },
1220 };
1221
1222 static __initconst const u64 core2_hw_cache_event_ids
1223                                 [PERF_COUNT_HW_CACHE_MAX]
1224                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1225                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1226 {
1227  [ C(L1D) ] = {
1228         [ C(OP_READ) ] = {
1229                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1230                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1231         },
1232         [ C(OP_WRITE) ] = {
1233                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1234                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1235         },
1236         [ C(OP_PREFETCH) ] = {
1237                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1238                 [ C(RESULT_MISS)   ] = 0,
1239         },
1240  },
1241  [ C(L1I ) ] = {
1242         [ C(OP_READ) ] = {
1243                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1244                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1245         },
1246         [ C(OP_WRITE) ] = {
1247                 [ C(RESULT_ACCESS) ] = -1,
1248                 [ C(RESULT_MISS)   ] = -1,
1249         },
1250         [ C(OP_PREFETCH) ] = {
1251                 [ C(RESULT_ACCESS) ] = 0,
1252                 [ C(RESULT_MISS)   ] = 0,
1253         },
1254  },
1255  [ C(LL  ) ] = {
1256         [ C(OP_READ) ] = {
1257                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1258                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1259         },
1260         [ C(OP_WRITE) ] = {
1261                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1262                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1263         },
1264         [ C(OP_PREFETCH) ] = {
1265                 [ C(RESULT_ACCESS) ] = 0,
1266                 [ C(RESULT_MISS)   ] = 0,
1267         },
1268  },
1269  [ C(DTLB) ] = {
1270         [ C(OP_READ) ] = {
1271                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1272                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1273         },
1274         [ C(OP_WRITE) ] = {
1275                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1276                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1277         },
1278         [ C(OP_PREFETCH) ] = {
1279                 [ C(RESULT_ACCESS) ] = 0,
1280                 [ C(RESULT_MISS)   ] = 0,
1281         },
1282  },
1283  [ C(ITLB) ] = {
1284         [ C(OP_READ) ] = {
1285                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1286                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1287         },
1288         [ C(OP_WRITE) ] = {
1289                 [ C(RESULT_ACCESS) ] = -1,
1290                 [ C(RESULT_MISS)   ] = -1,
1291         },
1292         [ C(OP_PREFETCH) ] = {
1293                 [ C(RESULT_ACCESS) ] = -1,
1294                 [ C(RESULT_MISS)   ] = -1,
1295         },
1296  },
1297  [ C(BPU ) ] = {
1298         [ C(OP_READ) ] = {
1299                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1300                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1301         },
1302         [ C(OP_WRITE) ] = {
1303                 [ C(RESULT_ACCESS) ] = -1,
1304                 [ C(RESULT_MISS)   ] = -1,
1305         },
1306         [ C(OP_PREFETCH) ] = {
1307                 [ C(RESULT_ACCESS) ] = -1,
1308                 [ C(RESULT_MISS)   ] = -1,
1309         },
1310  },
1311 };
1312
1313 static __initconst const u64 atom_hw_cache_event_ids
1314                                 [PERF_COUNT_HW_CACHE_MAX]
1315                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1316                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1317 {
1318  [ C(L1D) ] = {
1319         [ C(OP_READ) ] = {
1320                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1321                 [ C(RESULT_MISS)   ] = 0,
1322         },
1323         [ C(OP_WRITE) ] = {
1324                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1325                 [ C(RESULT_MISS)   ] = 0,
1326         },
1327         [ C(OP_PREFETCH) ] = {
1328                 [ C(RESULT_ACCESS) ] = 0x0,
1329                 [ C(RESULT_MISS)   ] = 0,
1330         },
1331  },
1332  [ C(L1I ) ] = {
1333         [ C(OP_READ) ] = {
1334                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1335                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1336         },
1337         [ C(OP_WRITE) ] = {
1338                 [ C(RESULT_ACCESS) ] = -1,
1339                 [ C(RESULT_MISS)   ] = -1,
1340         },
1341         [ C(OP_PREFETCH) ] = {
1342                 [ C(RESULT_ACCESS) ] = 0,
1343                 [ C(RESULT_MISS)   ] = 0,
1344         },
1345  },
1346  [ C(LL  ) ] = {
1347         [ C(OP_READ) ] = {
1348                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1349                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1350         },
1351         [ C(OP_WRITE) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1353                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1354         },
1355         [ C(OP_PREFETCH) ] = {
1356                 [ C(RESULT_ACCESS) ] = 0,
1357                 [ C(RESULT_MISS)   ] = 0,
1358         },
1359  },
1360  [ C(DTLB) ] = {
1361         [ C(OP_READ) ] = {
1362                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1363                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1364         },
1365         [ C(OP_WRITE) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1367                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1368         },
1369         [ C(OP_PREFETCH) ] = {
1370                 [ C(RESULT_ACCESS) ] = 0,
1371                 [ C(RESULT_MISS)   ] = 0,
1372         },
1373  },
1374  [ C(ITLB) ] = {
1375         [ C(OP_READ) ] = {
1376                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1377                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1378         },
1379         [ C(OP_WRITE) ] = {
1380                 [ C(RESULT_ACCESS) ] = -1,
1381                 [ C(RESULT_MISS)   ] = -1,
1382         },
1383         [ C(OP_PREFETCH) ] = {
1384                 [ C(RESULT_ACCESS) ] = -1,
1385                 [ C(RESULT_MISS)   ] = -1,
1386         },
1387  },
1388  [ C(BPU ) ] = {
1389         [ C(OP_READ) ] = {
1390                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1391                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1392         },
1393         [ C(OP_WRITE) ] = {
1394                 [ C(RESULT_ACCESS) ] = -1,
1395                 [ C(RESULT_MISS)   ] = -1,
1396         },
1397         [ C(OP_PREFETCH) ] = {
1398                 [ C(RESULT_ACCESS) ] = -1,
1399                 [ C(RESULT_MISS)   ] = -1,
1400         },
1401  },
1402 };
1403
1404 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1405 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1406 /* no_alloc_cycles.not_delivered */
1407 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1408                "event=0xca,umask=0x50");
1409 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1410 /* uops_retired.all */
1411 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1412                "event=0xc2,umask=0x10");
1413 /* uops_retired.all */
1414 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1415                "event=0xc2,umask=0x10");
1416
1417 static struct attribute *slm_events_attrs[] = {
1418         EVENT_PTR(td_total_slots_slm),
1419         EVENT_PTR(td_total_slots_scale_slm),
1420         EVENT_PTR(td_fetch_bubbles_slm),
1421         EVENT_PTR(td_fetch_bubbles_scale_slm),
1422         EVENT_PTR(td_slots_issued_slm),
1423         EVENT_PTR(td_slots_retired_slm),
1424         NULL
1425 };
1426
1427 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1428 {
1429         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1430         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1431         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1432         EVENT_EXTRA_END
1433 };
1434
1435 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1436 #define SLM_DMND_WRITE          SNB_DMND_RFO
1437 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1438
1439 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1440 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1441 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1442
1443 static __initconst const u64 slm_hw_cache_extra_regs
1444                                 [PERF_COUNT_HW_CACHE_MAX]
1445                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1446                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1447 {
1448  [ C(LL  ) ] = {
1449         [ C(OP_READ) ] = {
1450                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1451                 [ C(RESULT_MISS)   ] = 0,
1452         },
1453         [ C(OP_WRITE) ] = {
1454                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1455                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1456         },
1457         [ C(OP_PREFETCH) ] = {
1458                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1459                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1460         },
1461  },
1462 };
1463
1464 static __initconst const u64 slm_hw_cache_event_ids
1465                                 [PERF_COUNT_HW_CACHE_MAX]
1466                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1467                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1468 {
1469  [ C(L1D) ] = {
1470         [ C(OP_READ) ] = {
1471                 [ C(RESULT_ACCESS) ] = 0,
1472                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1473         },
1474         [ C(OP_WRITE) ] = {
1475                 [ C(RESULT_ACCESS) ] = 0,
1476                 [ C(RESULT_MISS)   ] = 0,
1477         },
1478         [ C(OP_PREFETCH) ] = {
1479                 [ C(RESULT_ACCESS) ] = 0,
1480                 [ C(RESULT_MISS)   ] = 0,
1481         },
1482  },
1483  [ C(L1I ) ] = {
1484         [ C(OP_READ) ] = {
1485                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1486                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1487         },
1488         [ C(OP_WRITE) ] = {
1489                 [ C(RESULT_ACCESS) ] = -1,
1490                 [ C(RESULT_MISS)   ] = -1,
1491         },
1492         [ C(OP_PREFETCH) ] = {
1493                 [ C(RESULT_ACCESS) ] = 0,
1494                 [ C(RESULT_MISS)   ] = 0,
1495         },
1496  },
1497  [ C(LL  ) ] = {
1498         [ C(OP_READ) ] = {
1499                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1500                 [ C(RESULT_ACCESS) ] = 0x01b7,
1501                 [ C(RESULT_MISS)   ] = 0,
1502         },
1503         [ C(OP_WRITE) ] = {
1504                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1505                 [ C(RESULT_ACCESS) ] = 0x01b7,
1506                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1507                 [ C(RESULT_MISS)   ] = 0x01b7,
1508         },
1509         [ C(OP_PREFETCH) ] = {
1510                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1511                 [ C(RESULT_ACCESS) ] = 0x01b7,
1512                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1513                 [ C(RESULT_MISS)   ] = 0x01b7,
1514         },
1515  },
1516  [ C(DTLB) ] = {
1517         [ C(OP_READ) ] = {
1518                 [ C(RESULT_ACCESS) ] = 0,
1519                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1520         },
1521         [ C(OP_WRITE) ] = {
1522                 [ C(RESULT_ACCESS) ] = 0,
1523                 [ C(RESULT_MISS)   ] = 0,
1524         },
1525         [ C(OP_PREFETCH) ] = {
1526                 [ C(RESULT_ACCESS) ] = 0,
1527                 [ C(RESULT_MISS)   ] = 0,
1528         },
1529  },
1530  [ C(ITLB) ] = {
1531         [ C(OP_READ) ] = {
1532                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1533                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1534         },
1535         [ C(OP_WRITE) ] = {
1536                 [ C(RESULT_ACCESS) ] = -1,
1537                 [ C(RESULT_MISS)   ] = -1,
1538         },
1539         [ C(OP_PREFETCH) ] = {
1540                 [ C(RESULT_ACCESS) ] = -1,
1541                 [ C(RESULT_MISS)   ] = -1,
1542         },
1543  },
1544  [ C(BPU ) ] = {
1545         [ C(OP_READ) ] = {
1546                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1547                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1548         },
1549         [ C(OP_WRITE) ] = {
1550                 [ C(RESULT_ACCESS) ] = -1,
1551                 [ C(RESULT_MISS)   ] = -1,
1552         },
1553         [ C(OP_PREFETCH) ] = {
1554                 [ C(RESULT_ACCESS) ] = -1,
1555                 [ C(RESULT_MISS)   ] = -1,
1556         },
1557  },
1558 };
1559
1560 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1561 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1562 /* UOPS_NOT_DELIVERED.ANY */
1563 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1564 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1565 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1566 /* UOPS_RETIRED.ANY */
1567 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1568 /* UOPS_ISSUED.ANY */
1569 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1570
1571 static struct attribute *glm_events_attrs[] = {
1572         EVENT_PTR(td_total_slots_glm),
1573         EVENT_PTR(td_total_slots_scale_glm),
1574         EVENT_PTR(td_fetch_bubbles_glm),
1575         EVENT_PTR(td_recovery_bubbles_glm),
1576         EVENT_PTR(td_slots_issued_glm),
1577         EVENT_PTR(td_slots_retired_glm),
1578         NULL
1579 };
1580
1581 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1582         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1583         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1584         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1585         EVENT_EXTRA_END
1586 };
1587
1588 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1589 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1590 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1591 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1592 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1593 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1594 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1595 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1596 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1597 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1598
1599 static __initconst const u64 glm_hw_cache_event_ids
1600                                 [PERF_COUNT_HW_CACHE_MAX]
1601                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1602                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1603         [C(L1D)] = {
1604                 [C(OP_READ)] = {
1605                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1606                         [C(RESULT_MISS)]        = 0x0,
1607                 },
1608                 [C(OP_WRITE)] = {
1609                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1610                         [C(RESULT_MISS)]        = 0x0,
1611                 },
1612                 [C(OP_PREFETCH)] = {
1613                         [C(RESULT_ACCESS)]      = 0x0,
1614                         [C(RESULT_MISS)]        = 0x0,
1615                 },
1616         },
1617         [C(L1I)] = {
1618                 [C(OP_READ)] = {
1619                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1620                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1621                 },
1622                 [C(OP_WRITE)] = {
1623                         [C(RESULT_ACCESS)]      = -1,
1624                         [C(RESULT_MISS)]        = -1,
1625                 },
1626                 [C(OP_PREFETCH)] = {
1627                         [C(RESULT_ACCESS)]      = 0x0,
1628                         [C(RESULT_MISS)]        = 0x0,
1629                 },
1630         },
1631         [C(LL)] = {
1632                 [C(OP_READ)] = {
1633                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1634                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1635                 },
1636                 [C(OP_WRITE)] = {
1637                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1638                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1639                 },
1640                 [C(OP_PREFETCH)] = {
1641                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1642                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1643                 },
1644         },
1645         [C(DTLB)] = {
1646                 [C(OP_READ)] = {
1647                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1648                         [C(RESULT_MISS)]        = 0x0,
1649                 },
1650                 [C(OP_WRITE)] = {
1651                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1652                         [C(RESULT_MISS)]        = 0x0,
1653                 },
1654                 [C(OP_PREFETCH)] = {
1655                         [C(RESULT_ACCESS)]      = 0x0,
1656                         [C(RESULT_MISS)]        = 0x0,
1657                 },
1658         },
1659         [C(ITLB)] = {
1660                 [C(OP_READ)] = {
1661                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1662                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1663                 },
1664                 [C(OP_WRITE)] = {
1665                         [C(RESULT_ACCESS)]      = -1,
1666                         [C(RESULT_MISS)]        = -1,
1667                 },
1668                 [C(OP_PREFETCH)] = {
1669                         [C(RESULT_ACCESS)]      = -1,
1670                         [C(RESULT_MISS)]        = -1,
1671                 },
1672         },
1673         [C(BPU)] = {
1674                 [C(OP_READ)] = {
1675                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1676                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1677                 },
1678                 [C(OP_WRITE)] = {
1679                         [C(RESULT_ACCESS)]      = -1,
1680                         [C(RESULT_MISS)]        = -1,
1681                 },
1682                 [C(OP_PREFETCH)] = {
1683                         [C(RESULT_ACCESS)]      = -1,
1684                         [C(RESULT_MISS)]        = -1,
1685                 },
1686         },
1687 };
1688
1689 static __initconst const u64 glm_hw_cache_extra_regs
1690                                 [PERF_COUNT_HW_CACHE_MAX]
1691                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1692                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1693         [C(LL)] = {
