sparc64: Add compile-time asserts for siginfo_t offsets
[linux-2.6-microblaze.git] / arch / sparc / kernel / pci_sabre.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* pci_sabre.c: Sabre specific PCI controller support.
3  *
4  * Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net)
5  * Copyright (C) 1998, 1999 Eddie C. Dost   (ecd@skynet.be)
6  * Copyright (C) 1999 Jakub Jelinek   (jakub@redhat.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/export.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/of_device.h>
17
18 #include <asm/apb.h>
19 #include <asm/iommu.h>
20 #include <asm/irq.h>
21 #include <asm/prom.h>
22 #include <asm/upa.h>
23
24 #include "pci_impl.h"
25 #include "iommu_common.h"
26 #include "psycho_common.h"
27
28 #define DRIVER_NAME     "sabre"
29 #define PFX             DRIVER_NAME ": "
30
31 /* SABRE PCI controller register offsets and definitions. */
32 #define SABRE_UE_AFSR           0x0030UL
33 #define  SABRE_UEAFSR_PDRD       0x4000000000000000UL   /* Primary PCI DMA Read */
34 #define  SABRE_UEAFSR_PDWR       0x2000000000000000UL   /* Primary PCI DMA Write */
35 #define  SABRE_UEAFSR_SDRD       0x0800000000000000UL   /* Secondary PCI DMA Read */
36 #define  SABRE_UEAFSR_SDWR       0x0400000000000000UL   /* Secondary PCI DMA Write */
37 #define  SABRE_UEAFSR_SDTE       0x0200000000000000UL   /* Secondary DMA Translation Error */
38 #define  SABRE_UEAFSR_PDTE       0x0100000000000000UL   /* Primary DMA Translation Error */
39 #define  SABRE_UEAFSR_BMSK       0x0000ffff00000000UL   /* Bytemask */
40 #define  SABRE_UEAFSR_OFF        0x00000000e0000000UL   /* Offset (AFAR bits [5:3] */
41 #define  SABRE_UEAFSR_BLK        0x0000000000800000UL   /* Was block operation */
42 #define SABRE_UECE_AFAR         0x0038UL
43 #define SABRE_CE_AFSR           0x0040UL
44 #define  SABRE_CEAFSR_PDRD       0x4000000000000000UL   /* Primary PCI DMA Read */
45 #define  SABRE_CEAFSR_PDWR       0x2000000000000000UL   /* Primary PCI DMA Write */
46 #define  SABRE_CEAFSR_SDRD       0x0800000000000000UL   /* Secondary PCI DMA Read */
47 #define  SABRE_CEAFSR_SDWR       0x0400000000000000UL   /* Secondary PCI DMA Write */
48 #define  SABRE_CEAFSR_ESYND      0x00ff000000000000UL   /* ECC Syndrome */
49 #define  SABRE_CEAFSR_BMSK       0x0000ffff00000000UL   /* Bytemask */
50 #define  SABRE_CEAFSR_OFF        0x00000000e0000000UL   /* Offset */
51 #define  SABRE_CEAFSR_BLK        0x0000000000800000UL   /* Was block operation */
52 #define SABRE_UECE_AFAR_ALIAS   0x0048UL        /* Aliases to 0x0038 */
53 #define SABRE_IOMMU_CONTROL     0x0200UL
54 #define  SABRE_IOMMUCTRL_ERRSTS  0x0000000006000000UL   /* Error status bits */
55 #define  SABRE_IOMMUCTRL_ERR     0x0000000001000000UL   /* Error present in IOTLB */
56 #define  SABRE_IOMMUCTRL_LCKEN   0x0000000000800000UL   /* IOTLB lock enable */
57 #define  SABRE_IOMMUCTRL_LCKPTR  0x0000000000780000UL   /* IOTLB lock pointer */
58 #define  SABRE_IOMMUCTRL_TSBSZ   0x0000000000070000UL   /* TSB Size */
59 #define  SABRE_IOMMU_TSBSZ_1K   0x0000000000000000
60 #define  SABRE_IOMMU_TSBSZ_2K   0x0000000000010000
61 #define  SABRE_IOMMU_TSBSZ_4K   0x0000000000020000
62 #define  SABRE_IOMMU_TSBSZ_8K   0x0000000000030000
63 #define  SABRE_IOMMU_TSBSZ_16K  0x0000000000040000
