perf/x86: Hybrid PMU support for event constraints
[linux-2.6-microblaze.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44
45 #include "perf_event.h"
46
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51         .enabled = 1,
52         .pmu = &pmu,
53 };
54
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58
59 /*
60  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61  * from just a typename, as opposed to an actual function.
62  */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,      *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68
69 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
70 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
71 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
72
73 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
74 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
76
77 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
78 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
80
81 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
82 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
83
84 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
85 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
86
87 /*
88  * This one is magic, it will get called even when PMU init fails (because
89  * there is no PMU), in which case it should simply return NULL.
90  */
91 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
92
93 u64 __read_mostly hw_cache_event_ids
94                                 [PERF_COUNT_HW_CACHE_MAX]
95                                 [PERF_COUNT_HW_CACHE_OP_MAX]
96                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
97 u64 __read_mostly hw_cache_extra_regs
98                                 [PERF_COUNT_HW_CACHE_MAX]
99                                 [PERF_COUNT_HW_CACHE_OP_MAX]
100                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
101
102 /*
103  * Propagate event elapsed time into the generic event.
104  * Can only be executed on the CPU where the event is active.
105  * Returns the delta events processed.
106  */
107 u64 x86_perf_event_update(struct perf_event *event)
108 {
109         struct hw_perf_event *hwc = &event->hw;
110         int shift = 64 - x86_pmu.cntval_bits;
111         u64 prev_raw_count, new_raw_count;
112         u64 delta;
113
114         if (unlikely(!hwc->event_base))
115                 return 0;
116
117         if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
118                 return x86_pmu.update_topdown_event(event);
119
120         /*
121          * Careful: an NMI might modify the previous event value.
122          *
123          * Our tactic to handle this is to first atomically read and
124          * exchange a new raw count - then add that new-prev delta
125          * count to the generic event atomically:
126          */
127 again:
128         prev_raw_count = local64_read(&hwc->prev_count);
129         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
130
131         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
132                                         new_raw_count) != prev_raw_count)
133                 goto again;
134
135         /*
136          * Now we have the new raw value and have updated the prev
137          * timestamp already. We can now calculate the elapsed delta
138          * (event-)time and add that to the generic event.
139          *
140          * Careful, not all hw sign-extends above the physical width
141          * of the count.
142          */
143         delta = (new_raw_count << shift) - (prev_raw_count << shift);
144         delta >>= shift;
145
146         local64_add(delta, &event->count);
147         local64_sub(delta, &hwc->period_left);
148
149         return new_raw_count;
150 }
151
152 /*
153  * Find and validate any extra registers to set up.
154  */
155 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
156 {
157         struct hw_perf_event_extra *reg;
158         struct extra_reg *er;
159
160         reg = &event->hw.extra_reg;
161
162         if (!x86_pmu.extra_regs)
163                 return 0;
164
165         for (er = x86_pmu.extra_regs; er->msr; er++) {
166                 if (er->event != (config & er->config_mask))
167                         continue;
168                 if (event->attr.config1 & ~er->valid_mask)
169                         return -EINVAL;
170                 /* Check if the extra msrs can be safely accessed*/
171                 if (!er->extra_msr_access)
172                         return -ENXIO;
173
174                 reg->idx = er->idx;
175                 reg->config = event->attr.config1;
176                 reg->reg = er->msr;
177                 break;
178         }
179         return 0;
180 }
181
182 static atomic_t active_events;
183 static atomic_t pmc_refcount;
184 static DEFINE_MUTEX(pmc_reserve_mutex);
185
186 #ifdef CONFIG_X86_LOCAL_APIC
187
188 static inline int get_possible_num_counters(void)
189 {
190         int i, num_counters = x86_pmu.num_counters;
191
192         if (!is_hybrid())
193                 return num_counters;
194
195         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
196                 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
197
198         return num_counters;
199 }
200
201 static bool reserve_pmc_hardware(void)
202 {
203         int i, num_counters = get_possible_num_counters();
204
205         for (i = 0; i < num_counters; i++) {
206                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
207                         goto perfctr_fail;
208         }
209
210         for (i = 0; i < num_counters; i++) {
211                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
212                         goto eventsel_fail;
213         }
214
215         return true;
216
217 eventsel_fail:
218         for (i--; i >= 0; i--)
219                 release_evntsel_nmi(x86_pmu_config_addr(i));
220
221         i = num_counters;
222
223 perfctr_fail:
224         for (i--; i >= 0; i--)
225                 release_perfctr_nmi(x86_pmu_event_addr(i));
226
227         return false;
228 }
229
230 static void release_pmc_hardware(void)
231 {
232         int i, num_counters = get_possible_num_counters();
233
234         for (i = 0; i < num_counters; i++) {
235                 release_perfctr_nmi(x86_pmu_event_addr(i));
236                 release_evntsel_nmi(x86_pmu_config_addr(i));
237         }
238 }
239
240 #else
241
242 static bool reserve_pmc_hardware(void) { return true; }
243 static void release_pmc_hardware(void) {}
244
245 #endif
246
247 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
248 {
249         u64 val, val_fail = -1, val_new= ~0;
250         int i, reg, reg_fail = -1, ret = 0;
251         int bios_fail = 0;
252         int reg_safe = -1;
253
254         /*
255          * Check to see if the BIOS enabled any of the counters, if so
256          * complain and bail.
257          */
258         for (i = 0; i < num_counters; i++) {
259                 reg = x86_pmu_config_addr(i);
260                 ret = rdmsrl_safe(reg, &val);
261                 if (ret)
262                         goto msr_fail;
263                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
264                         bios_fail = 1;
265                         val_fail = val;
266                         reg_fail = reg;
267                 } else {
268                         reg_safe = i;
269                 }
270         }
271
272         if (num_counters_fixed) {
273                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
274                 ret = rdmsrl_safe(reg, &val);
275                 if (ret)
276                         goto msr_fail;
277                 for (i = 0; i < num_counters_fixed; i++) {
278                         if (fixed_counter_disabled(i, pmu))
279                                 continue;
280                         if (val & (0x03 << i*4)) {
281                                 bios_fail = 1;
282                                 val_fail = val;
283                                 reg_fail = reg;
284                         }
285                 }
286         }
287
288         /*
289          * If all the counters are enabled, the below test will always
290          * fail.  The tools will also become useless in this scenario.
291          * Just fail and disable the hardware counters.
292          */
293
294         if (reg_safe == -1) {
295                 reg = reg_safe;
296                 goto msr_fail;
297         }
298
299         /*
300          * Read the current value, change it and read it back to see if it
301          * matches, this is needed to detect certain hardware emulators
302          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
303          */
304         reg = x86_pmu_event_addr(reg_safe);
305         if (rdmsrl_safe(reg, &val))
306                 goto msr_fail;
307         val ^= 0xffffUL;
308         ret = wrmsrl_safe(reg, val);
309         ret |= rdmsrl_safe(reg, &val_new);
310         if (ret || val != val_new)
311                 goto msr_fail;
312
313         /*
314          * We still allow the PMU driver to operate:
315          */
316         if (bios_fail) {
317                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
318                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
319                               reg_fail, val_fail);
320         }
321
322         return true;
323
324 msr_fail:
325         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
326                 pr_cont("PMU not available due to virtualization, using software events only.\n");
327         } else {
328                 pr_cont("Broken PMU hardware detected, using software events only.\n");
329                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
330                        reg, val_new);
331         }
332
333         return false;
334 }
335
336 static void hw_perf_event_destroy(struct perf_event *event)
337 {
338         x86_release_hardware();
339         atomic_dec(&active_events);
340 }
341
342 void hw_perf_lbr_event_destroy(struct perf_event *event)
343 {
344         hw_perf_event_destroy(event);
345
346         /* undo the lbr/bts event accounting */
347         x86_del_exclusive(x86_lbr_exclusive_lbr);
348 }
349
350 static inline int x86_pmu_initialized(void)
351 {
352         return x86_pmu.handle_irq != NULL;
353 }
354
355 static inline int
356 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
357 {
358         struct perf_event_attr *attr = &event->attr;
359         unsigned int cache_type, cache_op, cache_result;
360         u64 config, val;
361
362         config = attr->config;
363
364         cache_type = (config >> 0) & 0xff;
365         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
366                 return -EINVAL;
367         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
368
369         cache_op = (config >>  8) & 0xff;
370         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
371                 return -EINVAL;
372         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
373
374         cache_result = (config >> 16) & 0xff;
375         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
376                 return -EINVAL;
377         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
378
379         val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
380         if (val == 0)
381                 return -ENOENT;
382
383         if (val == -1)
384                 return -EINVAL;
385
386         hwc->config |= val;
387         attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
388         return x86_pmu_extra_regs(val, event);
389 }
390
391 int x86_reserve_hardware(void)
392 {
393         int err = 0;
394
395         if (!atomic_inc_not_zero(&pmc_refcount)) {
396                 mutex_lock(&pmc_reserve_mutex);
397                 if (atomic_read(&pmc_refcount) == 0) {
398                         if (!reserve_pmc_hardware())
399                                 err = -EBUSY;
400                         else
401                                 reserve_ds_buffers();
402                 }
403                 if (!err)
404                         atomic_inc(&pmc_refcount);
405                 mutex_unlock(&pmc_reserve_mutex);
406         }
407
408         return err;
409 }
410
411 void x86_release_hardware(void)
412 {
413         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
414                 release_pmc_hardware();
415                 release_ds_buffers();
416                 release_lbr_buffers();
417                 mutex_unlock(&pmc_reserve_mutex);
418         }
419 }
420
421 /*
422  * Check if we can create event of a certain type (that no conflicting events
423  * are present).
