sh: ftrace: Fix missing parenthesis in WARN_ON()
[linux-2.6-microblaze.git] / arch / sh / kernel / dwarf.c
1 /*
2  * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * This is an implementation of a DWARF unwinder. Its main purpose is
9  * for generating stacktrace information. Based on the DWARF 3
10  * specification from http://www.dwarfstd.org.
11  *
12  * TODO:
13  *      - DWARF64 doesn't work.
14  *      - Registers with DWARF_VAL_OFFSET rules aren't handled properly.
15  */
16
17 /* #define DEBUG */
18 #include <linux/kernel.h>
19 #include <linux/io.h>
20 #include <linux/list.h>
21 #include <linux/mempool.h>
22 #include <linux/mm.h>
23 #include <linux/elf.h>
24 #include <linux/ftrace.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <asm/dwarf.h>
28 #include <asm/unwinder.h>
29 #include <asm/sections.h>
30 #include <asm/unaligned.h>
31 #include <asm/stacktrace.h>
32
33 /* Reserve enough memory for two stack frames */
34 #define DWARF_FRAME_MIN_REQ     2
35 /* ... with 4 registers per frame. */
36 #define DWARF_REG_MIN_REQ       (DWARF_FRAME_MIN_REQ * 4)
37
38 static struct kmem_cache *dwarf_frame_cachep;
39 static mempool_t *dwarf_frame_pool;
40
41 static struct kmem_cache *dwarf_reg_cachep;
42 static mempool_t *dwarf_reg_pool;
43
44 static struct rb_root cie_root;
45 static DEFINE_SPINLOCK(dwarf_cie_lock);
46
47 static struct rb_root fde_root;
48 static DEFINE_SPINLOCK(dwarf_fde_lock);
49
50 static struct dwarf_cie *cached_cie;
51
52 static unsigned int dwarf_unwinder_ready;
53
54 /**
55  *      dwarf_frame_alloc_reg - allocate memory for a DWARF register
56  *      @frame: the DWARF frame whose list of registers we insert on
57  *      @reg_num: the register number
58  *
59  *      Allocate space for, and initialise, a dwarf reg from
60  *      dwarf_reg_pool and insert it onto the (unsorted) linked-list of
61  *      dwarf registers for @frame.
62  *
63  *      Return the initialised DWARF reg.
64  */
65 static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
66                                                unsigned int reg_num)
67 {
68         struct dwarf_reg *reg;
69
70         reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
71         if (!reg) {
72                 printk(KERN_WARNING "Unable to allocate a DWARF register\n");
73                 /*
74                  * Let's just bomb hard here, we have no way to
75                  * gracefully recover.
76                  */
77                 UNWINDER_BUG();
78         }
79
80         reg->number = reg_num;
81         reg->addr = 0;
82         reg->flags = 0;
83
84         list_add(&reg->link, &frame->reg_list);
85
86         return reg;
87 }
88
89 static void dwarf_frame_free_regs(struct dwarf_frame *frame)
90 {
91         struct dwarf_reg *reg, *n;
92
93         list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
94                 list_del(&reg->link);
95                 mempool_free(reg, dwarf_reg_pool);
96         }
97 }
98
99 /**
100  *      dwarf_frame_reg - return a DWARF register
101  *      @frame: the DWARF frame to search in for @reg_num
102  *      @reg_num: the register number to search for
103  *
104  *      Lookup and return the dwarf reg @reg_num for this frame. Return
105  *      NULL if @reg_num is an register invalid number.
106  */
107 static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
108                                          unsigned int reg_num)
109 {
110         struct dwarf_reg *reg;
111
112         list_for_each_entry(reg, &frame->reg_list, link) {
113                 if (reg->number == reg_num)
114                         return reg;
115         }
116
117         return NULL;
118 }
119
120 /**
121  *      dwarf_read_addr - read dwarf data
122  *      @src: source address of data
123  *      @dst: destination address to store the data to
124  *
125  *      Read 'n' bytes from @src, where 'n' is the size of an address on
126  *      the native machine. We return the number of bytes read, which
127  *      should always be 'n'. We also have to be careful when reading
128  *      from @src and writing to @dst, because they can be arbitrarily
129  *      aligned. Return 'n' - the number of bytes read.