64 #define  SABRE_IOMMU_TSBSZ_32K  0x0000000000050000
65 #define  SABRE_IOMMU_TSBSZ_64K  0x0000000000060000
66 #define  SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
67 #define  SABRE_IOMMUCTRL_TBWSZ   0x0000000000000004UL   /* TSB assumed page size */
68 #define  SABRE_IOMMUCTRL_DENAB   0x0000000000000002UL   /* Diagnostic Mode Enable */
69 #define  SABRE_IOMMUCTRL_ENAB    0x0000000000000001UL   /* IOMMU Enable */
70 #define SABRE_IOMMU_TSBBASE     0x0208UL
71 #define SABRE_IOMMU_FLUSH       0x0210UL
72 #define SABRE_IMAP_A_SLOT0      0x0c00UL
73 #define SABRE_IMAP_B_SLOT0      0x0c20UL
74 #define SABRE_IMAP_SCSI         0x1000UL
75 #define SABRE_IMAP_ETH          0x1008UL
76 #define SABRE_IMAP_BPP          0x1010UL
77 #define SABRE_IMAP_AU_REC       0x1018UL
78 #define SABRE_IMAP_AU_PLAY      0x1020UL
79 #define SABRE_IMAP_PFAIL        0x1028UL
80 #define SABRE_IMAP_KMS          0x1030UL
81 #define SABRE_IMAP_FLPY         0x1038UL
82 #define SABRE_IMAP_SHW          0x1040UL
83 #define SABRE_IMAP_KBD          0x1048UL
84 #define SABRE_IMAP_MS           0x1050UL
85 #define SABRE_IMAP_SER          0x1058UL
86 #define SABRE_IMAP_UE           0x1070UL
87 #define SABRE_IMAP_CE           0x1078UL
88 #define SABRE_IMAP_PCIERR       0x1080UL
89 #define SABRE_IMAP_GFX          0x1098UL
90 #define SABRE_IMAP_EUPA         0x10a0UL
91 #define SABRE_ICLR_A_SLOT0      0x1400UL
92 #define SABRE_ICLR_B_SLOT0      0x1480UL
93 #define SABRE_ICLR_SCSI         0x1800UL
94 #define SABRE_ICLR_ETH          0x1808UL
95 #define SABRE_ICLR_BPP          0x1810UL
96 #define SABRE_ICLR_AU_REC       0x1818UL
97 #define SABRE_ICLR_AU_PLAY      0x1820UL
98 #define SABRE_ICLR_PFAIL        0x1828UL
99 #define SABRE_ICLR_KMS          0x1830UL
100 #define SABRE_ICLR_FLPY         0x1838UL
101 #define SABRE_ICLR_SHW          0x1840UL
102 #define SABRE_ICLR_KBD          0x1848UL
103 #define SABRE_ICLR_MS           0x1850UL
104 #define SABRE_ICLR_SER          0x1858UL
105 #define SABRE_ICLR_UE           0x1870UL
106 #define SABRE_ICLR_CE           0x1878UL
107 #define SABRE_ICLR_PCIERR       0x1880UL
108 #define SABRE_WRSYNC            0x1c20UL
109 #define SABRE_PCICTRL           0x2000UL
110 #define  SABRE_PCICTRL_MRLEN     0x0000001000000000UL   /* Use MemoryReadLine for block loads/stores */
111 #define  SABRE_PCICTRL_SERR      0x0000000400000000UL   /* Set when SERR asserted on PCI bus */
112 #define  SABRE_PCICTRL_ARBPARK   0x0000000000200000UL   /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
113 #define  SABRE_PCICTRL_CPUPRIO   0x0000000000100000UL   /* Ultra-IIi granted every other bus cycle */
114 #define  SABRE_PCICTRL_ARBPRIO   0x00000000000f0000UL   /* Slot which is granted every other bus cycle */
115 #define  SABRE_PCICTRL_ERREN     0x0000000000000100UL   /* PCI Error Interrupt Enable */
116 #define  SABRE_PCICTRL_RTRYWE    0x0000000000000080UL   /* DMA Flow Control 0=wait-if-possible 1=retry */
117 #define  SABRE_PCICTRL_AEN       0x000000000000000fUL   /* Slot PCI arbitration enables */
118 #define SABRE_PIOAFSR           0x2010UL
119 #define  SABRE_PIOAFSR_PMA       0x8000000000000000UL   /* Primary Master Abort */
120 #define  SABRE_PIOAFSR_PTA       0x4000000000000000UL   /* Primary Target Abort */
121 #define  SABRE_PIOAFSR_PRTRY     0x2000000000000000UL   /* Primary Excessive Retries */
