Merge tag 'for-linus-5.10b-rc1b-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / arch / sh / kernel / perf_event.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance event support framework for SuperH hardware counters.
4  *
5  *  Copyright (C) 2009  Paul Mundt
6  *
7  * Heavily based on the x86 and PowerPC implementations.
8  *
9  * x86:
10  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
11  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
12  *  Copyright (C) 2009 Jaswinder Singh Rajput
13  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
14  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
15  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
16  *
17  * ppc:
18  *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
19  */
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/io.h>
23 #include <linux/irq.h>
24 #include <linux/perf_event.h>
25 #include <linux/export.h>
26 #include <asm/processor.h>
27
28 struct cpu_hw_events {
29         struct perf_event       *events[MAX_HWEVENTS];
30         unsigned long           used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
31         unsigned long           active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
32 };
33
34 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
35
36 static struct sh_pmu *sh_pmu __read_mostly;
37
38 /* Number of perf_events counting hardware events */
39 static atomic_t num_events;
40 /* Used to avoid races in calling reserve/release_pmc_hardware */
41 static DEFINE_MUTEX(pmc_reserve_mutex);
42
43 /*
44  * Stub these out for now, do something more profound later.
45  */
46 int reserve_pmc_hardware(void)
47 {
48         return 0;
49 }
50
51 void release_pmc_hardware(void)
52 {
53 }
54
55 static inline int sh_pmu_initialized(void)
56 {
57         return !!sh_pmu;
58 }
59
60 const char *perf_pmu_name(void)
61 {
62         if (!sh_pmu)
63                 return NULL;
64
65         return sh_pmu->name;
66 }
67 EXPORT_SYMBOL_GPL(perf_pmu_name);
68
69 int perf_num_counters(void)
70 {
71         if (!sh_pmu)
72                 return 0;
73
74         return sh_pmu->num_events;
75 }
76 EXPORT_SYMBOL_GPL(perf_num_counters);
77
78 /*
79  * Release the PMU if this is the last perf_event.
80  */
81 static void hw_perf_event_destroy(struct perf_event *event)
82 {
83         if (!atomic_add_unless(&num_events, -1, 1)) {
84                 mutex_lock(&pmc_reserve_mutex);
85                 if (atomic_dec_return(&num_events) == 0)
86                         release_pmc_hardware();
87                 mutex_unlock(&pmc_reserve_mutex);
88         }
89 }
90
91 static int hw_perf_cache_event(int config, int *evp)
92 {
93         unsigned long type, op, result;
94         int ev;
95
96         if (!sh_pmu->cache_events)
97                 return -EINVAL;
98
99         /* unpack config */
100         type = config & 0xff;
101         op = (config >> 8) & 0xff;
102         result = (config >> 16) & 0xff;
103
104         if (type >= PERF_COUNT_HW_CACHE_MAX ||
105             op >= PERF_COUNT_HW_CACHE_OP_MAX ||
106             result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
107                 return -EINVAL;
108
109         ev = (*sh_pmu->cache_events)[type][op][result];
110         if (ev == 0)
111                 return -EOPNOTSUPP;
112         if (ev == -1)
113                 return -EINVAL;
114         *evp = ev;
115         return 0;
116 }
117
118 static int __hw_perf_event_init(struct perf_event *event)
119 {
120         struct perf_event_attr *attr = &event->attr;
121         struct hw_perf_event *hwc = &event->hw;
122         int config = -1;
123         int err;
124
125         if (!sh_pmu_initialized())
126                 return -ENODEV;
127
128         /*
129          * See if we need to reserve the counter.
130          *
131          * If no events are currently in use, then we have to take a
132          * mutex to ensure that we don't race with another task doing
133          * reserve_pmc_hardware or release_pmc_hardware.
134          */
135         err = 0;
136         if (!atomic_inc_not_zero(&num_events)) {
137                 mutex_lock(&pmc_reserve_mutex);
138                 if (atomic_read(&num_events) == 0 &&
139                     reserve_pmc_hardware())
140                         err = -EBUSY;
141                 else
142                         atomic_inc(&num_events);
143                 mutex_unlock(&pmc_reserve_mutex);
144         }
145
146         if (err)
147                 return err;
148
149         event->destroy = hw_perf_event_destroy;
150
151         switch (attr->type) {
152         case PERF_TYPE_RAW:
153                 config = attr->config & sh_pmu->raw_event_mask;
154                 break;
155         case PERF_TYPE_HW_CACHE:
156                 err = hw_perf_cache_event(attr->config, &config);
157                 if (err)
158                         return err;
159                 break;
160         case PERF_TYPE_HARDWARE:
161                 if (attr->config >= sh_pmu->max_events)
162                         return -EINVAL;
163
164                 config = sh_pmu->event_map(attr->config);
165                 break;
166         }
167
168         if (config == -1)
169                 return -EINVAL;
170
171         hwc->config |= config;
172
173         return 0;
174 }
175
176 static void sh_perf_event_update(struct perf_event *event,
177                                    struct hw_perf_event *hwc, int idx)
178 {
179         u64 prev_raw_count, new_raw_count;
180         s64 delta;
181         int shift = 0;
182
183         /*
184          * Depending on the counter configuration, they may or may not
185          * be chained, in which case the previous counter value can be
186          * updated underneath us if the lower-half overflows.
187          *
188          * Our tactic to handle this is to first atomically read and
189          * exchange a new raw count - then add that new-prev delta
190          * count to the generic counter atomically.