424  */
425 int x86_add_exclusive(unsigned int what)
426 {
427         int i;
428
429         /*
430          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
431          * LBR and BTS are still mutually exclusive.
432          */
433         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
434                 goto out;
435
436         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
437                 mutex_lock(&pmc_reserve_mutex);
438                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
439                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
440                                 goto fail_unlock;
441                 }
442                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
443                 mutex_unlock(&pmc_reserve_mutex);
444         }
445
446 out:
447         atomic_inc(&active_events);
448         return 0;
449
450 fail_unlock:
451         mutex_unlock(&pmc_reserve_mutex);
452         return -EBUSY;
453 }
454
455 void x86_del_exclusive(unsigned int what)
456 {
457         atomic_dec(&active_events);
458
459         /*
460          * See the comment in x86_add_exclusive().
461          */
462         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
463                 return;
464
465         atomic_dec(&x86_pmu.lbr_exclusive[what]);
466 }
467
468 int x86_setup_perfctr(struct perf_event *event)
469 {
470         struct perf_event_attr *attr = &event->attr;
471         struct hw_perf_event *hwc = &event->hw;
472         u64 config;
473
474         if (!is_sampling_event(event)) {
475                 hwc->sample_period = x86_pmu.max_period;
476                 hwc->last_period = hwc->sample_period;
477                 local64_set(&hwc->period_left, hwc->sample_period);
478         }
479
480         if (attr->type == PERF_TYPE_RAW)
481                 return x86_pmu_extra_regs(event->attr.config, event);
482
483         if (attr->type == PERF_TYPE_HW_CACHE)
484                 return set_ext_hw_attr(hwc, event);
485
486         if (attr->config >= x86_pmu.max_events)
487                 return -EINVAL;
488
489         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
490
491         /*
492          * The generic map:
493          */
494         config = x86_pmu.event_map(attr->config);
495
496         if (config == 0)
497                 return -ENOENT;
498
499         if (config == -1LL)
500                 return -EINVAL;
501
502         hwc->config |= config;
503
504         return 0;
505 }
506
507 /*
508  * check that branch_sample_type is compatible with
509  * settings needed for precise_ip > 1 which implies
510  * using the LBR to capture ALL taken branches at the
511  * priv levels of the measurement
512  */
513 static inline int precise_br_compat(struct perf_event *event)
514 {
515         u64 m = event->attr.branch_sample_type;
516         u64 b = 0;
517
518         /* must capture all branches */
519         if (!(m & PERF_SAMPLE_BRANCH_ANY))
520                 return 0;
521
522         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
523
524         if (!event->attr.exclude_user)
525                 b |= PERF_SAMPLE_BRANCH_USER;
526
527         if (!event->attr.exclude_kernel)
528                 b |= PERF_SAMPLE_BRANCH_KERNEL;
529
530         /*
531          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
532          */
533
534         return m == b;
535 }
536
537 int x86_pmu_max_precise(void)
538 {
539         int precise = 0;
540
541         /* Support for constant skid */
542         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
543                 precise++;
544
545                 /* Support for IP fixup */
546                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
547                         precise++;
548
549                 if (x86_pmu.pebs_prec_dist)
550                         precise++;
551         }
552         return precise;
553 }
554
555 int x86_pmu_hw_config(struct perf_event *event)
556 {
557         if (event->attr.precise_ip) {
558                 int precise = x86_pmu_max_precise();
559
560                 if (event->attr.precise_ip > precise)
561                         return -EOPNOTSUPP;
562
563                 /* There's no sense in having PEBS for non sampling events: */
564                 if (!is_sampling_event(event))
565                         return -EINVAL;
566         }
567         /*
568          * check that PEBS LBR correction does not conflict with
569          * whatever the user is asking with attr->branch_sample_type
570          */
571         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
572                 u64 *br_type = &event->attr.branch_sample_type;
573
574                 if (has_branch_stack(event)) {
575                         if (!precise_br_compat(event))
576                                 return -EOPNOTSUPP;
577
578                         /* branch_sample_type is compatible */
579
580                 } else {
581                         /*
582                          * user did not specify  branch_sample_type
583                          *
584                          * For PEBS fixups, we capture all
585                          * the branches at the priv level of the
586                          * event.
587                          */
588                         *br_type = PERF_SAMPLE_BRANCH_ANY;
589
590                         if (!event->attr.exclude_user)
591                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
592
593                         if (!event->attr.exclude_kernel)
594                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
595                 }
596         }
597
598         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
599                 event->attach_state |= PERF_ATTACH_TASK_DATA;
600
601         /*
602          * Generate PMC IRQs:
603          * (keep 'enabled' bit clear for now)
604          */
605         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
606
607         /*
608          * Count user and OS events unless requested not to
609          */
610         if (!event->attr.exclude_user)
611                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
612         if (!event->attr.exclude_kernel)
613                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
614
615         if (event->attr.type == PERF_TYPE_RAW)
616                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
617
618         if (event->attr.sample_period && x86_pmu.limit_period) {
619                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
620                                 event->attr.sample_period)
621                         return -EINVAL;
622         }
623
624         /* sample_regs_user never support XMM registers */
625         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
626                 return -EINVAL;
627         /*
628          * Besides the general purpose registers, XMM registers may
629          * be collected in PEBS on some platforms, e.g. Icelake
630          */
631         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
632                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
633                         return -EINVAL;
634
635                 if (!event->attr.precise_ip)
636                         return -EINVAL;
637         }
638
639         return x86_setup_perfctr(event);
640 }
641
642 /*
643  * Setup the hardware configuration for a given attr_type
644  */
645 static int __x86_pmu_event_init(struct perf_event *event)
646 {
647         int err;
648
649         if (!x86_pmu_initialized())
650                 return -ENODEV;
651
652         err = x86_reserve_hardware();
653         if (err)
654                 return err;
655
656         atomic_inc(&active_events);
657         event->destroy = hw_perf_event_destroy;
658
659         event->hw.idx = -1;
660         event->hw.last_cpu = -1;
661         event->hw.last_tag = ~0ULL;
662
663         /* mark unused */
664         event->hw.extra_reg.idx = EXTRA_REG_NONE;
665         event->hw.branch_reg.idx = EXTRA_REG_NONE;
666
667         return x86_pmu.hw_config(event);
668 }
669
670 void x86_pmu_disable_all(void)
671 {
672         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
673         int idx;
674
675         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
676                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
677                 u64 val;
678
679                 if (!test_bit(idx, cpuc->active_mask))
680                         continue;
681                 rdmsrl(x86_pmu_config_addr(idx), val);
682                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
683                         continue;
684                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
685                 wrmsrl(x86_pmu_config_addr(idx), val);
686                 if (is_counter_pair(hwc))
687                         wrmsrl(x86_pmu_config_addr(idx + 1), 0);
688         }
689 }
690
691 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
692 {
693         return static_call(x86_pmu_guest_get_msrs)(nr);
694 }
695 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
696
697 /*
698  * There may be PMI landing after enabled=0. The PMI hitting could be before or
699  * after disable_all.
700  *
701  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
702  * It will not be re-enabled in the NMI handler again, because enabled=0. After
703  * handling the NMI, disable_all will be called, which will not change the
704  * state either. If PMI hits after disable_all, the PMU is already disabled
705  * before entering NMI handler. The NMI handler will not change the state
706  * either.
707  *
708  * So either situation is harmless.
709  */
710 static void x86_pmu_disable(struct pmu *pmu)
711 {
712         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
713
714         if (!x86_pmu_initialized())
715                 return;
716
717         if (!cpuc->enabled)
718                 return;
719
720         cpuc->n_added = 0;
721         cpuc->enabled = 0;
722         barrier();
723
724         static_call(x86_pmu_disable_all)();
725 }
726
727 void x86_pmu_enable_all(int added)
728 {
729         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
730         int idx;
731
732         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
733                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
734
735                 if (!test_bit(idx, cpuc->active_mask))
736                         continue;
737
738                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
739         }
740 }
741
742 static inline int is_x86_event(struct perf_event *event)
743 {
744         return event->pmu == &pmu;
745 }
746
747 struct pmu *x86_get_pmu(unsigned int cpu)
748 {
749         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
750
751         /*
752          * All CPUs of the hybrid type have been offline.
753          * The x86_get_pmu() should not be invoked.
754          */
755         if (WARN_ON_ONCE(!cpuc->pmu))
756                 return &pmu;
757
758         return cpuc->pmu;
759 }
760 /*
761  * Event scheduler state:
762  *
763  * Assign events iterating over all events and counters, beginning
764  * with events with least weights first. Keep the current iterator
765  * state in struct sched_state.
766  */
767 struct sched_state {
768         int     weight;
769         int     event;          /* event index */
770         int     counter;        /* counter index */
771         int     unassigned;     /* number of events to be assigned left */
772         int     nr_gp;          /* number of GP counters used */
773         u64     used;
774 };
775
776 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
777 #define SCHED_STATES_MAX        2
778
779 struct perf_sched {
780         int                     max_weight;
781         int                     max_events;
782         int                     max_gp;
783         int                     saved_states;
784         struct event_constraint **constraints;
785         struct sched_state      state;
786         struct sched_state      saved[SCHED_STATES_MAX];
787 };
788
789 /*
790  * Initialize interator that runs through all events and counters.
