perf/x86: Restore TASK_SIZE check on frame pointer
[linux-2.6-microblaze.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched.h>
24 #include <linux/uaccess.h>
25 #include <linux/slab.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28 #include <linux/device.h>
29
30 #include <asm/apic.h>
31 #include <asm/stacktrace.h>
32 #include <asm/nmi.h>
33 #include <asm/smp.h>
34 #include <asm/alternative.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/timer.h>
38 #include <asm/desc.h>
39 #include <asm/ldt.h>
40 #include <asm/unwind.h>
41
42 #include "perf_event.h"
43
44 struct x86_pmu x86_pmu __read_mostly;
45
46 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
47         .enabled = 1,
48 };
49
50 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
51
52 u64 __read_mostly hw_cache_event_ids
53                                 [PERF_COUNT_HW_CACHE_MAX]
54                                 [PERF_COUNT_HW_CACHE_OP_MAX]
55                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
56 u64 __read_mostly hw_cache_extra_regs
57                                 [PERF_COUNT_HW_CACHE_MAX]
58                                 [PERF_COUNT_HW_CACHE_OP_MAX]
59                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
60
61 /*
62  * Propagate event elapsed time into the generic event.
63  * Can only be executed on the CPU where the event is active.
64  * Returns the delta events processed.
65  */
66 u64 x86_perf_event_update(struct perf_event *event)
67 {
68         struct hw_perf_event *hwc = &event->hw;
69         int shift = 64 - x86_pmu.cntval_bits;
70         u64 prev_raw_count, new_raw_count;
71         int idx = hwc->idx;
72         s64 delta;
73
74         if (idx == INTEL_PMC_IDX_FIXED_BTS)
75                 return 0;
76
77         /*
78          * Careful: an NMI might modify the previous event value.
79          *
80          * Our tactic to handle this is to first atomically read and
81          * exchange a new raw count - then add that new-prev delta
82          * count to the generic event atomically:
83          */
84 again:
85         prev_raw_count = local64_read(&hwc->prev_count);
86         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
87
88         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
89                                         new_raw_count) != prev_raw_count)
90                 goto again;
91
92         /*
93          * Now we have the new raw value and have updated the prev
94          * timestamp already. We can now calculate the elapsed delta
95          * (event-)time and add that to the generic event.
96          *
97          * Careful, not all hw sign-extends above the physical width
98          * of the count.
99          */
100         delta = (new_raw_count << shift) - (prev_raw_count << shift);
101         delta >>= shift;
102
103         local64_add(delta, &event->count);
104         local64_sub(delta, &hwc->period_left);
105
106         return new_raw_count;
107 }
108
109 /*
110  * Find and validate any extra registers to set up.
111  */
112 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
113 {
114         struct hw_perf_event_extra *reg;
115         struct extra_reg *er;
116
117         reg = &event->hw.extra_reg;
118
119         if (!x86_pmu.extra_regs)
120                 return 0;
121
122         for (er = x86_pmu.extra_regs; er->msr; er++) {
123                 if (er->event != (config & er->config_mask))
124                         continue;
125                 if (event->attr.config1 & ~er->valid_mask)
126                         return -EINVAL;
127                 /* Check if the extra msrs can be safely accessed*/
128                 if (!er->extra_msr_access)
129                         return -ENXIO;
130
131                 reg->idx = er->idx;
132                 reg->config = event->attr.config1;
133                 reg->reg = er->msr;
134                 break;
135         }
136         return 0;
137 }
138
139 static atomic_t active_events;
140 static atomic_t pmc_refcount;
141 static DEFINE_MUTEX(pmc_reserve_mutex);
142
143 #ifdef CONFIG_X86_LOCAL_APIC
144
145 static bool reserve_pmc_hardware(void)
146 {
147         int i;
148
149         for (i = 0; i < x86_pmu.num_counters; i++) {
150                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
151                         goto perfctr_fail;
152         }
153
154         for (i = 0; i < x86_pmu.num_counters; i++) {
155                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
156                         goto eventsel_fail;
157         }
158
159         return true;
160
161 eventsel_fail:
162         for (i--; i >= 0; i--)
163                 release_evntsel_nmi(x86_pmu_config_addr(i));
164
165         i = x86_pmu.num_counters;
166
167 perfctr_fail:
168         for (i--; i >= 0; i--)
169                 release_perfctr_nmi(x86_pmu_event_addr(i));
170
171         return false;
172 }
173
174 static void release_pmc_hardware(void)
175 {
176         int i;
177
178         for (i = 0; i < x86_pmu.num_counters; i++) {
179                 release_perfctr_nmi(x86_pmu_event_addr(i));
180                 release_evntsel_nmi(x86_pmu_config_addr(i));
181         }
182 }
183
184 #else
185
186 static bool reserve_pmc_hardware(void) { return true; }
187 static void release_pmc_hardware(void) {}
188
189 #endif
190
191 static bool check_hw_exists(void)
192 {
193         u64 val, val_fail, val_new= ~0;
194         int i, reg, reg_fail, ret = 0;
195         int bios_fail = 0;
196         int reg_safe = -1;
197
198         /*
199          * Check to see if the BIOS enabled any of the counters, if so
200          * complain and bail.
201          */
202         for (i = 0; i < x86_pmu.num_counters; i++) {
203                 reg = x86_pmu_config_addr(i);
204                 ret = rdmsrl_safe(reg, &val);
205                 if (ret)
206                         goto msr_fail;
207                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
208                         bios_fail = 1;
209                         val_fail = val;
210                         reg_fail = reg;
211                 } else {
212                         reg_safe = i;
213                 }
214         }
215
216         if (x86_pmu.num_counters_fixed) {
217                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
218                 ret = rdmsrl_safe(reg, &val);
219                 if (ret)
220                         goto msr_fail;
221                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
222                         if (val & (0x03 << i*4)) {
223                                 bios_fail = 1;
224                                 val_fail = val;
225                                 reg_fail = reg;
226                         }
227                 }
228         }
229
230         /*
231          * If all the counters are enabled, the below test will always
232          * fail.  The tools will also become useless in this scenario.
233          * Just fail and disable the hardware counters.
234          */
235
236         if (reg_safe == -1) {
237                 reg = reg_safe;
238                 goto msr_fail;
239         }
240
241         /*
242          * Read the current value, change it and read it back to see if it
243          * matches, this is needed to detect certain hardware emulators
244          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
245          */
246         reg = x86_pmu_event_addr(reg_safe);
247         if (rdmsrl_safe(reg, &val))
248                 goto msr_fail;
249         val ^= 0xffffUL;
250         ret = wrmsrl_safe(reg, val);
251         ret |= rdmsrl_safe(reg, &val_new);
252         if (ret || val != val_new)
253                 goto msr_fail;
254
255         /*
256          * We still allow the PMU driver to operate:
257          */
258         if (bios_fail) {
259                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
260                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
261                               reg_fail, val_fail);
262         }
263
264         return true;
265
266 msr_fail:
267         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
268                 pr_cont("PMU not available due to virtualization, using software events only.\n");
269         } else {
270                 pr_cont("Broken PMU hardware detected, using software events only.\n");
271                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
272                        reg, val_new);
273         }
274
275         return false;
276 }
277
278 static void hw_perf_event_destroy(struct perf_event *event)
279 {
280         x86_release_hardware();
281         atomic_dec(&active_events);
282 }
283
284 void hw_perf_lbr_event_destroy(struct perf_event *event)
285 {
286         hw_perf_event_destroy(event);
287
288         /* undo the lbr/bts event accounting */
289         x86_del_exclusive(x86_lbr_exclusive_lbr);
290 }
291
292 static inline int x86_pmu_initialized(void)
293 {
294         return x86_pmu.handle_irq != NULL;
295 }
296
297 static inline int
298 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
299 {
300         struct perf_event_attr *attr = &event->attr;
301         unsigned int cache_type, cache_op, cache_result;
302         u64 config, val;
303
304         config = attr->config;
305
306         cache_type = (config >>  0) & 0xff;
307         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
308                 return -EINVAL;
309
310         cache_op = (config >>  8) & 0xff;
311         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
312                 return -EINVAL;
313
314         cache_result = (config >> 16) & 0xff;
315         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
316                 return -EINVAL;
317
318         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
319
320         if (val == 0)
321                 return -ENOENT;
322
323         if (val == -1)
324                 return -EINVAL;
325
326         hwc->config |= val;
327         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
328         return x86_pmu_extra_regs(val, event);
329 }
330
331 int x86_reserve_hardware(void)
332 {
333         int err = 0;
334
335         if (!atomic_inc_not_zero(&pmc_refcount)) {
336                 mutex_lock(&pmc_reserve_mutex);
337                 if (atomic_read(&pmc_refcount) == 0) {
338                         if (!reserve_pmc_hardware())
339                                 err = -EBUSY;
340                         else
341                                 reserve_ds_buffers();
342                 }
343                 if (!err)
344                         atomic_inc(&pmc_refcount);
345                 mutex_unlock(&pmc_reserve_mutex);
346         }
347
348         return err;
349 }
350
351 void x86_release_hardware(void)
352 {
353         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
354                 release_pmc_hardware();
355                 release_ds_buffers();
356                 mutex_unlock(&pmc_reserve_mutex);
357         }
358 }
359
360 /*
361  * Check if we can create event of a certain type (that no conflicting events
362  * are present).
