Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44
45 #include "perf_event.h"
46
47 struct x86_pmu x86_pmu __read_mostly;
48
49 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50         .enabled = 1,
51 };
52
53 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
54 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
55
56 /*
57  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
58  * from just a typename, as opposed to an actual function.
59  */
60 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
61 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
62 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
63 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,      *x86_pmu.enable);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
65
66 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
68 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
69
70 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
71 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
72 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
73
74 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
76 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
77
78 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
80
81 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
82 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
83
84 u64 __read_mostly hw_cache_event_ids
85                                 [PERF_COUNT_HW_CACHE_MAX]
86                                 [PERF_COUNT_HW_CACHE_OP_MAX]
87                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
88 u64 __read_mostly hw_cache_extra_regs
89                                 [PERF_COUNT_HW_CACHE_MAX]
90                                 [PERF_COUNT_HW_CACHE_OP_MAX]
91                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
92
93 /*
94  * Propagate event elapsed time into the generic event.
95  * Can only be executed on the CPU where the event is active.
96  * Returns the delta events processed.
97  */
98 u64 x86_perf_event_update(struct perf_event *event)
99 {
100         struct hw_perf_event *hwc = &event->hw;
101         int shift = 64 - x86_pmu.cntval_bits;
102         u64 prev_raw_count, new_raw_count;
103         u64 delta;
104
105         if (unlikely(!hwc->event_base))
106                 return 0;
107
108         if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
109                 return x86_pmu.update_topdown_event(event);
110
111         /*
112          * Careful: an NMI might modify the previous event value.
113          *
114          * Our tactic to handle this is to first atomically read and
115          * exchange a new raw count - then add that new-prev delta
116          * count to the generic event atomically:
117          */
118 again:
119         prev_raw_count = local64_read(&hwc->prev_count);
120         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
121
122         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
123                                         new_raw_count) != prev_raw_count)
124                 goto again;
125
126         /*
127          * Now we have the new raw value and have updated the prev
128          * timestamp already. We can now calculate the elapsed delta
129          * (event-)time and add that to the generic event.
130          *
131          * Careful, not all hw sign-extends above the physical width
132          * of the count.
133          */
134         delta = (new_raw_count << shift) - (prev_raw_count << shift);
135         delta >>= shift;
136
137         local64_add(delta, &event->count);
138         local64_sub(delta, &hwc->period_left);
139
140         return new_raw_count;
141 }
142
143 /*
144  * Find and validate any extra registers to set up.
145  */
146 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
147 {
148         struct hw_perf_event_extra *reg;
149         struct extra_reg *er;
150
151         reg = &event->hw.extra_reg;
152
153         if (!x86_pmu.extra_regs)
154                 return 0;
155
156         for (er = x86_pmu.extra_regs; er->msr; er++) {
157                 if (er->event != (config & er->config_mask))
158                         continue;
159                 if (event->attr.config1 & ~er->valid_mask)
160                         return -EINVAL;
161                 /* Check if the extra msrs can be safely accessed*/
162                 if (!er->extra_msr_access)
163                         return -ENXIO;
164
165                 reg->idx = er->idx;
166                 reg->config = event->attr.config1;
167                 reg->reg = er->msr;
168                 break;
169         }
170         return 0;
171 }
172
173 static atomic_t active_events;
174 static atomic_t pmc_refcount;
175 static DEFINE_MUTEX(pmc_reserve_mutex);
176
177 #ifdef CONFIG_X86_LOCAL_APIC
178
179 static bool reserve_pmc_hardware(void)
180 {
181         int i;
182
183         for (i = 0; i < x86_pmu.num_counters; i++) {
184                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
185                         goto perfctr_fail;
186         }
187
188         for (i = 0; i < x86_pmu.num_counters; i++) {
189                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
190                         goto eventsel_fail;
191         }
192
193         return true;
194
195 eventsel_fail:
196         for (i--; i >= 0; i--)
197                 release_evntsel_nmi(x86_pmu_config_addr(i));
198
199         i = x86_pmu.num_counters;
200
201 perfctr_fail:
202         for (i--; i >= 0; i--)
203                 release_perfctr_nmi(x86_pmu_event_addr(i));
204
205         return false;
206 }
207
208 static void release_pmc_hardware(void)
209 {
210         int i;
211
212         for (i = 0; i < x86_pmu.num_counters; i++) {
213                 release_perfctr_nmi(x86_pmu_event_addr(i));
214                 release_evntsel_nmi(x86_pmu_config_addr(i));
215         }
216 }
217
218 #else
219
220 static bool reserve_pmc_hardware(void) { return true; }
221 static void release_pmc_hardware(void) {}
222
223 #endif
224
225 static bool check_hw_exists(void)
226 {
227         u64 val, val_fail = -1, val_new= ~0;
228         int i, reg, reg_fail = -1, ret = 0;
229         int bios_fail = 0;
230         int reg_safe = -1;
231
232         /*
233          * Check to see if the BIOS enabled any of the counters, if so
234          * complain and bail.
235          */
236         for (i = 0; i < x86_pmu.num_counters; i++) {
237                 reg = x86_pmu_config_addr(i);
238                 ret = rdmsrl_safe(reg, &val);
239                 if (ret)
240                         goto msr_fail;
241                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
242                         bios_fail = 1;
243                         val_fail = val;
244                         reg_fail = reg;
245                 } else {
246                         reg_safe = i;
247                 }
248         }
249
250         if (x86_pmu.num_counters_fixed) {
251                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
252                 ret = rdmsrl_safe(reg, &val);
253                 if (ret)
254                         goto msr_fail;
255                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
256                         if (val & (0x03 << i*4)) {
257                                 bios_fail = 1;
258                                 val_fail = val;
259                                 reg_fail = reg;
260                         }
261                 }
262         }
263
264         /*
265          * If all the counters are enabled, the below test will always
266          * fail.  The tools will also become useless in this scenario.
267          * Just fail and disable the hardware counters.
268          */
269
270         if (reg_safe == -1) {
271                 reg = reg_safe;
272                 goto msr_fail;
273         }
274
275         /*
276          * Read the current value, change it and read it back to see if it
277          * matches, this is needed to detect certain hardware emulators
278          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
279          */
280         reg = x86_pmu_event_addr(reg_safe);
281         if (rdmsrl_safe(reg, &val))
282                 goto msr_fail;
283         val ^= 0xffffUL;
284         ret = wrmsrl_safe(reg, val);
285         ret |= rdmsrl_safe(reg, &val_new);
286         if (ret || val != val_new)
287                 goto msr_fail;
288
289         /*
290          * We still allow the PMU driver to operate:
291          */
292         if (bios_fail) {
293                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
294                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
295                               reg_fail, val_fail);
296         }
297
298         return true;
299
300 msr_fail:
301         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
302                 pr_cont("PMU not available due to virtualization, using software events only.\n");
303         } else {
304                 pr_cont("Broken PMU hardware detected, using software events only.\n");
305                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
306                        reg, val_new);
307         }
308
309         return false;
310 }
311
312 static void hw_perf_event_destroy(struct perf_event *event)
313 {
314         x86_release_hardware();
315         atomic_dec(&active_events);
316 }
317
318 void hw_perf_lbr_event_destroy(struct perf_event *event)
319 {
320         hw_perf_event_destroy(event);
321
322         /* undo the lbr/bts event accounting */
323         x86_del_exclusive(x86_lbr_exclusive_lbr);
324 }
325
326 static inline int x86_pmu_initialized(void)
327 {
328         return x86_pmu.handle_irq != NULL;
329 }
330
331 static inline int
332 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
333 {
334         struct perf_event_attr *attr = &event->attr;
335         unsigned int cache_type, cache_op, cache_result;
336         u64 config, val;
337
338         config = attr->config;
339
340         cache_type = (config >> 0) & 0xff;
341         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
342                 return -EINVAL;
343         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
344
345         cache_op = (config >>  8) & 0xff;
346         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
347                 return -EINVAL;
348         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
349
350         cache_result = (config >> 16) & 0xff;
351         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
352                 return -EINVAL;
353         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
354
355         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
356
357         if (val == 0)
358                 return -ENOENT;
359
360         if (val == -1)
361                 return -EINVAL;
362
363         hwc->config |= val;
364         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
365         return x86_pmu_extra_regs(val, event);
366 }
367
368 int x86_reserve_hardware(void)
369 {
370         int err = 0;
371
372         if (!atomic_inc_not_zero(&pmc_refcount)) {
373                 mutex_lock(&pmc_reserve_mutex);
374                 if (atomic_read(&pmc_refcount) == 0) {
375                         if (!reserve_pmc_hardware())
376                                 err = -EBUSY;
377                         else
378                                 reserve_ds_buffers();
379                 }
380                 if (!err)
381                         atomic_inc(&pmc_refcount);
382                 mutex_unlock(&pmc_reserve_mutex);
383         }
384
385         return err;
386 }
387
388 void x86_release_hardware(void)
389 {
390         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
391                 release_pmc_hardware();
392                 release_ds_buffers();
393                 release_lbr_buffers();
394                 mutex_unlock(&pmc_reserve_mutex);
395         }
396 }
397
398 /*
399  * Check if we can create event of a certain type (that no conflicting events
400  * are present).
401  */
402 int x86_add_exclusive(unsigned int what)
403 {
404         int i;
405
406         /*
407          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
408          * LBR and BTS are still mutually exclusive.
