Merge tag 'linux-watchdog-5.15-rc1' of git://www.linux-watchdog.org/linux-watchdog
[linux-2.6-microblaze.git] / arch / sparc / kernel / cpumap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* cpumap.c: used for optimizing CPU assignment
3  *
4  * Copyright (C) 2009 Hong H. Pham <hong.pham@windriver.com>
5  */
6
7 #include <linux/export.h>
8 #include <linux/slab.h>
9 #include <linux/kernel.h>
10 #include <linux/cpumask.h>
11 #include <linux/spinlock.h>
12 #include <asm/cpudata.h>
13 #include "cpumap.h"
14
15
16 enum {
17         CPUINFO_LVL_ROOT = 0,
18         CPUINFO_LVL_NODE,
19         CPUINFO_LVL_CORE,
20         CPUINFO_LVL_PROC,
21         CPUINFO_LVL_MAX,
22 };
23
24 enum {
25         ROVER_NO_OP              = 0,
26         /* Increment rover every time level is visited */
27         ROVER_INC_ON_VISIT       = 1 << 0,
28         /* Increment parent's rover every time rover wraps around */
29         ROVER_INC_PARENT_ON_LOOP = 1 << 1,
30 };
31
32 struct cpuinfo_node {
33         int id;
34         int level;
35         int num_cpus;    /* Number of CPUs in this hierarchy */
36         int parent_index;
37         int child_start; /* Array index of the first child node */
38         int child_end;   /* Array index of the last child node */
39         int rover;       /* Child node iterator */
40 };
41
42 struct cpuinfo_level {
43         int start_index; /* Index of first node of a level in a cpuinfo tree */
44         int end_index;   /* Index of last node of a level in a cpuinfo tree */
45         int num_nodes;   /* Number of nodes in a level in a cpuinfo tree */
46 };
47
48 struct cpuinfo_tree {
49         int total_nodes;
50
51         /* Offsets into nodes[] for each level of the tree */
52         struct cpuinfo_level level[CPUINFO_LVL_MAX];
53         struct cpuinfo_node  nodes[];
54 };
55
56
57 static struct cpuinfo_tree *cpuinfo_tree;
58
59 static u16 cpu_distribution_map[NR_CPUS];
60 static DEFINE_SPINLOCK(cpu_map_lock);
61
62
63 /* Niagara optimized cpuinfo tree traversal. */
64 static const int niagara_iterate_method[] = {
65         [CPUINFO_LVL_ROOT] = ROVER_NO_OP,
66
67         /* Strands (or virtual CPUs) within a core may not run concurrently
68          * on the Niagara, as instruction pipeline(s) are shared.  Distribute
69          * work to strands in different cores first for better concurrency.
70          * Go to next NUMA node when all cores are used.
71          */
72         [CPUINFO_LVL_NODE] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
73
74         /* Strands are grouped together by proc_id in cpuinfo_sparc, i.e.
75          * a proc_id represents an instruction pipeline.  Distribute work to
76          * strands in different proc_id groups if the core has multiple
77          * instruction pipelines (e.g. the Niagara 2/2+ has two).
78          */
79         [CPUINFO_LVL_CORE] = ROVER_INC_ON_VISIT,
80
81         /* Pick the next strand in the proc_id group. */
82         [CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT,
83 };
84
85 /* Generic cpuinfo tree traversal.  Distribute work round robin across NUMA
86  * nodes.
87  */
88 static const int generic_iterate_method[] = {
89         [CPUINFO_LVL_ROOT] = ROVER_INC_ON_VISIT,
90         [CPUINFO_LVL_NODE] = ROVER_NO_OP,
91         [CPUINFO_LVL_CORE] = ROVER_INC_PARENT_ON_LOOP,
92         [CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
93 };
94
95
96 static int cpuinfo_id(int cpu, int level)
97 {
98         int id;
99
100         switch (level) {
101         case CPUINFO_LVL_ROOT:
102                 id = 0;
103                 break;
104         case CPUINFO_LVL_NODE:
105                 id = cpu_to_node(cpu);
106                 break;
107         case CPUINFO_LVL_CORE:
108                 id = cpu_data(cpu).core_id;
109                 break;
110         case CPUINFO_LVL_PROC:
111                 id = cpu_data(cpu).proc_id;
112                 break;
113         default:
114                 id = -EINVAL;
115         }
116         return id;
117 }
118
119 /*
120  * Enumerate the CPU information in __cpu_data to determine the start index,
121  * end index, and number of nodes for each level in the cpuinfo tree.  The
122  * total number of cpuinfo nodes required to build the tree is returned.