363  */
364 int x86_add_exclusive(unsigned int what)
365 {
366         int i;
367
368         if (x86_pmu.lbr_pt_coexist)
369                 return 0;
370
371         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
372                 mutex_lock(&pmc_reserve_mutex);
373                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
374                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
375                                 goto fail_unlock;
376                 }
377                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
378                 mutex_unlock(&pmc_reserve_mutex);
379         }
380
381         atomic_inc(&active_events);
382         return 0;
383
384 fail_unlock:
385         mutex_unlock(&pmc_reserve_mutex);
386         return -EBUSY;
387 }
388
389 void x86_del_exclusive(unsigned int what)
390 {
391         if (x86_pmu.lbr_pt_coexist)
392                 return;
393
394         atomic_dec(&x86_pmu.lbr_exclusive[what]);
395         atomic_dec(&active_events);
396 }
397
398 int x86_setup_perfctr(struct perf_event *event)
399 {
400         struct perf_event_attr *attr = &event->attr;
401         struct hw_perf_event *hwc = &event->hw;
402         u64 config;
403
404         if (!is_sampling_event(event)) {
405                 hwc->sample_period = x86_pmu.max_period;
406                 hwc->last_period = hwc->sample_period;
407                 local64_set(&hwc->period_left, hwc->sample_period);
408         }
409
410         if (attr->type == PERF_TYPE_RAW)
411                 return x86_pmu_extra_regs(event->attr.config, event);
412
413         if (attr->type == PERF_TYPE_HW_CACHE)
414                 return set_ext_hw_attr(hwc, event);
415
416         if (attr->config >= x86_pmu.max_events)
417                 return -EINVAL;
418
419         /*
420          * The generic map:
421          */
422         config = x86_pmu.event_map(attr->config);
423
424         if (config == 0)
425                 return -ENOENT;
426
427         if (config == -1LL)
428                 return -EINVAL;
429
430         /*
431          * Branch tracing:
432          */
433         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
434             !attr->freq && hwc->sample_period == 1) {
435                 /* BTS is not supported by this architecture. */
436                 if (!x86_pmu.bts_active)
437                         return -EOPNOTSUPP;
438
439                 /* BTS is currently only allowed for user-mode. */
440                 if (!attr->exclude_kernel)
441                         return -EOPNOTSUPP;
442
443                 /* disallow bts if conflicting events are present */
444                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
445                         return -EBUSY;
446
447                 event->destroy = hw_perf_lbr_event_destroy;
448         }
449
450         hwc->config |= config;
451
452         return 0;
453 }
454
455 /*
456  * check that branch_sample_type is compatible with
457  * settings needed for precise_ip > 1 which implies
458  * using the LBR to capture ALL taken branches at the
459  * priv levels of the measurement
460  */
461 static inline int precise_br_compat(struct perf_event *event)
462 {
463         u64 m = event->attr.branch_sample_type;
464         u64 b = 0;
465
466         /* must capture all branches */
467         if (!(m & PERF_SAMPLE_BRANCH_ANY))
468                 return 0;
469
470         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
471
472         if (!event->attr.exclude_user)
473                 b |= PERF_SAMPLE_BRANCH_USER;
474
475         if (!event->attr.exclude_kernel)
476                 b |= PERF_SAMPLE_BRANCH_KERNEL;
477
478         /*
479          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
480          */
481
482         return m == b;
483 }
484
485 int x86_pmu_hw_config(struct perf_event *event)
486 {
487         if (event->attr.precise_ip) {
488                 int precise = 0;
489
490                 /* Support for constant skid */
491                 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
492                         precise++;
493
494                         /* Support for IP fixup */
495                         if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
496                                 precise++;
497
498                         if (x86_pmu.pebs_prec_dist)
499                                 precise++;
500                 }
501
502                 if (event->attr.precise_ip > precise)
503                         return -EOPNOTSUPP;
504         }
505         /*
506          * check that PEBS LBR correction does not conflict with
507          * whatever the user is asking with attr->branch_sample_type
508          */
509         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
510                 u64 *br_type = &event->attr.branch_sample_type;
511
512                 if (has_branch_stack(event)) {
513                         if (!precise_br_compat(event))
514                                 return -EOPNOTSUPP;
515
516                         /* branch_sample_type is compatible */
517
518                 } else {
519                         /*
520                          * user did not specify  branch_sample_type
521                          *
522                          * For PEBS fixups, we capture all
523                          * the branches at the priv level of the
524                          * event.
525                          */
526                         *br_type = PERF_SAMPLE_BRANCH_ANY;
527
528                         if (!event->attr.exclude_user)
529                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
530
531                         if (!event->attr.exclude_kernel)
532                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
533                 }
534         }
535
536         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
537                 event->attach_state |= PERF_ATTACH_TASK_DATA;
538
539         /*
540          * Generate PMC IRQs:
541          * (keep 'enabled' bit clear for now)
542          */
543         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
544
545         /*
546          * Count user and OS events unless requested not to
547          */
548         if (!event->attr.exclude_user)
549                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
550         if (!event->attr.exclude_kernel)
551                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
552
553         if (event->attr.type == PERF_TYPE_RAW)
554                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
555
556         if (event->attr.sample_period && x86_pmu.limit_period) {
557                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
558                                 event->attr.sample_period)
559                         return -EINVAL;
560         }
561
562         return x86_setup_perfctr(event);
563 }
564
565 /*
566  * Setup the hardware configuration for a given attr_type
567  */
568 static int __x86_pmu_event_init(struct perf_event *event)
569 {
570         int err;
571
572         if (!x86_pmu_initialized())
573                 return -ENODEV;
574
575         err = x86_reserve_hardware();
576         if (err)
577                 return err;
578
579         atomic_inc(&active_events);
580         event->destroy = hw_perf_event_destroy;
581
582         event->hw.idx = -1;
583         event->hw.last_cpu = -1;
584         event->hw.last_tag = ~0ULL;
585
586         /* mark unused */
587         event->hw.extra_reg.idx = EXTRA_REG_NONE;
588         event->hw.branch_reg.idx = EXTRA_REG_NONE;
589
590         return x86_pmu.hw_config(event);
591 }
592
593 void x86_pmu_disable_all(void)
594 {
595         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
596         int idx;
597
598         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
599                 u64 val;
600
601                 if (!test_bit(idx, cpuc->active_mask))
602                         continue;
603                 rdmsrl(x86_pmu_config_addr(idx), val);
604                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
605                         continue;
606                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
607                 wrmsrl(x86_pmu_config_addr(idx), val);
608         }
609 }
610
611 /*
612  * There may be PMI landing after enabled=0. The PMI hitting could be before or
613  * after disable_all.
614  *
615  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
616  * It will not be re-enabled in the NMI handler again, because enabled=0. After
617  * handling the NMI, disable_all will be called, which will not change the
618  * state either. If PMI hits after disable_all, the PMU is already disabled
619  * before entering NMI handler. The NMI handler will not change the state
620  * either.
621  *
622  * So either situation is harmless.
623  */
624 static void x86_pmu_disable(struct pmu *pmu)
625 {
626         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
627
628         if (!x86_pmu_initialized())
629                 return;
630
631         if (!cpuc->enabled)
632                 return;
633
634         cpuc->n_added = 0;
635         cpuc->enabled = 0;
636         barrier();
637
638         x86_pmu.disable_all();
639 }
640
641 void x86_pmu_enable_all(int added)
642 {
643         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
644         int idx;
645
646         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
647                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
648
649                 if (!test_bit(idx, cpuc->active_mask))
650                         continue;
651
652                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
653         }
654 }
655
656 static struct pmu pmu;
657
658 static inline int is_x86_event(struct perf_event *event)
659 {
660         return event->pmu == &pmu;
661 }
662
663 /*
664  * Event scheduler state:
665  *
666  * Assign events iterating over all events and counters, beginning
667  * with events with least weights first. Keep the current iterator
668  * state in struct sched_state.