122 #define  SABRE_PIOAFSR_PPERR     0x1000000000000000UL   /* Primary Parity Error */
123 #define  SABRE_PIOAFSR_SMA       0x0800000000000000UL   /* Secondary Master Abort */
124 #define  SABRE_PIOAFSR_STA       0x0400000000000000UL   /* Secondary Target Abort */
125 #define  SABRE_PIOAFSR_SRTRY     0x0200000000000000UL   /* Secondary Excessive Retries */
126 #define  SABRE_PIOAFSR_SPERR     0x0100000000000000UL   /* Secondary Parity Error */
127 #define  SABRE_PIOAFSR_BMSK      0x0000ffff00000000UL   /* Byte Mask */
128 #define  SABRE_PIOAFSR_BLK       0x0000000080000000UL   /* Was Block Operation */
129 #define SABRE_PIOAFAR           0x2018UL
130 #define SABRE_PCIDIAG           0x2020UL
131 #define  SABRE_PCIDIAG_DRTRY     0x0000000000000040UL   /* Disable PIO Retry Limit */
132 #define  SABRE_PCIDIAG_IPAPAR    0x0000000000000008UL   /* Invert PIO Address Parity */
133 #define  SABRE_PCIDIAG_IPDPAR    0x0000000000000004UL   /* Invert PIO Data Parity */
134 #define  SABRE_PCIDIAG_IDDPAR    0x0000000000000002UL   /* Invert DMA Data Parity */
135 #define  SABRE_PCIDIAG_ELPBK     0x0000000000000001UL   /* Loopback Enable - not supported */
136 #define SABRE_PCITASR           0x2028UL
137 #define  SABRE_PCITASR_EF        0x0000000000000080UL   /* Respond to 0xe0000000-0xffffffff */
138 #define  SABRE_PCITASR_CD        0x0000000000000040UL   /* Respond to 0xc0000000-0xdfffffff */
139 #define  SABRE_PCITASR_AB        0x0000000000000020UL   /* Respond to 0xa0000000-0xbfffffff */
140 #define  SABRE_PCITASR_89        0x0000000000000010UL   /* Respond to 0x80000000-0x9fffffff */
141 #define  SABRE_PCITASR_67        0x0000000000000008UL   /* Respond to 0x60000000-0x7fffffff */
142 #define  SABRE_PCITASR_45        0x0000000000000004UL   /* Respond to 0x40000000-0x5fffffff */
143 #define  SABRE_PCITASR_23        0x0000000000000002UL   /* Respond to 0x20000000-0x3fffffff */
144 #define  SABRE_PCITASR_01        0x0000000000000001UL   /* Respond to 0x00000000-0x1fffffff */
145 #define SABRE_PIOBUF_DIAG       0x5000UL
146 #define SABRE_DMABUF_DIAGLO     0x5100UL
147 #define SABRE_DMABUF_DIAGHI     0x51c0UL
148 #define SABRE_IMAP_GFX_ALIAS    0x6000UL        /* Aliases to 0x1098 */
149 #define SABRE_IMAP_EUPA_ALIAS   0x8000UL        /* Aliases to 0x10a0 */
150 #define SABRE_IOMMU_VADIAG      0xa400UL
151 #define SABRE_IOMMU_TCDIAG      0xa408UL
152 #define SABRE_IOMMU_TAG         0xa580UL
153 #define  SABRE_IOMMUTAG_ERRSTS   0x0000000001800000UL   /* Error status bits */
154 #define  SABRE_IOMMUTAG_ERR      0x0000000000400000UL   /* Error present */
155 #define  SABRE_IOMMUTAG_WRITE    0x0000000000200000UL   /* Page is writable */
156 #define  SABRE_IOMMUTAG_STREAM   0x0000000000100000UL   /* Streamable bit - unused */
157 #define  SABRE_IOMMUTAG_SIZE     0x0000000000080000UL   /* 0=8k 1=16k */
158 #define  SABRE_IOMMUTAG_VPN      0x000000000007ffffUL   /* Virtual Page Number [31:13] */
159 #define SABRE_IOMMU_DATA        0xa600UL
160 #define SABRE_IOMMUDATA_VALID    0x0000000040000000UL   /* Valid */
161 #define SABRE_IOMMUDATA_USED     0x0000000020000000UL   /* Used (for LRU algorithm) */
162 #define SABRE_IOMMUDATA_CACHE    0x0000000010000000UL   /* Cacheable */