1694                 [C(OP_READ)] = {
1695                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1696                                                   GLM_LLC_ACCESS,
1697                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1698                                                   GLM_LLC_MISS,
1699                 },
1700                 [C(OP_WRITE)] = {
1701                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1702                                                   GLM_LLC_ACCESS,
1703                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1704                                                   GLM_LLC_MISS,
1705                 },
1706                 [C(OP_PREFETCH)] = {
1707                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1708                                                   GLM_LLC_ACCESS,
1709                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1710                                                   GLM_LLC_MISS,
1711                 },
1712         },
1713 };
1714
1715 static __initconst const u64 glp_hw_cache_event_ids
1716                                 [PERF_COUNT_HW_CACHE_MAX]
1717                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1718                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1719         [C(L1D)] = {
1720                 [C(OP_READ)] = {
1721                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1722                         [C(RESULT_MISS)]        = 0x0,
1723                 },
1724                 [C(OP_WRITE)] = {
1725                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1726                         [C(RESULT_MISS)]        = 0x0,
1727                 },
1728                 [C(OP_PREFETCH)] = {
1729                         [C(RESULT_ACCESS)]      = 0x0,
1730                         [C(RESULT_MISS)]        = 0x0,
1731                 },
1732         },
1733         [C(L1I)] = {
1734                 [C(OP_READ)] = {
1735                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1736                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1737                 },
1738                 [C(OP_WRITE)] = {
1739                         [C(RESULT_ACCESS)]      = -1,
1740                         [C(RESULT_MISS)]        = -1,
1741                 },
1742                 [C(OP_PREFETCH)] = {
1743                         [C(RESULT_ACCESS)]      = 0x0,
1744                         [C(RESULT_MISS)]        = 0x0,
1745                 },
1746         },
1747         [C(LL)] = {
1748                 [C(OP_READ)] = {
1749                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1750                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1751                 },
1752                 [C(OP_WRITE)] = {
1753                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1754                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1755                 },
1756                 [C(OP_PREFETCH)] = {
1757                         [C(RESULT_ACCESS)]      = 0x0,
1758                         [C(RESULT_MISS)]        = 0x0,
1759                 },
1760         },
1761         [C(DTLB)] = {
1762                 [C(OP_READ)] = {
1763                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1764                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1765                 },
1766                 [C(OP_WRITE)] = {
1767                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1768                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1769                 },
1770                 [C(OP_PREFETCH)] = {
1771                         [C(RESULT_ACCESS)]      = 0x0,
1772                         [C(RESULT_MISS)]        = 0x0,
1773                 },
1774         },
1775         [C(ITLB)] = {
1776                 [C(OP_READ)] = {
1777                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1778                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1779                 },
1780                 [C(OP_WRITE)] = {
1781                         [C(RESULT_ACCESS)]      = -1,
1782                         [C(RESULT_MISS)]        = -1,
1783                 },
1784                 [C(OP_PREFETCH)] = {
1785                         [C(RESULT_ACCESS)]      = -1,
1786                         [C(RESULT_MISS)]        = -1,
1787                 },
1788         },
1789         [C(BPU)] = {
1790                 [C(OP_READ)] = {
1791                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1792                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1793                 },
1794                 [C(OP_WRITE)] = {
1795                         [C(RESULT_ACCESS)]      = -1,
1796                         [C(RESULT_MISS)]        = -1,
1797                 },
1798                 [C(OP_PREFETCH)] = {
1799                         [C(RESULT_ACCESS)]      = -1,
1800                         [C(RESULT_MISS)]        = -1,
1801                 },
1802         },
1803 };
1804
1805 static __initconst const u64 glp_hw_cache_extra_regs
1806                                 [PERF_COUNT_HW_CACHE_MAX]
1807                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1808                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1809         [C(LL)] = {
1810                 [C(OP_READ)] = {
1811                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1812                                                   GLM_LLC_ACCESS,
1813                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1814                                                   GLM_LLC_MISS,
1815                 },
1816                 [C(OP_WRITE)] = {
1817                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1818                                                   GLM_LLC_ACCESS,
1819                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1820                                                   GLM_LLC_MISS,
1821                 },
1822                 [C(OP_PREFETCH)] = {
1823                         [C(RESULT_ACCESS)]      = 0x0,
1824                         [C(RESULT_MISS)]        = 0x0,
1825                 },
1826         },
1827 };
1828
1829 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1830 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1831 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1832 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1833 #define KNL_DDR_LOCAL           BIT_ULL(23)
1834 #define KNL_DDR_FAR             BIT_ULL(24)
1835 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1836                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1837 #define KNL_L2_READ             SLM_DMND_READ
1838 #define KNL_L2_WRITE            SLM_DMND_WRITE
1839 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1840 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1841 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1842                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1843                                                   SNB_NON_DRAM)
1844
1845 static __initconst const u64 knl_hw_cache_extra_regs
1846                                 [PERF_COUNT_HW_CACHE_MAX]
1847                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1848                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1849         [C(LL)] = {
1850                 [C(OP_READ)] = {
1851                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1852                         [C(RESULT_MISS)]   = 0,
1853                 },
1854                 [C(OP_WRITE)] = {
1855                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1856                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1857                 },
1858                 [C(OP_PREFETCH)] = {
1859                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1860                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1861                 },
1862         },
1863 };
1864
1865 /*
1866  * Used from PMIs where the LBRs are already disabled.
1867  *
1868  * This function could be called consecutively. It is required to remain in
1869  * disabled state if called consecutively.
1870  *
1871  * During consecutive calls, the same disable value will be written to related
1872  * registers, so the PMU state remains unchanged.
1873  *
1874  * intel_bts events don't coexist with intel PMU's BTS events because of
1875  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1876  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1877  */
1878 static void __intel_pmu_disable_all(void)
1879 {
1880         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1881
1882         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1883
1884         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1885                 intel_pmu_disable_bts();
1886
1887         intel_pmu_pebs_disable_all();
1888 }
1889
1890 static void intel_pmu_disable_all(void)
1891 {
1892         __intel_pmu_disable_all();
1893         intel_pmu_lbr_disable_all();
1894 }
1895
1896 static void __intel_pmu_enable_all(int added, bool pmi)
1897 {
1898         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1899
1900         intel_pmu_pebs_enable_all();
1901         intel_pmu_lbr_enable_all(pmi);
1902         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1903                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1904
1905         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1906                 struct perf_event *event =
1907                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1908
1909                 if (WARN_ON_ONCE(!event))
1910                         return;
1911
1912                 intel_pmu_enable_bts(event->hw.config);
1913         }
1914 }
1915
1916 static void intel_pmu_enable_all(int added)
1917 {
1918         __intel_pmu_enable_all(added, false);
1919 }
1920
1921 /*
1922  * Workaround for:
1923  *   Intel Errata AAK100 (model 26)
1924  *   Intel Errata AAP53  (model 30)
1925  *   Intel Errata BD53   (model 44)
1926  *
1927  * The official story:
1928  *   These chips need to be 'reset' when adding counters by programming the
1929  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1930  *   in sequence on the same PMC or on different PMCs.
1931  *
1932  * In practise it appears some of these events do in fact count, and
1933  * we need to programm all 4 events.
1934  */
1935 static void intel_pmu_nhm_workaround(void)
1936 {
1937         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1938         static const unsigned long nhm_magic[4] = {
1939                 0x4300B5,
1940                 0x4300D2,
1941                 0x4300B1,
1942                 0x4300B1
1943         };
1944         struct perf_event *event;
1945         int i;
1946
1947         /*
1948          * The Errata requires below steps:
1949          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1950          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1951          *    the corresponding PMCx;
1952          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1953          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1954          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1955          */
1956
1957         /*
1958          * The real steps we choose are a little different from above.
1959          * A) To reduce MSR operations, we don't run step 1) as they
1960          *    are already cleared before this function is called;
1961          * B) Call x86_perf_event_update to save PMCx before configuring
1962          *    PERFEVTSELx with magic number;
1963          * C) With step 5), we do clear only when the PERFEVTSELx is
1964          *    not used currently.
1965          * D) Call x86_perf_event_set_period to restore PMCx;
1966          */
1967
1968         /* We always operate 4 pairs of PERF Counters */
1969         for (i = 0; i < 4; i++) {
1970                 event = cpuc->events[i];
1971                 if (event)
1972                         x86_perf_event_update(event);
1973         }
1974
1975         for (i = 0; i < 4; i++) {
1976                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1977                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1978         }
1979
1980         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1981         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1982
1983         for (i = 0; i < 4; i++) {
1984                 event = cpuc->events[i];
1985
1986                 if (event) {
1987                         x86_perf_event_set_period(event);
1988                         __x86_pmu_enable_event(&event->hw,
1989                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1990                 } else
1991                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1992         }
1993 }
1994
1995 static void intel_pmu_nhm_enable_all(int added)
1996 {
1997         if (added)
1998                 intel_pmu_nhm_workaround();
1999         intel_pmu_enable_all(added);
2000 }
2001
2002 static void enable_counter_freeze(void)
2003 {
2004         update_debugctlmsr(get_debugctlmsr() |
2005                         DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2006 }
2007
2008 static void disable_counter_freeze(void)
2009 {
2010         update_debugctlmsr(get_debugctlmsr() &
2011                         ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2012 }
2013
2014 static inline u64 intel_pmu_get_status(void)
2015 {
2016         u64 status;
2017
2018         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2019
2020         return status;
2021 }
2022
2023 static inline void intel_pmu_ack_status(u64 ack)
2024 {
2025         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2026 }
2027
2028 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2029 {
2030         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2031         u64 ctrl_val, mask;
2032
2033         mask = 0xfULL << (idx * 4);
2034
2035         rdmsrl(hwc->config_base, ctrl_val);
2036         ctrl_val &= ~mask;
2037         wrmsrl(hwc->config_base, ctrl_val);
2038 }
2039
2040 static inline bool event_is_checkpointed(struct perf_event *event)
2041 {
2042         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2043 }
2044
2045 static void intel_pmu_disable_event(struct perf_event *event)
2046 {
2047         struct hw_perf_event *hwc = &event->hw;
2048         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2049
2050         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2051                 intel_pmu_disable_bts();
2052                 intel_pmu_drain_bts_buffer();
2053                 return;
2054         }
2055
2056         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2057         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2058         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2059
2060         if (unlikely(event->attr.precise_ip))
2061                 intel_pmu_pebs_disable(event);
2062
2063         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2064                 intel_pmu_disable_fixed(hwc);
2065                 return;
2066         }
2067
2068         x86_pmu_disable_event(event);
2069 }
2070
2071 static void intel_pmu_del_event(struct perf_event *event)
2072 {
2073         if (needs_branch_stack(event))
2074                 intel_pmu_lbr_del(event);
2075         if (event->attr.precise_ip)
2076                 intel_pmu_pebs_del(event);
2077 }
2078
2079 static void intel_pmu_read_event(struct perf_event *event)
2080 {
2081         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2082                 intel_pmu_auto_reload_read(event);
2083         else
2084                 x86_perf_event_update(event);
2085 }
2086
2087 static void intel_pmu_enable_fixed(struct perf_event *event)
2088 {
2089         struct hw_perf_event *hwc = &event->hw;
2090         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2091         u64 ctrl_val, mask, bits = 0;
2092
2093         /*
2094          * Enable IRQ generation (0x8), if not PEBS,
2095          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2096          * if requested:
2097          */
2098         if (!event->attr.precise_ip)
2099                 bits |= 0x8;
2100         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2101                 bits |= 0x2;
2102         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2103                 bits |= 0x1;
2104
2105         /*
2106          * ANY bit is supported in v3 and up
2107          */
2108         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2109                 bits |= 0x4;
2110
2111         bits <<= (idx * 4);
2112         mask = 0xfULL << (idx * 4);
2113
2114         rdmsrl(hwc->config_base, ctrl_val);
2115         ctrl_val &= ~mask;
2116         ctrl_val |= bits;
2117         wrmsrl(hwc->config_base, ctrl_val);
2118 }
2119
2120 static void intel_pmu_enable_event(struct perf_event *event)
2121 {
2122         struct hw_perf_event *hwc = &event->hw;
2123         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2124
2125         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2126                 if (!__this_cpu_read(cpu_hw_events.enabled))
2127                         return;
2128
2129                 intel_pmu_enable_bts(hwc->config);
2130                 return;
2131         }
2132
2133         if (event->attr.exclude_host)
2134                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2135         if (event->attr.exclude_guest)
2136                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2137
2138         if (unlikely(event_is_checkpointed(event)))
2139                 cpuc->intel_cp_status |= (1ull << hwc->idx);
2140
2141         if (unlikely(event->attr.precise_ip))
2142                 intel_pmu_pebs_enable(event);
2143
2144         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2145                 intel_pmu_enable_fixed(event);
2146                 return;
2147         }
2148
2149         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2150 }
2151
2152 static void intel_pmu_add_event(struct perf_event *event)
2153 {
2154         if (event->attr.precise_ip)
2155                 intel_pmu_pebs_add(event);
2156         if (needs_branch_stack(event))
2157                 intel_pmu_lbr_add(event);
2158 }
2159
2160 /*
2161  * Save and restart an expired event. Called by NMI contexts,
2162  * so it has to be careful about preempting normal event ops:
2163  */
2164 int intel_pmu_save_and_restart(struct perf_event *event)
2165 {
2166         x86_perf_event_update(event);
2167         /*
2168          * For a checkpointed counter always reset back to 0.  This
2169          * avoids a situation where the counter overflows, aborts the
2170          * transaction and is then set back to shortly before the
2171          * overflow, and overflows and aborts again.