669  */
670 struct sched_state {
671         int     weight;
672         int     event;          /* event index */
673         int     counter;        /* counter index */
674         int     unassigned;     /* number of events to be assigned left */
675         int     nr_gp;          /* number of GP counters used */
676         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
677 };
678
679 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
680 #define SCHED_STATES_MAX        2
681
682 struct perf_sched {
683         int                     max_weight;
684         int                     max_events;
685         int                     max_gp;
686         int                     saved_states;
687         struct event_constraint **constraints;
688         struct sched_state      state;
689         struct sched_state      saved[SCHED_STATES_MAX];
690 };
691
692 /*
693  * Initialize interator that runs through all events and counters.
694  */
695 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
696                             int num, int wmin, int wmax, int gpmax)
697 {
698         int idx;
699
700         memset(sched, 0, sizeof(*sched));
701         sched->max_events       = num;
702         sched->max_weight       = wmax;
703         sched->max_gp           = gpmax;
704         sched->constraints      = constraints;
705
706         for (idx = 0; idx < num; idx++) {
707                 if (constraints[idx]->weight == wmin)
708                         break;
709         }
710
711         sched->state.event      = idx;          /* start with min weight */
712         sched->state.weight     = wmin;
713         sched->state.unassigned = num;
714 }
715
716 static void perf_sched_save_state(struct perf_sched *sched)
717 {
718         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
719                 return;
720
721         sched->saved[sched->saved_states] = sched->state;
722         sched->saved_states++;
723 }
724
725 static bool perf_sched_restore_state(struct perf_sched *sched)
726 {
727         if (!sched->saved_states)
728                 return false;
729
730         sched->saved_states--;
731         sched->state = sched->saved[sched->saved_states];
732
733         /* continue with next counter: */
734         clear_bit(sched->state.counter++, sched->state.used);
735
736         return true;
737 }
738
739 /*
740  * Select a counter for the current event to schedule. Return true on
741  * success.
742  */
743 static bool __perf_sched_find_counter(struct perf_sched *sched)
744 {
745         struct event_constraint *c;
746         int idx;
747
748         if (!sched->state.unassigned)
749                 return false;
750
751         if (sched->state.event >= sched->max_events)
752                 return false;
753
754         c = sched->constraints[sched->state.event];
755         /* Prefer fixed purpose counters */
756         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
757                 idx = INTEL_PMC_IDX_FIXED;
758                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
759                         if (!__test_and_set_bit(idx, sched->state.used))
760                                 goto done;
761                 }
762         }
763
764         /* Grab the first unused counter starting with idx */
765         idx = sched->state.counter;
766         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
767                 if (!__test_and_set_bit(idx, sched->state.used)) {
768                         if (sched->state.nr_gp++ >= sched->max_gp)
769                                 return false;
770
771                         goto done;
772                 }
773         }
774
775         return false;
776
777 done:
778         sched->state.counter = idx;
779
780         if (c->overlap)
781                 perf_sched_save_state(sched);
782
783         return true;
784 }
785
786 static bool perf_sched_find_counter(struct perf_sched *sched)
787 {
788         while (!__perf_sched_find_counter(sched)) {
789                 if (!perf_sched_restore_state(sched))
790                         return false;
791         }
792
793         return true;
794 }
795
796 /*
797  * Go through all unassigned events and find the next one to schedule.
798  * Take events with the least weight first. Return true on success.
799  */
800 static bool perf_sched_next_event(struct perf_sched *sched)
801 {
802         struct event_constraint *c;
803
804         if (!sched->state.unassigned || !--sched->state.unassigned)
805                 return false;
806
807         do {
808                 /* next event */
809                 sched->state.event++;
810                 if (sched->state.event >= sched->max_events) {
811                         /* next weight */
812                         sched->state.event = 0;
813                         sched->state.weight++;
814                         if (sched->state.weight > sched->max_weight)
815                                 return false;
816                 }
817                 c = sched->constraints[sched->state.event];
818         } while (c->weight != sched->state.weight);
819
820         sched->state.counter = 0;       /* start with first counter */
821
822         return true;
823 }
824
825 /*
826  * Assign a counter for each event.
827  */
828 int perf_assign_events(struct event_constraint **constraints, int n,
829                         int wmin, int wmax, int gpmax, int *assign)
830 {
831         struct perf_sched sched;
832
833         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
834
835         do {
836                 if (!perf_sched_find_counter(&sched))
837                         break;  /* failed */
838                 if (assign)
839                         assign[sched.state.event] = sched.state.counter;
840         } while (perf_sched_next_event(&sched));
841
842         return sched.state.unassigned;
843 }
844 EXPORT_SYMBOL_GPL(perf_assign_events);
845
846 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
847 {
848         struct event_constraint *c;
849         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
850         struct perf_event *e;
851         int i, wmin, wmax, unsched = 0;
852         struct hw_perf_event *hwc;
853
854         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
855
856         if (x86_pmu.start_scheduling)
857                 x86_pmu.start_scheduling(cpuc);
858
859         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
860                 cpuc->event_constraint[i] = NULL;
861                 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
862                 cpuc->event_constraint[i] = c;
863
864                 wmin = min(wmin, c->weight);
865                 wmax = max(wmax, c->weight);
866         }
867
868         /*
869          * fastpath, try to reuse previous register
870          */
871         for (i = 0; i < n; i++) {
872                 hwc = &cpuc->event_list[i]->hw;
873                 c = cpuc->event_constraint[i];
874
875                 /* never assigned */
876                 if (hwc->idx == -1)
877                         break;
878
879                 /* constraint still honored */
880                 if (!test_bit(hwc->idx, c->idxmsk))
881                         break;
882
883                 /* not already used */
884                 if (test_bit(hwc->idx, used_mask))
885                         break;
886
887                 __set_bit(hwc->idx, used_mask);
888                 if (assign)
889                         assign[i] = hwc->idx;
890         }
891
892         /* slow path */
893         if (i != n) {
894                 int gpmax = x86_pmu.num_counters;
895
896                 /*
897                  * Do not allow scheduling of more than half the available
898                  * generic counters.
899                  *
900                  * This helps avoid counter starvation of sibling thread by
901                  * ensuring at most half the counters cannot be in exclusive
902                  * mode. There is no designated counters for the limits. Any
903                  * N/2 counters can be used. This helps with events with
904                  * specific counter constraints.
905                  */
906                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
907                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
908                         gpmax /= 2;
909
910                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
911                                              wmax, gpmax, assign);
912         }
913
914         /*
915          * In case of success (unsched = 0), mark events as committed,
916          * so we do not put_constraint() in case new events are added
917          * and fail to be scheduled
918          *
919          * We invoke the lower level commit callback to lock the resource
920          *
921          * We do not need to do all of this in case we are called to
922          * validate an event group (assign == NULL)
923          */
924         if (!unsched && assign) {
925                 for (i = 0; i < n; i++) {
926                         e = cpuc->event_list[i];
927                         e->hw.flags |= PERF_X86_EVENT_COMMITTED;
928                         if (x86_pmu.commit_scheduling)
929                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
930                 }
931         } else {
932                 for (i = 0; i < n; i++) {
933                         e = cpuc->event_list[i];
934                         /*
935                          * do not put_constraint() on comitted events,
936                          * because they are good to go
937                          */
938                         if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
939                                 continue;
940
941                         /*
942                          * release events that failed scheduling
943                          */
944                         if (x86_pmu.put_event_constraints)
945                                 x86_pmu.put_event_constraints(cpuc, e);
946                 }
947         }
948
949         if (x86_pmu.stop_scheduling)
950                 x86_pmu.stop_scheduling(cpuc);
951
952         return unsched ? -EINVAL : 0;
953 }
954
955 /*
956  * dogrp: true if must collect siblings events (group)
957  * returns total number of events and error code
958  */
959 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
960 {
961         struct perf_event *event;
962         int n, max_count;
963
964         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
965
966         /* current number of events already accepted */
967         n = cpuc->n_events;
968
969         if (is_x86_event(leader)) {
970                 if (n >= max_count)
971                         return -EINVAL;
972                 cpuc->event_list[n] = leader;
973                 n++;
974         }
975         if (!dogrp)
976                 return n;
977
978         list_for_each_entry(event, &leader->sibling_list, group_entry) {
979                 if (!is_x86_event(event) ||
980                     event->state <= PERF_EVENT_STATE_OFF)
981                         continue;
982
983                 if (n >= max_count)
984                         return -EINVAL;
985
986                 cpuc->event_list[n] = event;
987                 n++;
988         }
989         return n;
990 }
991
992 static inline void x86_assign_hw_event(struct perf_event *event,
993                                 struct cpu_hw_events *cpuc, int i)
994 {
995         struct hw_perf_event *hwc = &event->hw;
996
997         hwc->idx = cpuc->assign[i];
998         hwc->last_cpu = smp_processor_id();
999         hwc->last_tag = ++cpuc->tags[i];
1000
1001         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1002                 hwc->config_base = 0;
1003                 hwc->event_base = 0;
1004         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1005                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1006                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1007                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1008         } else {
1009                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1010                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1011                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1012         }
1013 }
1014
1015 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1016                                         struct cpu_hw_events *cpuc,
1017                                         int i)
1018 {
1019         return hwc->idx == cpuc->assign[i] &&
1020                 hwc->last_cpu == smp_processor_id() &&
1021                 hwc->last_tag == cpuc->tags[i];
1022 }
1023
1024 static void x86_pmu_start(struct perf_event *event, int flags);
1025
1026 static void x86_pmu_enable(struct pmu *pmu)
1027 {
1028         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1029         struct perf_event *event;
1030         struct hw_perf_event *hwc;
1031         int i, added = cpuc->n_added;
1032
1033         if (!x86_pmu_initialized())
1034                 return;
1035
1036         if (cpuc->enabled)
1037                 return;
1038
1039         if (cpuc->n_added) {
1040                 int n_running = cpuc->n_events - cpuc->n_added;
1041                 /*
1042                  * apply assignment obtained either from
1043                  * hw_perf_group_sched_in() or x86_pmu_enable()
1044                  *
1045                  * step1: save events moving to new counters
1046                  */
1047                 for (i = 0; i < n_running; i++) {
1048                         event = cpuc->event_list[i];
1049                         hwc = &event->hw;
1050
1051                         /*
1052                          * we can avoid reprogramming counter if:
1053                          * - assigned same counter as last time
1054                          * - running on same CPU as last time
1055                          * - no other event has used the counter since
1056                          */
1057                         if (hwc->idx == -1 ||
1058                             match_prev_assignment(hwc, cpuc, i))
1059                                 continue;
1060
1061                         /*
1062                          * Ensure we don't accidentally enable a stopped
1063                          * counter simply because we rescheduled.