163 #define SABRE_IOMMUDATA_PPN      0x00000000001fffffUL   /* Physical Page Number [33:13] */
164 #define SABRE_PCI_IRQSTATE      0xa800UL
165 #define SABRE_OBIO_IRQSTATE     0xa808UL
166 #define SABRE_FFBCFG            0xf000UL
167 #define  SABRE_FFBCFG_SPRQS      0x000000000f000000     /* Slave P_RQST queue size */
168 #define  SABRE_FFBCFG_ONEREAD    0x0000000000004000     /* Slave supports one outstanding read */
169 #define SABRE_MCCTRL0           0xf010UL
170 #define  SABRE_MCCTRL0_RENAB     0x0000000080000000     /* Refresh Enable */
171 #define  SABRE_MCCTRL0_EENAB     0x0000000010000000     /* Enable all ECC functions */
172 #define  SABRE_MCCTRL0_11BIT     0x0000000000001000     /* Enable 11-bit column addressing */
173 #define  SABRE_MCCTRL0_DPP       0x0000000000000f00     /* DIMM Pair Present Bits */
174 #define  SABRE_MCCTRL0_RINTVL    0x00000000000000ff     /* Refresh Interval */
175 #define SABRE_MCCTRL1           0xf018UL
176 #define  SABRE_MCCTRL1_AMDC      0x0000000038000000     /* Advance Memdata Clock */
177 #define  SABRE_MCCTRL1_ARDC      0x0000000007000000     /* Advance DRAM Read Data Clock */
178 #define  SABRE_MCCTRL1_CSR       0x0000000000e00000     /* CAS to RAS delay for CBR refresh */
179 #define  SABRE_MCCTRL1_CASRW     0x00000000001c0000     /* CAS length for read/write */
180 #define  SABRE_MCCTRL1_RCD       0x0000000000038000     /* RAS to CAS delay */
181 #define  SABRE_MCCTRL1_CP        0x0000000000007000     /* CAS Precharge */
182 #define  SABRE_MCCTRL1_RP        0x0000000000000e00     /* RAS Precharge */
183 #define  SABRE_MCCTRL1_RAS       0x00000000000001c0     /* Length of RAS for refresh */
184 #define  SABRE_MCCTRL1_CASRW2    0x0000000000000038     /* Must be same as CASRW */
185 #define  SABRE_MCCTRL1_RSC       0x0000000000000007     /* RAS after CAS hold time */
186 #define SABRE_RESETCTRL         0xf020UL
187
188 #define SABRE_CONFIGSPACE       0x001000000UL
189 #define SABRE_IOSPACE           0x002000000UL
190 #define SABRE_IOSPACE_SIZE      0x000ffffffUL
191 #define SABRE_MEMSPACE          0x100000000UL
192 #define SABRE_MEMSPACE_SIZE     0x07fffffffUL
193
194 static int hummingbird_p;
195 static struct pci_bus *sabre_root_bus;
196
197 static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
198 {
199         struct pci_pbm_info *pbm = dev_id;
200         unsigned long afsr_reg = pbm->controller_regs + SABRE_UE_AFSR;
201         unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
202         unsigned long afsr, afar, error_bits;
203         int reported;
204
205         /* Latch uncorrectable error status. */
206         afar = upa_readq(afar_reg);
207         afsr = upa_readq(afsr_reg);
208
209         /* Clear the primary/secondary error status bits. */
210         error_bits = afsr &
211                 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
212                  SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
213                  SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
214         if (!error_bits)
215                 return IRQ_NONE;
216         upa_writeq(error_bits, afsr_reg);
217
218         /* Log the error. */
219         printk("%s: Uncorrectable Error, primary error type[%s%s]\n",
220                pbm->name,
221                ((error_bits & SABRE_UEAFSR_PDRD) ?