791  */
792 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
793                             int num, int wmin, int wmax, int gpmax)
794 {
795         int idx;
796
797         memset(sched, 0, sizeof(*sched));
798         sched->max_events       = num;
799         sched->max_weight       = wmax;
800         sched->max_gp           = gpmax;
801         sched->constraints      = constraints;
802
803         for (idx = 0; idx < num; idx++) {
804                 if (constraints[idx]->weight == wmin)
805                         break;
806         }
807
808         sched->state.event      = idx;          /* start with min weight */
809         sched->state.weight     = wmin;
810         sched->state.unassigned = num;
811 }
812
813 static void perf_sched_save_state(struct perf_sched *sched)
814 {
815         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
816                 return;
817
818         sched->saved[sched->saved_states] = sched->state;
819         sched->saved_states++;
820 }
821
822 static bool perf_sched_restore_state(struct perf_sched *sched)
823 {
824         if (!sched->saved_states)
825                 return false;
826
827         sched->saved_states--;
828         sched->state = sched->saved[sched->saved_states];
829
830         /* this assignment didn't work out */
831         /* XXX broken vs EVENT_PAIR */
832         sched->state.used &= ~BIT_ULL(sched->state.counter);
833
834         /* try the next one */
835         sched->state.counter++;
836
837         return true;
838 }
839
840 /*
841  * Select a counter for the current event to schedule. Return true on
842  * success.
843  */
844 static bool __perf_sched_find_counter(struct perf_sched *sched)
845 {
846         struct event_constraint *c;
847         int idx;
848
849         if (!sched->state.unassigned)
850                 return false;
851
852         if (sched->state.event >= sched->max_events)
853                 return false;
854
855         c = sched->constraints[sched->state.event];
856         /* Prefer fixed purpose counters */
857         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
858                 idx = INTEL_PMC_IDX_FIXED;
859                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
860                         u64 mask = BIT_ULL(idx);
861
862                         if (sched->state.used & mask)
863                                 continue;
864
865                         sched->state.used |= mask;
866                         goto done;
867                 }
868         }
869
870         /* Grab the first unused counter starting with idx */
871         idx = sched->state.counter;
872         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
873                 u64 mask = BIT_ULL(idx);
874
875                 if (c->flags & PERF_X86_EVENT_PAIR)
876                         mask |= mask << 1;
877
878                 if (sched->state.used & mask)
879                         continue;
880
881                 if (sched->state.nr_gp++ >= sched->max_gp)
882                         return false;
883
884                 sched->state.used |= mask;
885                 goto done;
886         }
887
888         return false;
889
890 done:
891         sched->state.counter = idx;
892
893         if (c->overlap)
894                 perf_sched_save_state(sched);
895
896         return true;
897 }
898
899 static bool perf_sched_find_counter(struct perf_sched *sched)
900 {
901         while (!__perf_sched_find_counter(sched)) {
902                 if (!perf_sched_restore_state(sched))
903                         return false;
904         }
905
906         return true;
907 }
908
909 /*
910  * Go through all unassigned events and find the next one to schedule.
911  * Take events with the least weight first. Return true on success.
912  */
913 static bool perf_sched_next_event(struct perf_sched *sched)
914 {
915         struct event_constraint *c;
916
917         if (!sched->state.unassigned || !--sched->state.unassigned)
918                 return false;
919
920         do {
921                 /* next event */
922                 sched->state.event++;
923                 if (sched->state.event >= sched->max_events) {
924                         /* next weight */
925                         sched->state.event = 0;
926                         sched->state.weight++;
927                         if (sched->state.weight > sched->max_weight)
928                                 return false;
929                 }
930                 c = sched->constraints[sched->state.event];
931         } while (c->weight != sched->state.weight);
932
933         sched->state.counter = 0;       /* start with first counter */
934
935         return true;
936 }
937
938 /*
939  * Assign a counter for each event.
940  */
941 int perf_assign_events(struct event_constraint **constraints, int n,
942                         int wmin, int wmax, int gpmax, int *assign)
943 {
944         struct perf_sched sched;
945
946         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
947
948         do {
949                 if (!perf_sched_find_counter(&sched))
950                         break;  /* failed */
951                 if (assign)
952                         assign[sched.state.event] = sched.state.counter;
953         } while (perf_sched_next_event(&sched));
954
955         return sched.state.unassigned;
956 }
957 EXPORT_SYMBOL_GPL(perf_assign_events);
958
959 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
960 {
961         int num_counters = hybrid(cpuc->pmu, num_counters);
962         struct event_constraint *c;
963         struct perf_event *e;
964         int n0, i, wmin, wmax, unsched = 0;
965         struct hw_perf_event *hwc;
966         u64 used_mask = 0;
967
968         /*
969          * Compute the number of events already present; see x86_pmu_add(),
970          * validate_group() and x86_pmu_commit_txn(). For the former two
971          * cpuc->n_events hasn't been updated yet, while for the latter
972          * cpuc->n_txn contains the number of events added in the current
973          * transaction.
974          */
975         n0 = cpuc->n_events;
976         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
977                 n0 -= cpuc->n_txn;
978
979         static_call_cond(x86_pmu_start_scheduling)(cpuc);
980
981         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
982                 c = cpuc->event_constraint[i];
983
984                 /*
985                  * Previously scheduled events should have a cached constraint,
986                  * while new events should not have one.
987                  */
988                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
989
990                 /*
991                  * Request constraints for new events; or for those events that
992                  * have a dynamic constraint -- for those the constraint can
993                  * change due to external factors (sibling state, allow_tfa).
994                  */
995                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
996                         c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
997                         cpuc->event_constraint[i] = c;
998                 }
999
1000                 wmin = min(wmin, c->weight);
1001                 wmax = max(wmax, c->weight);
1002         }
1003
1004         /*
1005          * fastpath, try to reuse previous register
1006          */
1007         for (i = 0; i < n; i++) {
1008                 u64 mask;
1009
1010                 hwc = &cpuc->event_list[i]->hw;
1011                 c = cpuc->event_constraint[i];
1012
1013                 /* never assigned */
1014                 if (hwc->idx == -1)
1015                         break;
1016
1017                 /* constraint still honored */
1018                 if (!test_bit(hwc->idx, c->idxmsk))
1019                         break;
1020
1021                 mask = BIT_ULL(hwc->idx);
1022                 if (is_counter_pair(hwc))
1023                         mask |= mask << 1;
1024
1025                 /* not already used */
1026                 if (used_mask & mask)
1027                         break;
1028
1029                 used_mask |= mask;
1030
1031                 if (assign)
1032                         assign[i] = hwc->idx;
1033         }
1034
1035         /* slow path */
1036         if (i != n) {
1037                 int gpmax = num_counters;
1038
1039                 /*
1040                  * Do not allow scheduling of more than half the available
1041                  * generic counters.
1042                  *
1043                  * This helps avoid counter starvation of sibling thread by
1044                  * ensuring at most half the counters cannot be in exclusive
1045                  * mode. There is no designated counters for the limits. Any
1046                  * N/2 counters can be used. This helps with events with
1047                  * specific counter constraints.
1048                  */
1049                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1050                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1051                         gpmax /= 2;
1052
1053                 /*
1054                  * Reduce the amount of available counters to allow fitting
1055                  * the extra Merge events needed by large increment events.
1056                  */
1057                 if (x86_pmu.flags & PMU_FL_PAIR) {
1058                         gpmax = num_counters - cpuc->n_pair;
1059                         WARN_ON(gpmax <= 0);
1060                 }
1061
1062                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1063                                              wmax, gpmax, assign);
1064         }
1065
1066         /*
1067          * In case of success (unsched = 0), mark events as committed,
1068          * so we do not put_constraint() in case new events are added
1069          * and fail to be scheduled
1070          *
1071          * We invoke the lower level commit callback to lock the resource
1072          *
1073          * We do not need to do all of this in case we are called to
1074          * validate an event group (assign == NULL)
1075          */
1076         if (!unsched && assign) {
1077                 for (i = 0; i < n; i++) {
1078                         e = cpuc->event_list[i];
1079                         static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1080                 }
1081         } else {
1082                 for (i = n0; i < n; i++) {
1083                         e = cpuc->event_list[i];
1084
1085                         /*
1086                          * release events that failed scheduling
1087                          */
1088                         static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1089
1090                         cpuc->event_constraint[i] = NULL;
1091                 }
1092         }
1093
1094         static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1095
1096         return unsched ? -EINVAL : 0;
1097 }
1098
1099 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1100                                struct perf_event *event)
1101 {
1102         if (is_metric_event(event)) {
1103                 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1104                         return -EINVAL;
1105                 cpuc->n_metric++;
1106                 cpuc->n_txn_metric++;
1107         }
1108
1109         return 0;
1110 }
1111
1112 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1113                                 struct perf_event *event)
1114 {
1115         if (is_metric_event(event))
1116                 cpuc->n_metric--;
1117 }
1118
1119 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1120                          int max_count, int n)
1121 {
1122         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1123
1124         if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1125                 return -EINVAL;
1126
1127         if (n >= max_count + cpuc->n_metric)
1128                 return -EINVAL;
1129
1130         cpuc->event_list[n] = event;
1131         if (is_counter_pair(&event->hw)) {
1132                 cpuc->n_pair++;
1133                 cpuc->n_txn_pair++;
1134         }
1135
1136         return 0;
1137 }
1138
1139 /*
1140  * dogrp: true if must collect siblings events (group)
1141  * returns total number of events and error code
1142  */
1143 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1144 {
1145         int num_counters = hybrid(cpuc->pmu, num_counters);
1146         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1147         struct perf_event *event;
1148         int n, max_count;
1149
1150         max_count = num_counters + num_counters_fixed;
1151
1152         /* current number of events already accepted */
1153         n = cpuc->n_events;
1154         if (!cpuc->n_events)
1155                 cpuc->pebs_output = 0;
1156
1157         if (!cpuc->is_fake && leader->attr.precise_ip) {
1158                 /*
1159                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1160                  * away, the group was broken down and this singleton event
1161                  * can't schedule any more.