1064                          */
1065                         if (hwc->state & PERF_HES_STOPPED)
1066                                 hwc->state |= PERF_HES_ARCH;
1067
1068                         x86_pmu_stop(event, PERF_EF_UPDATE);
1069                 }
1070
1071                 /*
1072                  * step2: reprogram moved events into new counters
1073                  */
1074                 for (i = 0; i < cpuc->n_events; i++) {
1075                         event = cpuc->event_list[i];
1076                         hwc = &event->hw;
1077
1078                         if (!match_prev_assignment(hwc, cpuc, i))
1079                                 x86_assign_hw_event(event, cpuc, i);
1080                         else if (i < n_running)
1081                                 continue;
1082
1083                         if (hwc->state & PERF_HES_ARCH)
1084                                 continue;
1085
1086                         x86_pmu_start(event, PERF_EF_RELOAD);
1087                 }
1088                 cpuc->n_added = 0;
1089                 perf_events_lapic_init();
1090         }
1091
1092         cpuc->enabled = 1;
1093         barrier();
1094
1095         x86_pmu.enable_all(added);
1096 }
1097
1098 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1099
1100 /*
1101  * Set the next IRQ period, based on the hwc->period_left value.
1102  * To be called with the event disabled in hw:
1103  */
1104 int x86_perf_event_set_period(struct perf_event *event)
1105 {
1106         struct hw_perf_event *hwc = &event->hw;
1107         s64 left = local64_read(&hwc->period_left);
1108         s64 period = hwc->sample_period;
1109         int ret = 0, idx = hwc->idx;
1110
1111         if (idx == INTEL_PMC_IDX_FIXED_BTS)
1112                 return 0;
1113
1114         /*
1115          * If we are way outside a reasonable range then just skip forward:
1116          */
1117         if (unlikely(left <= -period)) {
1118                 left = period;
1119                 local64_set(&hwc->period_left, left);
1120                 hwc->last_period = period;
1121                 ret = 1;
1122         }
1123
1124         if (unlikely(left <= 0)) {
1125                 left += period;
1126                 local64_set(&hwc->period_left, left);
1127                 hwc->last_period = period;
1128                 ret = 1;
1129         }
1130         /*
1131          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1132          */
1133         if (unlikely(left < 2))
1134                 left = 2;
1135
1136         if (left > x86_pmu.max_period)
1137                 left = x86_pmu.max_period;
1138
1139         if (x86_pmu.limit_period)
1140                 left = x86_pmu.limit_period(event, left);
1141
1142         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1143
1144         if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1145             local64_read(&hwc->prev_count) != (u64)-left) {
1146                 /*
1147                  * The hw event starts counting from this event offset,
1148                  * mark it to be able to extra future deltas:
1149                  */
1150                 local64_set(&hwc->prev_count, (u64)-left);
1151
1152                 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1153         }
1154
1155         /*
1156          * Due to erratum on certan cpu we need
1157          * a second write to be sure the register
1158          * is updated properly
1159          */
1160         if (x86_pmu.perfctr_second_write) {
1161                 wrmsrl(hwc->event_base,
1162                         (u64)(-left) & x86_pmu.cntval_mask);
1163         }
1164
1165         perf_event_update_userpage(event);
1166
1167         return ret;
1168 }
1169
1170 void x86_pmu_enable_event(struct perf_event *event)
1171 {
1172         if (__this_cpu_read(cpu_hw_events.enabled))
1173                 __x86_pmu_enable_event(&event->hw,
1174                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1175 }
1176
1177 /*
1178  * Add a single event to the PMU.
1179  *
1180  * The event is added to the group of enabled events
1181  * but only if it can be scehduled with existing events.
1182  */
1183 static int x86_pmu_add(struct perf_event *event, int flags)
1184 {
1185         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1186         struct hw_perf_event *hwc;
1187         int assign[X86_PMC_IDX_MAX];
1188         int n, n0, ret;
1189
1190         hwc = &event->hw;
1191
1192         n0 = cpuc->n_events;
1193         ret = n = collect_events(cpuc, event, false);
1194         if (ret < 0)
1195                 goto out;
1196
1197         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1198         if (!(flags & PERF_EF_START))
1199                 hwc->state |= PERF_HES_ARCH;
1200
1201         /*
1202          * If group events scheduling transaction was started,
1203          * skip the schedulability test here, it will be performed
1204          * at commit time (->commit_txn) as a whole.
1205          *
1206          * If commit fails, we'll call ->del() on all events
1207          * for which ->add() was called.
1208          */
1209         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1210                 goto done_collect;
1211
1212         ret = x86_pmu.schedule_events(cpuc, n, assign);
1213         if (ret)
1214                 goto out;
1215         /*
1216          * copy new assignment, now we know it is possible
1217          * will be used by hw_perf_enable()
1218          */
1219         memcpy(cpuc->assign, assign, n*sizeof(int));
1220
1221 done_collect:
1222         /*
1223          * Commit the collect_events() state. See x86_pmu_del() and
1224          * x86_pmu_*_txn().
1225          */
1226         cpuc->n_events = n;
1227         cpuc->n_added += n - n0;
1228         cpuc->n_txn += n - n0;
1229
1230         if (x86_pmu.add) {
1231                 /*
1232                  * This is before x86_pmu_enable() will call x86_pmu_start(),
1233                  * so we enable LBRs before an event needs them etc..