2172          */
2173         if (unlikely(event_is_checkpointed(event))) {
2174                 /* No race with NMIs because the counter should not be armed */
2175                 wrmsrl(event->hw.event_base, 0);
2176                 local64_set(&event->hw.prev_count, 0);
2177         }
2178         return x86_perf_event_set_period(event);
2179 }
2180
2181 static void intel_pmu_reset(void)
2182 {
2183         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2184         unsigned long flags;
2185         int idx;
2186
2187         if (!x86_pmu.num_counters)
2188                 return;
2189
2190         local_irq_save(flags);
2191
2192         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2193
2194         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2195                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2196                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2197         }
2198         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2199                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2200
2201         if (ds)
2202                 ds->bts_index = ds->bts_buffer_base;
2203
2204         /* Ack all overflows and disable fixed counters */
2205         if (x86_pmu.version >= 2) {
2206                 intel_pmu_ack_status(intel_pmu_get_status());
2207                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2208         }
2209
2210         /* Reset LBRs and LBR freezing */
2211         if (x86_pmu.lbr_nr) {
2212                 update_debugctlmsr(get_debugctlmsr() &
2213                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2214         }
2215
2216         local_irq_restore(flags);
2217 }
2218
2219 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2220 {
2221         struct perf_sample_data data;
2222         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2223         int bit;
2224         int handled = 0;
2225
2226         inc_irq_stat(apic_perf_irqs);
2227
2228         /*
2229          * Ignore a range of extra bits in status that do not indicate
2230          * overflow by themselves.
2231          */
2232         status &= ~(GLOBAL_STATUS_COND_CHG |
2233                     GLOBAL_STATUS_ASIF |
2234                     GLOBAL_STATUS_LBRS_FROZEN);
2235         if (!status)
2236                 return 0;
2237         /*
2238          * In case multiple PEBS events are sampled at the same time,
2239          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2240          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2241          * having their bits set in the status register. This is a sign
2242          * that there was at least one PEBS record pending at the time
2243          * of the PMU interrupt. PEBS counters must only be processed
2244          * via the drain_pebs() calls and not via the regular sample
2245          * processing loop coming after that the function, otherwise
2246          * phony regular samples may be generated in the sampling buffer
2247          * not marked with the EXACT tag. Another possibility is to have
2248          * one PEBS event and at least one non-PEBS event whic hoverflows
2249          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2250          * not be set, yet the overflow status bit for the PEBS counter will
2251          * be on Skylake.
2252          *
2253          * To avoid this problem, we systematically ignore the PEBS-enabled
2254          * counters from the GLOBAL_STATUS mask and we always process PEBS
2255          * events via drain_pebs().
2256          */
2257         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2258                 status &= ~cpuc->pebs_enabled;
2259         else
2260                 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2261
2262         /*
2263          * PEBS overflow sets bit 62 in the global status register
2264          */
2265         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2266                 handled++;
2267                 x86_pmu.drain_pebs(regs);
2268                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2269         }
2270
2271         /*
2272          * Intel PT
2273          */
2274         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2275                 handled++;
2276                 intel_pt_interrupt();
2277         }
2278
2279         /*
2280          * Checkpointed counters can lead to 'spurious' PMIs because the
2281          * rollback caused by the PMI will have cleared the overflow status
2282          * bit. Therefore always force probe these counters.
2283          */
2284         status |= cpuc->intel_cp_status;
2285
2286         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2287                 struct perf_event *event = cpuc->events[bit];
2288
2289                 handled++;
2290
2291                 if (!test_bit(bit, cpuc->active_mask))
2292                         continue;
2293
2294                 if (!intel_pmu_save_and_restart(event))
2295                         continue;
2296
2297                 perf_sample_data_init(&data, 0, event->hw.last_period);
2298
2299                 if (has_branch_stack(event))
2300                         data.br_stack = &cpuc->lbr_stack;
2301
2302                 if (perf_event_overflow(event, &data, regs))
2303                         x86_pmu_stop(event, 0);
2304         }
2305
2306         return handled;
2307 }
2308
2309 static bool disable_counter_freezing;
2310 static int __init intel_perf_counter_freezing_setup(char *s)
2311 {
2312         disable_counter_freezing = true;
2313         pr_info("Intel PMU Counter freezing feature disabled\n");
2314         return 1;
2315 }
2316 __setup("disable_counter_freezing", intel_perf_counter_freezing_setup);
2317
2318 /*
2319  * Simplified handler for Arch Perfmon v4:
2320  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2321  * This is done automatically on PMU ack.
2322  * - Ack the PMU only after the APIC.
2323  */
2324
2325 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2326 {
2327         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2328         int handled = 0;
2329         bool bts = false;
2330         u64 status;
2331         int pmu_enabled = cpuc->enabled;
2332         int loops = 0;
2333
2334         /* PMU has been disabled because of counter freezing */
2335         cpuc->enabled = 0;
2336         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2337                 bts = true;
2338                 intel_bts_disable_local();
2339                 handled = intel_pmu_drain_bts_buffer();
2340                 handled += intel_bts_interrupt();
2341         }
2342         status = intel_pmu_get_status();
2343         if (!status)
2344                 goto done;
2345 again:
2346         intel_pmu_lbr_read();
2347         if (++loops > 100) {
2348                 static bool warned;
2349
2350                 if (!warned) {
2351                         WARN(1, "perfevents: irq loop stuck!\n");
2352                         perf_event_print_debug();
2353                         warned = true;
2354                 }
2355                 intel_pmu_reset();
2356                 goto done;
2357         }
2358
2359
2360         handled += handle_pmi_common(regs, status);
2361 done:
2362         /* Ack the PMI in the APIC */
2363         apic_write(APIC_LVTPC, APIC_DM_NMI);
2364
2365         /*
2366          * The counters start counting immediately while ack the status.
2367          * Make it as close as possible to IRET. This avoids bogus
2368          * freezing on Skylake CPUs.
2369          */
2370         if (status) {
2371                 intel_pmu_ack_status(status);
2372         } else {
2373                 /*
2374                  * CPU may issues two PMIs very close to each other.
2375                  * When the PMI handler services the first one, the
2376                  * GLOBAL_STATUS is already updated to reflect both.
2377                  * When it IRETs, the second PMI is immediately
2378                  * handled and it sees clear status. At the meantime,
2379                  * there may be a third PMI, because the freezing bit
2380                  * isn't set since the ack in first PMI handlers.
2381                  * Double check if there is more work to be done.
2382                  */
2383                 status = intel_pmu_get_status();
2384                 if (status)
2385                         goto again;
2386         }
2387
2388         if (bts)
2389                 intel_bts_enable_local();
2390         cpuc->enabled = pmu_enabled;
2391         return handled;
2392 }
2393
2394 /*
2395  * This handler is triggered by the local APIC, so the APIC IRQ handling
2396  * rules apply:
2397  */
2398 static int intel_pmu_handle_irq(struct pt_regs *regs)
2399 {
2400         struct cpu_hw_events *cpuc;
2401         int loops;
2402         u64 status;
2403         int handled;
2404         int pmu_enabled;
2405
2406         cpuc = this_cpu_ptr(&cpu_hw_events);
2407
2408         /*
2409          * Save the PMU state.
2410          * It needs to be restored when leaving the handler.
2411          */
2412         pmu_enabled = cpuc->enabled;
2413         /*
2414          * No known reason to not always do late ACK,
2415          * but just in case do it opt-in.
2416          */
2417         if (!x86_pmu.late_ack)
2418                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2419         intel_bts_disable_local();
2420         cpuc->enabled = 0;
2421         __intel_pmu_disable_all();
2422         handled = intel_pmu_drain_bts_buffer();
2423         handled += intel_bts_interrupt();
2424         status = intel_pmu_get_status();
2425         if (!status)
2426                 goto done;
2427
2428         loops = 0;
2429 again:
2430         intel_pmu_lbr_read();
2431         intel_pmu_ack_status(status);
2432         if (++loops > 100) {
2433                 static bool warned;
2434
2435                 if (!warned) {
2436                         WARN(1, "perfevents: irq loop stuck!\n");
2437                         perf_event_print_debug();
2438                         warned = true;
2439                 }
2440                 intel_pmu_reset();
2441                 goto done;
2442         }
2443
2444         handled += handle_pmi_common(regs, status);
2445
2446         /*
2447          * Repeat if there is more work to be done:
2448          */
2449         status = intel_pmu_get_status();
2450         if (status)
2451                 goto again;
2452
2453 done:
2454         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2455         cpuc->enabled = pmu_enabled;
2456         if (pmu_enabled)
2457                 __intel_pmu_enable_all(0, true);
2458         intel_bts_enable_local();
2459
2460         /*
2461          * Only unmask the NMI after the overflow counters
2462          * have been reset. This avoids spurious NMIs on
2463          * Haswell CPUs.
2464          */
2465         if (x86_pmu.late_ack)
2466                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2467         return handled;
2468 }
2469
2470 static struct event_constraint *
2471 intel_bts_constraints(struct perf_event *event)
2472 {
2473         struct hw_perf_event *hwc = &event->hw;
2474         unsigned int hw_event, bts_event;
2475
2476         if (event->attr.freq)
2477                 return NULL;
2478
2479         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2480         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2481
2482         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2483                 return &bts_constraint;
2484
2485         return NULL;
2486 }
2487
2488 static int intel_alt_er(int idx, u64 config)
2489 {
2490         int alt_idx = idx;
2491
2492         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2493                 return idx;
2494
2495         if (idx == EXTRA_REG_RSP_0)
2496                 alt_idx = EXTRA_REG_RSP_1;
2497
2498         if (idx == EXTRA_REG_RSP_1)
2499                 alt_idx = EXTRA_REG_RSP_0;
2500
2501         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2502                 return idx;
2503
2504         return alt_idx;
2505 }
2506
2507 static void intel_fixup_er(struct perf_event *event, int idx)
2508 {
2509         event->hw.extra_reg.idx = idx;
2510
2511         if (idx == EXTRA_REG_RSP_0) {
2512                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2513                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2514                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2515         } else if (idx == EXTRA_REG_RSP_1) {
2516                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2517                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2518                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2519         }
2520 }
2521
2522 /*
2523  * manage allocation of shared extra msr for certain events
2524  *
2525  * sharing can be:
2526  * per-cpu: to be shared between the various events on a single PMU
2527  * per-core: per-cpu + shared by HT threads
2528  */
2529 static struct event_constraint *
2530 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2531                                    struct perf_event *event,
2532                                    struct hw_perf_event_extra *reg)
2533 {
2534         struct event_constraint *c = &emptyconstraint;
2535         struct er_account *era;
2536         unsigned long flags;
2537         int idx = reg->idx;
2538
2539         /*
2540          * reg->alloc can be set due to existing state, so for fake cpuc we
2541          * need to ignore this, otherwise we might fail to allocate proper fake
2542          * state for this extra reg constraint. Also see the comment below.