130  */
131 static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
132 {
133         u32 val = get_unaligned(src);
134         put_unaligned(val, dst);
135         return sizeof(unsigned long *);
136 }
137
138 /**
139  *      dwarf_read_uleb128 - read unsigned LEB128 data
140  *      @addr: the address where the ULEB128 data is stored
141  *      @ret: address to store the result
142  *
143  *      Decode an unsigned LEB128 encoded datum. The algorithm is taken
144  *      from Appendix C of the DWARF 3 spec. For information on the
145  *      encodings refer to section "7.6 - Variable Length Data". Return
146  *      the number of bytes read.
147  */
148 static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
149 {
150         unsigned int result;
151         unsigned char byte;
152         int shift, count;
153
154         result = 0;
155         shift = 0;
156         count = 0;
157
158         while (1) {
159                 byte = __raw_readb(addr);
160                 addr++;
161                 count++;
162
163                 result |= (byte & 0x7f) << shift;
164                 shift += 7;
165
166                 if (!(byte & 0x80))
167                         break;
168         }
169
170         *ret = result;
171
172         return count;
173 }
174
175 /**
176  *      dwarf_read_leb128 - read signed LEB128 data
177  *      @addr: the address of the LEB128 encoded data
178  *      @ret: address to store the result
179  *
180  *      Decode signed LEB128 data. The algorithm is taken from Appendix
181  *      C of the DWARF 3 spec. Return the number of bytes read.
182  */
183 static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
184 {
185         unsigned char byte;
186         int result, shift;
187         int num_bits;
188         int count;
189
190         result = 0;
191         shift = 0;
192         count = 0;
193
194         while (1) {
195                 byte = __raw_readb(addr);
196                 addr++;
197                 result |= (byte & 0x7f) << shift;
198                 shift += 7;
199                 count++;
200
201                 if (!(byte & 0x80))
202                         break;
203         }
204
205         /* The number of bits in a signed integer. */
206         num_bits = 8 * sizeof(result);
207
208         if ((shift < num_bits) && (byte & 0x40))
209                 result |= (-1 << shift);
210
211         *ret = result;
212
213         return count;
214 }
215
216 /**
217  *      dwarf_read_encoded_value - return the decoded value at @addr
218  *      @addr: the address of the encoded value
219  *      @val: where to write the decoded value
220  *      @encoding: the encoding with which we can decode @addr
221  *
222  *      GCC emits encoded address in the .eh_frame FDE entries. Decode
223  *      the value at @addr using @encoding. The decoded value is written
224  *      to @val and the number of bytes read is returned.
225  */
226 static int dwarf_read_encoded_value(char *addr, unsigned long *val,
227                                     char encoding)
228 {
229         unsigned long decoded_addr = 0;
230         int count = 0;
231
232         switch (encoding & 0x70) {
233         case DW_EH_PE_absptr:
234                 break;
235         case DW_EH_PE_pcrel:
236                 decoded_addr = (unsigned long)addr;
237                 break;
238         default:
239                 pr_debug("encoding=0x%x\n", (encoding & 0x70));
240                 UNWINDER_BUG();
241         }
242
243         if ((encoding & 0x07) == 0x00)
244                 encoding |= DW_EH_PE_udata4;
245
246         switch (encoding & 0x0f) {
247         case DW_EH_PE_sdata4:
248         case DW_EH_PE_udata4:
249                 count += 4;
250                 decoded_addr += get_unaligned((u32 *)addr);
251                 __raw_writel(decoded_addr, val);
252                 break;
253         default:
254                 pr_debug("encoding=0x%x\n", encoding);
255                 UNWINDER_BUG();
256         }
257
258         return count;
259 }
260
261 /**
262  *      dwarf_entry_len - return the length of an FDE or CIE
263  *      @addr: the address of the entry
264  *      @len: the length of the entry
265  *
266  *      Read the initial_length field of the entry and store the size of
267  *      the entry in @len. We return the number of bytes read. Return a
268  *      count of 0 on error.
269  */
270 static inline int dwarf_entry_len(char *addr, unsigned long *len)
271 {
272         u32 initial_len;
273         int count;
274
275         initial_len = get_unaligned((u32 *)addr);
276         count = 4;
277
278         /*
279          * An initial length field value in the range DW_LEN_EXT_LO -
280          * DW_LEN_EXT_HI indicates an extension, and should not be
281          * interpreted as a length. The only extension that we currently
282          * understand is the use of DWARF64 addresses.
283          */
284         if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
285                 /*
286                  * The 64-bit length field immediately follows the
287                  * compulsory 32-bit length field.