191          *
192          * As there is no interrupt associated with the overflow events,
193          * this is the simplest approach for maintaining consistency.
194          */
195 again:
196         prev_raw_count = local64_read(&hwc->prev_count);
197         new_raw_count = sh_pmu->read(idx);
198
199         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
200                              new_raw_count) != prev_raw_count)
201                 goto again;
202
203         /*
204          * Now we have the new raw value and have updated the prev
205          * timestamp already. We can now calculate the elapsed delta
206          * (counter-)time and add that to the generic counter.
207          *
208          * Careful, not all hw sign-extends above the physical width
209          * of the count.
210          */
211         delta = (new_raw_count << shift) - (prev_raw_count << shift);
212         delta >>= shift;
213
214         local64_add(delta, &event->count);
215 }
216
217 static void sh_pmu_stop(struct perf_event *event, int flags)
218 {
219         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
220         struct hw_perf_event *hwc = &event->hw;
221         int idx = hwc->idx;
222
223         if (!(event->hw.state & PERF_HES_STOPPED)) {
224                 sh_pmu->disable(hwc, idx);
225                 cpuc->events[idx] = NULL;
226                 event->hw.state |= PERF_HES_STOPPED;
227         }
228
229         if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
230                 sh_perf_event_update(event, &event->hw, idx);
231                 event->hw.state |= PERF_HES_UPTODATE;
232         }
233 }
234
235 static void sh_pmu_start(struct perf_event *event, int flags)
236 {
237         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
238         struct hw_perf_event *hwc = &event->hw;
239         int idx = hwc->idx;
240
241         if (WARN_ON_ONCE(idx == -1))
242                 return;
243
244         if (flags & PERF_EF_RELOAD)
245                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
246
247         cpuc->events[idx] = event;
248         event->hw.state = 0;
249         sh_pmu->enable(hwc, idx);
250 }
251
252 static void sh_pmu_del(struct perf_event *event, int flags)
253 {
254         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
255
256         sh_pmu_stop(event, PERF_EF_UPDATE);
257         __clear_bit(event->hw.idx, cpuc->used_mask);
258
259         perf_event_update_userpage(event);
260 }
261
262 static int sh_pmu_add(struct perf_event *event, int flags)
263 {
264         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
265         struct hw_perf_event *hwc = &event->hw;
266         int idx = hwc->idx;
267         int ret = -EAGAIN;
268
269         perf_pmu_disable(event->pmu);
270
271         if (__test_and_set_bit(idx, cpuc->used_mask)) {
272                 idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
273                 if (idx == sh_pmu->num_events)
274                         goto out;
275
276                 __set_bit(idx, cpuc->used_mask);
277                 hwc->idx = idx;
278         }
279
280         sh_pmu->disable(hwc, idx);
281
282         event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
283         if (flags & PERF_EF_START)
284                 sh_pmu_start(event, PERF_EF_RELOAD);
285
286         perf_event_update_userpage(event);
287         ret = 0;
288 out:
289         perf_pmu_enable(event->pmu);
290         return ret;
291 }
292
293 static void sh_pmu_read(struct perf_event *event)
294 {
295         sh_perf_event_update(event, &event->hw, event->hw.idx);
296 }
297
298 static int sh_pmu_event_init(struct perf_event *event)
299 {
300         int err;
301
302         /* does not support taken branch sampling */
303         if (has_branch_stack(event))
304                 return -EOPNOTSUPP;
305
306         switch (event->attr.type) {
307         case PERF_TYPE_RAW:
308         case PERF_TYPE_HW_CACHE:
309         case PERF_TYPE_HARDWARE:
310                 err = __hw_perf_event_init(event);
311                 break;
312
313         default:
314                 return -ENOENT;
315         }
316
317         if (unlikely(err)) {
318                 if (event->destroy)
319                         event->destroy(event);
320         }
321
322         return err;
323 }
324
325 static void sh_pmu_enable(struct pmu *pmu)
326 {
327         if (!sh_pmu_initialized())
328                 return;
329
330         sh_pmu->enable_all();
331 }
332
333 static void sh_pmu_disable(struct pmu *pmu)
334 {
335         if (!sh_pmu_initialized())
336                 return;
337
338         sh_pmu->disable_all();
339 }
340
341 static struct pmu pmu = {
342         .pmu_enable     = sh_pmu_enable,
343         .pmu_disable    = sh_pmu_disable,
344         .event_init     = sh_pmu_event_init,
345         .add            = sh_pmu_add,
346         .del            = sh_pmu_del,
347         .start          = sh_pmu_start,
348         .stop           = sh_pmu_stop,
349         .read           = sh_pmu_read,
350 };
351
352 static int sh_pmu_prepare_cpu(unsigned int cpu)
353 {
354         struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
355
356         memset(cpuhw, 0, sizeof(struct cpu_hw_events));
357         return 0;
358 }
359
360 int register_sh_pmu(struct sh_pmu *_pmu)
361 {
362         if (sh_pmu)
363                 return -EBUSY;
364         sh_pmu = _pmu;
365
366         pr_info("Performance Events: %s support registered\n", _pmu->name);
367
368         /*
369          * All of the on-chip counters are "limited", in that they have
370          * no interrupts, and are therefore unable to do sampling without
371          * further work and timer assistance.
372          */
373         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
374
375         WARN_ON(_pmu->num_events > MAX_HWEVENTS);
376
377         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
378         cpuhp_setup_state(CPUHP_PERF_SUPERH, "PERF_SUPERH", sh_pmu_prepare_cpu,
379                           NULL);
380         return 0;
381 }