1162                  */
1163                 if (is_pebs_pt(leader) && !leader->aux_event)
1164                         return -EINVAL;
1165
1166                 /*
1167                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1168                  */
1169                 if (cpuc->pebs_output &&
1170                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1171                         return -EINVAL;
1172
1173                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1174         }
1175
1176         if (is_x86_event(leader)) {
1177                 if (collect_event(cpuc, leader, max_count, n))
1178                         return -EINVAL;
1179                 n++;
1180         }
1181
1182         if (!dogrp)
1183                 return n;
1184
1185         for_each_sibling_event(event, leader) {
1186                 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1187                         continue;
1188
1189                 if (collect_event(cpuc, event, max_count, n))
1190                         return -EINVAL;
1191
1192                 n++;
1193         }
1194         return n;
1195 }
1196
1197 static inline void x86_assign_hw_event(struct perf_event *event,
1198                                 struct cpu_hw_events *cpuc, int i)
1199 {
1200         struct hw_perf_event *hwc = &event->hw;
1201         int idx;
1202
1203         idx = hwc->idx = cpuc->assign[i];
1204         hwc->last_cpu = smp_processor_id();
1205         hwc->last_tag = ++cpuc->tags[i];
1206
1207         switch (hwc->idx) {
1208         case INTEL_PMC_IDX_FIXED_BTS:
1209         case INTEL_PMC_IDX_FIXED_VLBR:
1210                 hwc->config_base = 0;
1211                 hwc->event_base = 0;
1212                 break;
1213
1214         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1215                 /* All the metric events are mapped onto the fixed counter 3. */
1216                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1217                 fallthrough;
1218         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1219                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1220                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1221                                 (idx - INTEL_PMC_IDX_FIXED);
1222                 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1223                                         INTEL_PMC_FIXED_RDPMC_BASE;
1224                 break;
1225
1226         default:
1227                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1228                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1229                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1230                 break;
1231         }
1232 }
1233
1234 /**
1235  * x86_perf_rdpmc_index - Return PMC counter used for event
1236  * @event: the perf_event to which the PMC counter was assigned
1237  *
1238  * The counter assigned to this performance event may change if interrupts
1239  * are enabled. This counter should thus never be used while interrupts are
1240  * enabled. Before this function is used to obtain the assigned counter the
1241  * event should be checked for validity using, for example,
1242  * perf_event_read_local(), within the same interrupt disabled section in
1243  * which this counter is planned to be used.
1244  *
1245  * Return: The index of the performance monitoring counter assigned to
1246  * @perf_event.
1247  */
1248 int x86_perf_rdpmc_index(struct perf_event *event)
1249 {
1250         lockdep_assert_irqs_disabled();
1251
1252         return event->hw.event_base_rdpmc;
1253 }
1254
1255 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1256                                         struct cpu_hw_events *cpuc,
1257                                         int i)
1258 {
1259         return hwc->idx == cpuc->assign[i] &&
1260                 hwc->last_cpu == smp_processor_id() &&
1261                 hwc->last_tag == cpuc->tags[i];
1262 }
1263
1264 static void x86_pmu_start(struct perf_event *event, int flags);
1265
1266 static void x86_pmu_enable(struct pmu *pmu)
1267 {
1268         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1269         struct perf_event *event;
1270         struct hw_perf_event *hwc;
1271         int i, added = cpuc->n_added;
1272
1273         if (!x86_pmu_initialized())
1274                 return;
1275
1276         if (cpuc->enabled)
1277                 return;
1278
1279         if (cpuc->n_added) {
1280                 int n_running = cpuc->n_events - cpuc->n_added;
1281                 /*
1282                  * apply assignment obtained either from
1283                  * hw_perf_group_sched_in() or x86_pmu_enable()
1284                  *
1285                  * step1: save events moving to new counters
1286                  */
1287                 for (i = 0; i < n_running; i++) {
1288                         event = cpuc->event_list[i];
1289                         hwc = &event->hw;
1290
1291                         /*
1292                          * we can avoid reprogramming counter if:
1293                          * - assigned same counter as last time
1294                          * - running on same CPU as last time
1295                          * - no other event has used the counter since
1296                          */
1297                         if (hwc->idx == -1 ||
1298                             match_prev_assignment(hwc, cpuc, i))
1299                                 continue;
1300
1301                         /*
1302                          * Ensure we don't accidentally enable a stopped
1303                          * counter simply because we rescheduled.
1304                          */
1305                         if (hwc->state & PERF_HES_STOPPED)
1306                                 hwc->state |= PERF_HES_ARCH;
1307
1308                         x86_pmu_stop(event, PERF_EF_UPDATE);
1309                 }
1310
1311                 /*
1312                  * step2: reprogram moved events into new counters
1313                  */
1314                 for (i = 0; i < cpuc->n_events; i++) {
1315                         event = cpuc->event_list[i];
1316                         hwc = &event->hw;
1317
1318                         if (!match_prev_assignment(hwc, cpuc, i))
1319                                 x86_assign_hw_event(event, cpuc, i);
1320                         else if (i < n_running)
1321                                 continue;
1322
1323                         if (hwc->state & PERF_HES_ARCH)
1324                                 continue;
1325
1326                         x86_pmu_start(event, PERF_EF_RELOAD);
1327                 }
1328                 cpuc->n_added = 0;
1329                 perf_events_lapic_init();
1330         }
1331
1332         cpuc->enabled = 1;
1333         barrier();
1334
1335         static_call(x86_pmu_enable_all)(added);
1336 }
1337
1338 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1339
1340 /*
1341  * Set the next IRQ period, based on the hwc->period_left value.
1342  * To be called with the event disabled in hw:
1343  */
1344 int x86_perf_event_set_period(struct perf_event *event)
1345 {
1346         struct hw_perf_event *hwc = &event->hw;
1347         s64 left = local64_read(&hwc->period_left);
1348         s64 period = hwc->sample_period;
1349         int ret = 0, idx = hwc->idx;
1350
1351         if (unlikely(!hwc->event_base))
1352                 return 0;
1353
1354         if (unlikely(is_topdown_count(event)) &&
1355             x86_pmu.set_topdown_event_period)
1356                 return x86_pmu.set_topdown_event_period(event);
1357
1358         /*
1359          * If we are way outside a reasonable range then just skip forward:
1360          */
1361         if (unlikely(left <= -period)) {
1362                 left = period;
1363                 local64_set(&hwc->period_left, left);
1364                 hwc->last_period = period;
1365                 ret = 1;
1366         }
1367
1368         if (unlikely(left <= 0)) {
1369                 left += period;
1370                 local64_set(&hwc->period_left, left);
1371                 hwc->last_period = period;
1372                 ret = 1;
1373         }
1374         /*
1375          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1376          */
1377         if (unlikely(left < 2))
1378                 left = 2;
1379
1380         if (left > x86_pmu.max_period)
1381                 left = x86_pmu.max_period;
1382
1383         if (x86_pmu.limit_period)
1384                 left = x86_pmu.limit_period(event, left);
1385
1386         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1387
1388         /*
1389          * The hw event starts counting from this event offset,
1390          * mark it to be able to extra future deltas:
1391          */
1392         local64_set(&hwc->prev_count, (u64)-left);
1393
1394         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1395
1396         /*
1397          * Sign extend the Merge event counter's upper 16 bits since
1398          * we currently declare a 48-bit counter width
1399          */
1400         if (is_counter_pair(hwc))
1401                 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1402
1403         /*
1404          * Due to erratum on certan cpu we need
1405          * a second write to be sure the register
1406          * is updated properly
1407          */
1408         if (x86_pmu.perfctr_second_write) {
1409                 wrmsrl(hwc->event_base,
1410                         (u64)(-left) & x86_pmu.cntval_mask);
1411         }
1412
1413         perf_event_update_userpage(event);
1414
1415         return ret;
1416 }
1417
1418 void x86_pmu_enable_event(struct perf_event *event)
1419 {
1420         if (__this_cpu_read(cpu_hw_events.enabled))
1421                 __x86_pmu_enable_event(&event->hw,
1422                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1423 }
1424
1425 /*
1426  * Add a single event to the PMU.
1427  *
1428  * The event is added to the group of enabled events
1429  * but only if it can be scheduled with existing events.
1430  */
1431 static int x86_pmu_add(struct perf_event *event, int flags)
1432 {
1433         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1434         struct hw_perf_event *hwc;
1435         int assign[X86_PMC_IDX_MAX];
1436         int n, n0, ret;
1437
1438         hwc = &event->hw;
1439
1440         n0 = cpuc->n_events;
1441         ret = n = collect_events(cpuc, event, false);
1442         if (ret < 0)
1443                 goto out;
1444
1445         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1446         if (!(flags & PERF_EF_START))
1447                 hwc->state |= PERF_HES_ARCH;
1448
1449         /*
1450          * If group events scheduling transaction was started,
1451          * skip the schedulability test here, it will be performed
1452          * at commit time (->commit_txn) as a whole.
1453          *
1454          * If commit fails, we'll call ->del() on all events
1455          * for which ->add() was called.