2543          */
2544         if (reg->alloc && !cpuc->is_fake)
2545                 return NULL; /* call x86_get_event_constraint() */
2546
2547 again:
2548         era = &cpuc->shared_regs->regs[idx];
2549         /*
2550          * we use spin_lock_irqsave() to avoid lockdep issues when
2551          * passing a fake cpuc
2552          */
2553         raw_spin_lock_irqsave(&era->lock, flags);
2554
2555         if (!atomic_read(&era->ref) || era->config == reg->config) {
2556
2557                 /*
2558                  * If its a fake cpuc -- as per validate_{group,event}() we
2559                  * shouldn't touch event state and we can avoid doing so
2560                  * since both will only call get_event_constraints() once
2561                  * on each event, this avoids the need for reg->alloc.
2562                  *
2563                  * Not doing the ER fixup will only result in era->reg being
2564                  * wrong, but since we won't actually try and program hardware
2565                  * this isn't a problem either.
2566                  */
2567                 if (!cpuc->is_fake) {
2568                         if (idx != reg->idx)
2569                                 intel_fixup_er(event, idx);
2570
2571                         /*
2572                          * x86_schedule_events() can call get_event_constraints()
2573                          * multiple times on events in the case of incremental
2574                          * scheduling(). reg->alloc ensures we only do the ER
2575                          * allocation once.
2576                          */
2577                         reg->alloc = 1;
2578                 }
2579
2580                 /* lock in msr value */
2581                 era->config = reg->config;
2582                 era->reg = reg->reg;
2583
2584                 /* one more user */
2585                 atomic_inc(&era->ref);
2586
2587                 /*
2588                  * need to call x86_get_event_constraint()
2589                  * to check if associated event has constraints
2590                  */
2591                 c = NULL;
2592         } else {
2593                 idx = intel_alt_er(idx, reg->config);
2594                 if (idx != reg->idx) {
2595                         raw_spin_unlock_irqrestore(&era->lock, flags);
2596                         goto again;
2597                 }
2598         }
2599         raw_spin_unlock_irqrestore(&era->lock, flags);
2600
2601         return c;
2602 }
2603
2604 static void
2605 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2606                                    struct hw_perf_event_extra *reg)
2607 {
2608         struct er_account *era;
2609
2610         /*
2611          * Only put constraint if extra reg was actually allocated. Also takes
2612          * care of event which do not use an extra shared reg.
2613          *
2614          * Also, if this is a fake cpuc we shouldn't touch any event state
2615          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2616          * either since it'll be thrown out.
2617          */
2618         if (!reg->alloc || cpuc->is_fake)
2619                 return;
2620
2621         era = &cpuc->shared_regs->regs[reg->idx];
2622
2623         /* one fewer user */
2624         atomic_dec(&era->ref);
2625
2626         /* allocate again next time */
2627         reg->alloc = 0;
2628 }
2629
2630 static struct event_constraint *
2631 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2632                               struct perf_event *event)
2633 {
2634         struct event_constraint *c = NULL, *d;
2635         struct hw_perf_event_extra *xreg, *breg;
2636
2637         xreg = &event->hw.extra_reg;
2638         if (xreg->idx != EXTRA_REG_NONE) {
2639                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2640                 if (c == &emptyconstraint)
2641                         return c;
2642         }
2643         breg = &event->hw.branch_reg;
2644         if (breg->idx != EXTRA_REG_NONE) {
2645                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2646                 if (d == &emptyconstraint) {
2647                         __intel_shared_reg_put_constraints(cpuc, xreg);
2648                         c = d;
2649                 }
2650         }
2651         return c;
2652 }
2653
2654 struct event_constraint *
2655 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2656                           struct perf_event *event)
2657 {
2658         struct event_constraint *c;
2659
2660         if (x86_pmu.event_constraints) {
2661                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2662                         if ((event->hw.config & c->cmask) == c->code) {
2663                                 event->hw.flags |= c->flags;
2664                                 return c;
2665                         }
2666                 }
2667         }
2668
2669         return &unconstrained;
2670 }
2671
2672 static struct event_constraint *
2673 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2674                             struct perf_event *event)
2675 {
2676         struct event_constraint *c;
2677
2678         c = intel_bts_constraints(event);
2679         if (c)
2680                 return c;
2681
2682         c = intel_shared_regs_constraints(cpuc, event);
2683         if (c)
2684                 return c;
2685
2686         c = intel_pebs_constraints(event);
2687         if (c)
2688                 return c;
2689
2690         return x86_get_event_constraints(cpuc, idx, event);
2691 }
2692
2693 static void
2694 intel_start_scheduling(struct cpu_hw_events *cpuc)
2695 {
2696         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2697         struct intel_excl_states *xl;
2698         int tid = cpuc->excl_thread_id;
2699
2700         /*
2701          * nothing needed if in group validation mode
2702          */
2703         if (cpuc->is_fake || !is_ht_workaround_enabled())
2704                 return;
2705
2706         /*
2707          * no exclusion needed
2708          */
2709         if (WARN_ON_ONCE(!excl_cntrs))
2710                 return;
2711
2712         xl = &excl_cntrs->states[tid];
2713
2714         xl->sched_started = true;
2715         /*
2716          * lock shared state until we are done scheduling
2717          * in stop_event_scheduling()
2718          * makes scheduling appear as a transaction
2719          */
2720         raw_spin_lock(&excl_cntrs->lock);
2721 }
2722
2723 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2724 {
2725         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2726         struct event_constraint *c = cpuc->event_constraint[idx];
2727         struct intel_excl_states *xl;
2728         int tid = cpuc->excl_thread_id;
2729
2730         if (cpuc->is_fake || !is_ht_workaround_enabled())
2731                 return;
2732
2733         if (WARN_ON_ONCE(!excl_cntrs))
2734                 return;
2735
2736         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2737                 return;
2738
2739         xl = &excl_cntrs->states[tid];
2740
2741         lockdep_assert_held(&excl_cntrs->lock);
2742
2743         if (c->flags & PERF_X86_EVENT_EXCL)
2744                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2745         else
2746                 xl->state[cntr] = INTEL_EXCL_SHARED;
2747 }
2748
2749 static void
2750 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2751 {
2752         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2753         struct intel_excl_states *xl;
2754         int tid = cpuc->excl_thread_id;
2755
2756         /*
2757          * nothing needed if in group validation mode
2758          */
2759         if (cpuc->is_fake || !is_ht_workaround_enabled())
2760                 return;
2761         /*
2762          * no exclusion needed
2763          */
2764         if (WARN_ON_ONCE(!excl_cntrs))
2765                 return;
2766
2767         xl = &excl_cntrs->states[tid];
2768
2769         xl->sched_started = false;
2770         /*
2771          * release shared state lock (acquired in intel_start_scheduling())
2772          */
2773         raw_spin_unlock(&excl_cntrs->lock);
2774 }
2775
2776 static struct event_constraint *
2777 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2778                            int idx, struct event_constraint *c)
2779 {
2780         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2781         struct intel_excl_states *xlo;
2782         int tid = cpuc->excl_thread_id;
2783         int is_excl, i;
2784
2785         /*
2786          * validating a group does not require
2787          * enforcing cross-thread  exclusion
2788          */
2789         if (cpuc->is_fake || !is_ht_workaround_enabled())
2790                 return c;
2791
2792         /*
2793          * no exclusion needed
2794          */
2795         if (WARN_ON_ONCE(!excl_cntrs))
2796                 return c;
2797
2798         /*
2799          * because we modify the constraint, we need
2800          * to make a copy. Static constraints come
2801          * from static const tables.
2802          *
2803          * only needed when constraint has not yet
2804          * been cloned (marked dynamic)
2805          */
2806         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2807                 struct event_constraint *cx;
2808
2809                 /*
2810                  * grab pre-allocated constraint entry
2811                  */
2812                 cx = &cpuc->constraint_list[idx];
2813
2814                 /*
2815                  * initialize dynamic constraint
2816                  * with static constraint
2817                  */
2818                 *cx = *c;
2819
2820                 /*
2821                  * mark constraint as dynamic, so we
2822                  * can free it later on
2823                  */
2824                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2825                 c = cx;
2826         }
2827
2828         /*
2829          * From here on, the constraint is dynamic.
2830          * Either it was just allocated above, or it
2831          * was allocated during a earlier invocation
2832          * of this function
2833          */
2834
2835         /*
2836          * state of sibling HT
2837          */
2838         xlo = &excl_cntrs->states[tid ^ 1];
2839
2840         /*
2841          * event requires exclusive counter access
2842          * across HT threads
2843          */
2844         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2845         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2846                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2847                 if (!cpuc->n_excl++)
2848                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2849         }
2850
2851         /*
2852          * Modify static constraint with current dynamic
2853          * state of thread
2854          *
2855          * EXCLUSIVE: sibling counter measuring exclusive event
2856          * SHARED   : sibling counter measuring non-exclusive event
2857          * UNUSED   : sibling counter unused
2858          */
2859         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2860                 /*
2861                  * exclusive event in sibling counter
2862                  * our corresponding counter cannot be used
2863                  * regardless of our event
2864                  */
2865                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2866                         __clear_bit(i, c->idxmsk);
2867                 /*
2868                  * if measuring an exclusive event, sibling
2869                  * measuring non-exclusive, then counter cannot
2870                  * be used
2871                  */
2872                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2873                         __clear_bit(i, c->idxmsk);
2874         }
2875
2876         /*
2877          * recompute actual bit weight for scheduling algorithm
2878          */
2879         c->weight = hweight64(c->idxmsk64);
2880
2881         /*
2882          * if we return an empty mask, then switch
2883          * back to static empty constraint to avoid
2884          * the cost of freeing later on
2885          */
2886         if (c->weight == 0)
2887                 c = &emptyconstraint;
2888
2889         return c;
2890 }
2891
2892 static struct event_constraint *
2893 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2894                             struct perf_event *event)
2895 {
2896         struct event_constraint *c1 = NULL;
2897         struct event_constraint *c2;
2898
2899         if (idx >= 0) /* fake does < 0 */
2900                 c1 = cpuc->event_constraint[idx];
2901
2902         /*
2903          * first time only
2904          * - static constraint: no change across incremental scheduling calls
2905          * - dynamic constraint: handled by intel_get_excl_constraints()
2906          */
2907         c2 = __intel_get_event_constraints(cpuc, idx, event);
2908         if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2909                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2910                 c1->weight = c2->weight;
2911                 c2 = c1;
2912         }
2913
2914         if (cpuc->excl_cntrs)
2915                 return intel_get_excl_constraints(cpuc, event, idx, c2);
2916
2917         return c2;
2918 }
2919
2920 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2921                 struct perf_event *event)
2922 {
2923         struct hw_perf_event *hwc = &event->hw;
2924         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2925         int tid = cpuc->excl_thread_id;
2926         struct intel_excl_states *xl;
2927
2928         /*
2929          * nothing needed if in group validation mode
2930          */
2931         if (cpuc->is_fake)
2932                 return;
2933
2934         if (WARN_ON_ONCE(!excl_cntrs))
2935                 return;
2936
2937         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2938                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2939                 if (!--cpuc->n_excl)
2940                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2941         }
2942
2943         /*
2944          * If event was actually assigned, then mark the counter state as
2945          * unused now.
2946          */
2947         if (hwc->idx >= 0) {
2948                 xl = &excl_cntrs->states[tid];
2949
2950                 /*
2951                  * put_constraint may be called from x86_schedule_events()
2952                  * which already has the lock held so here make locking
2953                  * conditional.
2954                  */
2955                 if (!xl->sched_started)
2956                         raw_spin_lock(&excl_cntrs->lock);
2957
2958                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2959
2960                 if (!xl->sched_started)
2961                         raw_spin_unlock(&excl_cntrs->lock);
2962         }
2963 }
2964
2965 static void
2966 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2967                                         struct perf_event *event)
2968 {
2969         struct hw_perf_event_extra *reg;
2970
2971         reg = &event->hw.extra_reg;
2972         if (reg->idx != EXTRA_REG_NONE)
2973                 __intel_shared_reg_put_constraints(cpuc, reg);
2974
2975         reg = &event->hw.branch_reg;
2976         if (reg->idx != EXTRA_REG_NONE)
2977                 __intel_shared_reg_put_constraints(cpuc, reg);
2978 }
2979
2980 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2981                                         struct perf_event *event)
2982 {
2983         intel_put_shared_regs_event_constraints(cpuc, event);
2984
2985         /*
2986          * is PMU has exclusive counter restrictions, then
2987          * all events are subject to and must call the
2988          * put_excl_constraints() routine
2989          */
2990         if (cpuc->excl_cntrs)
2991                 intel_put_excl_constraints(cpuc, event);
2992 }
2993
2994 static void intel_pebs_aliases_core2(struct perf_event *event)
2995 {
2996         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2997                 /*
2998                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2999                  * (0x003c) so that we can use it with PEBS.