409          */
410         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
411                 goto out;
412
413         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
414                 mutex_lock(&pmc_reserve_mutex);
415                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
416                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
417                                 goto fail_unlock;
418                 }
419                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
420                 mutex_unlock(&pmc_reserve_mutex);
421         }
422
423 out:
424         atomic_inc(&active_events);
425         return 0;
426
427 fail_unlock:
428         mutex_unlock(&pmc_reserve_mutex);
429         return -EBUSY;
430 }
431
432 void x86_del_exclusive(unsigned int what)
433 {
434         atomic_dec(&active_events);
435
436         /*
437          * See the comment in x86_add_exclusive().
438          */
439         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
440                 return;
441
442         atomic_dec(&x86_pmu.lbr_exclusive[what]);
443 }
444
445 int x86_setup_perfctr(struct perf_event *event)
446 {
447         struct perf_event_attr *attr = &event->attr;
448         struct hw_perf_event *hwc = &event->hw;
449         u64 config;
450
451         if (!is_sampling_event(event)) {
452                 hwc->sample_period = x86_pmu.max_period;
453                 hwc->last_period = hwc->sample_period;
454                 local64_set(&hwc->period_left, hwc->sample_period);
455         }
456
457         if (attr->type == PERF_TYPE_RAW)
458                 return x86_pmu_extra_regs(event->attr.config, event);
459
460         if (attr->type == PERF_TYPE_HW_CACHE)
461                 return set_ext_hw_attr(hwc, event);
462
463         if (attr->config >= x86_pmu.max_events)
464                 return -EINVAL;
465
466         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
467
468         /*
469          * The generic map:
470          */
471         config = x86_pmu.event_map(attr->config);
472
473         if (config == 0)
474                 return -ENOENT;
475
476         if (config == -1LL)
477                 return -EINVAL;
478
479         hwc->config |= config;
480
481         return 0;
482 }
483
484 /*
485  * check that branch_sample_type is compatible with
486  * settings needed for precise_ip > 1 which implies
487  * using the LBR to capture ALL taken branches at the
488  * priv levels of the measurement
489  */
490 static inline int precise_br_compat(struct perf_event *event)
491 {
492         u64 m = event->attr.branch_sample_type;
493         u64 b = 0;
494
495         /* must capture all branches */
496         if (!(m & PERF_SAMPLE_BRANCH_ANY))
497                 return 0;
498
499         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
500
501         if (!event->attr.exclude_user)
502                 b |= PERF_SAMPLE_BRANCH_USER;
503
504         if (!event->attr.exclude_kernel)
505                 b |= PERF_SAMPLE_BRANCH_KERNEL;
506
507         /*
508          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
509          */
510
511         return m == b;
512 }
513
514 int x86_pmu_max_precise(void)
515 {
516         int precise = 0;
517
518         /* Support for constant skid */
519         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
520                 precise++;
521
522                 /* Support for IP fixup */
523                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
524                         precise++;
525
526                 if (x86_pmu.pebs_prec_dist)
527                         precise++;
528         }
529         return precise;
530 }
531
532 int x86_pmu_hw_config(struct perf_event *event)
533 {
534         if (event->attr.precise_ip) {
535                 int precise = x86_pmu_max_precise();
536
537                 if (event->attr.precise_ip > precise)
538                         return -EOPNOTSUPP;
539
540                 /* There's no sense in having PEBS for non sampling events: */
541                 if (!is_sampling_event(event))
542                         return -EINVAL;
543         }
544         /*
545          * check that PEBS LBR correction does not conflict with
546          * whatever the user is asking with attr->branch_sample_type
547          */
548         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
549                 u64 *br_type = &event->attr.branch_sample_type;
550
551                 if (has_branch_stack(event)) {
552                         if (!precise_br_compat(event))
553                                 return -EOPNOTSUPP;
554
555                         /* branch_sample_type is compatible */
556
557                 } else {
558                         /*
559                          * user did not specify  branch_sample_type
560                          *
561                          * For PEBS fixups, we capture all
562                          * the branches at the priv level of the
563                          * event.
564                          */
565                         *br_type = PERF_SAMPLE_BRANCH_ANY;
566
567                         if (!event->attr.exclude_user)
568                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
569
570                         if (!event->attr.exclude_kernel)
571                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
572                 }
573         }
574
575         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
576                 event->attach_state |= PERF_ATTACH_TASK_DATA;
577
578         /*
579          * Generate PMC IRQs:
580          * (keep 'enabled' bit clear for now)
581          */
582         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
583
584         /*
585          * Count user and OS events unless requested not to
586          */
587         if (!event->attr.exclude_user)
588                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
589         if (!event->attr.exclude_kernel)
590                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
591
592         if (event->attr.type == PERF_TYPE_RAW)
593                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
594
595         if (event->attr.sample_period && x86_pmu.limit_period) {
596                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
597                                 event->attr.sample_period)
598                         return -EINVAL;
599         }
600
601         /* sample_regs_user never support XMM registers */
602         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
603                 return -EINVAL;
604         /*
605          * Besides the general purpose registers, XMM registers may
606          * be collected in PEBS on some platforms, e.g. Icelake
607          */
608         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
609                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
610                         return -EINVAL;
611
612                 if (!event->attr.precise_ip)
613                         return -EINVAL;
614         }
615
616         return x86_setup_perfctr(event);
617 }
618
619 /*
620  * Setup the hardware configuration for a given attr_type
621  */
622 static int __x86_pmu_event_init(struct perf_event *event)
623 {
624         int err;
625
626         if (!x86_pmu_initialized())
627                 return -ENODEV;
628
629         err = x86_reserve_hardware();
630         if (err)
631                 return err;
632
633         atomic_inc(&active_events);
634         event->destroy = hw_perf_event_destroy;
635
636         event->hw.idx = -1;
637         event->hw.last_cpu = -1;
638         event->hw.last_tag = ~0ULL;
639
640         /* mark unused */
641         event->hw.extra_reg.idx = EXTRA_REG_NONE;
642         event->hw.branch_reg.idx = EXTRA_REG_NONE;
643
644         return x86_pmu.hw_config(event);
645 }
646
647 void x86_pmu_disable_all(void)
648 {
649         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
650         int idx;
651
652         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
653                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
654                 u64 val;
655
656                 if (!test_bit(idx, cpuc->active_mask))
657                         continue;
658                 rdmsrl(x86_pmu_config_addr(idx), val);
659                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
660                         continue;
661                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
662                 wrmsrl(x86_pmu_config_addr(idx), val);
663                 if (is_counter_pair(hwc))
664                         wrmsrl(x86_pmu_config_addr(idx + 1), 0);
665         }
666 }
667
668 /*
669  * There may be PMI landing after enabled=0. The PMI hitting could be before or
670  * after disable_all.
671  *
672  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
673  * It will not be re-enabled in the NMI handler again, because enabled=0. After
674  * handling the NMI, disable_all will be called, which will not change the
675  * state either. If PMI hits after disable_all, the PMU is already disabled
676  * before entering NMI handler. The NMI handler will not change the state
677  * either.
678  *
679  * So either situation is harmless.
680  */
681 static void x86_pmu_disable(struct pmu *pmu)
682 {
683         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
684
685         if (!x86_pmu_initialized())
686                 return;
687
688         if (!cpuc->enabled)
689                 return;
690
691         cpuc->n_added = 0;
692         cpuc->enabled = 0;
693         barrier();
694
695         static_call(x86_pmu_disable_all)();
696 }
697
698 void x86_pmu_enable_all(int added)
699 {
700         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
701         int idx;
702
703         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
704                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
705
706                 if (!test_bit(idx, cpuc->active_mask))
707                         continue;
708
709                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
710         }
711 }
712
713 static struct pmu pmu;
714
715 static inline int is_x86_event(struct perf_event *event)
716 {
717         return event->pmu == &pmu;
718 }
719
720 struct pmu *x86_get_pmu(void)
721 {
722         return &pmu;
723 }
724 /*
725  * Event scheduler state:
726  *
727  * Assign events iterating over all events and counters, beginning
728  * with events with least weights first. Keep the current iterator
729  * state in struct sched_state.
730  */
731 struct sched_state {
732         int     weight;
733         int     event;          /* event index */
734         int     counter;        /* counter index */
735         int     unassigned;     /* number of events to be assigned left */
736         int     nr_gp;          /* number of GP counters used */
737         u64     used;
738 };
739
740 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
741 #define SCHED_STATES_MAX        2
742
743 struct perf_sched {
744         int                     max_weight;
745         int                     max_events;
746         int                     max_gp;
747         int                     saved_states;
748         struct event_constraint **constraints;
749         struct sched_state      state;
750         struct sched_state      saved[SCHED_STATES_MAX];
751 };
752
753 /*
754  * Initialize interator that runs through all events and counters.