1234                  */
1235                 x86_pmu.add(event);
1236         }
1237
1238         ret = 0;
1239 out:
1240         return ret;
1241 }
1242
1243 static void x86_pmu_start(struct perf_event *event, int flags)
1244 {
1245         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1246         int idx = event->hw.idx;
1247
1248         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1249                 return;
1250
1251         if (WARN_ON_ONCE(idx == -1))
1252                 return;
1253
1254         if (flags & PERF_EF_RELOAD) {
1255                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1256                 x86_perf_event_set_period(event);
1257         }
1258
1259         event->hw.state = 0;
1260
1261         cpuc->events[idx] = event;
1262         __set_bit(idx, cpuc->active_mask);
1263         __set_bit(idx, cpuc->running);
1264         x86_pmu.enable(event);
1265         perf_event_update_userpage(event);
1266 }
1267
1268 void perf_event_print_debug(void)
1269 {
1270         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1271         u64 pebs, debugctl;
1272         struct cpu_hw_events *cpuc;
1273         unsigned long flags;
1274         int cpu, idx;
1275
1276         if (!x86_pmu.num_counters)
1277                 return;
1278
1279         local_irq_save(flags);
1280
1281         cpu = smp_processor_id();
1282         cpuc = &per_cpu(cpu_hw_events, cpu);
1283
1284         if (x86_pmu.version >= 2) {
1285                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1286                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1287                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1288                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1289
1290                 pr_info("\n");
1291                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1292                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1293                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1294                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1295                 if (x86_pmu.pebs_constraints) {
1296                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1297                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1298                 }
1299                 if (x86_pmu.lbr_nr) {
1300                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1301                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1302                 }
1303         }
1304         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1305
1306         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1307                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1308                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1309
1310                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1311
1312                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1313                         cpu, idx, pmc_ctrl);
1314                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1315                         cpu, idx, pmc_count);
1316                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1317                         cpu, idx, prev_left);
1318         }
1319         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1320                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1321
1322                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1323                         cpu, idx, pmc_count);
1324         }
1325         local_irq_restore(flags);
1326 }
1327
1328 void x86_pmu_stop(struct perf_event *event, int flags)
1329 {
1330         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1331         struct hw_perf_event *hwc = &event->hw;
1332
1333         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1334                 x86_pmu.disable(event);
1335                 cpuc->events[hwc->idx] = NULL;
1336                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1337                 hwc->state |= PERF_HES_STOPPED;
1338         }
1339
1340         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1341                 /*
1342                  * Drain the remaining delta count out of a event
1343                  * that we are disabling:
1344                  */
1345                 x86_perf_event_update(event);
1346                 hwc->state |= PERF_HES_UPTODATE;
1347         }
1348 }
1349
1350 static void x86_pmu_del(struct perf_event *event, int flags)
1351 {
1352         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1353         int i;
1354
1355         /*
1356          * event is descheduled
1357          */
1358         event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1359
1360         /*
1361          * If we're called during a txn, we only need to undo x86_pmu.add.
1362          * The events never got scheduled and ->cancel_txn will truncate
1363          * the event_list.
1364          *
1365          * XXX assumes any ->del() called during a TXN will only be on
1366          * an event added during that same TXN.
1367          */
1368         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1369                 goto do_del;
1370
1371         /*
1372          * Not a TXN, therefore cleanup properly.
1373          */
1374         x86_pmu_stop(event, PERF_EF_UPDATE);
1375
1376         for (i = 0; i < cpuc->n_events; i++) {
1377                 if (event == cpuc->event_list[i])
1378                         break;
1379         }
1380
1381         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1382                 return;
1383
1384         /* If we have a newly added event; make sure to decrease n_added. */
1385         if (i >= cpuc->n_events - cpuc->n_added)
1386                 --cpuc->n_added;
1387
1388         if (x86_pmu.put_event_constraints)
1389                 x86_pmu.put_event_constraints(cpuc, event);
1390
1391         /* Delete the array entry. */
1392         while (++i < cpuc->n_events) {
1393                 cpuc->event_list[i-1] = cpuc->event_list[i];
1394                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1395         }
1396         --cpuc->n_events;
1397
1398         perf_event_update_userpage(event);
1399
1400 do_del:
1401         if (x86_pmu.del) {
1402                 /*
1403                  * This is after x86_pmu_stop(); so we disable LBRs after any
1404                  * event can need them etc..
1405                  */
1406                 x86_pmu.del(event);
1407         }
1408 }
1409
1410 int x86_pmu_handle_irq(struct pt_regs *regs)
1411 {
1412         struct perf_sample_data data;
1413         struct cpu_hw_events *cpuc;
1414         struct perf_event *event;
1415         int idx, handled = 0;
1416         u64 val;
1417
1418         cpuc = this_cpu_ptr(&cpu_hw_events);
1419
1420         /*
1421          * Some chipsets need to unmask the LVTPC in a particular spot
1422          * inside the nmi handler.  As a result, the unmasking was pushed
1423          * into all the nmi handlers.
1424          *
1425          * This generic handler doesn't seem to have any issues where the
1426          * unmasking occurs so it was left at the top.
1427          */
1428         apic_write(APIC_LVTPC, APIC_DM_NMI);
1429
1430         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1431                 if (!test_bit(idx, cpuc->active_mask)) {
1432                         /*
1433                          * Though we deactivated the counter some cpus
1434                          * might still deliver spurious interrupts still
1435                          * in flight. Catch them:
1436                          */
1437                         if (__test_and_clear_bit(idx, cpuc->running))
1438                                 handled++;
1439                         continue;
1440                 }
1441
1442                 event = cpuc->events[idx];
1443
1444                 val = x86_perf_event_update(event);
1445                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1446                         continue;
1447
1448                 /*
1449                  * event overflow
1450                  */
1451                 handled++;
1452                 perf_sample_data_init(&data, 0, event->hw.last_period);
1453
1454                 if (!x86_perf_event_set_period(event))
1455                         continue;
1456
1457                 if (perf_event_overflow(event, &data, regs))
1458                         x86_pmu_stop(event, 0);
1459         }
1460
1461         if (handled)
1462                 inc_irq_stat(apic_perf_irqs);
1463
1464         return handled;
1465 }
1466
1467 void perf_events_lapic_init(void)
1468 {
1469         if (!x86_pmu.apic || !x86_pmu_initialized())
1470                 return;
1471
1472         /*
1473          * Always use NMI for PMU
1474          */
1475         apic_write(APIC_LVTPC, APIC_DM_NMI);
1476 }
1477
1478 static int
1479 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1480 {
1481         u64 start_clock;
1482         u64 finish_clock;
1483         int ret;
1484
1485         /*
1486          * All PMUs/events that share this PMI handler should make sure to
1487          * increment active_events for their events.
1488          */
1489         if (!atomic_read(&active_events))
1490                 return NMI_DONE;
1491
1492         start_clock = sched_clock();
1493         ret = x86_pmu.handle_irq(regs);
1494         finish_clock = sched_clock();
1495
1496         perf_sample_event_took(finish_clock - start_clock);
1497
1498         return ret;
1499 }
1500 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1501
1502 struct event_constraint emptyconstraint;
1503 struct event_constraint unconstrained;
1504
1505 static int x86_pmu_prepare_cpu(unsigned int cpu)
1506 {
1507         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1508         int i;
1509
1510         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1511                 cpuc->kfree_on_online[i] = NULL;
1512         if (x86_pmu.cpu_prepare)
1513                 return x86_pmu.cpu_prepare(cpu);
1514         return 0;
1515 }
1516
1517 static int x86_pmu_dead_cpu(unsigned int cpu)
1518 {
1519         if (x86_pmu.cpu_dead)
1520                 x86_pmu.cpu_dead(cpu);
1521         return 0;
1522 }
1523
1524 static int x86_pmu_online_cpu(unsigned int cpu)
1525 {
1526         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1527         int i;
1528
1529         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1530                 kfree(cpuc->kfree_on_online[i]);
1531                 cpuc->kfree_on_online[i] = NULL;
1532         }
1533         return 0;
1534 }
1535
1536 static int x86_pmu_starting_cpu(unsigned int cpu)
1537 {
1538         if (x86_pmu.cpu_starting)
1539                 x86_pmu.cpu_starting(cpu);
1540         return 0;
1541 }
1542
1543 static int x86_pmu_dying_cpu(unsigned int cpu)
1544 {
1545         if (x86_pmu.cpu_dying)
1546                 x86_pmu.cpu_dying(cpu);
1547         return 0;
1548 }
1549
1550 static void __init pmu_check_apic(void)
1551 {
1552         if (boot_cpu_has(X86_FEATURE_APIC))
1553                 return;
1554
1555         x86_pmu.apic = 0;
1556         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1557         pr_info("no hardware sampling interrupt available.\n");
1558
1559         /*
1560          * If we have a PMU initialized but no APIC
1561          * interrupts, we cannot sample hardware
1562          * events (user-space has to fall back and
1563          * sample via a hrtimer based software event):
1564          */
1565         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1566
1567 }
1568
1569 static struct attribute_group x86_pmu_format_group = {
1570         .name = "format",
1571         .attrs = NULL,
1572 };
1573
1574 /*
1575  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1576  * out of events_attr attributes.