3000                  *
3001                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3002                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3003                  * (0x00c0), which is a PEBS capable event, to get the same
3004                  * count.
3005                  *
3006                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3007                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3008                  * larger than the maximum number of instructions that can be
3009                  * retired per cycle (4) and then inverting the condition, we
3010                  * count all cycles that retire 16 or less instructions, which
3011                  * is every cycle.
3012                  *
3013                  * Thereby we gain a PEBS capable cycle counter.
3014                  */
3015                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3016
3017                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3018                 event->hw.config = alt_config;
3019         }
3020 }
3021
3022 static void intel_pebs_aliases_snb(struct perf_event *event)
3023 {
3024         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3025                 /*
3026                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3027                  * (0x003c) so that we can use it with PEBS.
3028                  *
3029                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3030                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3031                  * (0x01c2), which is a PEBS capable event, to get the same
3032                  * count.
3033                  *
3034                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3035                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3036                  * larger than the maximum number of micro-ops that can be
3037                  * retired per cycle (4) and then inverting the condition, we
3038                  * count all cycles that retire 16 or less micro-ops, which
3039                  * is every cycle.
3040                  *
3041                  * Thereby we gain a PEBS capable cycle counter.
3042                  */
3043                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3044
3045                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3046                 event->hw.config = alt_config;
3047         }
3048 }
3049
3050 static void intel_pebs_aliases_precdist(struct perf_event *event)
3051 {
3052         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3053                 /*
3054                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3055                  * (0x003c) so that we can use it with PEBS.
3056                  *
3057                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3058                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3059                  * (0x01c0), which is a PEBS capable event, to get the same
3060                  * count.
3061                  *
3062                  * The PREC_DIST event has special support to minimize sample
3063                  * shadowing effects. One drawback is that it can be
3064                  * only programmed on counter 1, but that seems like an
3065                  * acceptable trade off.
3066                  */
3067                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3068
3069                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3070                 event->hw.config = alt_config;
3071         }
3072 }
3073
3074 static void intel_pebs_aliases_ivb(struct perf_event *event)
3075 {
3076         if (event->attr.precise_ip < 3)
3077                 return intel_pebs_aliases_snb(event);
3078         return intel_pebs_aliases_precdist(event);
3079 }
3080
3081 static void intel_pebs_aliases_skl(struct perf_event *event)
3082 {
3083         if (event->attr.precise_ip < 3)
3084                 return intel_pebs_aliases_core2(event);
3085         return intel_pebs_aliases_precdist(event);
3086 }
3087
3088 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3089 {
3090         unsigned long flags = x86_pmu.large_pebs_flags;
3091
3092         if (event->attr.use_clockid)
3093                 flags &= ~PERF_SAMPLE_TIME;
3094         if (!event->attr.exclude_kernel)
3095                 flags &= ~PERF_SAMPLE_REGS_USER;
3096         if (event->attr.sample_regs_user & ~PEBS_REGS)
3097                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3098         return flags;
3099 }
3100
3101 static int intel_pmu_hw_config(struct perf_event *event)
3102 {
3103         int ret = x86_pmu_hw_config(event);
3104
3105         if (ret)
3106                 return ret;
3107
3108         if (event->attr.precise_ip) {
3109                 if (!event->attr.freq) {
3110                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3111                         if (!(event->attr.sample_type &
3112                               ~intel_pmu_large_pebs_flags(event)))
3113                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3114                 }
3115                 if (x86_pmu.pebs_aliases)
3116                         x86_pmu.pebs_aliases(event);
3117
3118                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3119                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3120         }
3121
3122         if (needs_branch_stack(event)) {
3123                 ret = intel_pmu_setup_lbr_filter(event);
3124                 if (ret)
3125                         return ret;
3126
3127                 /*
3128                  * BTS is set up earlier in this path, so don't account twice
3129                  */
3130                 if (!intel_pmu_has_bts(event)) {
3131                         /* disallow lbr if conflicting events are present */
3132                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3133                                 return -EBUSY;
3134
3135                         event->destroy = hw_perf_lbr_event_destroy;
3136                 }
3137         }
3138
3139         if (event->attr.type != PERF_TYPE_RAW)
3140                 return 0;
3141
3142         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3143                 return 0;
3144
3145         if (x86_pmu.version < 3)
3146                 return -EINVAL;
3147
3148         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3149                 return -EACCES;
3150
3151         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3152
3153         return 0;
3154 }
3155
3156 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3157 {
3158         if (x86_pmu.guest_get_msrs)
3159                 return x86_pmu.guest_get_msrs(nr);
3160         *nr = 0;
3161         return NULL;
3162 }
3163 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3164
3165 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3166 {
3167         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3168         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3169
3170         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3171         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3172         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3173         /*
3174          * If PMU counter has PEBS enabled it is not enough to disable counter
3175          * on a guest entry since PEBS memory write can overshoot guest entry
3176          * and corrupt guest memory. Disabling PEBS solves the problem.
3177          */
3178         arr[1].msr = MSR_IA32_PEBS_ENABLE;
3179         arr[1].host = cpuc->pebs_enabled;
3180         arr[1].guest = 0;
3181
3182         *nr = 2;
3183         return arr;
3184 }
3185
3186 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3187 {
3188         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3189         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3190         int idx;
3191
3192         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3193                 struct perf_event *event = cpuc->events[idx];
3194
3195                 arr[idx].msr = x86_pmu_config_addr(idx);
3196                 arr[idx].host = arr[idx].guest = 0;
3197
3198                 if (!test_bit(idx, cpuc->active_mask))
3199                         continue;
3200
3201                 arr[idx].host = arr[idx].guest =
3202                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3203
3204                 if (event->attr.exclude_host)
3205                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3206                 else if (event->attr.exclude_guest)
3207                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3208         }
3209
3210         *nr = x86_pmu.num_counters;
3211         return arr;
3212 }
3213
3214 static void core_pmu_enable_event(struct perf_event *event)
3215 {
3216         if (!event->attr.exclude_host)
3217                 x86_pmu_enable_event(event);
3218 }
3219
3220 static void core_pmu_enable_all(int added)
3221 {
3222         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3223         int idx;
3224
3225         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3226                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3227
3228                 if (!test_bit(idx, cpuc->active_mask) ||
3229                                 cpuc->events[idx]->attr.exclude_host)
3230                         continue;
3231
3232                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3233         }
3234 }
3235
3236 static int hsw_hw_config(struct perf_event *event)
3237 {
3238         int ret = intel_pmu_hw_config(event);
3239
3240         if (ret)
3241                 return ret;
3242         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3243                 return 0;
3244         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3245
3246         /*
3247          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3248          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3249          * this combination.
3250          */
3251         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3252              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3253               event->attr.precise_ip > 0))
3254                 return -EOPNOTSUPP;
3255
3256         if (event_is_checkpointed(event)) {
3257                 /*
3258                  * Sampling of checkpointed events can cause situations where
3259                  * the CPU constantly aborts because of a overflow, which is
3260                  * then checkpointed back and ignored. Forbid checkpointing
3261                  * for sampling.
3262                  *
3263                  * But still allow a long sampling period, so that perf stat
3264                  * from KVM works.
3265                  */
3266                 if (event->attr.sample_period > 0 &&
3267                     event->attr.sample_period < 0x7fffffff)
3268                         return -EOPNOTSUPP;
3269         }
3270         return 0;
3271 }
3272
3273 static struct event_constraint counter0_constraint =
3274                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3275
3276 static struct event_constraint counter2_constraint =
3277                         EVENT_CONSTRAINT(0, 0x4, 0);
3278
3279 static struct event_constraint *
3280 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3281                           struct perf_event *event)
3282 {
3283         struct event_constraint *c;
3284
3285         c = intel_get_event_constraints(cpuc, idx, event);
3286
3287         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3288         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3289                 if (c->idxmsk64 & (1U << 2))
3290                         return &counter2_constraint;
3291                 return &emptyconstraint;
3292         }
3293
3294         return c;
3295 }
3296
3297 static struct event_constraint *
3298 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3299                           struct perf_event *event)
3300 {
3301         struct event_constraint *c;
3302
3303         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3304         if (event->attr.precise_ip == 3)
3305                 return &counter0_constraint;
3306
3307         c = intel_get_event_constraints(cpuc, idx, event);
3308
3309         return c;
3310 }
3311
3312 /*
3313  * Broadwell:
3314  *
3315  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3316  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3317  * the two to enforce a minimum period of 128 (the smallest value that has bits
3318  * 0-5 cleared and >= 100).
3319  *
3320  * Because of how the code in x86_perf_event_set_period() works, the truncation
3321  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3322  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3323  *
3324  * Therefore the effective (average) period matches the requested period,
3325  * despite coarser hardware granularity.
3326  */
3327 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3328 {
3329         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3330                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
3331                 if (left < 128)
3332                         left = 128;
3333                 left &= ~0x3fULL;
3334         }
3335         return left;
3336 }
3337
3338 PMU_FORMAT_ATTR(event,  "config:0-7"    );
3339 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3340 PMU_FORMAT_ATTR(edge,   "config:18"     );
3341 PMU_FORMAT_ATTR(pc,     "config:19"     );
3342 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3343 PMU_FORMAT_ATTR(inv,    "config:23"     );
3344 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3345 PMU_FORMAT_ATTR(in_tx,  "config:32");
3346 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3347
3348 static struct attribute *intel_arch_formats_attr[] = {
3349         &format_attr_event.attr,
3350         &format_attr_umask.attr,
3351         &format_attr_edge.attr,
3352         &format_attr_pc.attr,
3353         &format_attr_inv.attr,
3354         &format_attr_cmask.attr,
3355         NULL,
3356 };
3357
3358 ssize_t intel_event_sysfs_show(char *page, u64 config)
3359 {
3360         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3361
3362         return x86_event_sysfs_show(page, config, event);
3363 }
3364
3365 struct intel_shared_regs *allocate_shared_regs(int cpu)
3366 {
3367         struct intel_shared_regs *regs;
3368         int i;
3369
3370         regs = kzalloc_node(sizeof(struct intel_shared_regs),
3371                             GFP_KERNEL, cpu_to_node(cpu));
3372         if (regs) {
3373                 /*
3374                  * initialize the locks to keep lockdep happy
3375                  */
3376                 for (i = 0; i < EXTRA_REG_MAX; i++)
3377                         raw_spin_lock_init(&regs->regs[i].lock);
3378
3379                 regs->core_id = -1;
3380         }
3381         return regs;
3382 }
3383
3384 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3385 {
3386         struct intel_excl_cntrs *c;
3387
3388         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3389                          GFP_KERNEL, cpu_to_node(cpu));
3390         if (c) {
3391                 raw_spin_lock_init(&c->lock);
3392                 c->core_id = -1;
3393         }
3394         return c;
3395 }
3396
3397 static int intel_pmu_cpu_prepare(int cpu)
3398 {
3399         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3400
3401         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3402                 cpuc->shared_regs = allocate_shared_regs(cpu);
3403                 if (!cpuc->shared_regs)
3404                         goto err;
3405         }
3406
3407         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3408                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3409
3410                 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3411                 if (!cpuc->constraint_list)
3412                         goto err_shared_regs;
3413
3414                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3415                 if (!cpuc->excl_cntrs)
3416                         goto err_constraint_list;
3417
3418                 cpuc->excl_thread_id = 0;
3419         }
3420
3421         return 0;
3422
3423 err_constraint_list:
3424         kfree(cpuc->constraint_list);
3425         cpuc->constraint_list = NULL;
3426
3427 err_shared_regs:
3428         kfree(cpuc->shared_regs);
3429         cpuc->shared_regs = NULL;
3430
3431 err:
3432         return -ENOMEM;
3433 }
3434
3435 static void flip_smm_bit(void *data)
3436 {
3437         unsigned long set = *(unsigned long *)data;
3438
3439         if (set > 0) {
3440                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3441                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3442         } else {
3443                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3444                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3445         }
3446 }
3447
3448 static void intel_pmu_cpu_starting(int cpu)
3449 {
3450         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3451         int core_id = topology_core_id(cpu);
3452         int i;
3453
3454         init_debug_store_on_cpu(cpu);
3455         /*
3456          * Deal with CPUs that don't clear their LBRs on power-up.