755  */
756 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
757                             int num, int wmin, int wmax, int gpmax)
758 {
759         int idx;
760
761         memset(sched, 0, sizeof(*sched));
762         sched->max_events       = num;
763         sched->max_weight       = wmax;
764         sched->max_gp           = gpmax;
765         sched->constraints      = constraints;
766
767         for (idx = 0; idx < num; idx++) {
768                 if (constraints[idx]->weight == wmin)
769                         break;
770         }
771
772         sched->state.event      = idx;          /* start with min weight */
773         sched->state.weight     = wmin;
774         sched->state.unassigned = num;
775 }
776
777 static void perf_sched_save_state(struct perf_sched *sched)
778 {
779         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
780                 return;
781
782         sched->saved[sched->saved_states] = sched->state;
783         sched->saved_states++;
784 }
785
786 static bool perf_sched_restore_state(struct perf_sched *sched)
787 {
788         if (!sched->saved_states)
789                 return false;
790
791         sched->saved_states--;
792         sched->state = sched->saved[sched->saved_states];
793
794         /* this assignment didn't work out */
795         /* XXX broken vs EVENT_PAIR */
796         sched->state.used &= ~BIT_ULL(sched->state.counter);
797
798         /* try the next one */
799         sched->state.counter++;
800
801         return true;
802 }
803
804 /*
805  * Select a counter for the current event to schedule. Return true on
806  * success.
807  */
808 static bool __perf_sched_find_counter(struct perf_sched *sched)
809 {
810         struct event_constraint *c;
811         int idx;
812
813         if (!sched->state.unassigned)
814                 return false;
815
816         if (sched->state.event >= sched->max_events)
817                 return false;
818
819         c = sched->constraints[sched->state.event];
820         /* Prefer fixed purpose counters */
821         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
822                 idx = INTEL_PMC_IDX_FIXED;
823                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
824                         u64 mask = BIT_ULL(idx);
825
826                         if (sched->state.used & mask)
827                                 continue;
828
829                         sched->state.used |= mask;
830                         goto done;
831                 }
832         }
833
834         /* Grab the first unused counter starting with idx */
835         idx = sched->state.counter;
836         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
837                 u64 mask = BIT_ULL(idx);
838
839                 if (c->flags & PERF_X86_EVENT_PAIR)
840                         mask |= mask << 1;
841
842                 if (sched->state.used & mask)
843                         continue;
844
845                 if (sched->state.nr_gp++ >= sched->max_gp)
846                         return false;
847
848                 sched->state.used |= mask;
849                 goto done;
850         }
851
852         return false;
853
854 done:
855         sched->state.counter = idx;
856
857         if (c->overlap)
858                 perf_sched_save_state(sched);
859
860         return true;
861 }
862
863 static bool perf_sched_find_counter(struct perf_sched *sched)
864 {
865         while (!__perf_sched_find_counter(sched)) {
866                 if (!perf_sched_restore_state(sched))
867                         return false;
868         }
869
870         return true;
871 }
872
873 /*
874  * Go through all unassigned events and find the next one to schedule.
875  * Take events with the least weight first. Return true on success.
876  */
877 static bool perf_sched_next_event(struct perf_sched *sched)
878 {
879         struct event_constraint *c;
880
881         if (!sched->state.unassigned || !--sched->state.unassigned)
882                 return false;
883
884         do {
885                 /* next event */
886                 sched->state.event++;
887                 if (sched->state.event >= sched->max_events) {
888                         /* next weight */
889                         sched->state.event = 0;
890                         sched->state.weight++;
891                         if (sched->state.weight > sched->max_weight)
892                                 return false;
893                 }
894                 c = sched->constraints[sched->state.event];
895         } while (c->weight != sched->state.weight);
896
897         sched->state.counter = 0;       /* start with first counter */
898
899         return true;
900 }
901
902 /*
903  * Assign a counter for each event.
904  */
905 int perf_assign_events(struct event_constraint **constraints, int n,
906                         int wmin, int wmax, int gpmax, int *assign)
907 {
908         struct perf_sched sched;
909
910         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
911
912         do {
913                 if (!perf_sched_find_counter(&sched))
914                         break;  /* failed */
915                 if (assign)
916                         assign[sched.state.event] = sched.state.counter;
917         } while (perf_sched_next_event(&sched));
918
919         return sched.state.unassigned;
920 }
921 EXPORT_SYMBOL_GPL(perf_assign_events);
922
923 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
924 {
925         struct event_constraint *c;
926         struct perf_event *e;
927         int n0, i, wmin, wmax, unsched = 0;
928         struct hw_perf_event *hwc;
929         u64 used_mask = 0;
930
931         /*
932          * Compute the number of events already present; see x86_pmu_add(),
933          * validate_group() and x86_pmu_commit_txn(). For the former two
934          * cpuc->n_events hasn't been updated yet, while for the latter
935          * cpuc->n_txn contains the number of events added in the current
936          * transaction.
937          */
938         n0 = cpuc->n_events;
939         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
940                 n0 -= cpuc->n_txn;
941
942         static_call_cond(x86_pmu_start_scheduling)(cpuc);
943
944         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
945                 c = cpuc->event_constraint[i];
946
947                 /*
948                  * Previously scheduled events should have a cached constraint,
949                  * while new events should not have one.
950                  */
951                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
952
953                 /*
954                  * Request constraints for new events; or for those events that
955                  * have a dynamic constraint -- for those the constraint can
956                  * change due to external factors (sibling state, allow_tfa).
957                  */
958                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
959                         c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
960                         cpuc->event_constraint[i] = c;
961                 }
962
963                 wmin = min(wmin, c->weight);
964                 wmax = max(wmax, c->weight);
965         }
966
967         /*
968          * fastpath, try to reuse previous register
969          */
970         for (i = 0; i < n; i++) {
971                 u64 mask;
972
973                 hwc = &cpuc->event_list[i]->hw;
974                 c = cpuc->event_constraint[i];
975
976                 /* never assigned */
977                 if (hwc->idx == -1)
978                         break;
979
980                 /* constraint still honored */
981                 if (!test_bit(hwc->idx, c->idxmsk))
982                         break;
983
984                 mask = BIT_ULL(hwc->idx);
985                 if (is_counter_pair(hwc))
986                         mask |= mask << 1;
987
988                 /* not already used */
989                 if (used_mask & mask)
990                         break;
991
992                 used_mask |= mask;
993
994                 if (assign)
995                         assign[i] = hwc->idx;
996         }
997
998         /* slow path */
999         if (i != n) {
1000                 int gpmax = x86_pmu.num_counters;
1001
1002                 /*
1003                  * Do not allow scheduling of more than half the available
1004                  * generic counters.
1005                  *
1006                  * This helps avoid counter starvation of sibling thread by
1007                  * ensuring at most half the counters cannot be in exclusive
1008                  * mode. There is no designated counters for the limits. Any
1009                  * N/2 counters can be used. This helps with events with
1010                  * specific counter constraints.
1011                  */
1012                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1013                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1014                         gpmax /= 2;
1015
1016                 /*
1017                  * Reduce the amount of available counters to allow fitting
1018                  * the extra Merge events needed by large increment events.
1019                  */
1020                 if (x86_pmu.flags & PMU_FL_PAIR) {
1021                         gpmax = x86_pmu.num_counters - cpuc->n_pair;
1022                         WARN_ON(gpmax <= 0);
1023                 }
1024
1025                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1026                                              wmax, gpmax, assign);
1027         }
1028
1029         /*
1030          * In case of success (unsched = 0), mark events as committed,
1031          * so we do not put_constraint() in case new events are added
1032          * and fail to be scheduled
1033          *
1034          * We invoke the lower level commit callback to lock the resource
1035          *
1036          * We do not need to do all of this in case we are called to
1037          * validate an event group (assign == NULL)
1038          */
1039         if (!unsched && assign) {
1040                 for (i = 0; i < n; i++) {
1041                         e = cpuc->event_list[i];
1042                         static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1043                 }
1044         } else {
1045                 for (i = n0; i < n; i++) {
1046                         e = cpuc->event_list[i];
1047
1048                         /*
1049                          * release events that failed scheduling
1050                          */
1051                         static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1052
1053                         cpuc->event_constraint[i] = NULL;
1054                 }
1055         }
1056
1057         static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1058
1059         return unsched ? -EINVAL : 0;
1060 }
1061
1062 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1063                                struct perf_event *event)
1064 {
1065         if (is_metric_event(event)) {
1066                 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1067                         return -EINVAL;
1068                 cpuc->n_metric++;
1069                 cpuc->n_txn_metric++;
1070         }
1071
1072         return 0;
1073 }
1074
1075 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1076                                 struct perf_event *event)
1077 {
1078         if (is_metric_event(event))
1079                 cpuc->n_metric--;
1080 }
1081
1082 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1083                          int max_count, int n)
1084 {
1085
1086         if (x86_pmu.intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1087                 return -EINVAL;
1088
1089         if (n >= max_count + cpuc->n_metric)
1090                 return -EINVAL;
1091
1092         cpuc->event_list[n] = event;
1093         if (is_counter_pair(&event->hw)) {
1094                 cpuc->n_pair++;
1095                 cpuc->n_txn_pair++;
1096         }
1097
1098         return 0;
1099 }
1100
1101 /*
1102  * dogrp: true if must collect siblings events (group)
1103  * returns total number of events and error code
1104  */
1105 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1106 {
1107         struct perf_event *event;
1108         int n, max_count;
1109
1110         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1111
1112         /* current number of events already accepted */
1113         n = cpuc->n_events;
1114         if (!cpuc->n_events)
1115                 cpuc->pebs_output = 0;
1116
1117         if (!cpuc->is_fake && leader->attr.precise_ip) {
1118                 /*
1119                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1120                  * away, the group was broken down and this singleton event
1121                  * can't schedule any more.