222                 "DMA Read" :
223                 ((error_bits & SABRE_UEAFSR_PDWR) ?
224                  "DMA Write" : "???")),
225                ((error_bits & SABRE_UEAFSR_PDTE) ?
226                 ":Translation Error" : ""));
227         printk("%s: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
228                pbm->name,
229                (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
230                (afsr & SABRE_UEAFSR_OFF) >> 29UL,
231                ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
232         printk("%s: UE AFAR [%016lx]\n", pbm->name, afar);
233         printk("%s: UE Secondary errors [", pbm->name);
234         reported = 0;
235         if (afsr & SABRE_UEAFSR_SDRD) {
236                 reported++;
237                 printk("(DMA Read)");
238         }
239         if (afsr & SABRE_UEAFSR_SDWR) {
240                 reported++;
241                 printk("(DMA Write)");
242         }
243         if (afsr & SABRE_UEAFSR_SDTE) {
244                 reported++;
245                 printk("(Translation Error)");
246         }
247         if (!reported)
248                 printk("(none)");
249         printk("]\n");
250
251         /* Interrogate IOMMU for error status. */
252         psycho_check_iommu_error(pbm, afsr, afar, UE_ERR);
253
254         return IRQ_HANDLED;
255 }
256
257 static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
258 {
259         struct pci_pbm_info *pbm = dev_id;
260         unsigned long afsr_reg = pbm->controller_regs + SABRE_CE_AFSR;
261         unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
262         unsigned long afsr, afar, error_bits;
263         int reported;
264
265         /* Latch error status. */
266         afar = upa_readq(afar_reg);
267         afsr = upa_readq(afsr_reg);
268
269         /* Clear primary/secondary error status bits. */
270         error_bits = afsr &
271                 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
272                  SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
273         if (!error_bits)
274                 return IRQ_NONE;
275         upa_writeq(error_bits, afsr_reg);
276
277         /* Log the error. */
278         printk("%s: Correctable Error, primary error type[%s]\n",
279                pbm->name,
280                ((error_bits & SABRE_CEAFSR_PDRD) ?
281                 "DMA Read" :
282                 ((error_bits & SABRE_CEAFSR_PDWR) ?
283                  "DMA Write" : "???")));
284
285         /* XXX Use syndrome and afar to print out module string just like
286          * XXX UDB CE trap handler does... -DaveM
287          */
288         printk("%s: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
289                "was_block(%d)\n",
290                pbm->name,
291                (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
292                (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
293                (afsr & SABRE_CEAFSR_OFF) >> 29UL,
294                ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
295         printk("%s: CE AFAR [%016lx]\n", pbm->name, afar);
296         printk("%s: CE Secondary errors [", pbm->name);
297         reported = 0;
298         if (afsr & SABRE_CEAFSR_SDRD) {
299                 reported++;
300                 printk("(DMA Read)");
301         }
302         if (afsr & SABRE_CEAFSR_SDWR) {
303                 reported++;
304                 printk("(DMA Write)");
305         }
306         if (!reported)
307                 printk("(none)");
308         printk("]\n");
309
310         return IRQ_HANDLED;
311 }
312
313 static void sabre_register_error_handlers(struct pci_pbm_info *pbm)
314 {
315         struct device_node *dp = pbm->op->dev.of_node;
316         struct platform_device *op;
317         unsigned long base = pbm->controller_regs;
318         u64 tmp;
319         int err;
320
321         if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
322                 dp = dp->parent;
323
324         op = of_find_device_by_node(dp);
325         if (!op)
326                 return;
327
328         /* Sabre/Hummingbird IRQ property layout is:
329          * 0: PCI ERR
330          * 1: UE ERR
331          * 2: CE ERR
332          * 3: POWER FAIL
333          */
334         if (op->archdata.num_irqs < 4)
335                 return;
336
337         /* We clear the error bits in the appropriate AFSR before
338          * registering the handler so that we don't get spurious
339          * interrupts.