123  */
124 static int enumerate_cpuinfo_nodes(struct cpuinfo_level *tree_level)
125 {
126         int prev_id[CPUINFO_LVL_MAX];
127         int i, n, num_nodes;
128
129         for (i = CPUINFO_LVL_ROOT; i < CPUINFO_LVL_MAX; i++) {
130                 struct cpuinfo_level *lv = &tree_level[i];
131
132                 prev_id[i] = -1;
133                 lv->start_index = lv->end_index = lv->num_nodes = 0;
134         }
135
136         num_nodes = 1; /* Include the root node */
137
138         for (i = 0; i < num_possible_cpus(); i++) {
139                 if (!cpu_online(i))
140                         continue;
141
142                 n = cpuinfo_id(i, CPUINFO_LVL_NODE);
143                 if (n > prev_id[CPUINFO_LVL_NODE]) {
144                         tree_level[CPUINFO_LVL_NODE].num_nodes++;
145                         prev_id[CPUINFO_LVL_NODE] = n;
146                         num_nodes++;
147                 }
148                 n = cpuinfo_id(i, CPUINFO_LVL_CORE);
149                 if (n > prev_id[CPUINFO_LVL_CORE]) {
150                         tree_level[CPUINFO_LVL_CORE].num_nodes++;
151                         prev_id[CPUINFO_LVL_CORE] = n;
152                         num_nodes++;
153                 }
154                 n = cpuinfo_id(i, CPUINFO_LVL_PROC);
155                 if (n > prev_id[CPUINFO_LVL_PROC]) {
156                         tree_level[CPUINFO_LVL_PROC].num_nodes++;
157                         prev_id[CPUINFO_LVL_PROC] = n;
158                         num_nodes++;
159                 }
160         }
161
162         tree_level[CPUINFO_LVL_ROOT].num_nodes = 1;
163
164         n = tree_level[CPUINFO_LVL_NODE].num_nodes;
165         tree_level[CPUINFO_LVL_NODE].start_index = 1;
166         tree_level[CPUINFO_LVL_NODE].end_index   = n;
167
168         n++;
169         tree_level[CPUINFO_LVL_CORE].start_index = n;
170         n += tree_level[CPUINFO_LVL_CORE].num_nodes;
171         tree_level[CPUINFO_LVL_CORE].end_index   = n - 1;
172
173         tree_level[CPUINFO_LVL_PROC].start_index = n;
174         n += tree_level[CPUINFO_LVL_PROC].num_nodes;
175         tree_level[CPUINFO_LVL_PROC].end_index   = n - 1;
176
177         return num_nodes;
178 }
179
180 /* Build a tree representation of the CPU hierarchy using the per CPU
181  * information in __cpu_data.  Entries in __cpu_data[0..NR_CPUS] are
182  * assumed to be sorted in ascending order based on node, core_id, and
183  * proc_id (in order of significance).