1122                  */
1123                 if (is_pebs_pt(leader) && !leader->aux_event)
1124                         return -EINVAL;
1125
1126                 /*
1127                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1128                  */
1129                 if (cpuc->pebs_output &&
1130                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1131                         return -EINVAL;
1132
1133                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1134         }
1135
1136         if (is_x86_event(leader)) {
1137                 if (collect_event(cpuc, leader, max_count, n))
1138                         return -EINVAL;
1139                 n++;
1140         }
1141
1142         if (!dogrp)
1143                 return n;
1144
1145         for_each_sibling_event(event, leader) {
1146                 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1147                         continue;
1148
1149                 if (collect_event(cpuc, event, max_count, n))
1150                         return -EINVAL;
1151
1152                 n++;
1153         }
1154         return n;
1155 }
1156
1157 static inline void x86_assign_hw_event(struct perf_event *event,
1158                                 struct cpu_hw_events *cpuc, int i)
1159 {
1160         struct hw_perf_event *hwc = &event->hw;
1161         int idx;
1162
1163         idx = hwc->idx = cpuc->assign[i];
1164         hwc->last_cpu = smp_processor_id();
1165         hwc->last_tag = ++cpuc->tags[i];
1166
1167         switch (hwc->idx) {
1168         case INTEL_PMC_IDX_FIXED_BTS:
1169         case INTEL_PMC_IDX_FIXED_VLBR:
1170                 hwc->config_base = 0;
1171                 hwc->event_base = 0;
1172                 break;
1173
1174         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1175                 /* All the metric events are mapped onto the fixed counter 3. */
1176                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1177                 /* fall through */
1178         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1179                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1180                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1181                                 (idx - INTEL_PMC_IDX_FIXED);
1182                 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1183                                         INTEL_PMC_FIXED_RDPMC_BASE;
1184                 break;
1185
1186         default:
1187                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1188                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1189                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1190                 break;
1191         }
1192 }
1193
1194 /**
1195  * x86_perf_rdpmc_index - Return PMC counter used for event
1196  * @event: the perf_event to which the PMC counter was assigned
1197  *
1198  * The counter assigned to this performance event may change if interrupts
1199  * are enabled. This counter should thus never be used while interrupts are
1200  * enabled. Before this function is used to obtain the assigned counter the
1201  * event should be checked for validity using, for example,
1202  * perf_event_read_local(), within the same interrupt disabled section in
1203  * which this counter is planned to be used.
1204  *
1205  * Return: The index of the performance monitoring counter assigned to
1206  * @perf_event.
1207  */
1208 int x86_perf_rdpmc_index(struct perf_event *event)
1209 {
1210         lockdep_assert_irqs_disabled();
1211
1212         return event->hw.event_base_rdpmc;
1213 }
1214
1215 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1216                                         struct cpu_hw_events *cpuc,
1217                                         int i)
1218 {
1219         return hwc->idx == cpuc->assign[i] &&
1220                 hwc->last_cpu == smp_processor_id() &&
1221                 hwc->last_tag == cpuc->tags[i];
1222 }
1223
1224 static void x86_pmu_start(struct perf_event *event, int flags);
1225
1226 static void x86_pmu_enable(struct pmu *pmu)
1227 {
1228         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1229         struct perf_event *event;
1230         struct hw_perf_event *hwc;
1231         int i, added = cpuc->n_added;
1232
1233         if (!x86_pmu_initialized())
1234                 return;
1235
1236         if (cpuc->enabled)
1237                 return;
1238
1239         if (cpuc->n_added) {
1240                 int n_running = cpuc->n_events - cpuc->n_added;
1241                 /*
1242                  * apply assignment obtained either from
1243                  * hw_perf_group_sched_in() or x86_pmu_enable()
1244                  *
1245                  * step1: save events moving to new counters
1246                  */
1247                 for (i = 0; i < n_running; i++) {
1248                         event = cpuc->event_list[i];
1249                         hwc = &event->hw;
1250
1251                         /*
1252                          * we can avoid reprogramming counter if:
1253                          * - assigned same counter as last time
1254                          * - running on same CPU as last time
1255                          * - no other event has used the counter since
1256                          */
1257                         if (hwc->idx == -1 ||
1258                             match_prev_assignment(hwc, cpuc, i))
1259                                 continue;
1260
1261                         /*
1262                          * Ensure we don't accidentally enable a stopped
1263                          * counter simply because we rescheduled.
1264                          */
1265                         if (hwc->state & PERF_HES_STOPPED)
1266                                 hwc->state |= PERF_HES_ARCH;
1267
1268                         x86_pmu_stop(event, PERF_EF_UPDATE);
1269                 }
1270
1271                 /*
1272                  * step2: reprogram moved events into new counters
1273                  */
1274                 for (i = 0; i < cpuc->n_events; i++) {
1275                         event = cpuc->event_list[i];
1276                         hwc = &event->hw;
1277
1278                         if (!match_prev_assignment(hwc, cpuc, i))
1279                                 x86_assign_hw_event(event, cpuc, i);
1280                         else if (i < n_running)
1281                                 continue;
1282
1283                         if (hwc->state & PERF_HES_ARCH)
1284                                 continue;
1285
1286                         x86_pmu_start(event, PERF_EF_RELOAD);
1287                 }
1288                 cpuc->n_added = 0;
1289                 perf_events_lapic_init();
1290         }
1291
1292         cpuc->enabled = 1;
1293         barrier();
1294
1295         static_call(x86_pmu_enable_all)(added);
1296 }
1297
1298 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1299
1300 /*
1301  * Set the next IRQ period, based on the hwc->period_left value.
1302  * To be called with the event disabled in hw:
1303  */
1304 int x86_perf_event_set_period(struct perf_event *event)
1305 {
1306         struct hw_perf_event *hwc = &event->hw;
1307         s64 left = local64_read(&hwc->period_left);
1308         s64 period = hwc->sample_period;
1309         int ret = 0, idx = hwc->idx;
1310
1311         if (unlikely(!hwc->event_base))
1312                 return 0;
1313
1314         if (unlikely(is_topdown_count(event)) &&
1315             x86_pmu.set_topdown_event_period)
1316                 return x86_pmu.set_topdown_event_period(event);
1317
1318         /*
1319          * If we are way outside a reasonable range then just skip forward:
1320          */
1321         if (unlikely(left <= -period)) {
1322                 left = period;
1323                 local64_set(&hwc->period_left, left);
1324                 hwc->last_period = period;
1325                 ret = 1;
1326         }
1327
1328         if (unlikely(left <= 0)) {
1329                 left += period;
1330                 local64_set(&hwc->period_left, left);
1331                 hwc->last_period = period;
1332                 ret = 1;
1333         }
1334         /*
1335          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1336          */
1337         if (unlikely(left < 2))
1338                 left = 2;
1339
1340         if (left > x86_pmu.max_period)
1341                 left = x86_pmu.max_period;
1342
1343         if (x86_pmu.limit_period)
1344                 left = x86_pmu.limit_period(event, left);
1345
1346         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1347
1348         /*
1349          * The hw event starts counting from this event offset,
1350          * mark it to be able to extra future deltas:
1351          */
1352         local64_set(&hwc->prev_count, (u64)-left);
1353
1354         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1355
1356         /*
1357          * Sign extend the Merge event counter's upper 16 bits since
1358          * we currently declare a 48-bit counter width
1359          */
1360         if (is_counter_pair(hwc))
1361                 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1362
1363         /*
1364          * Due to erratum on certan cpu we need
1365          * a second write to be sure the register
1366          * is updated properly
1367          */
1368         if (x86_pmu.perfctr_second_write) {
1369                 wrmsrl(hwc->event_base,
1370                         (u64)(-left) & x86_pmu.cntval_mask);
1371         }
1372
1373         perf_event_update_userpage(event);
1374
1375         return ret;
1376 }
1377
1378 void x86_pmu_enable_event(struct perf_event *event)
1379 {
1380         if (__this_cpu_read(cpu_hw_events.enabled))
1381                 __x86_pmu_enable_event(&event->hw,
1382                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1383 }
1384
1385 /*
1386  * Add a single event to the PMU.
1387  *
1388  * The event is added to the group of enabled events
1389  * but only if it can be scheduled with existing events.
1390  */
1391 static int x86_pmu_add(struct perf_event *event, int flags)
1392 {
1393         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1394         struct hw_perf_event *hwc;
1395         int assign[X86_PMC_IDX_MAX];
1396         int n, n0, ret;
1397
1398         hwc = &event->hw;
1399
1400         n0 = cpuc->n_events;
1401         ret = n = collect_events(cpuc, event, false);
1402         if (ret < 0)
1403                 goto out;
1404
1405         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1406         if (!(flags & PERF_EF_START))
1407                 hwc->state |= PERF_HES_ARCH;
1408
1409         /*
1410          * If group events scheduling transaction was started,
1411          * skip the schedulability test here, it will be performed
1412          * at commit time (->commit_txn) as a whole.
1413          *
1414          * If commit fails, we'll call ->del() on all events
1415          * for which ->add() was called.
1416          */
1417         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1418                 goto done_collect;
1419
1420         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1421         if (ret)
1422                 goto out;
1423         /*
1424          * copy new assignment, now we know it is possible
1425          * will be used by hw_perf_enable()
1426          */
1427         memcpy(cpuc->assign, assign, n*sizeof(int));
1428
1429 done_collect:
1430         /*
1431          * Commit the collect_events() state. See x86_pmu_del() and
1432          * x86_pmu_*_txn().