3457          */
3458         intel_pmu_lbr_reset();
3459
3460         cpuc->lbr_sel = NULL;
3461
3462         if (x86_pmu.version > 1)
3463                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3464
3465         if (x86_pmu.counter_freezing)
3466                 enable_counter_freeze();
3467
3468         if (!cpuc->shared_regs)
3469                 return;
3470
3471         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3472                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3473                         struct intel_shared_regs *pc;
3474
3475                         pc = per_cpu(cpu_hw_events, i).shared_regs;
3476                         if (pc && pc->core_id == core_id) {
3477                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3478                                 cpuc->shared_regs = pc;
3479                                 break;
3480                         }
3481                 }
3482                 cpuc->shared_regs->core_id = core_id;
3483                 cpuc->shared_regs->refcnt++;
3484         }
3485
3486         if (x86_pmu.lbr_sel_map)
3487                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3488
3489         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3490                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3491                         struct cpu_hw_events *sibling;
3492                         struct intel_excl_cntrs *c;
3493
3494                         sibling = &per_cpu(cpu_hw_events, i);
3495                         c = sibling->excl_cntrs;
3496                         if (c && c->core_id == core_id) {
3497                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3498                                 cpuc->excl_cntrs = c;
3499                                 if (!sibling->excl_thread_id)
3500                                         cpuc->excl_thread_id = 1;
3501                                 break;
3502                         }
3503                 }
3504                 cpuc->excl_cntrs->core_id = core_id;
3505                 cpuc->excl_cntrs->refcnt++;
3506         }
3507 }
3508
3509 static void free_excl_cntrs(int cpu)
3510 {
3511         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3512         struct intel_excl_cntrs *c;
3513
3514         c = cpuc->excl_cntrs;
3515         if (c) {
3516                 if (c->core_id == -1 || --c->refcnt == 0)
3517                         kfree(c);
3518                 cpuc->excl_cntrs = NULL;
3519                 kfree(cpuc->constraint_list);
3520                 cpuc->constraint_list = NULL;
3521         }
3522 }
3523
3524 static void intel_pmu_cpu_dying(int cpu)
3525 {
3526         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3527         struct intel_shared_regs *pc;
3528
3529         pc = cpuc->shared_regs;
3530         if (pc) {
3531                 if (pc->core_id == -1 || --pc->refcnt == 0)
3532                         kfree(pc);
3533                 cpuc->shared_regs = NULL;
3534         }
3535
3536         free_excl_cntrs(cpu);
3537
3538         fini_debug_store_on_cpu(cpu);
3539
3540         if (x86_pmu.counter_freezing)
3541                 disable_counter_freeze();
3542 }
3543
3544 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3545                                  bool sched_in)
3546 {
3547         intel_pmu_pebs_sched_task(ctx, sched_in);
3548         intel_pmu_lbr_sched_task(ctx, sched_in);
3549 }
3550
3551 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3552
3553 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3554
3555 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3556
3557 static struct attribute *intel_arch3_formats_attr[] = {
3558         &format_attr_event.attr,
3559         &format_attr_umask.attr,
3560         &format_attr_edge.attr,
3561         &format_attr_pc.attr,
3562         &format_attr_any.attr,
3563         &format_attr_inv.attr,
3564         &format_attr_cmask.attr,
3565         NULL,
3566 };
3567
3568 static struct attribute *hsw_format_attr[] = {
3569         &format_attr_in_tx.attr,
3570         &format_attr_in_tx_cp.attr,
3571         &format_attr_offcore_rsp.attr,
3572         &format_attr_ldlat.attr,
3573         NULL
3574 };
3575
3576 static struct attribute *nhm_format_attr[] = {
3577         &format_attr_offcore_rsp.attr,
3578         &format_attr_ldlat.attr,
3579         NULL
3580 };
3581
3582 static struct attribute *slm_format_attr[] = {
3583         &format_attr_offcore_rsp.attr,
3584         NULL
3585 };
3586
3587 static struct attribute *skl_format_attr[] = {
3588         &format_attr_frontend.attr,
3589         NULL,
3590 };
3591
3592 static __initconst const struct x86_pmu core_pmu = {
3593         .name                   = "core",
3594         .handle_irq             = x86_pmu_handle_irq,
3595         .disable_all            = x86_pmu_disable_all,
3596         .enable_all             = core_pmu_enable_all,
3597         .enable                 = core_pmu_enable_event,
3598         .disable                = x86_pmu_disable_event,
3599         .hw_config              = x86_pmu_hw_config,
3600         .schedule_events        = x86_schedule_events,
3601         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3602         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3603         .event_map              = intel_pmu_event_map,
3604         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3605         .apic                   = 1,
3606         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3607
3608         /*
3609          * Intel PMCs cannot be accessed sanely above 32-bit width,
3610          * so we install an artificial 1<<31 period regardless of
3611          * the generic event period:
3612          */
3613         .max_period             = (1ULL<<31) - 1,
3614         .get_event_constraints  = intel_get_event_constraints,
3615         .put_event_constraints  = intel_put_event_constraints,
3616         .event_constraints      = intel_core_event_constraints,
3617         .guest_get_msrs         = core_guest_get_msrs,
3618         .format_attrs           = intel_arch_formats_attr,
3619         .events_sysfs_show      = intel_event_sysfs_show,
3620
3621         /*
3622          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3623          * together with PMU version 1 and thus be using core_pmu with
3624          * shared_regs. We need following callbacks here to allocate
3625          * it properly.
3626          */
3627         .cpu_prepare            = intel_pmu_cpu_prepare,
3628         .cpu_starting           = intel_pmu_cpu_starting,
3629         .cpu_dying              = intel_pmu_cpu_dying,
3630 };
3631
3632 static struct attribute *intel_pmu_attrs[];
3633
3634 static __initconst const struct x86_pmu intel_pmu = {
3635         .name                   = "Intel",
3636         .handle_irq             = intel_pmu_handle_irq,
3637         .disable_all            = intel_pmu_disable_all,
3638         .enable_all             = intel_pmu_enable_all,
3639         .enable                 = intel_pmu_enable_event,
3640         .disable                = intel_pmu_disable_event,
3641         .add                    = intel_pmu_add_event,
3642         .del                    = intel_pmu_del_event,
3643         .read                   = intel_pmu_read_event,
3644         .hw_config              = intel_pmu_hw_config,
3645         .schedule_events        = x86_schedule_events,
3646         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3647         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3648         .event_map              = intel_pmu_event_map,
3649         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3650         .apic                   = 1,
3651         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3652         /*
3653          * Intel PMCs cannot be accessed sanely above 32 bit width,
3654          * so we install an artificial 1<<31 period regardless of
3655          * the generic event period:
3656          */
3657         .max_period             = (1ULL << 31) - 1,
3658         .get_event_constraints  = intel_get_event_constraints,
3659         .put_event_constraints  = intel_put_event_constraints,
3660         .pebs_aliases           = intel_pebs_aliases_core2,
3661
3662         .format_attrs           = intel_arch3_formats_attr,
3663         .events_sysfs_show      = intel_event_sysfs_show,
3664
3665         .attrs                  = intel_pmu_attrs,
3666
3667         .cpu_prepare            = intel_pmu_cpu_prepare,
3668         .cpu_starting           = intel_pmu_cpu_starting,
3669         .cpu_dying              = intel_pmu_cpu_dying,
3670         .guest_get_msrs         = intel_guest_get_msrs,
3671         .sched_task             = intel_pmu_sched_task,
3672 };
3673
3674 static __init void intel_clovertown_quirk(void)
3675 {
3676         /*
3677          * PEBS is unreliable due to:
3678          *
3679          *   AJ67  - PEBS may experience CPL leaks
3680          *   AJ68  - PEBS PMI may be delayed by one event
3681          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3682          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3683          *
3684          * AJ67 could be worked around by restricting the OS/USR flags.
3685          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3686          *
3687          * AJ106 could possibly be worked around by not allowing LBR
3688          *       usage from PEBS, including the fixup.
3689          * AJ68  could possibly be worked around by always programming
3690          *       a pebs_event_reset[0] value and coping with the lost events.
3691          *
3692          * But taken together it might just make sense to not enable PEBS on
3693          * these chips.
3694          */
3695         pr_warn("PEBS disabled due to CPU errata\n");
3696         x86_pmu.pebs = 0;
3697         x86_pmu.pebs_constraints = NULL;
3698 }
3699
3700 static int intel_snb_pebs_broken(int cpu)
3701 {
3702         u32 rev = UINT_MAX; /* default to broken for unknown models */
3703
3704         switch (cpu_data(cpu).x86_model) {
3705         case INTEL_FAM6_SANDYBRIDGE:
3706                 rev = 0x28;
3707                 break;
3708
3709         case INTEL_FAM6_SANDYBRIDGE_X:
3710                 switch (cpu_data(cpu).x86_stepping) {
3711                 case 6: rev = 0x618; break;
3712                 case 7: rev = 0x70c; break;
3713                 }
3714         }
3715
3716         return (cpu_data(cpu).microcode < rev);
3717 }
3718
3719 static void intel_snb_check_microcode(void)
3720 {
3721         int pebs_broken = 0;
3722         int cpu;
3723
3724         for_each_online_cpu(cpu) {
3725                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3726                         break;
3727         }
3728
3729         if (pebs_broken == x86_pmu.pebs_broken)
3730                 return;
3731
3732         /*
3733          * Serialized by the microcode lock..
3734          */
3735         if (x86_pmu.pebs_broken) {
3736                 pr_info("PEBS enabled due to microcode update\n");
3737                 x86_pmu.pebs_broken = 0;
3738         } else {
3739                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3740                 x86_pmu.pebs_broken = 1;
3741         }
3742 }
3743
3744 static bool is_lbr_from(unsigned long msr)
3745 {
3746         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3747
3748         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3749 }
3750
3751 /*
3752  * Under certain circumstances, access certain MSR may cause #GP.
3753  * The function tests if the input MSR can be safely accessed.
3754  */
3755 static bool check_msr(unsigned long msr, u64 mask)
3756 {
3757         u64 val_old, val_new, val_tmp;
3758
3759         /*
3760          * Read the current value, change it and read it back to see if it
3761          * matches, this is needed to detect certain hardware emulators
3762          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3763          */
3764         if (rdmsrl_safe(msr, &val_old))
3765                 return false;
3766
3767         /*
3768          * Only change the bits which can be updated by wrmsrl.
3769          */
3770         val_tmp = val_old ^ mask;
3771
3772         if (is_lbr_from(msr))
3773                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3774
3775         if (wrmsrl_safe(msr, val_tmp) ||
3776             rdmsrl_safe(msr, &val_new))
3777                 return false;
3778
3779         /*
3780          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3781          * should equal rdmsrl()'s even with the quirk.
3782          */
3783         if (val_new != val_tmp)
3784                 return false;
3785
3786         if (is_lbr_from(msr))
3787                 val_old = lbr_from_signext_quirk_wr(val_old);
3788
3789         /* Here it's sure that the MSR can be safely accessed.
3790          * Restore the old value and return.
3791          */
3792         wrmsrl(msr, val_old);
3793
3794         return true;
3795 }
3796
3797 static __init void intel_sandybridge_quirk(void)
3798 {
3799         x86_pmu.check_microcode = intel_snb_check_microcode;
3800         cpus_read_lock();
3801         intel_snb_check_microcode();
3802         cpus_read_unlock();
3803 }
3804
3805 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3806         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3807         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3808         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3809         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3810         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3811         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3812         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3813 };
3814
3815 static __init void intel_arch_events_quirk(void)
3816 {
3817         int bit;
3818
3819         /* disable event that reported as not presend by cpuid */
3820         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3821                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3822                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3823                         intel_arch_events_map[bit].name);
3824         }
3825 }
3826
3827 static __init void intel_nehalem_quirk(void)
3828 {
3829         union cpuid10_ebx ebx;
3830
3831         ebx.full = x86_pmu.events_maskl;
3832         if (ebx.split.no_branch_misses_retired) {
3833                 /*
3834                  * Erratum AAJ80 detected, we work it around by using
3835                  * the BR_MISP_EXEC.ANY event. This will over-count
3836                  * branch-misses, but it's still much better than the
3837                  * architectural event which is often completely bogus:
3838                  */
3839                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3840                 ebx.split.no_branch_misses_retired = 0;
3841                 x86_pmu.events_maskl = ebx.full;
3842                 pr_info("CPU erratum AAJ80 worked around\n");
3843         }
3844 }
3845
3846 static bool intel_glp_counter_freezing_broken(int cpu)
3847 {
3848         u32 rev = UINT_MAX; /* default to broken for unknown stepping */
3849
3850         switch (cpu_data(cpu).x86_stepping) {
3851         case 1:
3852                 rev = 0x28;
3853                 break;
3854         case 8:
3855                 rev = 0x6;
3856                 break;
3857         }
3858
3859         return (cpu_data(cpu).microcode < rev);
3860 }
3861
3862 static __init void intel_glp_counter_freezing_quirk(void)
3863 {
3864         /* Check if it's already disabled */
3865         if (disable_counter_freezing)
3866                 return;
3867
3868         /*
3869          * If the system starts with the wrong ucode, leave the
3870          * counter-freezing feature permanently disabled.