1577  */
1578 static void __init filter_events(struct attribute **attrs)
1579 {
1580         struct device_attribute *d;
1581         struct perf_pmu_events_attr *pmu_attr;
1582         int offset = 0;
1583         int i, j;
1584
1585         for (i = 0; attrs[i]; i++) {
1586                 d = (struct device_attribute *)attrs[i];
1587                 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1588                 /* str trumps id */
1589                 if (pmu_attr->event_str)
1590                         continue;
1591                 if (x86_pmu.event_map(i + offset))
1592                         continue;
1593
1594                 for (j = i; attrs[j]; j++)
1595                         attrs[j] = attrs[j + 1];
1596
1597                 /* Check the shifted attr. */
1598                 i--;
1599
1600                 /*
1601                  * event_map() is index based, the attrs array is organized
1602                  * by increasing event index. If we shift the events, then
1603                  * we need to compensate for the event_map(), otherwise
1604                  * we are looking up the wrong event in the map
1605                  */
1606                 offset++;
1607         }
1608 }
1609
1610 /* Merge two pointer arrays */
1611 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1612 {
1613         struct attribute **new;
1614         int j, i;
1615
1616         for (j = 0; a[j]; j++)
1617                 ;
1618         for (i = 0; b[i]; i++)
1619                 j++;
1620         j++;
1621
1622         new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1623         if (!new)
1624                 return NULL;
1625
1626         j = 0;
1627         for (i = 0; a[i]; i++)
1628                 new[j++] = a[i];
1629         for (i = 0; b[i]; i++)
1630                 new[j++] = b[i];
1631         new[j] = NULL;
1632
1633         return new;
1634 }
1635
1636 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1637 {
1638         struct perf_pmu_events_attr *pmu_attr = \
1639                 container_of(attr, struct perf_pmu_events_attr, attr);
1640         u64 config = x86_pmu.event_map(pmu_attr->id);
1641
1642         /* string trumps id */
1643         if (pmu_attr->event_str)
1644                 return sprintf(page, "%s", pmu_attr->event_str);
1645
1646         return x86_pmu.events_sysfs_show(page, config);
1647 }
1648 EXPORT_SYMBOL_GPL(events_sysfs_show);
1649
1650 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1651                           char *page)
1652 {
1653         struct perf_pmu_events_ht_attr *pmu_attr =
1654                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1655
1656         /*
1657          * Report conditional events depending on Hyper-Threading.
1658          *
1659          * This is overly conservative as usually the HT special
1660          * handling is not needed if the other CPU thread is idle.
1661          *
1662          * Note this does not (and cannot) handle the case when thread
1663          * siblings are invisible, for example with virtualization
1664          * if they are owned by some other guest.  The user tool
1665          * has to re-read when a thread sibling gets onlined later.
1666          */
1667         return sprintf(page, "%s",
1668                         topology_max_smt_threads() > 1 ?
1669                         pmu_attr->event_str_ht :
1670                         pmu_attr->event_str_noht);
1671 }
1672
1673 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1674 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1675 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1676 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1677 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1678 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1679 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1680 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1681 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1682 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1683
1684 static struct attribute *empty_attrs;
1685
1686 static struct attribute *events_attr[] = {
1687         EVENT_PTR(CPU_CYCLES),
1688         EVENT_PTR(INSTRUCTIONS),
1689         EVENT_PTR(CACHE_REFERENCES),
1690         EVENT_PTR(CACHE_MISSES),
1691         EVENT_PTR(BRANCH_INSTRUCTIONS),
1692         EVENT_PTR(BRANCH_MISSES),
1693         EVENT_PTR(BUS_CYCLES),
1694         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1695         EVENT_PTR(STALLED_CYCLES_BACKEND),
1696         EVENT_PTR(REF_CPU_CYCLES),
1697         NULL,
1698 };
1699
1700 static struct attribute_group x86_pmu_events_group = {
1701         .name = "events",
1702         .attrs = events_attr,
1703 };
1704
1705 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1706 {
1707         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1708         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1709         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1710         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1711         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1712         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1713         ssize_t ret;
1714
1715         /*
1716         * We have whole page size to spend and just little data
1717         * to write, so we can safely use sprintf.
1718         */
1719         ret = sprintf(page, "event=0x%02llx", event);
1720
1721         if (umask)
1722                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1723
1724         if (edge)
1725                 ret += sprintf(page + ret, ",edge");
1726
1727         if (pc)
1728                 ret += sprintf(page + ret, ",pc");
1729
1730         if (any)
1731                 ret += sprintf(page + ret, ",any");
1732
1733         if (inv)
1734                 ret += sprintf(page + ret, ",inv");
1735
1736         if (cmask)
1737                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1738
1739         ret += sprintf(page + ret, "\n");
1740
1741         return ret;
1742 }
1743
1744 static int __init init_hw_perf_events(void)
1745 {
1746         struct x86_pmu_quirk *quirk;
1747         int err;
1748
1749         pr_info("Performance Events: ");
1750
1751         switch (boot_cpu_data.x86_vendor) {
1752         case X86_VENDOR_INTEL:
1753                 err = intel_pmu_init();
1754                 break;
1755         case X86_VENDOR_AMD:
1756                 err = amd_pmu_init();
1757                 break;
1758         default:
1759                 err = -ENOTSUPP;
1760         }
1761         if (err != 0) {
1762                 pr_cont("no PMU driver, software events only.\n");
1763                 return 0;
1764         }
1765
1766         pmu_check_apic();
1767
1768         /* sanity check that the hardware exists or is emulated */
1769         if (!check_hw_exists())
1770                 return 0;
1771
1772         pr_cont("%s PMU driver.\n", x86_pmu.name);
1773
1774         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1775
1776         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1777                 quirk->func();
1778
1779         if (!x86_pmu.intel_ctrl)
1780                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1781
1782         perf_events_lapic_init();
1783         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1784
1785         unconstrained = (struct event_constraint)
1786                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1787                                    0, x86_pmu.num_counters, 0, 0);
1788
1789         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1790
1791         if (x86_pmu.event_attrs)
1792                 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1793
1794         if (!x86_pmu.events_sysfs_show)
1795                 x86_pmu_events_group.attrs = &empty_attrs;
1796         else
1797                 filter_events(x86_pmu_events_group.attrs);
1798
1799         if (x86_pmu.cpu_events) {
1800                 struct attribute **tmp;
1801
1802                 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1803                 if (!WARN_ON(!tmp))
1804                         x86_pmu_events_group.attrs = tmp;
1805         }
1806
1807         pr_info("... version:                %d\n",     x86_pmu.version);
1808         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1809         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1810         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1811         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1812         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1813         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1814
1815         /*
1816          * Install callbacks. Core will call them for each online
1817          * cpu.
1818          */
1819         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "PERF_X86_PREPARE",
1820                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1821         if (err)
1822                 return err;
1823
1824         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1825                                 "AP_PERF_X86_STARTING", x86_pmu_starting_cpu,
1826                                 x86_pmu_dying_cpu);
1827         if (err)
1828                 goto out;
1829
1830         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "AP_PERF_X86_ONLINE",
1831                                 x86_pmu_online_cpu, NULL);
1832         if (err)
1833                 goto out1;
1834
1835         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1836         if (err)
1837                 goto out2;
1838
1839         return 0;
1840
1841 out2:
1842         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1843 out1:
1844         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1845 out:
1846         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1847         return err;
1848 }
1849 early_initcall(init_hw_perf_events);
1850
1851 static inline void x86_pmu_read(struct perf_event *event)
1852 {
1853         x86_perf_event_update(event);
1854 }
1855
1856 /*
1857  * Start group events scheduling transaction
1858  * Set the flag to make pmu::enable() not perform the
1859  * schedulability test, it will be performed at commit time
1860  *
1861  * We only support PERF_PMU_TXN_ADD transactions. Save the
1862  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1863  * transactions.
1864  */
1865 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1866 {
1867         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1868
1869         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1870
1871         cpuc->txn_flags = txn_flags;
1872         if (txn_flags & ~PERF_PMU_TXN_ADD)
1873                 return;
1874
1875         perf_pmu_disable(pmu);
1876         __this_cpu_write(cpu_hw_events.n_txn, 0);
1877 }
1878
1879 /*
1880  * Stop group events scheduling transaction
1881  * Clear the flag and pmu::enable() will perform the
1882  * schedulability test.
1883  */
1884 static void x86_pmu_cancel_txn(struct pmu *pmu)
1885 {
1886         unsigned int txn_flags;
1887         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1888
1889         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1890
1891         txn_flags = cpuc->txn_flags;
1892         cpuc->txn_flags = 0;
1893         if (txn_flags & ~PERF_PMU_TXN_ADD)
1894                 return;
1895
1896         /*
1897          * Truncate collected array by the number of events added in this
1898          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1899          */
1900         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1901         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1902         perf_pmu_enable(pmu);
1903 }
1904
1905 /*
1906  * Commit group events scheduling transaction
1907  * Perform the group schedulability test as a whole
1908  * Return 0 if success
1909  *
1910  * Does not cancel the transaction on failure; expects the caller to do this.