1456          */
1457         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1458                 goto done_collect;
1459
1460         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1461         if (ret)
1462                 goto out;
1463         /*
1464          * copy new assignment, now we know it is possible
1465          * will be used by hw_perf_enable()
1466          */
1467         memcpy(cpuc->assign, assign, n*sizeof(int));
1468
1469 done_collect:
1470         /*
1471          * Commit the collect_events() state. See x86_pmu_del() and
1472          * x86_pmu_*_txn().
1473          */
1474         cpuc->n_events = n;
1475         cpuc->n_added += n - n0;
1476         cpuc->n_txn += n - n0;
1477
1478         /*
1479          * This is before x86_pmu_enable() will call x86_pmu_start(),
1480          * so we enable LBRs before an event needs them etc..
1481          */
1482         static_call_cond(x86_pmu_add)(event);
1483
1484         ret = 0;
1485 out:
1486         return ret;
1487 }
1488
1489 static void x86_pmu_start(struct perf_event *event, int flags)
1490 {
1491         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1492         int idx = event->hw.idx;
1493
1494         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1495                 return;
1496
1497         if (WARN_ON_ONCE(idx == -1))
1498                 return;
1499
1500         if (flags & PERF_EF_RELOAD) {
1501                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1502                 x86_perf_event_set_period(event);
1503         }
1504
1505         event->hw.state = 0;
1506
1507         cpuc->events[idx] = event;
1508         __set_bit(idx, cpuc->active_mask);
1509         static_call(x86_pmu_enable)(event);
1510         perf_event_update_userpage(event);
1511 }
1512
1513 void perf_event_print_debug(void)
1514 {
1515         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1516         u64 pebs, debugctl;
1517         int cpu = smp_processor_id();
1518         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1519         int num_counters = hybrid(cpuc->pmu, num_counters);
1520         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1521         struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1522         unsigned long flags;
1523         int idx;
1524
1525         if (!num_counters)
1526                 return;
1527
1528         local_irq_save(flags);
1529
1530         if (x86_pmu.version >= 2) {
1531                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1532                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1533                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1534                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1535
1536                 pr_info("\n");
1537                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1538                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1539                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1540                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1541                 if (pebs_constraints) {
1542                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1543                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1544                 }
1545                 if (x86_pmu.lbr_nr) {
1546                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1547                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1548                 }
1549         }
1550         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1551
1552         for (idx = 0; idx < num_counters; idx++) {
1553                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1554                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1555
1556                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1557
1558                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1559                         cpu, idx, pmc_ctrl);
1560                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1561                         cpu, idx, pmc_count);
1562                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1563                         cpu, idx, prev_left);
1564         }
1565         for (idx = 0; idx < num_counters_fixed; idx++) {
1566                 if (fixed_counter_disabled(idx, cpuc->pmu))
1567                         continue;
1568                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1569
1570                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1571                         cpu, idx, pmc_count);
1572         }
1573         local_irq_restore(flags);
1574 }
1575
1576 void x86_pmu_stop(struct perf_event *event, int flags)
1577 {
1578         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1579         struct hw_perf_event *hwc = &event->hw;
1580
1581         if (test_bit(hwc->idx, cpuc->active_mask)) {
1582                 static_call(x86_pmu_disable)(event);
1583                 __clear_bit(hwc->idx, cpuc->active_mask);
1584                 cpuc->events[hwc->idx] = NULL;
1585                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1586                 hwc->state |= PERF_HES_STOPPED;
1587         }
1588
1589         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1590                 /*
1591                  * Drain the remaining delta count out of a event
1592                  * that we are disabling:
1593                  */
1594                 x86_perf_event_update(event);
1595                 hwc->state |= PERF_HES_UPTODATE;
1596         }
1597 }
1598
1599 static void x86_pmu_del(struct perf_event *event, int flags)
1600 {
1601         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1602         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1603         int i;
1604
1605         /*
1606          * If we're called during a txn, we only need to undo x86_pmu.add.
1607          * The events never got scheduled and ->cancel_txn will truncate
1608          * the event_list.
1609          *
1610          * XXX assumes any ->del() called during a TXN will only be on
1611          * an event added during that same TXN.
1612          */
1613         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1614                 goto do_del;
1615
1616         /*
1617          * Not a TXN, therefore cleanup properly.
1618          */
1619         x86_pmu_stop(event, PERF_EF_UPDATE);
1620
1621         for (i = 0; i < cpuc->n_events; i++) {
1622                 if (event == cpuc->event_list[i])
1623                         break;
1624         }
1625
1626         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1627                 return;
1628
1629         /* If we have a newly added event; make sure to decrease n_added. */
1630         if (i >= cpuc->n_events - cpuc->n_added)
1631                 --cpuc->n_added;
1632
1633         static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1634
1635         /* Delete the array entry. */
1636         while (++i < cpuc->n_events) {
1637                 cpuc->event_list[i-1] = cpuc->event_list[i];
1638                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1639         }
1640         cpuc->event_constraint[i-1] = NULL;
1641         --cpuc->n_events;
1642         if (intel_cap.perf_metrics)
1643                 del_nr_metric_event(cpuc, event);
1644
1645         perf_event_update_userpage(event);
1646
1647 do_del:
1648
1649         /*
1650          * This is after x86_pmu_stop(); so we disable LBRs after any
1651          * event can need them etc..
1652          */
1653         static_call_cond(x86_pmu_del)(event);
1654 }
1655
1656 int x86_pmu_handle_irq(struct pt_regs *regs)
1657 {
1658         struct perf_sample_data data;
1659         struct cpu_hw_events *cpuc;
1660         struct perf_event *event;
1661         int idx, handled = 0;
1662         u64 val;
1663
1664         cpuc = this_cpu_ptr(&cpu_hw_events);
1665
1666         /*
1667          * Some chipsets need to unmask the LVTPC in a particular spot
1668          * inside the nmi handler.  As a result, the unmasking was pushed
1669          * into all the nmi handlers.
1670          *
1671          * This generic handler doesn't seem to have any issues where the
1672          * unmasking occurs so it was left at the top.
1673          */
1674         apic_write(APIC_LVTPC, APIC_DM_NMI);
1675
1676         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1677                 if (!test_bit(idx, cpuc->active_mask))
1678                         continue;
1679
1680                 event = cpuc->events[idx];
1681
1682                 val = x86_perf_event_update(event);
1683                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1684                         continue;
1685
1686                 /*
1687                  * event overflow
1688                  */
1689                 handled++;
1690                 perf_sample_data_init(&data, 0, event->hw.last_period);
1691
1692                 if (!x86_perf_event_set_period(event))
1693                         continue;
1694
1695                 if (perf_event_overflow(event, &data, regs))
1696                         x86_pmu_stop(event, 0);
1697         }
1698
1699         if (handled)
1700                 inc_irq_stat(apic_perf_irqs);
1701
1702         return handled;
1703 }
1704
1705 void perf_events_lapic_init(void)
1706 {
1707         if (!x86_pmu.apic || !x86_pmu_initialized())
1708                 return;
1709
1710         /*
1711          * Always use NMI for PMU
1712          */
1713         apic_write(APIC_LVTPC, APIC_DM_NMI);
1714 }
1715
1716 static int
1717 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1718 {
1719         u64 start_clock;
1720         u64 finish_clock;
1721         int ret;
1722
1723         /*
1724          * All PMUs/events that share this PMI handler should make sure to
1725          * increment active_events for their events.
1726          */
1727         if (!atomic_read(&active_events))
1728                 return NMI_DONE;
1729
1730         start_clock = sched_clock();
1731         ret = static_call(x86_pmu_handle_irq)(regs);
1732         finish_clock = sched_clock();
1733
1734         perf_sample_event_took(finish_clock - start_clock);
1735
1736         return ret;
1737 }
1738 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1739
1740 struct event_constraint emptyconstraint;
1741 struct event_constraint unconstrained;
1742
1743 static int x86_pmu_prepare_cpu(unsigned int cpu)
1744 {
1745         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1746         int i;
1747
1748         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1749                 cpuc->kfree_on_online[i] = NULL;
1750         if (x86_pmu.cpu_prepare)
1751                 return x86_pmu.cpu_prepare(cpu);
1752         return 0;
1753 }
1754
1755 static int x86_pmu_dead_cpu(unsigned int cpu)
1756 {
1757         if (x86_pmu.cpu_dead)
1758                 x86_pmu.cpu_dead(cpu);
1759         return 0;
1760 }
1761
1762 static int x86_pmu_online_cpu(unsigned int cpu)
1763 {
1764         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1765         int i;
1766
1767         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1768                 kfree(cpuc->kfree_on_online[i]);
1769                 cpuc->kfree_on_online[i] = NULL;
1770         }
1771         return 0;
1772 }
1773
1774 static int x86_pmu_starting_cpu(unsigned int cpu)
1775 {
1776         if (x86_pmu.cpu_starting)
1777                 x86_pmu.cpu_starting(cpu);
1778         return 0;
1779 }
1780
1781 static int x86_pmu_dying_cpu(unsigned int cpu)
1782 {
1783         if (x86_pmu.cpu_dying)
1784                 x86_pmu.cpu_dying(cpu);
1785         return 0;
1786 }
1787
1788 static void __init pmu_check_apic(void)
1789 {
1790         if (boot_cpu_has(X86_FEATURE_APIC))
1791                 return;
1792
1793         x86_pmu.apic = 0;
1794         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1795         pr_info("no hardware sampling interrupt available.\n");
1796
1797         /*
1798          * If we have a PMU initialized but no APIC
1799          * interrupts, we cannot sample hardware
1800          * events (user-space has to fall back and
1801          * sample via a hrtimer based software event):
1802          */
1803         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1804
1805 }
1806
1807 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1808         .name = "format",
1809         .attrs = NULL,
1810 };
1811
1812 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1813 {
1814         struct perf_pmu_events_attr *pmu_attr =
1815                 container_of(attr, struct perf_pmu_events_attr, attr);
1816         u64 config = 0;
1817
1818         if (pmu_attr->id < x86_pmu.max_events)
1819                 config = x86_pmu.event_map(pmu_attr->id);
1820
1821         /* string trumps id */
1822         if (pmu_attr->event_str)
1823                 return sprintf(page, "%s", pmu_attr->event_str);
1824
1825         return x86_pmu.events_sysfs_show(page, config);
1826 }
1827 EXPORT_SYMBOL_GPL(events_sysfs_show);
1828
1829 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1830                           char *page)
1831 {
1832         struct perf_pmu_events_ht_attr *pmu_attr =
1833                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1834
1835         /*
1836          * Report conditional events depending on Hyper-Threading.