3871          */
3872         if (intel_glp_counter_freezing_broken(raw_smp_processor_id())) {
3873                 pr_info("PMU counter freezing disabled due to CPU errata,"
3874                         "please upgrade microcode\n");
3875                 x86_pmu.counter_freezing = false;
3876                 x86_pmu.handle_irq = intel_pmu_handle_irq;
3877         }
3878 }
3879
3880 /*
3881  * enable software workaround for errata:
3882  * SNB: BJ122
3883  * IVB: BV98
3884  * HSW: HSD29
3885  *
3886  * Only needed when HT is enabled. However detecting
3887  * if HT is enabled is difficult (model specific). So instead,
3888  * we enable the workaround in the early boot, and verify if
3889  * it is needed in a later initcall phase once we have valid
3890  * topology information to check if HT is actually enabled
3891  */
3892 static __init void intel_ht_bug(void)
3893 {
3894         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3895
3896         x86_pmu.start_scheduling = intel_start_scheduling;
3897         x86_pmu.commit_scheduling = intel_commit_scheduling;
3898         x86_pmu.stop_scheduling = intel_stop_scheduling;
3899 }
3900
3901 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
3902 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
3903
3904 /* Haswell special events */
3905 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
3906 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
3907 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
3908 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
3909 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
3910 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
3911 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
3912 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
3913 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
3914 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
3915 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
3916 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
3917
3918 static struct attribute *hsw_events_attrs[] = {
3919         EVENT_PTR(td_slots_issued),
3920         EVENT_PTR(td_slots_retired),
3921         EVENT_PTR(td_fetch_bubbles),
3922         EVENT_PTR(td_total_slots),
3923         EVENT_PTR(td_total_slots_scale),
3924         EVENT_PTR(td_recovery_bubbles),
3925         EVENT_PTR(td_recovery_bubbles_scale),
3926         NULL
3927 };
3928
3929 static struct attribute *hsw_mem_events_attrs[] = {
3930         EVENT_PTR(mem_ld_hsw),
3931         EVENT_PTR(mem_st_hsw),
3932         NULL,
3933 };
3934
3935 static struct attribute *hsw_tsx_events_attrs[] = {
3936         EVENT_PTR(tx_start),
3937         EVENT_PTR(tx_commit),
3938         EVENT_PTR(tx_abort),
3939         EVENT_PTR(tx_capacity),
3940         EVENT_PTR(tx_conflict),
3941         EVENT_PTR(el_start),
3942         EVENT_PTR(el_commit),
3943         EVENT_PTR(el_abort),
3944         EVENT_PTR(el_capacity),
3945         EVENT_PTR(el_conflict),
3946         EVENT_PTR(cycles_t),
3947         EVENT_PTR(cycles_ct),
3948         NULL
3949 };
3950
3951 static ssize_t freeze_on_smi_show(struct device *cdev,
3952                                   struct device_attribute *attr,
3953                                   char *buf)
3954 {
3955         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
3956 }
3957
3958 static DEFINE_MUTEX(freeze_on_smi_mutex);
3959
3960 static ssize_t freeze_on_smi_store(struct device *cdev,
3961                                    struct device_attribute *attr,
3962                                    const char *buf, size_t count)
3963 {
3964         unsigned long val;
3965         ssize_t ret;
3966
3967         ret = kstrtoul(buf, 0, &val);
3968         if (ret)
3969                 return ret;
3970
3971         if (val > 1)
3972                 return -EINVAL;
3973
3974         mutex_lock(&freeze_on_smi_mutex);
3975
3976         if (x86_pmu.attr_freeze_on_smi == val)
3977                 goto done;
3978
3979         x86_pmu.attr_freeze_on_smi = val;
3980
3981         get_online_cpus();
3982         on_each_cpu(flip_smm_bit, &val, 1);
3983         put_online_cpus();
3984 done:
3985         mutex_unlock(&freeze_on_smi_mutex);
3986
3987         return count;
3988 }
3989
3990 static DEVICE_ATTR_RW(freeze_on_smi);
3991
3992 static ssize_t branches_show(struct device *cdev,
3993                              struct device_attribute *attr,
3994                              char *buf)
3995 {
3996         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
3997 }
3998
3999 static DEVICE_ATTR_RO(branches);
4000
4001 static struct attribute *lbr_attrs[] = {
4002         &dev_attr_branches.attr,
4003         NULL
4004 };
4005
4006 static char pmu_name_str[30];
4007
4008 static ssize_t pmu_name_show(struct device *cdev,
4009                              struct device_attribute *attr,
4010                              char *buf)
4011 {
4012         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4013 }
4014
4015 static DEVICE_ATTR_RO(pmu_name);
4016
4017 static struct attribute *intel_pmu_caps_attrs[] = {
4018        &dev_attr_pmu_name.attr,
4019        NULL
4020 };
4021
4022 static struct attribute *intel_pmu_attrs[] = {
4023         &dev_attr_freeze_on_smi.attr,
4024         NULL,
4025 };
4026
4027 static __init struct attribute **
4028 get_events_attrs(struct attribute **base,
4029                  struct attribute **mem,
4030                  struct attribute **tsx)
4031 {
4032         struct attribute **attrs = base;
4033         struct attribute **old;
4034
4035         if (mem && x86_pmu.pebs)
4036                 attrs = merge_attr(attrs, mem);
4037
4038         if (tsx && boot_cpu_has(X86_FEATURE_RTM)) {
4039                 old = attrs;
4040                 attrs = merge_attr(attrs, tsx);
4041                 if (old != base)
4042                         kfree(old);
4043         }
4044
4045         return attrs;
4046 }
4047
4048 __init int intel_pmu_init(void)
4049 {
4050         struct attribute **extra_attr = NULL;
4051         struct attribute **mem_attr = NULL;
4052         struct attribute **tsx_attr = NULL;
4053         struct attribute **to_free = NULL;
4054         union cpuid10_edx edx;
4055         union cpuid10_eax eax;
4056         union cpuid10_ebx ebx;
4057         struct event_constraint *c;
4058         unsigned int unused;
4059         struct extra_reg *er;
4060         int version, i;
4061         char *name;
4062
4063         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4064                 switch (boot_cpu_data.x86) {
4065                 case 0x6:
4066                         return p6_pmu_init();
4067                 case 0xb:
4068                         return knc_pmu_init();
4069                 case 0xf:
4070                         return p4_pmu_init();
4071                 }
4072                 return -ENODEV;
4073         }
4074
4075         /*
4076          * Check whether the Architectural PerfMon supports
4077          * Branch Misses Retired hw_event or not.
4078          */
4079         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4080         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4081                 return -ENODEV;
4082
4083         version = eax.split.version_id;
4084         if (version < 2)
4085                 x86_pmu = core_pmu;
4086         else
4087                 x86_pmu = intel_pmu;
4088
4089         x86_pmu.version                 = version;
4090         x86_pmu.num_counters            = eax.split.num_counters;
4091         x86_pmu.cntval_bits             = eax.split.bit_width;
4092         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
4093
4094         x86_pmu.events_maskl            = ebx.full;
4095         x86_pmu.events_mask_len         = eax.split.mask_length;
4096
4097         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4098
4099         /*
4100          * Quirk: v2 perfmon does not report fixed-purpose events, so
4101          * assume at least 3 events, when not running in a hypervisor:
4102          */
4103         if (version > 1) {
4104                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4105
4106                 x86_pmu.num_counters_fixed =
4107                         max((int)edx.split.num_counters_fixed, assume);
4108         }
4109
4110         if (version >= 4)
4111                 x86_pmu.counter_freezing = !disable_counter_freezing;
4112
4113         if (boot_cpu_has(X86_FEATURE_PDCM)) {
4114                 u64 capabilities;
4115
4116                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4117                 x86_pmu.intel_cap.capabilities = capabilities;
4118         }
4119
4120         intel_ds_init();
4121
4122         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4123
4124         /*
4125          * Install the hw-cache-events table:
4126          */
4127         switch (boot_cpu_data.x86_model) {
4128         case INTEL_FAM6_CORE_YONAH:
4129                 pr_cont("Core events, ");
4130                 name = "core";
4131                 break;
4132
4133         case INTEL_FAM6_CORE2_MEROM:
4134                 x86_add_quirk(intel_clovertown_quirk);
4135         case INTEL_FAM6_CORE2_MEROM_L:
4136         case INTEL_FAM6_CORE2_PENRYN:
4137         case INTEL_FAM6_CORE2_DUNNINGTON:
4138                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4139                        sizeof(hw_cache_event_ids));
4140
4141                 intel_pmu_lbr_init_core();
4142
4143                 x86_pmu.event_constraints = intel_core2_event_constraints;
4144                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4145                 pr_cont("Core2 events, ");
4146                 name = "core2";
4147                 break;
4148
4149         case INTEL_FAM6_NEHALEM:
4150         case INTEL_FAM6_NEHALEM_EP:
4151         case INTEL_FAM6_NEHALEM_EX:
4152                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4153                        sizeof(hw_cache_event_ids));
4154                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4155                        sizeof(hw_cache_extra_regs));
4156
4157                 intel_pmu_lbr_init_nhm();
4158
4159                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
4160                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4161                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4162                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
4163
4164                 mem_attr = nhm_mem_events_attrs;
4165
4166                 /* UOPS_ISSUED.STALLED_CYCLES */
4167                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4168                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4169                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4170                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4171                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4172
4173                 intel_pmu_pebs_data_source_nhm();
4174                 x86_add_quirk(intel_nehalem_quirk);
4175                 x86_pmu.pebs_no_tlb = 1;
4176                 extra_attr = nhm_format_attr;
4177
4178                 pr_cont("Nehalem events, ");
4179                 name = "nehalem";
4180                 break;
4181
4182         case INTEL_FAM6_ATOM_BONNELL:
4183         case INTEL_FAM6_ATOM_BONNELL_MID:
4184         case INTEL_FAM6_ATOM_SALTWELL:
4185         case INTEL_FAM6_ATOM_SALTWELL_MID:
4186         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4187                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4188                        sizeof(hw_cache_event_ids));
4189
4190                 intel_pmu_lbr_init_atom();
4191
4192                 x86_pmu.event_constraints = intel_gen_event_constraints;
4193                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4194                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4195                 pr_cont("Atom events, ");
4196                 name = "bonnell";
4197                 break;
4198
4199         case INTEL_FAM6_ATOM_SILVERMONT:
4200         case INTEL_FAM6_ATOM_SILVERMONT_X:
4201         case INTEL_FAM6_ATOM_SILVERMONT_MID:
4202         case INTEL_FAM6_ATOM_AIRMONT:
4203         case INTEL_FAM6_ATOM_AIRMONT_MID:
4204                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4205                         sizeof(hw_cache_event_ids));
4206                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4207                        sizeof(hw_cache_extra_regs));
4208
4209                 intel_pmu_lbr_init_slm();
4210
4211                 x86_pmu.event_constraints = intel_slm_event_constraints;
4212                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4213                 x86_pmu.extra_regs = intel_slm_extra_regs;
4214                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4215                 x86_pmu.cpu_events = slm_events_attrs;
4216                 extra_attr = slm_format_attr;
4217                 pr_cont("Silvermont events, ");
4218                 name = "silvermont";
4219                 break;
4220
4221         case INTEL_FAM6_ATOM_GOLDMONT:
4222         case INTEL_FAM6_ATOM_GOLDMONT_X:
4223                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4224                        sizeof(hw_cache_event_ids));
4225                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4226                        sizeof(hw_cache_extra_regs));
4227
4228                 intel_pmu_lbr_init_skl();
4229
4230                 x86_pmu.event_constraints = intel_slm_event_constraints;
4231                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4232                 x86_pmu.extra_regs = intel_glm_extra_regs;
4233                 /*
4234                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4235                  * for precise cycles.
4236                  * :pp is identical to :ppp
4237                  */
4238                 x86_pmu.pebs_aliases = NULL;
4239                 x86_pmu.pebs_prec_dist = true;
4240                 x86_pmu.lbr_pt_coexist = true;
4241                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4242                 x86_pmu.cpu_events = glm_events_attrs;
4243                 extra_attr = slm_format_attr;
4244                 pr_cont("Goldmont events, ");
4245                 name = "goldmont";
4246                 break;
4247
4248         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4249                 x86_add_quirk(intel_glp_counter_freezing_quirk);
4250                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4251                        sizeof(hw_cache_event_ids));
4252                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4253                        sizeof(hw_cache_extra_regs));
4254
4255                 intel_pmu_lbr_init_skl();
4256
4257                 x86_pmu.event_constraints = intel_slm_event_constraints;
4258                 x86_pmu.extra_regs = intel_glm_extra_regs;
4259                 /*
4260                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4261                  * for precise cycles.