1911  */
1912 static int x86_pmu_commit_txn(struct pmu *pmu)
1913 {
1914         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1915         int assign[X86_PMC_IDX_MAX];
1916         int n, ret;
1917
1918         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1919
1920         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1921                 cpuc->txn_flags = 0;
1922                 return 0;
1923         }
1924
1925         n = cpuc->n_events;
1926
1927         if (!x86_pmu_initialized())
1928                 return -EAGAIN;
1929
1930         ret = x86_pmu.schedule_events(cpuc, n, assign);
1931         if (ret)
1932                 return ret;
1933
1934         /*
1935          * copy new assignment, now we know it is possible
1936          * will be used by hw_perf_enable()
1937          */
1938         memcpy(cpuc->assign, assign, n*sizeof(int));
1939
1940         cpuc->txn_flags = 0;
1941         perf_pmu_enable(pmu);
1942         return 0;
1943 }
1944 /*
1945  * a fake_cpuc is used to validate event groups. Due to
1946  * the extra reg logic, we need to also allocate a fake
1947  * per_core and per_cpu structure. Otherwise, group events
1948  * using extra reg may conflict without the kernel being
1949  * able to catch this when the last event gets added to
1950  * the group.
1951  */
1952 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1953 {
1954         kfree(cpuc->shared_regs);
1955         kfree(cpuc);
1956 }
1957
1958 static struct cpu_hw_events *allocate_fake_cpuc(void)
1959 {
1960         struct cpu_hw_events *cpuc;
1961         int cpu = raw_smp_processor_id();
1962
1963         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1964         if (!cpuc)
1965                 return ERR_PTR(-ENOMEM);
1966
1967         /* only needed, if we have extra_regs */
1968         if (x86_pmu.extra_regs) {
1969                 cpuc->shared_regs = allocate_shared_regs(cpu);
1970                 if (!cpuc->shared_regs)
1971                         goto error;
1972         }
1973         cpuc->is_fake = 1;
1974         return cpuc;
1975 error:
1976         free_fake_cpuc(cpuc);
1977         return ERR_PTR(-ENOMEM);
1978 }
1979
1980 /*
1981  * validate that we can schedule this event
1982  */
1983 static int validate_event(struct perf_event *event)
1984 {
1985         struct cpu_hw_events *fake_cpuc;
1986         struct event_constraint *c;
1987         int ret = 0;
1988
1989         fake_cpuc = allocate_fake_cpuc();
1990         if (IS_ERR(fake_cpuc))
1991                 return PTR_ERR(fake_cpuc);
1992
1993         c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1994
1995         if (!c || !c->weight)
1996                 ret = -EINVAL;
1997
1998         if (x86_pmu.put_event_constraints)
1999                 x86_pmu.put_event_constraints(fake_cpuc, event);
2000
2001         free_fake_cpuc(fake_cpuc);
2002
2003         return ret;
2004 }
2005
2006 /*
2007  * validate a single event group
2008  *
2009  * validation include:
2010  *      - check events are compatible which each other
2011  *      - events do not compete for the same counter
2012  *      - number of events <= number of counters
2013  *
2014  * validation ensures the group can be loaded onto the
2015  * PMU if it was the only group available.
2016  */
2017 static int validate_group(struct perf_event *event)
2018 {
2019         struct perf_event *leader = event->group_leader;
2020         struct cpu_hw_events *fake_cpuc;
2021         int ret = -EINVAL, n;
2022
2023         fake_cpuc = allocate_fake_cpuc();
2024         if (IS_ERR(fake_cpuc))
2025                 return PTR_ERR(fake_cpuc);
2026         /*
2027          * the event is not yet connected with its
2028          * siblings therefore we must first collect
2029          * existing siblings, then add the new event
2030          * before we can simulate the scheduling
2031          */
2032         n = collect_events(fake_cpuc, leader, true);
2033         if (n < 0)
2034                 goto out;
2035
2036         fake_cpuc->n_events = n;
2037         n = collect_events(fake_cpuc, event, false);
2038         if (n < 0)
2039                 goto out;
2040
2041         fake_cpuc->n_events = n;
2042
2043         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2044
2045 out:
2046         free_fake_cpuc(fake_cpuc);
2047         return ret;
2048 }
2049
2050 static int x86_pmu_event_init(struct perf_event *event)
2051 {
2052         struct pmu *tmp;
2053         int err;
2054
2055         switch (event->attr.type) {
2056         case PERF_TYPE_RAW:
2057         case PERF_TYPE_HARDWARE:
2058         case PERF_TYPE_HW_CACHE:
2059                 break;
2060
2061         default:
2062                 return -ENOENT;
2063         }
2064
2065         err = __x86_pmu_event_init(event);
2066         if (!err) {
2067                 /*
2068                  * we temporarily connect event to its pmu
2069                  * such that validate_group() can classify
2070                  * it as an x86 event using is_x86_event()
2071                  */
2072                 tmp = event->pmu;
2073                 event->pmu = &pmu;
2074
2075                 if (event->group_leader != event)
2076                         err = validate_group(event);
2077                 else
2078                         err = validate_event(event);
2079
2080                 event->pmu = tmp;
2081         }
2082         if (err) {
2083                 if (event->destroy)
2084                         event->destroy(event);
2085         }
2086
2087         if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2088                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2089
2090         return err;
2091 }
2092
2093 static void refresh_pce(void *ignored)
2094 {
2095         if (current->mm)
2096                 load_mm_cr4(current->mm);
2097 }
2098
2099 static void x86_pmu_event_mapped(struct perf_event *event)
2100 {
2101         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2102                 return;
2103
2104         if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2105                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2106 }
2107
2108 static void x86_pmu_event_unmapped(struct perf_event *event)
2109 {
2110         if (!current->mm)
2111                 return;
2112
2113         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2114                 return;
2115
2116         if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2117                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2118 }
2119
2120 static int x86_pmu_event_idx(struct perf_event *event)
2121 {
2122         int idx = event->hw.idx;
2123
2124         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2125                 return 0;
2126
2127         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2128                 idx -= INTEL_PMC_IDX_FIXED;
2129                 idx |= 1 << 30;
2130         }
2131
2132         return idx + 1;
2133 }
2134
2135 static ssize_t get_attr_rdpmc(struct device *cdev,
2136                               struct device_attribute *attr,
2137                               char *buf)
2138 {
2139         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2140 }
2141
2142 static ssize_t set_attr_rdpmc(struct device *cdev,
2143                               struct device_attribute *attr,
2144                               const char *buf, size_t count)
2145 {
2146         unsigned long val;
2147         ssize_t ret;
2148
2149         ret = kstrtoul(buf, 0, &val);
2150         if (ret)
2151                 return ret;
2152
2153         if (val > 2)
2154                 return -EINVAL;
2155
2156         if (x86_pmu.attr_rdpmc_broken)
2157                 return -ENOTSUPP;
2158
2159         if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2160                 /*
2161                  * Changing into or out of always available, aka
2162                  * perf-event-bypassing mode.  This path is extremely slow,
2163                  * but only root can trigger it, so it's okay.
2164                  */
2165                 if (val == 2)
2166                         static_key_slow_inc(&rdpmc_always_available);
2167                 else
2168                         static_key_slow_dec(&rdpmc_always_available);
2169                 on_each_cpu(refresh_pce, NULL, 1);
2170         }
2171
2172         x86_pmu.attr_rdpmc = val;
2173
2174         return count;
2175 }
2176
2177 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2178
2179 static struct attribute *x86_pmu_attrs[] = {
2180         &dev_attr_rdpmc.attr,
2181         NULL,
2182 };
2183
2184 static struct attribute_group x86_pmu_attr_group = {
2185         .attrs = x86_pmu_attrs,
2186 };
2187
2188 static const struct attribute_group *x86_pmu_attr_groups[] = {
2189         &x86_pmu_attr_group,
2190         &x86_pmu_format_group,
2191         &x86_pmu_events_group,
2192         NULL,
2193 };
2194
2195 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2196 {
2197         if (x86_pmu.sched_task)
2198                 x86_pmu.sched_task(ctx, sched_in);
2199 }
2200
2201 void perf_check_microcode(void)
2202 {
2203         if (x86_pmu.check_microcode)
2204                 x86_pmu.check_microcode();
2205 }
2206 EXPORT_SYMBOL_GPL(perf_check_microcode);
2207
2208 static struct pmu pmu = {
2209         .pmu_enable             = x86_pmu_enable,
2210         .pmu_disable            = x86_pmu_disable,
2211
2212         .attr_groups            = x86_pmu_attr_groups,
2213
2214         .event_init             = x86_pmu_event_init,
2215
2216         .event_mapped           = x86_pmu_event_mapped,
2217         .event_unmapped         = x86_pmu_event_unmapped,
2218
2219         .add                    = x86_pmu_add,
2220         .del                    = x86_pmu_del,
2221         .start                  = x86_pmu_start,
2222         .stop                   = x86_pmu_stop,
2223         .read                   = x86_pmu_read,
2224
2225         .start_txn              = x86_pmu_start_txn,
2226         .cancel_txn             = x86_pmu_cancel_txn,
2227         .commit_txn             = x86_pmu_commit_txn,
2228
2229         .event_idx              = x86_pmu_event_idx,
2230         .sched_task             = x86_pmu_sched_task,
2231         .task_ctx_size          = sizeof(struct x86_perf_task_context),
2232 };
2233
2234 void arch_perf_update_userpage(struct perf_event *event,
2235                                struct perf_event_mmap_page *userpg, u64 now)
2236 {
2237         struct cyc2ns_data *data;
2238
2239         userpg->cap_user_time = 0;
2240         userpg->cap_user_time_zero = 0;
2241         userpg->cap_user_rdpmc =
2242                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2243         userpg->pmc_width = x86_pmu.cntval_bits;
2244
2245         if (!sched_clock_stable())
2246                 return;
2247
2248         data = cyc2ns_read_begin();
2249
2250         /*
2251          * Internal timekeeping for enabled/running/stopped times
2252          * is always in the local_clock domain.