1433          */
1434         cpuc->n_events = n;
1435         cpuc->n_added += n - n0;
1436         cpuc->n_txn += n - n0;
1437
1438         /*
1439          * This is before x86_pmu_enable() will call x86_pmu_start(),
1440          * so we enable LBRs before an event needs them etc..
1441          */
1442         static_call_cond(x86_pmu_add)(event);
1443
1444         ret = 0;
1445 out:
1446         return ret;
1447 }
1448
1449 static void x86_pmu_start(struct perf_event *event, int flags)
1450 {
1451         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1452         int idx = event->hw.idx;
1453
1454         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1455                 return;
1456
1457         if (WARN_ON_ONCE(idx == -1))
1458                 return;
1459
1460         if (flags & PERF_EF_RELOAD) {
1461                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1462                 x86_perf_event_set_period(event);
1463         }
1464
1465         event->hw.state = 0;
1466
1467         cpuc->events[idx] = event;
1468         __set_bit(idx, cpuc->active_mask);
1469         __set_bit(idx, cpuc->running);
1470         static_call(x86_pmu_enable)(event);
1471         perf_event_update_userpage(event);
1472 }
1473
1474 void perf_event_print_debug(void)
1475 {
1476         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1477         u64 pebs, debugctl;
1478         struct cpu_hw_events *cpuc;
1479         unsigned long flags;
1480         int cpu, idx;
1481
1482         if (!x86_pmu.num_counters)
1483                 return;
1484
1485         local_irq_save(flags);
1486
1487         cpu = smp_processor_id();
1488         cpuc = &per_cpu(cpu_hw_events, cpu);
1489
1490         if (x86_pmu.version >= 2) {
1491                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1492                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1493                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1494                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1495
1496                 pr_info("\n");
1497                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1498                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1499                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1500                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1501                 if (x86_pmu.pebs_constraints) {
1502                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1503                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1504                 }
1505                 if (x86_pmu.lbr_nr) {
1506                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1507                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1508                 }
1509         }
1510         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1511
1512         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1513                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1514                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1515
1516                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1517
1518                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1519                         cpu, idx, pmc_ctrl);
1520                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1521                         cpu, idx, pmc_count);
1522                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1523                         cpu, idx, prev_left);
1524         }
1525         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1526                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1527
1528                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1529                         cpu, idx, pmc_count);
1530         }
1531         local_irq_restore(flags);
1532 }
1533
1534 void x86_pmu_stop(struct perf_event *event, int flags)
1535 {
1536         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1537         struct hw_perf_event *hwc = &event->hw;
1538
1539         if (test_bit(hwc->idx, cpuc->active_mask)) {
1540                 static_call(x86_pmu_disable)(event);
1541                 __clear_bit(hwc->idx, cpuc->active_mask);
1542                 cpuc->events[hwc->idx] = NULL;
1543                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1544                 hwc->state |= PERF_HES_STOPPED;
1545         }
1546
1547         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1548                 /*
1549                  * Drain the remaining delta count out of a event
1550                  * that we are disabling:
1551                  */
1552                 x86_perf_event_update(event);
1553                 hwc->state |= PERF_HES_UPTODATE;
1554         }
1555 }
1556
1557 static void x86_pmu_del(struct perf_event *event, int flags)
1558 {
1559         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1560         int i;
1561
1562         /*
1563          * If we're called during a txn, we only need to undo x86_pmu.add.
1564          * The events never got scheduled and ->cancel_txn will truncate
1565          * the event_list.
1566          *
1567          * XXX assumes any ->del() called during a TXN will only be on
1568          * an event added during that same TXN.
1569          */
1570         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1571                 goto do_del;
1572
1573         /*
1574          * Not a TXN, therefore cleanup properly.
1575          */
1576         x86_pmu_stop(event, PERF_EF_UPDATE);
1577
1578         for (i = 0; i < cpuc->n_events; i++) {
1579                 if (event == cpuc->event_list[i])
1580                         break;
1581         }
1582
1583         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1584                 return;
1585
1586         /* If we have a newly added event; make sure to decrease n_added. */
1587         if (i >= cpuc->n_events - cpuc->n_added)
1588                 --cpuc->n_added;
1589
1590         static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1591
1592         /* Delete the array entry. */
1593         while (++i < cpuc->n_events) {
1594                 cpuc->event_list[i-1] = cpuc->event_list[i];
1595                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1596         }
1597         cpuc->event_constraint[i-1] = NULL;
1598         --cpuc->n_events;
1599         if (x86_pmu.intel_cap.perf_metrics)
1600                 del_nr_metric_event(cpuc, event);
1601
1602         perf_event_update_userpage(event);
1603
1604 do_del:
1605
1606         /*
1607          * This is after x86_pmu_stop(); so we disable LBRs after any
1608          * event can need them etc..
1609          */
1610         static_call_cond(x86_pmu_del)(event);
1611 }
1612
1613 int x86_pmu_handle_irq(struct pt_regs *regs)
1614 {
1615         struct perf_sample_data data;
1616         struct cpu_hw_events *cpuc;
1617         struct perf_event *event;
1618         int idx, handled = 0;
1619         u64 val;
1620
1621         cpuc = this_cpu_ptr(&cpu_hw_events);
1622
1623         /*
1624          * Some chipsets need to unmask the LVTPC in a particular spot
1625          * inside the nmi handler.  As a result, the unmasking was pushed
1626          * into all the nmi handlers.
1627          *
1628          * This generic handler doesn't seem to have any issues where the
1629          * unmasking occurs so it was left at the top.
1630          */
1631         apic_write(APIC_LVTPC, APIC_DM_NMI);
1632
1633         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1634                 if (!test_bit(idx, cpuc->active_mask))
1635                         continue;
1636
1637                 event = cpuc->events[idx];
1638
1639                 val = x86_perf_event_update(event);
1640                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1641                         continue;
1642
1643                 /*
1644                  * event overflow
1645                  */
1646                 handled++;
1647                 perf_sample_data_init(&data, 0, event->hw.last_period);
1648
1649                 if (!x86_perf_event_set_period(event))
1650                         continue;
1651
1652                 if (perf_event_overflow(event, &data, regs))
1653                         x86_pmu_stop(event, 0);
1654         }
1655
1656         if (handled)
1657                 inc_irq_stat(apic_perf_irqs);
1658
1659         return handled;
1660 }
1661
1662 void perf_events_lapic_init(void)
1663 {
1664         if (!x86_pmu.apic || !x86_pmu_initialized())
1665                 return;
1666
1667         /*
1668          * Always use NMI for PMU
1669          */
1670         apic_write(APIC_LVTPC, APIC_DM_NMI);
1671 }
1672
1673 static int
1674 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1675 {
1676         u64 start_clock;
1677         u64 finish_clock;
1678         int ret;
1679
1680         /*
1681          * All PMUs/events that share this PMI handler should make sure to
1682          * increment active_events for their events.
1683          */
1684         if (!atomic_read(&active_events))
1685                 return NMI_DONE;
1686
1687         start_clock = sched_clock();
1688         ret = static_call(x86_pmu_handle_irq)(regs);
1689         finish_clock = sched_clock();
1690
1691         perf_sample_event_took(finish_clock - start_clock);
1692
1693         return ret;
1694 }
1695 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1696
1697 struct event_constraint emptyconstraint;
1698 struct event_constraint unconstrained;
1699
1700 static int x86_pmu_prepare_cpu(unsigned int cpu)
1701 {
1702         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1703         int i;
1704
1705         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1706                 cpuc->kfree_on_online[i] = NULL;
1707         if (x86_pmu.cpu_prepare)
1708                 return x86_pmu.cpu_prepare(cpu);
1709         return 0;
1710 }
1711
1712 static int x86_pmu_dead_cpu(unsigned int cpu)
1713 {
1714         if (x86_pmu.cpu_dead)
1715                 x86_pmu.cpu_dead(cpu);
1716         return 0;
1717 }
1718
1719 static int x86_pmu_online_cpu(unsigned int cpu)
1720 {
1721         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1722         int i;
1723
1724         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1725                 kfree(cpuc->kfree_on_online[i]);
1726                 cpuc->kfree_on_online[i] = NULL;
1727         }
1728         return 0;
1729 }
1730
1731 static int x86_pmu_starting_cpu(unsigned int cpu)
1732 {
1733         if (x86_pmu.cpu_starting)
1734                 x86_pmu.cpu_starting(cpu);
1735         return 0;
1736 }
1737
1738 static int x86_pmu_dying_cpu(unsigned int cpu)
1739 {
1740         if (x86_pmu.cpu_dying)
1741                 x86_pmu.cpu_dying(cpu);
1742         return 0;
1743 }
1744
1745 static void __init pmu_check_apic(void)
1746 {
1747         if (boot_cpu_has(X86_FEATURE_APIC))
1748                 return;
1749
1750         x86_pmu.apic = 0;
1751         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1752         pr_info("no hardware sampling interrupt available.\n");
1753
1754         /*
1755          * If we have a PMU initialized but no APIC
1756          * interrupts, we cannot sample hardware
1757          * events (user-space has to fall back and
1758          * sample via a hrtimer based software event):
1759          */
1760         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1761
1762 }
1763
1764 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1765         .name = "format",
1766         .attrs = NULL,
1767 };
1768
1769 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1770 {
1771         struct perf_pmu_events_attr *pmu_attr =
1772                 container_of(attr, struct perf_pmu_events_attr, attr);
1773         u64 config = 0;
1774
1775         if (pmu_attr->id < x86_pmu.max_events)
1776                 config = x86_pmu.event_map(pmu_attr->id);
1777
1778         /* string trumps id */
1779         if (pmu_attr->event_str)
1780                 return sprintf(page, "%s", pmu_attr->event_str);
1781
1782         return x86_pmu.events_sysfs_show(page, config);
1783 }
1784 EXPORT_SYMBOL_GPL(events_sysfs_show);
1785
1786 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1787                           char *page)
1788 {
1789         struct perf_pmu_events_ht_attr *pmu_attr =
1790                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1791
1792         /*
1793          * Report conditional events depending on Hyper-Threading.