1837          *
1838          * This is overly conservative as usually the HT special
1839          * handling is not needed if the other CPU thread is idle.
1840          *
1841          * Note this does not (and cannot) handle the case when thread
1842          * siblings are invisible, for example with virtualization
1843          * if they are owned by some other guest.  The user tool
1844          * has to re-read when a thread sibling gets onlined later.
1845          */
1846         return sprintf(page, "%s",
1847                         topology_max_smt_threads() > 1 ?
1848                         pmu_attr->event_str_ht :
1849                         pmu_attr->event_str_noht);
1850 }
1851
1852 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1853 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1854 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1855 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1856 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1857 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1858 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1859 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1860 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1861 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1862
1863 static struct attribute *empty_attrs;
1864
1865 static struct attribute *events_attr[] = {
1866         EVENT_PTR(CPU_CYCLES),
1867         EVENT_PTR(INSTRUCTIONS),
1868         EVENT_PTR(CACHE_REFERENCES),
1869         EVENT_PTR(CACHE_MISSES),
1870         EVENT_PTR(BRANCH_INSTRUCTIONS),
1871         EVENT_PTR(BRANCH_MISSES),
1872         EVENT_PTR(BUS_CYCLES),
1873         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1874         EVENT_PTR(STALLED_CYCLES_BACKEND),
1875         EVENT_PTR(REF_CPU_CYCLES),
1876         NULL,
1877 };
1878
1879 /*
1880  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1881  * out of events_attr attributes.
1882  */
1883 static umode_t
1884 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1885 {
1886         struct perf_pmu_events_attr *pmu_attr;
1887
1888         if (idx >= x86_pmu.max_events)
1889                 return 0;
1890
1891         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1892         /* str trumps id */
1893         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1894 }
1895
1896 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1897         .name = "events",
1898         .attrs = events_attr,
1899         .is_visible = is_visible,
1900 };
1901
1902 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1903 {
1904         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1905         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1906         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1907         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1908         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1909         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1910         ssize_t ret;
1911
1912         /*
1913         * We have whole page size to spend and just little data
1914         * to write, so we can safely use sprintf.
1915         */
1916         ret = sprintf(page, "event=0x%02llx", event);
1917
1918         if (umask)
1919                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1920
1921         if (edge)
1922                 ret += sprintf(page + ret, ",edge");
1923
1924         if (pc)
1925                 ret += sprintf(page + ret, ",pc");
1926
1927         if (any)
1928                 ret += sprintf(page + ret, ",any");
1929
1930         if (inv)
1931                 ret += sprintf(page + ret, ",inv");
1932
1933         if (cmask)
1934                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1935
1936         ret += sprintf(page + ret, "\n");
1937
1938         return ret;
1939 }
1940
1941 static struct attribute_group x86_pmu_attr_group;
1942 static struct attribute_group x86_pmu_caps_group;
1943
1944 static void x86_pmu_static_call_update(void)
1945 {
1946         static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
1947         static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
1948         static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
1949         static_call_update(x86_pmu_enable, x86_pmu.enable);
1950         static_call_update(x86_pmu_disable, x86_pmu.disable);
1951
1952         static_call_update(x86_pmu_add, x86_pmu.add);
1953         static_call_update(x86_pmu_del, x86_pmu.del);
1954         static_call_update(x86_pmu_read, x86_pmu.read);
1955
1956         static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
1957         static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
1958         static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
1959
1960         static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
1961         static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
1962         static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
1963
1964         static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
1965         static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
1966
1967         static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
1968         static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
1969
1970         static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
1971 }
1972
1973 static void _x86_pmu_read(struct perf_event *event)
1974 {
1975         x86_perf_event_update(event);
1976 }
1977
1978 static int __init init_hw_perf_events(void)
1979 {
1980         struct x86_pmu_quirk *quirk;
1981         int err;
1982
1983         pr_info("Performance Events: ");
1984
1985         switch (boot_cpu_data.x86_vendor) {
1986         case X86_VENDOR_INTEL:
1987                 err = intel_pmu_init();
1988                 break;
1989         case X86_VENDOR_AMD:
1990                 err = amd_pmu_init();
1991                 break;
1992         case X86_VENDOR_HYGON:
1993                 err = amd_pmu_init();
1994                 x86_pmu.name = "HYGON";
1995                 break;
1996         case X86_VENDOR_ZHAOXIN:
1997         case X86_VENDOR_CENTAUR:
1998                 err = zhaoxin_pmu_init();
1999                 break;
2000         default:
2001                 err = -ENOTSUPP;
2002         }
2003         if (err != 0) {
2004                 pr_cont("no PMU driver, software events only.\n");
2005                 return 0;
2006         }
2007
2008         pmu_check_apic();
2009
2010         /* sanity check that the hardware exists or is emulated */
2011         if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2012                 return 0;
2013
2014         pr_cont("%s PMU driver.\n", x86_pmu.name);
2015
2016         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2017
2018         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2019                 quirk->func();
2020
2021         if (!x86_pmu.intel_ctrl)
2022                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2023
2024         perf_events_lapic_init();
2025         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2026
2027         unconstrained = (struct event_constraint)
2028                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2029                                    0, x86_pmu.num_counters, 0, 0);
2030
2031         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2032
2033         if (!x86_pmu.events_sysfs_show)
2034                 x86_pmu_events_group.attrs = &empty_attrs;
2035
2036         pmu.attr_update = x86_pmu.attr_update;
2037
2038         pr_info("... version:                %d\n",     x86_pmu.version);
2039         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2040         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
2041         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2042         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2043         pr_info("... fixed-purpose events:   %lu\n",
2044                         hweight64((((1ULL << x86_pmu.num_counters_fixed) - 1)
2045                                         << INTEL_PMC_IDX_FIXED) & x86_pmu.intel_ctrl));
2046         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
2047
2048         if (!x86_pmu.read)
2049                 x86_pmu.read = _x86_pmu_read;
2050
2051         if (!x86_pmu.guest_get_msrs)
2052                 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2053
2054         x86_pmu_static_call_update();
2055
2056         /*
2057          * Install callbacks. Core will call them for each online
2058          * cpu.
2059          */
2060         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2061                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2062         if (err)
2063                 return err;
2064
2065         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2066                                 "perf/x86:starting", x86_pmu_starting_cpu,
2067                                 x86_pmu_dying_cpu);
2068         if (err)
2069                 goto out;
2070
2071         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2072                                 x86_pmu_online_cpu, NULL);
2073         if (err)
2074                 goto out1;
2075
2076         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2077         if (err)
2078                 goto out2;
2079
2080         return 0;
2081
2082 out2:
2083         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2084 out1:
2085         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2086 out:
2087         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2088         return err;
2089 }
2090 early_initcall(init_hw_perf_events);
2091
2092 static void x86_pmu_read(struct perf_event *event)
2093 {
2094         static_call(x86_pmu_read)(event);
2095 }
2096
2097 /*
2098  * Start group events scheduling transaction
2099  * Set the flag to make pmu::enable() not perform the
2100  * schedulability test, it will be performed at commit time
2101  *
2102  * We only support PERF_PMU_TXN_ADD transactions. Save the
2103  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2104  * transactions.
2105  */
2106 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2107 {
2108         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2109
2110         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
2111
2112         cpuc->txn_flags = txn_flags;
2113         if (txn_flags & ~PERF_PMU_TXN_ADD)
2114                 return;
2115
2116         perf_pmu_disable(pmu);
2117         __this_cpu_write(cpu_hw_events.n_txn, 0);
2118         __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2119         __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2120 }
2121
2122 /*
2123  * Stop group events scheduling transaction
2124  * Clear the flag and pmu::enable() will perform the
2125  * schedulability test.
2126  */
2127 static void x86_pmu_cancel_txn(struct pmu *pmu)
2128 {
2129         unsigned int txn_flags;
2130         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2131
2132         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2133
2134         txn_flags = cpuc->txn_flags;
2135         cpuc->txn_flags = 0;
2136         if (txn_flags & ~PERF_PMU_TXN_ADD)
2137                 return;
2138
2139         /*
2140          * Truncate collected array by the number of events added in this
2141          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2142          */
2143         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2144         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2145         __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2146         __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2147         perf_pmu_enable(pmu);
2148 }
2149
2150 /*
2151  * Commit group events scheduling transaction
2152  * Perform the group schedulability test as a whole
2153  * Return 0 if success
2154  *
2155  * Does not cancel the transaction on failure; expects the caller to do this.