2253          */
2254         userpg->cap_user_time = 1;
2255         userpg->time_mult = data->cyc2ns_mul;
2256         userpg->time_shift = data->cyc2ns_shift;
2257         userpg->time_offset = data->cyc2ns_offset - now;
2258
2259         /*
2260          * cap_user_time_zero doesn't make sense when we're using a different
2261          * time base for the records.
2262          */
2263         if (!event->attr.use_clockid) {
2264                 userpg->cap_user_time_zero = 1;
2265                 userpg->time_zero = data->cyc2ns_offset;
2266         }
2267
2268         cyc2ns_read_end(data);
2269 }
2270
2271 void
2272 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2273 {
2274         struct unwind_state state;
2275         unsigned long addr;
2276
2277         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2278                 /* TODO: We don't support guest os callchain now */
2279                 return;
2280         }
2281
2282         if (perf_callchain_store(entry, regs->ip))
2283                 return;
2284
2285         for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2286              unwind_next_frame(&state)) {
2287                 addr = unwind_get_return_address(&state);
2288                 if (!addr || perf_callchain_store(entry, addr))
2289                         return;
2290         }
2291 }
2292
2293 static inline int
2294 valid_user_frame(const void __user *fp, unsigned long size)
2295 {
2296         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2297 }
2298
2299 static unsigned long get_segment_base(unsigned int segment)
2300 {
2301         struct desc_struct *desc;
2302         int idx = segment >> 3;
2303
2304         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2305 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2306                 struct ldt_struct *ldt;
2307
2308                 if (idx > LDT_ENTRIES)
2309                         return 0;
2310
2311                 /* IRQs are off, so this synchronizes with smp_store_release */
2312                 ldt = lockless_dereference(current->active_mm->context.ldt);
2313                 if (!ldt || idx > ldt->size)
2314                         return 0;
2315
2316                 desc = &ldt->entries[idx];
2317 #else
2318                 return 0;
2319 #endif
2320         } else {
2321                 if (idx > GDT_ENTRIES)
2322                         return 0;
2323
2324                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2325         }
2326
2327         return get_desc_base(desc);
2328 }
2329
2330 #ifdef CONFIG_IA32_EMULATION
2331
2332 #include <asm/compat.h>
2333
2334 static inline int
2335 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2336 {
2337         /* 32-bit process in 64-bit kernel. */
2338         unsigned long ss_base, cs_base;
2339         struct stack_frame_ia32 frame;
2340         const void __user *fp;
2341
2342         if (!test_thread_flag(TIF_IA32))
2343                 return 0;
2344
2345         cs_base = get_segment_base(regs->cs);
2346         ss_base = get_segment_base(regs->ss);
2347
2348         fp = compat_ptr(ss_base + regs->bp);
2349         pagefault_disable();
2350         while (entry->nr < entry->max_stack) {
2351                 unsigned long bytes;
2352                 frame.next_frame     = 0;
2353                 frame.return_address = 0;
2354
2355                 if (!valid_user_frame(fp, sizeof(frame)))
2356                         break;
2357
2358                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2359                 if (bytes != 0)
2360                         break;
2361                 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2362                 if (bytes != 0)
2363                         break;
2364
2365                 perf_callchain_store(entry, cs_base + frame.return_address);
2366                 fp = compat_ptr(ss_base + frame.next_frame);
2367         }
2368         pagefault_enable();
2369         return 1;
2370 }
2371 #else
2372 static inline int
2373 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2374 {
2375     return 0;
2376 }
2377 #endif
2378
2379 void
2380 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2381 {
2382         struct stack_frame frame;
2383         const unsigned long __user *fp;
2384
2385         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2386                 /* TODO: We don't support guest os callchain now */
2387                 return;
2388         }
2389
2390         /*
2391          * We don't know what to do with VM86 stacks.. ignore them for now.
2392          */
2393         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2394                 return;
2395
2396         fp = (unsigned long __user *)regs->bp;
2397
2398         perf_callchain_store(entry, regs->ip);
2399
2400         if (!current->mm)
2401                 return;
2402
2403         if (perf_callchain_user32(regs, entry))
2404                 return;
2405
2406         pagefault_disable();
2407         while (entry->nr < entry->max_stack) {
2408                 unsigned long bytes;
2409
2410                 frame.next_frame             = NULL;
2411                 frame.return_address = 0;
2412
2413                 if (!valid_user_frame(fp, sizeof(frame)))
2414                         break;
2415
2416                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2417                 if (bytes != 0)
2418                         break;
2419                 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2420                 if (bytes != 0)
2421                         break;
2422
2423                 perf_callchain_store(entry, frame.return_address);
2424                 fp = (void __user *)frame.next_frame;
2425         }
2426         pagefault_enable();
2427 }
2428
2429 /*
2430  * Deal with code segment offsets for the various execution modes:
2431  *
2432  *   VM86 - the good olde 16 bit days, where the linear address is
2433  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2434  *
2435  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2436  *          to figure out what the 32bit base address is.
2437  *
2438  *    X32 - has TIF_X32 set, but is running in x86_64
2439  *
2440  * X86_64 - CS,DS,SS,ES are all zero based.
2441  */
2442 static unsigned long code_segment_base(struct pt_regs *regs)
2443 {
2444         /*
2445          * For IA32 we look at the GDT/LDT segment base to convert the
2446          * effective IP to a linear address.
2447          */
2448
2449 #ifdef CONFIG_X86_32
2450         /*
2451          * If we are in VM86 mode, add the segment offset to convert to a
2452          * linear address.
2453          */
2454         if (regs->flags & X86_VM_MASK)
2455                 return 0x10 * regs->cs;
2456
2457         if (user_mode(regs) && regs->cs != __USER_CS)
2458                 return get_segment_base(regs->cs);
2459 #else
2460         if (user_mode(regs) && !user_64bit_mode(regs) &&
2461             regs->cs != __USER32_CS)
2462                 return get_segment_base(regs->cs);
2463 #endif
2464         return 0;
2465 }
2466
2467 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2468 {
2469         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2470                 return perf_guest_cbs->get_guest_ip();
2471
2472         return regs->ip + code_segment_base(regs);
2473 }
2474
2475 unsigned long perf_misc_flags(struct pt_regs *regs)
2476 {
2477         int misc = 0;
2478
2479         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2480                 if (perf_guest_cbs->is_user_mode())
2481                         misc |= PERF_RECORD_MISC_GUEST_USER;
2482                 else
2483                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2484         } else {
2485                 if (user_mode(regs))
2486                         misc |= PERF_RECORD_MISC_USER;
2487                 else
2488                         misc |= PERF_RECORD_MISC_KERNEL;
2489         }
2490
2491         if (regs->flags & PERF_EFLAGS_EXACT)
2492                 misc |= PERF_RECORD_MISC_EXACT_IP;
2493
2494         return misc;
2495 }
2496
2497 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2498 {
2499         cap->version            = x86_pmu.version;
2500         cap->num_counters_gp    = x86_pmu.num_counters;
2501         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2502         cap->bit_width_gp       = x86_pmu.cntval_bits;
2503         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2504         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2505         cap->events_mask_len    = x86_pmu.events_mask_len;
2506 }
2507 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);