1794          *
1795          * This is overly conservative as usually the HT special
1796          * handling is not needed if the other CPU thread is idle.
1797          *
1798          * Note this does not (and cannot) handle the case when thread
1799          * siblings are invisible, for example with virtualization
1800          * if they are owned by some other guest.  The user tool
1801          * has to re-read when a thread sibling gets onlined later.
1802          */
1803         return sprintf(page, "%s",
1804                         topology_max_smt_threads() > 1 ?
1805                         pmu_attr->event_str_ht :
1806                         pmu_attr->event_str_noht);
1807 }
1808
1809 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1810 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1811 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1812 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1813 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1814 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1815 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1816 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1817 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1818 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1819
1820 static struct attribute *empty_attrs;
1821
1822 static struct attribute *events_attr[] = {
1823         EVENT_PTR(CPU_CYCLES),
1824         EVENT_PTR(INSTRUCTIONS),
1825         EVENT_PTR(CACHE_REFERENCES),
1826         EVENT_PTR(CACHE_MISSES),
1827         EVENT_PTR(BRANCH_INSTRUCTIONS),
1828         EVENT_PTR(BRANCH_MISSES),
1829         EVENT_PTR(BUS_CYCLES),
1830         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1831         EVENT_PTR(STALLED_CYCLES_BACKEND),
1832         EVENT_PTR(REF_CPU_CYCLES),
1833         NULL,
1834 };
1835
1836 /*
1837  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1838  * out of events_attr attributes.
1839  */
1840 static umode_t
1841 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1842 {
1843         struct perf_pmu_events_attr *pmu_attr;
1844
1845         if (idx >= x86_pmu.max_events)
1846                 return 0;
1847
1848         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1849         /* str trumps id */
1850         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1851 }
1852
1853 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1854         .name = "events",
1855         .attrs = events_attr,
1856         .is_visible = is_visible,
1857 };
1858
1859 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1860 {
1861         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1862         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1863         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1864         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1865         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1866         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1867         ssize_t ret;
1868
1869         /*
1870         * We have whole page size to spend and just little data
1871         * to write, so we can safely use sprintf.
1872         */
1873         ret = sprintf(page, "event=0x%02llx", event);
1874
1875         if (umask)
1876                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1877
1878         if (edge)
1879                 ret += sprintf(page + ret, ",edge");
1880
1881         if (pc)
1882                 ret += sprintf(page + ret, ",pc");
1883
1884         if (any)
1885                 ret += sprintf(page + ret, ",any");
1886
1887         if (inv)
1888                 ret += sprintf(page + ret, ",inv");
1889
1890         if (cmask)
1891                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1892
1893         ret += sprintf(page + ret, "\n");
1894
1895         return ret;
1896 }
1897
1898 static struct attribute_group x86_pmu_attr_group;
1899 static struct attribute_group x86_pmu_caps_group;
1900
1901 static void x86_pmu_static_call_update(void)
1902 {
1903         static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
1904         static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
1905         static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
1906         static_call_update(x86_pmu_enable, x86_pmu.enable);
1907         static_call_update(x86_pmu_disable, x86_pmu.disable);
1908
1909         static_call_update(x86_pmu_add, x86_pmu.add);
1910         static_call_update(x86_pmu_del, x86_pmu.del);
1911         static_call_update(x86_pmu_read, x86_pmu.read);
1912
1913         static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
1914         static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
1915         static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
1916
1917         static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
1918         static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
1919         static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
1920
1921         static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
1922         static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
1923
1924         static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
1925         static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
1926 }
1927
1928 static void _x86_pmu_read(struct perf_event *event)
1929 {
1930         x86_perf_event_update(event);
1931 }
1932
1933 static int __init init_hw_perf_events(void)
1934 {
1935         struct x86_pmu_quirk *quirk;
1936         int err;
1937
1938         pr_info("Performance Events: ");
1939
1940         switch (boot_cpu_data.x86_vendor) {
1941         case X86_VENDOR_INTEL:
1942                 err = intel_pmu_init();
1943                 break;
1944         case X86_VENDOR_AMD:
1945                 err = amd_pmu_init();
1946                 break;
1947         case X86_VENDOR_HYGON:
1948                 err = amd_pmu_init();
1949                 x86_pmu.name = "HYGON";
1950                 break;
1951         case X86_VENDOR_ZHAOXIN:
1952         case X86_VENDOR_CENTAUR:
1953                 err = zhaoxin_pmu_init();
1954                 break;
1955         default:
1956                 err = -ENOTSUPP;
1957         }
1958         if (err != 0) {
1959                 pr_cont("no PMU driver, software events only.\n");
1960                 return 0;
1961         }
1962
1963         pmu_check_apic();
1964
1965         /* sanity check that the hardware exists or is emulated */
1966         if (!check_hw_exists())
1967                 return 0;
1968
1969         pr_cont("%s PMU driver.\n", x86_pmu.name);
1970
1971         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1972
1973         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1974                 quirk->func();
1975
1976         if (!x86_pmu.intel_ctrl)
1977                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1978
1979         perf_events_lapic_init();
1980         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1981
1982         unconstrained = (struct event_constraint)
1983                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1984                                    0, x86_pmu.num_counters, 0, 0);
1985
1986         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1987
1988         if (!x86_pmu.events_sysfs_show)
1989                 x86_pmu_events_group.attrs = &empty_attrs;
1990
1991         pmu.attr_update = x86_pmu.attr_update;
1992
1993         pr_info("... version:                %d\n",     x86_pmu.version);
1994         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1995         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1996         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1997         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1998         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1999         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
2000
2001         if (!x86_pmu.read)
2002                 x86_pmu.read = _x86_pmu_read;
2003
2004         x86_pmu_static_call_update();
2005
2006         /*
2007          * Install callbacks. Core will call them for each online
2008          * cpu.
2009          */
2010         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2011                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2012         if (err)
2013                 return err;
2014
2015         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2016                                 "perf/x86:starting", x86_pmu_starting_cpu,
2017                                 x86_pmu_dying_cpu);
2018         if (err)
2019                 goto out;
2020
2021         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2022                                 x86_pmu_online_cpu, NULL);
2023         if (err)
2024                 goto out1;
2025
2026         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2027         if (err)
2028                 goto out2;
2029
2030         return 0;
2031
2032 out2:
2033         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2034 out1:
2035         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2036 out:
2037         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2038         return err;
2039 }
2040 early_initcall(init_hw_perf_events);
2041
2042 static void x86_pmu_read(struct perf_event *event)
2043 {
2044         static_call(x86_pmu_read)(event);
2045 }
2046
2047 /*
2048  * Start group events scheduling transaction
2049  * Set the flag to make pmu::enable() not perform the
2050  * schedulability test, it will be performed at commit time
2051  *
2052  * We only support PERF_PMU_TXN_ADD transactions. Save the
2053  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2054  * transactions.
2055  */
2056 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2057 {
2058         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2059
2060         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
2061
2062         cpuc->txn_flags = txn_flags;
2063         if (txn_flags & ~PERF_PMU_TXN_ADD)
2064                 return;
2065
2066         perf_pmu_disable(pmu);
2067         __this_cpu_write(cpu_hw_events.n_txn, 0);
2068         __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2069         __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2070 }
2071
2072 /*
2073  * Stop group events scheduling transaction
2074  * Clear the flag and pmu::enable() will perform the
2075  * schedulability test.
2076  */
2077 static void x86_pmu_cancel_txn(struct pmu *pmu)
2078 {
2079         unsigned int txn_flags;
2080         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2081
2082         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2083
2084         txn_flags = cpuc->txn_flags;
2085         cpuc->txn_flags = 0;
2086         if (txn_flags & ~PERF_PMU_TXN_ADD)
2087                 return;
2088
2089         /*
2090          * Truncate collected array by the number of events added in this
2091          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2092          */
2093         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2094         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2095         __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2096         __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2097         perf_pmu_enable(pmu);
2098 }
2099
2100 /*
2101  * Commit group events scheduling transaction
2102  * Perform the group schedulability test as a whole
2103  * Return 0 if success
2104  *
2105  * Does not cancel the transaction on failure; expects the caller to do this.