340          */
341         upa_writeq((SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
342                     SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
343                     SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE),
344                    base + SABRE_UE_AFSR);
345
346         err = request_irq(op->archdata.irqs[1], sabre_ue_intr, 0, "SABRE_UE", pbm);
347         if (err)
348                 printk(KERN_WARNING "%s: Couldn't register UE, err=%d.\n",
349                        pbm->name, err);
350
351         upa_writeq((SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
352                     SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR),
353                    base + SABRE_CE_AFSR);
354
355
356         err = request_irq(op->archdata.irqs[2], sabre_ce_intr, 0, "SABRE_CE", pbm);
357         if (err)
358                 printk(KERN_WARNING "%s: Couldn't register CE, err=%d.\n",
359                        pbm->name, err);
360         err = request_irq(op->archdata.irqs[0], psycho_pcierr_intr, 0,
361                           "SABRE_PCIERR", pbm);
362         if (err)
363                 printk(KERN_WARNING "%s: Couldn't register PCIERR, err=%d.\n",
364                        pbm->name, err);
365
366         tmp = upa_readq(base + SABRE_PCICTRL);
367         tmp |= SABRE_PCICTRL_ERREN;
368         upa_writeq(tmp, base + SABRE_PCICTRL);
369 }
370
371 static void apb_init(struct pci_bus *sabre_bus)
372 {
373         struct pci_dev *pdev;
374
375         list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
376                 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
377                     pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
378                         u16 word16;
379
380                         pci_read_config_word(pdev, PCI_COMMAND, &word16);
381                         word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
382                                 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
383                                 PCI_COMMAND_IO;
384                         pci_write_config_word(pdev, PCI_COMMAND, word16);
385
386                         /* Status register bits are "write 1 to clear". */
387                         pci_write_config_word(pdev, PCI_STATUS, 0xffff);
388                         pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
389
390                         /* Use a primary/seconday latency timer value
391                          * of 64.
392                          */
393                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
394                         pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
395
396                         /* Enable reporting/forwarding of master aborts,
397                          * parity, and SERR.
398                          */
399                         pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
400                                               (PCI_BRIDGE_CTL_PARITY |
401                                                PCI_BRIDGE_CTL_SERR |
402                                                PCI_BRIDGE_CTL_MASTER_ABORT));
403                 }
404         }
405 }
406
407 static void sabre_scan_bus(struct pci_pbm_info *pbm, struct device *parent)
408 {
409         static int once;
410
411         /* The APB bridge speaks to the Sabre host PCI bridge
412          * at 66Mhz, but the front side of APB runs at 33Mhz
413          * for both segments.
414          *
415          * Hummingbird systems do not use APB, so they run
416          * at 66MHZ.
417          */
418         if (hummingbird_p)
419                 pbm->is_66mhz_capable = 1;
420         else
421                 pbm->is_66mhz_capable = 0;
422
423         /* This driver has not been verified to handle
424          * multiple SABREs yet, so trap this.
425          *
426          * Also note that the SABRE host bridge is hardwired
427          * to live at bus 0.
428          */
429         if (once != 0) {
430                 printk(KERN_ERR PFX "Multiple controllers unsupported.\n");
431                 return;
432         }
433         once++;
434
435         pbm->pci_bus = pci_scan_one_pbm(pbm, parent);
436         if (!pbm->pci_bus)
437                 return;
438
439         sabre_root_bus = pbm->pci_bus;
440
441         apb_init(pbm->pci_bus);
442
443         sabre_register_error_handlers(pbm);
444 }
445
446 static void sabre_pbm_init(struct pci_pbm_info *pbm,
447                            struct platform_device *op)
448 {
449         psycho_pbm_init_common(pbm, op, "SABRE", PBM_CHIP_TYPE_SABRE);
450         pbm->pci_afsr = pbm->controller_regs + SABRE_PIOAFSR;
451         pbm->pci_afar = pbm->controller_regs + SABRE_PIOAFAR;
452         pbm->pci_csr = pbm->controller_regs + SABRE_PCICTRL;
453         sabre_scan_bus(pbm, &op->dev);
454 }
455
456 static const struct of_device_id sabre_match[];
457 static int sabre_probe(struct platform_device *op)
458 {
459         const struct of_device_id *match;
460         const struct linux_prom64_registers *pr_regs;
461         struct device_node *dp = op->dev.of_node;
462         struct pci_pbm_info *pbm;
463         u32 upa_portid, dma_mask;
464         struct iommu *iommu;
465         int tsbsize, err;
466         const u32 *vdma;
467         u64 clear_irq;
468
469         match = of_match_device(sabre_match, &op->dev);
470         hummingbird_p = match && (match->data != NULL);
471         if (!hummingbird_p) {
472                 struct device_node *cpu_dp;
473
474                 /* Of course, Sun has to encode things a thousand
475                  * different ways, inconsistently.