2156  */
2157 static int x86_pmu_commit_txn(struct pmu *pmu)
2158 {
2159         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2160         int assign[X86_PMC_IDX_MAX];
2161         int n, ret;
2162
2163         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2164
2165         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2166                 cpuc->txn_flags = 0;
2167                 return 0;
2168         }
2169
2170         n = cpuc->n_events;
2171
2172         if (!x86_pmu_initialized())
2173                 return -EAGAIN;
2174
2175         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2176         if (ret)
2177                 return ret;
2178
2179         /*
2180          * copy new assignment, now we know it is possible
2181          * will be used by hw_perf_enable()
2182          */
2183         memcpy(cpuc->assign, assign, n*sizeof(int));
2184
2185         cpuc->txn_flags = 0;
2186         perf_pmu_enable(pmu);
2187         return 0;
2188 }
2189 /*
2190  * a fake_cpuc is used to validate event groups. Due to
2191  * the extra reg logic, we need to also allocate a fake
2192  * per_core and per_cpu structure. Otherwise, group events
2193  * using extra reg may conflict without the kernel being
2194  * able to catch this when the last event gets added to
2195  * the group.
2196  */
2197 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2198 {
2199         intel_cpuc_finish(cpuc);
2200         kfree(cpuc);
2201 }
2202
2203 static struct cpu_hw_events *allocate_fake_cpuc(void)
2204 {
2205         struct cpu_hw_events *cpuc;
2206         int cpu = raw_smp_processor_id();
2207
2208         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2209         if (!cpuc)
2210                 return ERR_PTR(-ENOMEM);
2211         cpuc->is_fake = 1;
2212
2213         if (intel_cpuc_prepare(cpuc, cpu))
2214                 goto error;
2215
2216         return cpuc;
2217 error:
2218         free_fake_cpuc(cpuc);
2219         return ERR_PTR(-ENOMEM);
2220 }
2221
2222 /*
2223  * validate that we can schedule this event
2224  */
2225 static int validate_event(struct perf_event *event)
2226 {
2227         struct cpu_hw_events *fake_cpuc;
2228         struct event_constraint *c;
2229         int ret = 0;
2230
2231         fake_cpuc = allocate_fake_cpuc();
2232         if (IS_ERR(fake_cpuc))
2233                 return PTR_ERR(fake_cpuc);
2234
2235         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2236
2237         if (!c || !c->weight)
2238                 ret = -EINVAL;
2239
2240         if (x86_pmu.put_event_constraints)
2241                 x86_pmu.put_event_constraints(fake_cpuc, event);
2242
2243         free_fake_cpuc(fake_cpuc);
2244
2245         return ret;
2246 }
2247
2248 /*
2249  * validate a single event group
2250  *
2251  * validation include:
2252  *      - check events are compatible which each other
2253  *      - events do not compete for the same counter
2254  *      - number of events <= number of counters
2255  *
2256  * validation ensures the group can be loaded onto the
2257  * PMU if it was the only group available.
2258  */
2259 static int validate_group(struct perf_event *event)
2260 {
2261         struct perf_event *leader = event->group_leader;
2262         struct cpu_hw_events *fake_cpuc;
2263         int ret = -EINVAL, n;
2264
2265         fake_cpuc = allocate_fake_cpuc();
2266         if (IS_ERR(fake_cpuc))
2267                 return PTR_ERR(fake_cpuc);
2268         /*
2269          * the event is not yet connected with its
2270          * siblings therefore we must first collect
2271          * existing siblings, then add the new event
2272          * before we can simulate the scheduling
2273          */
2274         n = collect_events(fake_cpuc, leader, true);
2275         if (n < 0)
2276                 goto out;
2277
2278         fake_cpuc->n_events = n;
2279         n = collect_events(fake_cpuc, event, false);
2280         if (n < 0)
2281                 goto out;
2282
2283         fake_cpuc->n_events = 0;
2284         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2285
2286 out:
2287         free_fake_cpuc(fake_cpuc);
2288         return ret;
2289 }
2290
2291 static int x86_pmu_event_init(struct perf_event *event)
2292 {
2293         struct pmu *tmp;
2294         int err;
2295
2296         switch (event->attr.type) {
2297         case PERF_TYPE_RAW:
2298         case PERF_TYPE_HARDWARE:
2299         case PERF_TYPE_HW_CACHE:
2300                 break;
2301
2302         default:
2303                 return -ENOENT;
2304         }
2305
2306         err = __x86_pmu_event_init(event);
2307         if (!err) {
2308                 /*
2309                  * we temporarily connect event to its pmu
2310                  * such that validate_group() can classify
2311                  * it as an x86 event using is_x86_event()
2312                  */
2313                 tmp = event->pmu;
2314                 event->pmu = &pmu;
2315
2316                 if (event->group_leader != event)
2317                         err = validate_group(event);
2318                 else
2319                         err = validate_event(event);
2320
2321                 event->pmu = tmp;
2322         }
2323         if (err) {
2324                 if (event->destroy)
2325                         event->destroy(event);
2326         }
2327
2328         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2329             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2330                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2331
2332         return err;
2333 }
2334
2335 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2336 {
2337         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2338                 return;
2339
2340         /*
2341          * This function relies on not being called concurrently in two
2342          * tasks in the same mm.  Otherwise one task could observe
2343          * perf_rdpmc_allowed > 1 and return all the way back to
2344          * userspace with CR4.PCE clear while another task is still
2345          * doing on_each_cpu_mask() to propagate CR4.PCE.
2346          *
2347          * For now, this can't happen because all callers hold mmap_lock
2348          * for write.  If this changes, we'll need a different solution.
2349          */
2350         mmap_assert_write_locked(mm);
2351
2352         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2353                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2354 }
2355
2356 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2357 {
2358
2359         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2360                 return;
2361
2362         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2363                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2364 }
2365
2366 static int x86_pmu_event_idx(struct perf_event *event)
2367 {
2368         struct hw_perf_event *hwc = &event->hw;
2369
2370         if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2371                 return 0;
2372
2373         if (is_metric_idx(hwc->idx))
2374                 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2375         else
2376                 return hwc->event_base_rdpmc + 1;
2377 }
2378
2379 static ssize_t get_attr_rdpmc(struct device *cdev,
2380                               struct device_attribute *attr,
2381                               char *buf)
2382 {
2383         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2384 }
2385
2386 static ssize_t set_attr_rdpmc(struct device *cdev,
2387                               struct device_attribute *attr,
2388                               const char *buf, size_t count)
2389 {
2390         unsigned long val;
2391         ssize_t ret;
2392
2393         ret = kstrtoul(buf, 0, &val);
2394         if (ret)
2395                 return ret;
2396
2397         if (val > 2)
2398                 return -EINVAL;
2399
2400         if (x86_pmu.attr_rdpmc_broken)
2401                 return -ENOTSUPP;
2402
2403         if (val != x86_pmu.attr_rdpmc) {
2404                 /*
2405                  * Changing into or out of never available or always available,
2406                  * aka perf-event-bypassing mode. This path is extremely slow,
2407                  * but only root can trigger it, so it's okay.
2408                  */
2409                 if (val == 0)
2410                         static_branch_inc(&rdpmc_never_available_key);
2411                 else if (x86_pmu.attr_rdpmc == 0)
2412                         static_branch_dec(&rdpmc_never_available_key);
2413
2414                 if (val == 2)
2415                         static_branch_inc(&rdpmc_always_available_key);
2416                 else if (x86_pmu.attr_rdpmc == 2)
2417                         static_branch_dec(&rdpmc_always_available_key);
2418
2419                 on_each_cpu(cr4_update_pce, NULL, 1);
2420                 x86_pmu.attr_rdpmc = val;
2421         }
2422
2423         return count;
2424 }
2425
2426 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2427
2428 static struct attribute *x86_pmu_attrs[] = {
2429         &dev_attr_rdpmc.attr,
2430         NULL,
2431 };
2432
2433 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2434         .attrs = x86_pmu_attrs,
2435 };
2436
2437 static ssize_t max_precise_show(struct device *cdev,
2438                                   struct device_attribute *attr,
2439                                   char *buf)
2440 {
2441         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2442 }
2443
2444 static DEVICE_ATTR_RO(max_precise);
2445
2446 static struct attribute *x86_pmu_caps_attrs[] = {
2447         &dev_attr_max_precise.attr,
2448         NULL
2449 };
2450
2451 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2452         .name = "caps",
2453         .attrs = x86_pmu_caps_attrs,
2454 };
2455
2456 static const struct attribute_group *x86_pmu_attr_groups[] = {
2457         &x86_pmu_attr_group,
2458         &x86_pmu_format_group,
2459         &x86_pmu_events_group,
2460         &x86_pmu_caps_group,
2461         NULL,
2462 };
2463
2464 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2465 {
2466         static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2467 }
2468
2469 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2470                                   struct perf_event_context *next)
2471 {
2472         static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2473 }
2474
2475 void perf_check_microcode(void)
2476 {
2477         if (x86_pmu.check_microcode)
2478                 x86_pmu.check_microcode();
2479 }
2480
2481 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2482 {
2483         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2484                 return -EINVAL;
2485
2486         if (value && x86_pmu.limit_period) {
2487                 if (x86_pmu.limit_period(event, value) > value)
2488                         return -EINVAL;
2489         }
2490
2491         return 0;
2492 }
2493
2494 static int x86_pmu_aux_output_match(struct perf_event *event)
2495 {
2496         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2497                 return 0;
2498
2499         if (x86_pmu.aux_output_match)
2500                 return x86_pmu.aux_output_match(event);
2501
2502         return 0;
2503 }
2504
2505 static struct pmu pmu = {
2506         .pmu_enable             = x86_pmu_enable,
2507         .pmu_disable            = x86_pmu_disable,
2508
2509         .attr_groups            = x86_pmu_attr_groups,
2510
2511         .event_init             = x86_pmu_event_init,
2512
2513         .event_mapped           = x86_pmu_event_mapped,
2514         .event_unmapped         = x86_pmu_event_unmapped,
2515
2516         .add                    = x86_pmu_add,
2517         .del                    = x86_pmu_del,
2518         .start                  = x86_pmu_start,
2519         .stop                   = x86_pmu_stop,
2520         .read                   = x86_pmu_read,
2521
2522         .start_txn              = x86_pmu_start_txn,
2523         .cancel_txn             = x86_pmu_cancel_txn,
2524         .commit_txn             = x86_pmu_commit_txn,
2525
2526         .event_idx              = x86_pmu_event_idx,
2527         .sched_task             = x86_pmu_sched_task,
2528         .swap_task_ctx          = x86_pmu_swap_task_ctx,
2529         .check_period           = x86_pmu_check_period,
2530
2531         .aux_output_match       = x86_pmu_aux_output_match,
2532 };
2533
2534 void arch_perf_update_userpage(struct perf_event *event,
2535                                struct perf_event_mmap_page *userpg, u64 now)
2536 {
2537         struct cyc2ns_data data;
2538         u64 offset;
2539
2540         userpg->cap_user_time = 0;
2541         userpg->cap_user_time_zero = 0;
2542         userpg->cap_user_rdpmc =
2543                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2544         userpg->pmc_width = x86_pmu.cntval_bits;
2545
2546         if (!using_native_sched_clock() || !sched_clock_stable())
2547                 return;
2548
2549         cyc2ns_read_begin(&data);
2550
2551         offset = data.cyc2ns_offset + __sched_clock_offset;
2552
2553         /*
2554          * Internal timekeeping for enabled/running/stopped times
2555          * is always in the local_clock domain.