2106  */
2107 static int x86_pmu_commit_txn(struct pmu *pmu)
2108 {
2109         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2110         int assign[X86_PMC_IDX_MAX];
2111         int n, ret;
2112
2113         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2114
2115         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2116                 cpuc->txn_flags = 0;
2117                 return 0;
2118         }
2119
2120         n = cpuc->n_events;
2121
2122         if (!x86_pmu_initialized())
2123                 return -EAGAIN;
2124
2125         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2126         if (ret)
2127                 return ret;
2128
2129         /*
2130          * copy new assignment, now we know it is possible
2131          * will be used by hw_perf_enable()
2132          */
2133         memcpy(cpuc->assign, assign, n*sizeof(int));
2134
2135         cpuc->txn_flags = 0;
2136         perf_pmu_enable(pmu);
2137         return 0;
2138 }
2139 /*
2140  * a fake_cpuc is used to validate event groups. Due to
2141  * the extra reg logic, we need to also allocate a fake
2142  * per_core and per_cpu structure. Otherwise, group events
2143  * using extra reg may conflict without the kernel being
2144  * able to catch this when the last event gets added to
2145  * the group.
2146  */
2147 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2148 {
2149         intel_cpuc_finish(cpuc);
2150         kfree(cpuc);
2151 }
2152
2153 static struct cpu_hw_events *allocate_fake_cpuc(void)
2154 {
2155         struct cpu_hw_events *cpuc;
2156         int cpu = raw_smp_processor_id();
2157
2158         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2159         if (!cpuc)
2160                 return ERR_PTR(-ENOMEM);
2161         cpuc->is_fake = 1;
2162
2163         if (intel_cpuc_prepare(cpuc, cpu))
2164                 goto error;
2165
2166         return cpuc;
2167 error:
2168         free_fake_cpuc(cpuc);
2169         return ERR_PTR(-ENOMEM);
2170 }
2171
2172 /*
2173  * validate that we can schedule this event
2174  */
2175 static int validate_event(struct perf_event *event)
2176 {
2177         struct cpu_hw_events *fake_cpuc;
2178         struct event_constraint *c;
2179         int ret = 0;
2180
2181         fake_cpuc = allocate_fake_cpuc();
2182         if (IS_ERR(fake_cpuc))
2183                 return PTR_ERR(fake_cpuc);
2184
2185         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2186
2187         if (!c || !c->weight)
2188                 ret = -EINVAL;
2189
2190         if (x86_pmu.put_event_constraints)
2191                 x86_pmu.put_event_constraints(fake_cpuc, event);
2192
2193         free_fake_cpuc(fake_cpuc);
2194
2195         return ret;
2196 }
2197
2198 /*
2199  * validate a single event group
2200  *
2201  * validation include:
2202  *      - check events are compatible which each other
2203  *      - events do not compete for the same counter
2204  *      - number of events <= number of counters
2205  *
2206  * validation ensures the group can be loaded onto the
2207  * PMU if it was the only group available.
2208  */
2209 static int validate_group(struct perf_event *event)
2210 {
2211         struct perf_event *leader = event->group_leader;
2212         struct cpu_hw_events *fake_cpuc;
2213         int ret = -EINVAL, n;
2214
2215         fake_cpuc = allocate_fake_cpuc();
2216         if (IS_ERR(fake_cpuc))
2217                 return PTR_ERR(fake_cpuc);
2218         /*
2219          * the event is not yet connected with its
2220          * siblings therefore we must first collect
2221          * existing siblings, then add the new event
2222          * before we can simulate the scheduling
2223          */
2224         n = collect_events(fake_cpuc, leader, true);
2225         if (n < 0)
2226                 goto out;
2227
2228         fake_cpuc->n_events = n;
2229         n = collect_events(fake_cpuc, event, false);
2230         if (n < 0)
2231                 goto out;
2232
2233         fake_cpuc->n_events = 0;
2234         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2235
2236 out:
2237         free_fake_cpuc(fake_cpuc);
2238         return ret;
2239 }
2240
2241 static int x86_pmu_event_init(struct perf_event *event)
2242 {
2243         struct pmu *tmp;
2244         int err;
2245
2246         switch (event->attr.type) {
2247         case PERF_TYPE_RAW:
2248         case PERF_TYPE_HARDWARE:
2249         case PERF_TYPE_HW_CACHE:
2250                 break;
2251
2252         default:
2253                 return -ENOENT;
2254         }
2255
2256         err = __x86_pmu_event_init(event);
2257         if (!err) {
2258                 /*
2259                  * we temporarily connect event to its pmu
2260                  * such that validate_group() can classify
2261                  * it as an x86 event using is_x86_event()
2262                  */
2263                 tmp = event->pmu;
2264                 event->pmu = &pmu;
2265
2266                 if (event->group_leader != event)
2267                         err = validate_group(event);
2268                 else
2269                         err = validate_event(event);
2270
2271                 event->pmu = tmp;
2272         }
2273         if (err) {
2274                 if (event->destroy)
2275                         event->destroy(event);
2276         }
2277
2278         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2279             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2280                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2281
2282         return err;
2283 }
2284
2285 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2286 {
2287         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2288                 return;
2289
2290         /*
2291          * This function relies on not being called concurrently in two
2292          * tasks in the same mm.  Otherwise one task could observe
2293          * perf_rdpmc_allowed > 1 and return all the way back to
2294          * userspace with CR4.PCE clear while another task is still
2295          * doing on_each_cpu_mask() to propagate CR4.PCE.
2296          *
2297          * For now, this can't happen because all callers hold mmap_lock
2298          * for write.  If this changes, we'll need a different solution.
2299          */
2300         mmap_assert_write_locked(mm);
2301
2302         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2303                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2304 }
2305
2306 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2307 {
2308
2309         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2310                 return;
2311
2312         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2313                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2314 }
2315
2316 static int x86_pmu_event_idx(struct perf_event *event)
2317 {
2318         struct hw_perf_event *hwc = &event->hw;
2319
2320         if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2321                 return 0;
2322
2323         if (is_metric_idx(hwc->idx))
2324                 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2325         else
2326                 return hwc->event_base_rdpmc + 1;
2327 }
2328
2329 static ssize_t get_attr_rdpmc(struct device *cdev,
2330                               struct device_attribute *attr,
2331                               char *buf)
2332 {
2333         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2334 }
2335
2336 static ssize_t set_attr_rdpmc(struct device *cdev,
2337                               struct device_attribute *attr,
2338                               const char *buf, size_t count)
2339 {
2340         unsigned long val;
2341         ssize_t ret;
2342
2343         ret = kstrtoul(buf, 0, &val);
2344         if (ret)
2345                 return ret;
2346
2347         if (val > 2)
2348                 return -EINVAL;
2349
2350         if (x86_pmu.attr_rdpmc_broken)
2351                 return -ENOTSUPP;
2352
2353         if (val != x86_pmu.attr_rdpmc) {
2354                 /*
2355                  * Changing into or out of never available or always available,
2356                  * aka perf-event-bypassing mode. This path is extremely slow,
2357                  * but only root can trigger it, so it's okay.
2358                  */
2359                 if (val == 0)
2360                         static_branch_inc(&rdpmc_never_available_key);
2361                 else if (x86_pmu.attr_rdpmc == 0)
2362                         static_branch_dec(&rdpmc_never_available_key);
2363
2364                 if (val == 2)
2365                         static_branch_inc(&rdpmc_always_available_key);
2366                 else if (x86_pmu.attr_rdpmc == 2)
2367                         static_branch_dec(&rdpmc_always_available_key);
2368
2369                 on_each_cpu(cr4_update_pce, NULL, 1);
2370                 x86_pmu.attr_rdpmc = val;
2371         }
2372
2373         return count;
2374 }
2375
2376 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2377
2378 static struct attribute *x86_pmu_attrs[] = {
2379         &dev_attr_rdpmc.attr,
2380         NULL,
2381 };
2382
2383 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2384         .attrs = x86_pmu_attrs,
2385 };
2386
2387 static ssize_t max_precise_show(struct device *cdev,
2388                                   struct device_attribute *attr,
2389                                   char *buf)
2390 {
2391         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2392 }
2393
2394 static DEVICE_ATTR_RO(max_precise);
2395
2396 static struct attribute *x86_pmu_caps_attrs[] = {
2397         &dev_attr_max_precise.attr,
2398         NULL
2399 };
2400
2401 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2402         .name = "caps",
2403         .attrs = x86_pmu_caps_attrs,
2404 };
2405
2406 static const struct attribute_group *x86_pmu_attr_groups[] = {
2407         &x86_pmu_attr_group,
2408         &x86_pmu_format_group,
2409         &x86_pmu_events_group,
2410         &x86_pmu_caps_group,
2411         NULL,
2412 };
2413
2414 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2415 {
2416         static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2417 }
2418
2419 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2420                                   struct perf_event_context *next)
2421 {
2422         static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2423 }
2424
2425 void perf_check_microcode(void)
2426 {
2427         if (x86_pmu.check_microcode)
2428                 x86_pmu.check_microcode();
2429 }
2430
2431 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2432 {
2433         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2434                 return -EINVAL;
2435
2436         if (value && x86_pmu.limit_period) {
2437                 if (x86_pmu.limit_period(event, value) > value)
2438                         return -EINVAL;
2439         }
2440
2441         return 0;
2442 }
2443
2444 static int x86_pmu_aux_output_match(struct perf_event *event)
2445 {
2446         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2447                 return 0;
2448
2449         if (x86_pmu.aux_output_match)
2450                 return x86_pmu.aux_output_match(event);
2451
2452         return 0;
2453 }
2454
2455 static struct pmu pmu = {
2456         .pmu_enable             = x86_pmu_enable,
2457         .pmu_disable            = x86_pmu_disable,
2458
2459         .attr_groups            = x86_pmu_attr_groups,
2460
2461         .event_init             = x86_pmu_event_init,
2462
2463         .event_mapped           = x86_pmu_event_mapped,
2464         .event_unmapped         = x86_pmu_event_unmapped,
2465
2466         .add                    = x86_pmu_add,
2467         .del                    = x86_pmu_del,
2468         .start                  = x86_pmu_start,
2469         .stop                   = x86_pmu_stop,
2470         .read                   = x86_pmu_read,
2471
2472         .start_txn              = x86_pmu_start_txn,
2473         .cancel_txn             = x86_pmu_cancel_txn,
2474         .commit_txn             = x86_pmu_commit_txn,
2475
2476         .event_idx              = x86_pmu_event_idx,
2477         .sched_task             = x86_pmu_sched_task,
2478         .swap_task_ctx          = x86_pmu_swap_task_ctx,
2479         .check_period           = x86_pmu_check_period,
2480
2481         .aux_output_match       = x86_pmu_aux_output_match,
2482 };
2483
2484 void arch_perf_update_userpage(struct perf_event *event,
2485                                struct perf_event_mmap_page *userpg, u64 now)
2486 {
2487         struct cyc2ns_data data;
2488         u64 offset;
2489
2490         userpg->cap_user_time = 0;
2491         userpg->cap_user_time_zero = 0;
2492         userpg->cap_user_rdpmc =
2493                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2494         userpg->pmc_width = x86_pmu.cntval_bits;
2495
2496         if (!using_native_sched_clock() || !sched_clock_stable())
2497                 return;
2498
2499         cyc2ns_read_begin(&data);
2500
2501         offset = data.cyc2ns_offset + __sched_clock_offset;
2502
2503         /*
2504          * Internal timekeeping for enabled/running/stopped times
2505          * is always in the local_clock domain.