476                  */
477                 for_each_node_by_type(cpu_dp, "cpu") {
478                         if (of_node_name_eq(cpu_dp, "SUNW,UltraSPARC-IIe"))
479                                 hummingbird_p = 1;
480                 }
481         }
482
483         err = -ENOMEM;
484         pbm = kzalloc(sizeof(*pbm), GFP_KERNEL);
485         if (!pbm) {
486                 printk(KERN_ERR PFX "Cannot allocate pci_pbm_info.\n");
487                 goto out_err;
488         }
489
490         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
491         if (!iommu) {
492                 printk(KERN_ERR PFX "Cannot allocate PBM iommu.\n");
493                 goto out_free_controller;
494         }
495
496         pbm->iommu = iommu;
497
498         upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
499
500         pbm->portid = upa_portid;
501
502         /*
503          * Map in SABRE register set and report the presence of this SABRE.
504          */
505         
506         pr_regs = of_get_property(dp, "reg", NULL);
507         err = -ENODEV;
508         if (!pr_regs) {
509                 printk(KERN_ERR PFX "No reg property\n");
510                 goto out_free_iommu;
511         }
512
513         /*
514          * First REG in property is base of entire SABRE register space.
515          */
516         pbm->controller_regs = pr_regs[0].phys_addr;
517
518         /* Clear interrupts */
519
520         /* PCI first */
521         for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
522                 upa_writeq(0x0UL, pbm->controller_regs + clear_irq);
523
524         /* Then OBIO */
525         for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
526                 upa_writeq(0x0UL, pbm->controller_regs + clear_irq);
527
528         /* Error interrupts are enabled later after the bus scan. */
529         upa_writeq((SABRE_PCICTRL_MRLEN   | SABRE_PCICTRL_SERR |
530                     SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN),
531                    pbm->controller_regs + SABRE_PCICTRL);
532
533         /* Now map in PCI config space for entire SABRE. */
534         pbm->config_space = pbm->controller_regs + SABRE_CONFIGSPACE;
535
536         vdma = of_get_property(dp, "virtual-dma", NULL);
537         if (!vdma) {
538                 printk(KERN_ERR PFX "No virtual-dma property\n");
539                 goto out_free_iommu;
540         }
541
542         dma_mask = vdma[0];
543         switch(vdma[1]) {
544                 case 0x20000000:
545                         dma_mask |= 0x1fffffff;
546                         tsbsize = 64;
547                         break;
548                 case 0x40000000:
549                         dma_mask |= 0x3fffffff;
550                         tsbsize = 128;
551                         break;
552
553                 case 0x80000000:
554                         dma_mask |= 0x7fffffff;
555                         tsbsize = 128;
556                         break;
557                 default:
558                         printk(KERN_ERR PFX "Strange virtual-dma size.\n");
559                         goto out_free_iommu;
560         }
561
562         err = psycho_iommu_init(pbm, tsbsize, vdma[0], dma_mask, SABRE_WRSYNC);
563         if (err)
564                 goto out_free_iommu;
565
566         /*
567          * Look for APB underneath.
568          */
569         sabre_pbm_init(pbm, op);
570
571         pbm->next = pci_pbm_root;
572         pci_pbm_root = pbm;
573
574         dev_set_drvdata(&op->dev, pbm);
575
576         return 0;
577
578 out_free_iommu:
579         kfree(pbm->iommu);
580
581 out_free_controller:
582         kfree(pbm);
583
584 out_err:
585         return err;
586 }
587
588 static const struct of_device_id sabre_match[] = {
589         {
590                 .name = "pci",
591                 .compatible = "pci108e,a001",
592                 .data = (void *) 1,
593         },
594         {
595                 .name = "pci",
596                 .compatible = "pci108e,a000",
597         },
598         {},
599 };
600
601 static struct platform_driver sabre_driver = {
602         .driver = {
603                 .name = DRIVER_NAME,
604                 .of_match_table = sabre_match,
605         },
606         .probe          = sabre_probe,
607 };
608
609 static int __init sabre_init(void)
610 {
611         return platform_driver_register(&sabre_driver);
612 }
613
614 subsys_initcall(sabre_init);