4262                  */
4263                 x86_pmu.pebs_aliases = NULL;
4264                 x86_pmu.pebs_prec_dist = true;
4265                 x86_pmu.lbr_pt_coexist = true;
4266                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4267                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
4268                 x86_pmu.get_event_constraints = glp_get_event_constraints;
4269                 x86_pmu.cpu_events = glm_events_attrs;
4270                 /* Goldmont Plus has 4-wide pipeline */
4271                 event_attr_td_total_slots_scale_glm.event_str = "4";
4272                 extra_attr = slm_format_attr;
4273                 pr_cont("Goldmont plus events, ");
4274                 name = "goldmont_plus";
4275                 break;
4276
4277         case INTEL_FAM6_WESTMERE:
4278         case INTEL_FAM6_WESTMERE_EP:
4279         case INTEL_FAM6_WESTMERE_EX:
4280                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4281                        sizeof(hw_cache_event_ids));
4282                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4283                        sizeof(hw_cache_extra_regs));
4284
4285                 intel_pmu_lbr_init_nhm();
4286
4287                 x86_pmu.event_constraints = intel_westmere_event_constraints;
4288                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4289                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4290                 x86_pmu.extra_regs = intel_westmere_extra_regs;
4291                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4292
4293                 mem_attr = nhm_mem_events_attrs;
4294
4295                 /* UOPS_ISSUED.STALLED_CYCLES */
4296                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4297                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4298                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4299                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4300                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4301
4302                 intel_pmu_pebs_data_source_nhm();
4303                 extra_attr = nhm_format_attr;
4304                 pr_cont("Westmere events, ");
4305                 name = "westmere";
4306                 break;
4307
4308         case INTEL_FAM6_SANDYBRIDGE:
4309         case INTEL_FAM6_SANDYBRIDGE_X:
4310                 x86_add_quirk(intel_sandybridge_quirk);
4311                 x86_add_quirk(intel_ht_bug);
4312                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4313                        sizeof(hw_cache_event_ids));
4314                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4315                        sizeof(hw_cache_extra_regs));
4316
4317                 intel_pmu_lbr_init_snb();
4318
4319                 x86_pmu.event_constraints = intel_snb_event_constraints;
4320                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4321                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4322                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4323                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4324                 else
4325                         x86_pmu.extra_regs = intel_snb_extra_regs;
4326
4327
4328                 /* all extra regs are per-cpu when HT is on */
4329                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4330                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4331
4332                 x86_pmu.cpu_events = snb_events_attrs;
4333                 mem_attr = snb_mem_events_attrs;
4334
4335                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4336                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4337                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4338                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4339                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4340                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4341
4342                 extra_attr = nhm_format_attr;
4343
4344                 pr_cont("SandyBridge events, ");
4345                 name = "sandybridge";
4346                 break;
4347
4348         case INTEL_FAM6_IVYBRIDGE:
4349         case INTEL_FAM6_IVYBRIDGE_X:
4350                 x86_add_quirk(intel_ht_bug);
4351                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4352                        sizeof(hw_cache_event_ids));
4353                 /* dTLB-load-misses on IVB is different than SNB */
4354                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4355
4356                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4357                        sizeof(hw_cache_extra_regs));
4358
4359                 intel_pmu_lbr_init_snb();
4360
4361                 x86_pmu.event_constraints = intel_ivb_event_constraints;
4362                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4363                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4364                 x86_pmu.pebs_prec_dist = true;
4365                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4366                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4367                 else
4368                         x86_pmu.extra_regs = intel_snb_extra_regs;
4369                 /* all extra regs are per-cpu when HT is on */
4370                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4371                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4372
4373                 x86_pmu.cpu_events = snb_events_attrs;
4374                 mem_attr = snb_mem_events_attrs;
4375
4376                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4377                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4378                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4379
4380                 extra_attr = nhm_format_attr;
4381
4382                 pr_cont("IvyBridge events, ");
4383                 name = "ivybridge";
4384                 break;
4385
4386
4387         case INTEL_FAM6_HASWELL_CORE:
4388         case INTEL_FAM6_HASWELL_X:
4389         case INTEL_FAM6_HASWELL_ULT:
4390         case INTEL_FAM6_HASWELL_GT3E:
4391                 x86_add_quirk(intel_ht_bug);
4392                 x86_pmu.late_ack = true;
4393                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4394                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4395
4396                 intel_pmu_lbr_init_hsw();
4397
4398                 x86_pmu.event_constraints = intel_hsw_event_constraints;
4399                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4400                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4401                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4402                 x86_pmu.pebs_prec_dist = true;
4403                 /* all extra regs are per-cpu when HT is on */
4404                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4405                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4406
4407                 x86_pmu.hw_config = hsw_hw_config;
4408                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4409                 x86_pmu.cpu_events = hsw_events_attrs;
4410                 x86_pmu.lbr_double_abort = true;
4411                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4412                         hsw_format_attr : nhm_format_attr;
4413                 mem_attr = hsw_mem_events_attrs;
4414                 tsx_attr = hsw_tsx_events_attrs;
4415                 pr_cont("Haswell events, ");
4416                 name = "haswell";
4417                 break;
4418
4419         case INTEL_FAM6_BROADWELL_CORE:
4420         case INTEL_FAM6_BROADWELL_XEON_D:
4421         case INTEL_FAM6_BROADWELL_GT3E:
4422         case INTEL_FAM6_BROADWELL_X:
4423                 x86_pmu.late_ack = true;
4424                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4425                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4426
4427                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4428                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4429                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
4430                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4431                                                                           HSW_SNOOP_DRAM;
4432                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4433                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4434                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4435                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4436
4437                 intel_pmu_lbr_init_hsw();
4438
4439                 x86_pmu.event_constraints = intel_bdw_event_constraints;
4440                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4441                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4442                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4443                 x86_pmu.pebs_prec_dist = true;
4444                 /* all extra regs are per-cpu when HT is on */
4445                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4446                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4447
4448                 x86_pmu.hw_config = hsw_hw_config;
4449                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4450                 x86_pmu.cpu_events = hsw_events_attrs;
4451                 x86_pmu.limit_period = bdw_limit_period;
4452                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4453                         hsw_format_attr : nhm_format_attr;
4454                 mem_attr = hsw_mem_events_attrs;
4455                 tsx_attr = hsw_tsx_events_attrs;
4456                 pr_cont("Broadwell events, ");
4457                 name = "broadwell";
4458                 break;
4459
4460         case INTEL_FAM6_XEON_PHI_KNL:
4461         case INTEL_FAM6_XEON_PHI_KNM:
4462                 memcpy(hw_cache_event_ids,
4463                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4464                 memcpy(hw_cache_extra_regs,
4465                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4466                 intel_pmu_lbr_init_knl();
4467
4468                 x86_pmu.event_constraints = intel_slm_event_constraints;
4469                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4470                 x86_pmu.extra_regs = intel_knl_extra_regs;
4471
4472                 /* all extra regs are per-cpu when HT is on */
4473                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4474                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4475                 extra_attr = slm_format_attr;
4476                 pr_cont("Knights Landing/Mill events, ");
4477                 name = "knights-landing";
4478                 break;
4479
4480         case INTEL_FAM6_SKYLAKE_MOBILE:
4481         case INTEL_FAM6_SKYLAKE_DESKTOP:
4482         case INTEL_FAM6_SKYLAKE_X:
4483         case INTEL_FAM6_KABYLAKE_MOBILE:
4484         case INTEL_FAM6_KABYLAKE_DESKTOP:
4485                 x86_pmu.late_ack = true;
4486                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4487                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4488                 intel_pmu_lbr_init_skl();
4489
4490                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4491                 event_attr_td_recovery_bubbles.event_str_noht =
4492                         "event=0xd,umask=0x1,cmask=1";
4493                 event_attr_td_recovery_bubbles.event_str_ht =
4494                         "event=0xd,umask=0x1,cmask=1,any=1";
4495
4496                 x86_pmu.event_constraints = intel_skl_event_constraints;
4497                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4498                 x86_pmu.extra_regs = intel_skl_extra_regs;
4499                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4500                 x86_pmu.pebs_prec_dist = true;
4501                 /* all extra regs are per-cpu when HT is on */
4502                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4503                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4504
4505                 x86_pmu.hw_config = hsw_hw_config;
4506                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4507                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4508                         hsw_format_attr : nhm_format_attr;
4509                 extra_attr = merge_attr(extra_attr, skl_format_attr);
4510                 to_free = extra_attr;
4511                 x86_pmu.cpu_events = hsw_events_attrs;
4512                 mem_attr = hsw_mem_events_attrs;
4513                 tsx_attr = hsw_tsx_events_attrs;
4514                 intel_pmu_pebs_data_source_skl(
4515                         boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
4516                 pr_cont("Skylake events, ");
4517                 name = "skylake";
4518                 break;
4519
4520         default:
4521                 switch (x86_pmu.version) {
4522                 case 1:
4523                         x86_pmu.event_constraints = intel_v1_event_constraints;
4524                         pr_cont("generic architected perfmon v1, ");
4525                         name = "generic_arch_v1";
4526                         break;
4527                 default:
4528                         /*
4529                          * default constraints for v2 and up
4530                          */
4531                         x86_pmu.event_constraints = intel_gen_event_constraints;
4532                         pr_cont("generic architected perfmon, ");
4533                         name = "generic_arch_v2+";
4534                         break;
4535                 }
4536         }
4537
4538         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
4539
4540         if (version >= 2 && extra_attr) {
4541                 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4542                                                   extra_attr);
4543                 WARN_ON(!x86_pmu.format_attrs);
4544         }
4545
4546         x86_pmu.cpu_events = get_events_attrs(x86_pmu.cpu_events,
4547                                               mem_attr, tsx_attr);
4548
4549         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4550                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4551                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4552                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4553         }
4554         x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4555
4556         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4557                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4558                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4559                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4560         }
4561
4562         x86_pmu.intel_ctrl |=
4563                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4564
4565         if (x86_pmu.event_constraints) {
4566                 /*
4567                  * event on fixed counter2 (REF_CYCLES) only works on this
4568                  * counter, so do not extend mask to generic counters
4569                  */
4570                 for_each_event_constraint(c, x86_pmu.event_constraints) {
4571                         if (c->cmask == FIXED_EVENT_FLAGS
4572                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4573                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4574                         }
4575                         c->idxmsk64 &=
4576                                 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4577                         c->weight = hweight64(c->idxmsk64);
4578                 }
4579         }
4580
4581         /*
4582          * Access LBR MSR may cause #GP under certain circumstances.
4583          * E.g. KVM doesn't support LBR MSR
4584          * Check all LBT MSR here.
4585          * Disable LBR access if any LBR MSRs can not be accessed.
4586          */
4587         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4588                 x86_pmu.lbr_nr = 0;
4589         for (i = 0; i < x86_pmu.lbr_nr; i++) {
4590                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4591                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4592                         x86_pmu.lbr_nr = 0;
4593         }
4594
4595         x86_pmu.caps_attrs = intel_pmu_caps_attrs;
4596
4597         if (x86_pmu.lbr_nr) {
4598                 x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
4599                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4600         }
4601
4602         /*
4603          * Access extra MSR may cause #GP under certain circumstances.
4604          * E.g. KVM doesn't support offcore event
4605          * Check all extra_regs here.
4606          */
4607         if (x86_pmu.extra_regs) {
4608                 for (er = x86_pmu.extra_regs; er->msr; er++) {
4609                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
4610                         /* Disable LBR select mapping */
4611                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4612                                 x86_pmu.lbr_sel_map = NULL;
4613                 }
4614         }
4615
4616         /* Support full width counters using alternative MSR range */
4617         if (x86_pmu.intel_cap.full_width_write) {
4618                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4619                 x86_pmu.perfctr = MSR_IA32_PMC0;
4620                 pr_cont("full-width counters, ");
4621         }
4622
4623         /*
4624          * For arch perfmon 4 use counter freezing to avoid
4625          * several MSR accesses in the PMI.
4626          */
4627         if (x86_pmu.counter_freezing)
4628                 x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
4629
4630         kfree(to_free);
4631         return 0;
4632 }
4633
4634 /*
4635  * HT bug: phase 2 init
4636  * Called once we have valid topology information to check
4637  * whether or not HT is enabled
4638  * If HT is off, then we disable the workaround
4639  */
4640 static __init int fixup_ht_bug(void)
4641 {
4642         int c;
4643         /*
4644          * problem not present on this CPU model, nothing to do
4645          */
4646         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4647                 return 0;
4648
4649         if (topology_max_smt_threads() > 1) {
4650                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4651                 return 0;
4652         }
4653
4654         cpus_read_lock();
4655
4656         hardlockup_detector_perf_stop();
4657
4658         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4659
4660         x86_pmu.start_scheduling = NULL;
4661         x86_pmu.commit_scheduling = NULL;
4662         x86_pmu.stop_scheduling = NULL;
4663
4664         hardlockup_detector_perf_restart();
4665
4666         for_each_online_cpu(c)
4667                 free_excl_cntrs(c);
4668
4669         cpus_read_unlock();
4670         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4671         return 0;
4672 }
4673 subsys_initcall(fixup_ht_bug)