2506          */
2507         userpg->cap_user_time = 1;
2508         userpg->time_mult = data.cyc2ns_mul;
2509         userpg->time_shift = data.cyc2ns_shift;
2510         userpg->time_offset = offset - now;
2511
2512         /*
2513          * cap_user_time_zero doesn't make sense when we're using a different
2514          * time base for the records.
2515          */
2516         if (!event->attr.use_clockid) {
2517                 userpg->cap_user_time_zero = 1;
2518                 userpg->time_zero = offset;
2519         }
2520
2521         cyc2ns_read_end();
2522 }
2523
2524 /*
2525  * Determine whether the regs were taken from an irq/exception handler rather
2526  * than from perf_arch_fetch_caller_regs().
2527  */
2528 static bool perf_hw_regs(struct pt_regs *regs)
2529 {
2530         return regs->flags & X86_EFLAGS_FIXED;
2531 }
2532
2533 void
2534 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2535 {
2536         struct unwind_state state;
2537         unsigned long addr;
2538
2539         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2540                 /* TODO: We don't support guest os callchain now */
2541                 return;
2542         }
2543
2544         if (perf_callchain_store(entry, regs->ip))
2545                 return;
2546
2547         if (perf_hw_regs(regs))
2548                 unwind_start(&state, current, regs, NULL);
2549         else
2550                 unwind_start(&state, current, NULL, (void *)regs->sp);
2551
2552         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2553                 addr = unwind_get_return_address(&state);
2554                 if (!addr || perf_callchain_store(entry, addr))
2555                         return;
2556         }
2557 }
2558
2559 static inline int
2560 valid_user_frame(const void __user *fp, unsigned long size)
2561 {
2562         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2563 }
2564
2565 static unsigned long get_segment_base(unsigned int segment)
2566 {
2567         struct desc_struct *desc;
2568         unsigned int idx = segment >> 3;
2569
2570         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2571 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2572                 struct ldt_struct *ldt;
2573
2574                 /* IRQs are off, so this synchronizes with smp_store_release */
2575                 ldt = READ_ONCE(current->active_mm->context.ldt);
2576                 if (!ldt || idx >= ldt->nr_entries)
2577                         return 0;
2578
2579                 desc = &ldt->entries[idx];
2580 #else
2581                 return 0;
2582 #endif
2583         } else {
2584                 if (idx >= GDT_ENTRIES)
2585                         return 0;
2586
2587                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2588         }
2589
2590         return get_desc_base(desc);
2591 }
2592
2593 #ifdef CONFIG_IA32_EMULATION
2594
2595 #include <linux/compat.h>
2596
2597 static inline int
2598 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2599 {
2600         /* 32-bit process in 64-bit kernel. */
2601         unsigned long ss_base, cs_base;
2602         struct stack_frame_ia32 frame;
2603         const struct stack_frame_ia32 __user *fp;
2604
2605         if (!test_thread_flag(TIF_IA32))
2606                 return 0;
2607
2608         cs_base = get_segment_base(regs->cs);
2609         ss_base = get_segment_base(regs->ss);
2610
2611         fp = compat_ptr(ss_base + regs->bp);
2612         pagefault_disable();
2613         while (entry->nr < entry->max_stack) {
2614                 if (!valid_user_frame(fp, sizeof(frame)))
2615                         break;
2616
2617                 if (__get_user(frame.next_frame, &fp->next_frame))
2618                         break;
2619                 if (__get_user(frame.return_address, &fp->return_address))
2620                         break;
2621
2622                 perf_callchain_store(entry, cs_base + frame.return_address);
2623                 fp = compat_ptr(ss_base + frame.next_frame);
2624         }
2625         pagefault_enable();
2626         return 1;
2627 }
2628 #else
2629 static inline int
2630 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2631 {
2632     return 0;
2633 }
2634 #endif
2635
2636 void
2637 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2638 {
2639         struct stack_frame frame;
2640         const struct stack_frame __user *fp;
2641
2642         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2643                 /* TODO: We don't support guest os callchain now */
2644                 return;
2645         }
2646
2647         /*
2648          * We don't know what to do with VM86 stacks.. ignore them for now.
2649          */
2650         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2651                 return;
2652
2653         fp = (void __user *)regs->bp;
2654
2655         perf_callchain_store(entry, regs->ip);
2656
2657         if (!nmi_uaccess_okay())
2658                 return;
2659
2660         if (perf_callchain_user32(regs, entry))
2661                 return;
2662
2663         pagefault_disable();
2664         while (entry->nr < entry->max_stack) {
2665                 if (!valid_user_frame(fp, sizeof(frame)))
2666                         break;
2667
2668                 if (__get_user(frame.next_frame, &fp->next_frame))
2669                         break;
2670                 if (__get_user(frame.return_address, &fp->return_address))
2671                         break;
2672
2673                 perf_callchain_store(entry, frame.return_address);
2674                 fp = (void __user *)frame.next_frame;
2675         }
2676         pagefault_enable();
2677 }
2678
2679 /*
2680  * Deal with code segment offsets for the various execution modes:
2681  *
2682  *   VM86 - the good olde 16 bit days, where the linear address is
2683  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2684  *
2685  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2686  *          to figure out what the 32bit base address is.
2687  *
2688  *    X32 - has TIF_X32 set, but is running in x86_64
2689  *
2690  * X86_64 - CS,DS,SS,ES are all zero based.
2691  */
2692 static unsigned long code_segment_base(struct pt_regs *regs)
2693 {
2694         /*
2695          * For IA32 we look at the GDT/LDT segment base to convert the
2696          * effective IP to a linear address.
2697          */
2698
2699 #ifdef CONFIG_X86_32
2700         /*
2701          * If we are in VM86 mode, add the segment offset to convert to a
2702          * linear address.
2703          */
2704         if (regs->flags & X86_VM_MASK)
2705                 return 0x10 * regs->cs;
2706
2707         if (user_mode(regs) && regs->cs != __USER_CS)
2708                 return get_segment_base(regs->cs);
2709 #else
2710         if (user_mode(regs) && !user_64bit_mode(regs) &&
2711             regs->cs != __USER32_CS)
2712                 return get_segment_base(regs->cs);
2713 #endif
2714         return 0;
2715 }
2716
2717 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2718 {
2719         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2720                 return perf_guest_cbs->get_guest_ip();
2721
2722         return regs->ip + code_segment_base(regs);
2723 }
2724
2725 unsigned long perf_misc_flags(struct pt_regs *regs)
2726 {
2727         int misc = 0;
2728
2729         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2730                 if (perf_guest_cbs->is_user_mode())
2731                         misc |= PERF_RECORD_MISC_GUEST_USER;
2732                 else
2733                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2734         } else {
2735                 if (user_mode(regs))
2736                         misc |= PERF_RECORD_MISC_USER;
2737                 else
2738                         misc |= PERF_RECORD_MISC_KERNEL;
2739         }
2740
2741         if (regs->flags & PERF_EFLAGS_EXACT)
2742                 misc |= PERF_RECORD_MISC_EXACT_IP;
2743
2744         return misc;
2745 }
2746
2747 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2748 {
2749         cap->version            = x86_pmu.version;
2750         cap->num_counters_gp    = x86_pmu.num_counters;
2751         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2752         cap->bit_width_gp       = x86_pmu.cntval_bits;
2753         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2754         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2755         cap->events_mask_len    = x86_pmu.events_mask_len;
2756 }
2757 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);