184  */
185 static struct cpuinfo_tree *build_cpuinfo_tree(void)
186 {
187         struct cpuinfo_tree *new_tree;
188         struct cpuinfo_node *node;
189         struct cpuinfo_level tmp_level[CPUINFO_LVL_MAX];
190         int num_cpus[CPUINFO_LVL_MAX];
191         int level_rover[CPUINFO_LVL_MAX];
192         int prev_id[CPUINFO_LVL_MAX];
193         int n, id, cpu, prev_cpu, last_cpu, level;
194
195         n = enumerate_cpuinfo_nodes(tmp_level);
196
197         new_tree = kzalloc(struct_size(new_tree, nodes, n), GFP_ATOMIC);
198         if (!new_tree)
199                 return NULL;
200
201         new_tree->total_nodes = n;
202         memcpy(&new_tree->level, tmp_level, sizeof(tmp_level));
203
204         prev_cpu = cpu = cpumask_first(cpu_online_mask);
205
206         /* Initialize all levels in the tree with the first CPU */
207         for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; level--) {
208                 n = new_tree->level[level].start_index;
209
210                 level_rover[level] = n;
211                 node = &new_tree->nodes[n];
212
213                 id = cpuinfo_id(cpu, level);
214                 if (unlikely(id < 0)) {
215                         kfree(new_tree);
216                         return NULL;
217                 }
218                 node->id = id;
219                 node->level = level;
220                 node->num_cpus = 1;
221
222                 node->parent_index = (level > CPUINFO_LVL_ROOT)
223                     ? new_tree->level[level - 1].start_index : -1;
224
225                 node->child_start = node->child_end = node->rover =
226                     (level == CPUINFO_LVL_PROC)
227                     ? cpu : new_tree->level[level + 1].start_index;
228
229                 prev_id[level] = node->id;
230                 num_cpus[level] = 1;
231         }
232
233         for (last_cpu = (num_possible_cpus() - 1); last_cpu >= 0; last_cpu--) {
234                 if (cpu_online(last_cpu))
235                         break;
236         }
237
238         while (++cpu <= last_cpu) {
239                 if (!cpu_online(cpu))
240                         continue;
241
242                 for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT;
243                      level--) {
244                         id = cpuinfo_id(cpu, level);
245                         if (unlikely(id < 0)) {
246                                 kfree(new_tree);
247                                 return NULL;
248                         }
249
250                         if ((id != prev_id[level]) || (cpu == last_cpu)) {
251                                 prev_id[level] = id;
252                                 node = &new_tree->nodes[level_rover[level]];
253                                 node->num_cpus = num_cpus[level];
254                                 num_cpus[level] = 1;
255
256                                 if (cpu == last_cpu)
257                                         node->num_cpus++;
258
259                                 /* Connect tree node to parent */
260                                 if (level == CPUINFO_LVL_ROOT)
261                                         node->parent_index = -1;
262                                 else
263                                         node->parent_index =
264                                             level_rover[level - 1];
265
266                                 if (level == CPUINFO_LVL_PROC) {
267                                         node->child_end =
268                                             (cpu == last_cpu) ? cpu : prev_cpu;
269                                 } else {
270                                         node->child_end =
271                                             level_rover[level + 1] - 1;
272                                 }
273
274                                 /* Initialize the next node in the same level */
275                                 n = ++level_rover[level];
276                                 if (n <= new_tree->level[level].end_index) {
277                                         node = &new_tree->nodes[n];
278                                         node->id = id;
279                                         node->level = level;
280
281                                         /* Connect node to child */
282                                         node->child_start = node->child_end =
283                                         node->rover =
284                                             (level == CPUINFO_LVL_PROC)
285                                             ? cpu : level_rover[level + 1];
286                                 }
287                         } else
288                                 num_cpus[level]++;
289                 }
290                 prev_cpu = cpu;
291         }
292
293         return new_tree;
294 }
295