2556          */
2557         userpg->cap_user_time = 1;
2558         userpg->time_mult = data.cyc2ns_mul;
2559         userpg->time_shift = data.cyc2ns_shift;
2560         userpg->time_offset = offset - now;
2561
2562         /*
2563          * cap_user_time_zero doesn't make sense when we're using a different
2564          * time base for the records.
2565          */
2566         if (!event->attr.use_clockid) {
2567                 userpg->cap_user_time_zero = 1;
2568                 userpg->time_zero = offset;
2569         }
2570
2571         cyc2ns_read_end();
2572 }
2573
2574 /*
2575  * Determine whether the regs were taken from an irq/exception handler rather
2576  * than from perf_arch_fetch_caller_regs().
2577  */
2578 static bool perf_hw_regs(struct pt_regs *regs)
2579 {
2580         return regs->flags & X86_EFLAGS_FIXED;
2581 }
2582
2583 void
2584 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2585 {
2586         struct unwind_state state;
2587         unsigned long addr;
2588
2589         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2590                 /* TODO: We don't support guest os callchain now */
2591                 return;
2592         }
2593
2594         if (perf_callchain_store(entry, regs->ip))
2595                 return;
2596
2597         if (perf_hw_regs(regs))
2598                 unwind_start(&state, current, regs, NULL);
2599         else
2600                 unwind_start(&state, current, NULL, (void *)regs->sp);
2601
2602         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2603                 addr = unwind_get_return_address(&state);
2604                 if (!addr || perf_callchain_store(entry, addr))
2605                         return;
2606         }
2607 }
2608
2609 static inline int
2610 valid_user_frame(const void __user *fp, unsigned long size)
2611 {
2612         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2613 }
2614
2615 static unsigned long get_segment_base(unsigned int segment)
2616 {
2617         struct desc_struct *desc;
2618         unsigned int idx = segment >> 3;
2619
2620         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2621 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2622                 struct ldt_struct *ldt;
2623
2624                 /* IRQs are off, so this synchronizes with smp_store_release */
2625                 ldt = READ_ONCE(current->active_mm->context.ldt);
2626                 if (!ldt || idx >= ldt->nr_entries)
2627                         return 0;
2628
2629                 desc = &ldt->entries[idx];
2630 #else
2631                 return 0;
2632 #endif
2633         } else {
2634                 if (idx >= GDT_ENTRIES)
2635                         return 0;
2636
2637                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2638         }
2639
2640         return get_desc_base(desc);
2641 }
2642
2643 #ifdef CONFIG_IA32_EMULATION
2644
2645 #include <linux/compat.h>
2646
2647 static inline int
2648 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2649 {
2650         /* 32-bit process in 64-bit kernel. */
2651         unsigned long ss_base, cs_base;
2652         struct stack_frame_ia32 frame;
2653         const struct stack_frame_ia32 __user *fp;
2654
2655         if (user_64bit_mode(regs))
2656                 return 0;
2657
2658         cs_base = get_segment_base(regs->cs);
2659         ss_base = get_segment_base(regs->ss);
2660
2661         fp = compat_ptr(ss_base + regs->bp);
2662         pagefault_disable();
2663         while (entry->nr < entry->max_stack) {
2664                 if (!valid_user_frame(fp, sizeof(frame)))
2665                         break;
2666
2667                 if (__get_user(frame.next_frame, &fp->next_frame))
2668                         break;
2669                 if (__get_user(frame.return_address, &fp->return_address))
2670                         break;
2671
2672                 perf_callchain_store(entry, cs_base + frame.return_address);
2673                 fp = compat_ptr(ss_base + frame.next_frame);
2674         }
2675         pagefault_enable();
2676         return 1;
2677 }
2678 #else
2679 static inline int
2680 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2681 {
2682     return 0;
2683 }
2684 #endif
2685
2686 void
2687 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2688 {
2689         struct stack_frame frame;
2690         const struct stack_frame __user *fp;
2691
2692         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2693                 /* TODO: We don't support guest os callchain now */
2694                 return;
2695         }
2696
2697         /*
2698          * We don't know what to do with VM86 stacks.. ignore them for now.
2699          */
2700         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2701                 return;
2702
2703         fp = (void __user *)regs->bp;
2704
2705         perf_callchain_store(entry, regs->ip);
2706
2707         if (!nmi_uaccess_okay())
2708                 return;
2709
2710         if (perf_callchain_user32(regs, entry))
2711                 return;
2712
2713         pagefault_disable();
2714         while (entry->nr < entry->max_stack) {
2715                 if (!valid_user_frame(fp, sizeof(frame)))
2716                         break;
2717
2718                 if (__get_user(frame.next_frame, &fp->next_frame))
2719                         break;
2720                 if (__get_user(frame.return_address, &fp->return_address))
2721                         break;
2722
2723                 perf_callchain_store(entry, frame.return_address);
2724                 fp = (void __user *)frame.next_frame;
2725         }
2726         pagefault_enable();
2727 }
2728
2729 /*
2730  * Deal with code segment offsets for the various execution modes:
2731  *
2732  *   VM86 - the good olde 16 bit days, where the linear address is
2733  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2734  *
2735  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2736  *          to figure out what the 32bit base address is.
2737  *
2738  *    X32 - has TIF_X32 set, but is running in x86_64
2739  *
2740  * X86_64 - CS,DS,SS,ES are all zero based.
2741  */
2742 static unsigned long code_segment_base(struct pt_regs *regs)
2743 {
2744         /*
2745          * For IA32 we look at the GDT/LDT segment base to convert the
2746          * effective IP to a linear address.
2747          */
2748
2749 #ifdef CONFIG_X86_32
2750         /*
2751          * If we are in VM86 mode, add the segment offset to convert to a
2752          * linear address.
2753          */
2754         if (regs->flags & X86_VM_MASK)
2755                 return 0x10 * regs->cs;
2756
2757         if (user_mode(regs) && regs->cs != __USER_CS)
2758                 return get_segment_base(regs->cs);
2759 #else
2760         if (user_mode(regs) && !user_64bit_mode(regs) &&
2761             regs->cs != __USER32_CS)
2762                 return get_segment_base(regs->cs);
2763 #endif
2764         return 0;
2765 }
2766
2767 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2768 {
2769         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2770                 return perf_guest_cbs->get_guest_ip();
2771
2772         return regs->ip + code_segment_base(regs);
2773 }
2774
2775 unsigned long perf_misc_flags(struct pt_regs *regs)
2776 {
2777         int misc = 0;
2778
2779         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2780                 if (perf_guest_cbs->is_user_mode())
2781                         misc |= PERF_RECORD_MISC_GUEST_USER;
2782                 else
2783                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2784         } else {
2785                 if (user_mode(regs))
2786                         misc |= PERF_RECORD_MISC_USER;
2787                 else
2788                         misc |= PERF_RECORD_MISC_KERNEL;
2789         }
2790
2791         if (regs->flags & PERF_EFLAGS_EXACT)
2792                 misc |= PERF_RECORD_MISC_EXACT_IP;
2793
2794         return misc;
2795 }
2796
2797 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2798 {
2799         cap->version            = x86_pmu.version;
2800         /*
2801          * KVM doesn't support the hybrid PMU yet.
2802          * Return the common value in global x86_pmu,
2803          * which available for all cores.
2804          */
2805         cap->num_counters_gp    = x86_pmu.num_counters;
2806         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2807         cap->bit_width_gp       = x86_pmu.cntval_bits;
2808         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2809         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2810         cap->events_mask_len    = x86_pmu.events_mask_len;
2811 }
2812 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);