296 static void increment_rover(struct cpuinfo_tree *t, int node_index,
297                             int root_index, const int *rover_inc_table)
298 {
299         struct cpuinfo_node *node = &t->nodes[node_index];
300         int top_level, level;
301
302         top_level = t->nodes[root_index].level;
303         for (level = node->level; level >= top_level; level--) {
304                 node->rover++;
305                 if (node->rover <= node->child_end)
306                         return;
307
308                 node->rover = node->child_start;
309                 /* If parent's rover does not need to be adjusted, stop here. */
310                 if ((level == top_level) ||
311                     !(rover_inc_table[level] & ROVER_INC_PARENT_ON_LOOP))
312                         return;
313
314                 node = &t->nodes[node->parent_index];
315         }
316 }
317
318 static int iterate_cpu(struct cpuinfo_tree *t, unsigned int root_index)
319 {
320         const int *rover_inc_table;
321         int level, new_index, index = root_index;
322
323         switch (sun4v_chip_type) {
324         case SUN4V_CHIP_NIAGARA1:
325         case SUN4V_CHIP_NIAGARA2:
326         case SUN4V_CHIP_NIAGARA3:
327         case SUN4V_CHIP_NIAGARA4:
328         case SUN4V_CHIP_NIAGARA5:
329         case SUN4V_CHIP_SPARC_M6:
330         case SUN4V_CHIP_SPARC_M7:
331         case SUN4V_CHIP_SPARC_M8:
332         case SUN4V_CHIP_SPARC_SN:
333         case SUN4V_CHIP_SPARC64X:
334                 rover_inc_table = niagara_iterate_method;
335                 break;
336         default:
337                 rover_inc_table = generic_iterate_method;
338         }
339
340         for (level = t->nodes[root_index].level; level < CPUINFO_LVL_MAX;
341              level++) {
342                 new_index = t->nodes[index].rover;
343                 if (rover_inc_table[level] & ROVER_INC_ON_VISIT)
344                         increment_rover(t, index, root_index, rover_inc_table);
345
346                 index = new_index;
347         }
348         return index;
349 }
350
351 static void _cpu_map_rebuild(void)
352 {
353         int i;
354
355         if (cpuinfo_tree) {
356                 kfree(cpuinfo_tree);
357                 cpuinfo_tree = NULL;
358         }
359
360         cpuinfo_tree = build_cpuinfo_tree();
361         if (!cpuinfo_tree)
362                 return;
363
364         /* Build CPU distribution map that spans all online CPUs.  No need
365          * to check if the CPU is online, as that is done when the cpuinfo
366          * tree is being built.
367          */
368         for (i = 0; i < cpuinfo_tree->nodes[0].num_cpus; i++)
369                 cpu_distribution_map[i] = iterate_cpu(cpuinfo_tree, 0);
370 }
371
372 /* Fallback if the cpuinfo tree could not be built.  CPU mapping is linear
373  * round robin.
374  */
375 static int simple_map_to_cpu(unsigned int index)
376 {
377         int i, end, cpu_rover;
378
379         cpu_rover = 0;
380         end = index % num_online_cpus();
381         for (i = 0; i < num_possible_cpus(); i++) {
382                 if (cpu_online(cpu_rover)) {
383                         if (cpu_rover >= end)
384                                 return cpu_rover;
385
386                         cpu_rover++;
387                 }
388         }
389
390         /* Impossible, since num_online_cpus() <= num_possible_cpus() */
391         return cpumask_first(cpu_online_mask);
392 }
393
394 static int _map_to_cpu(unsigned int index)
395 {
396         struct cpuinfo_node *root_node;
397
398         if (unlikely(!cpuinfo_tree)) {
399                 _cpu_map_rebuild();
400                 if (!cpuinfo_tree)
401                         return simple_map_to_cpu(index);
402         }
403
404         root_node = &cpuinfo_tree->nodes[0];
405 #ifdef CONFIG_HOTPLUG_CPU
406         if (unlikely(root_node->num_cpus != num_online_cpus())) {
407                 _cpu_map_rebuild();
408                 if (!cpuinfo_tree)
409                         return simple_map_to_cpu(index);
410         }
411 #endif
412         return cpu_distribution_map[index % root_node->num_cpus];
413 }
414
415 int map_to_cpu(unsigned int index)
416 {
417         int mapped_cpu;
418         unsigned long flag;
419
420         spin_lock_irqsave(&cpu_map_lock, flag);
421         mapped_cpu = _map_to_cpu(index);
422
423 #ifdef CONFIG_HOTPLUG_CPU
424         while (unlikely(!cpu_online(mapped_cpu)))
425                 mapped_cpu = _map_to_cpu(index);
426 #endif
427         spin_unlock_irqrestore(&cpu_map_lock, flag);
428         return mapped_cpu;
429 }
430 EXPORT_SYMBOL(map_to_cpu);
431
432 void cpu_map_rebuild(void)
433 {
434         unsigned long flag;
435
436         spin_lock_irqsave(&cpu_map_lock, flag);
437         _cpu_map_rebuild();
438         spin_unlock_irqrestore(&cpu_map_lock, flag);
439 }