288                  */
289                 if (initial_len == DW_EXT_DWARF64) {
290                         *len = get_unaligned((u64 *)addr + 4);
291                         count = 12;
292                 } else {
293                         printk(KERN_WARNING "Unknown DWARF extension\n");
294                         count = 0;
295                 }
296         } else
297                 *len = initial_len;
298
299         return count;
300 }
301
302 /**
303  *      dwarf_lookup_cie - locate the cie
304  *      @cie_ptr: pointer to help with lookup
305  */
306 static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
307 {
308         struct rb_node **rb_node = &cie_root.rb_node;
309         struct dwarf_cie *cie = NULL;
310         unsigned long flags;
311
312         spin_lock_irqsave(&dwarf_cie_lock, flags);
313
314         /*
315          * We've cached the last CIE we looked up because chances are
316          * that the FDE wants this CIE.
317          */
318         if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
319                 cie = cached_cie;
320                 goto out;
321         }
322
323         while (*rb_node) {
324                 struct dwarf_cie *cie_tmp;
325
326                 cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
327                 BUG_ON(!cie_tmp);
328
329                 if (cie_ptr == cie_tmp->cie_pointer) {
330                         cie = cie_tmp;
331                         cached_cie = cie_tmp;
332                         goto out;
333                 } else {
334                         if (cie_ptr < cie_tmp->cie_pointer)
335                                 rb_node = &(*rb_node)->rb_left;
336                         else
337                                 rb_node = &(*rb_node)->rb_right;
338                 }
339         }
340
341 out:
342         spin_unlock_irqrestore(&dwarf_cie_lock, flags);
343         return cie;
344 }
345
346 /**
347  *      dwarf_lookup_fde - locate the FDE that covers pc
348  *      @pc: the program counter
349  */
350 struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
351 {
352         struct rb_node **rb_node = &fde_root.rb_node;
353         struct dwarf_fde *fde = NULL;
354         unsigned long flags;
355
356         spin_lock_irqsave(&dwarf_fde_lock, flags);
357
358         while (*rb_node) {
359                 struct dwarf_fde *fde_tmp;
360                 unsigned long tmp_start, tmp_end;
361
362                 fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
363                 BUG_ON(!fde_tmp);
364
365                 tmp_start = fde_tmp->initial_location;
366                 tmp_end = fde_tmp->initial_location + fde_tmp->address_range;
367
368                 if (pc < tmp_start) {
369                         rb_node = &(*rb_node)->rb_left;
370                 } else {
371                         if (pc < tmp_end) {
372                                 fde = fde_tmp;
373                                 goto out;
374                         } else
375                                 rb_node = &(*rb_node)->rb_right;
376                 }
377         }
378
379 out:
380         spin_unlock_irqrestore(&dwarf_fde_lock, flags);
381
382         return fde;
383 }
384
385 /**
386  *      dwarf_cfa_execute_insns - execute instructions to calculate a CFA
387  *      @insn_start: address of the first instruction
388  *      @insn_end: address of the last instruction
389  *      @cie: the CIE for this function
390  *      @fde: the FDE for this function
391  *      @frame: the instructions calculate the CFA for this frame
392  *      @pc: the program counter of the address we're interested in
393  *
394  *      Execute the Call Frame instruction sequence starting at
395  *      @insn_start and ending at @insn_end. The instructions describe
396  *      how to calculate the Canonical Frame Address of a stackframe.
397  *      Store the results in @frame.
398  */
399 static int dwarf_cfa_execute_insns(unsigned char *insn_start,
400                                    unsigned char *insn_end,
401                                    struct dwarf_cie *cie,
402                                    struct dwarf_fde *fde,
403                                    struct dwarf_frame *frame,
404                                    unsigned long pc)
405 {
406         unsigned char insn;
407         unsigned char *current_insn;
408         unsigned int count, delta, reg, expr_len, offset;
409         struct dwarf_reg *regp;
410
411         current_insn = insn_start;
412
413         while (current_insn < insn_end && frame->pc <= pc) {
414                 insn = __raw_readb(current_insn++);
415
416                 /*
417                  * Firstly, handle the opcodes that embed their operands
418                  * in the instructions.
419                  */
420                 switch (DW_CFA_opcode(insn)) {
421                 case DW_CFA_advance_loc:
422                         delta = DW_CFA_operand(insn);
423                         delta *= cie->code_alignment_factor;
424                         frame->pc += delta;
425                         continue;
426                         /* NOTREACHED */
427                 case DW_CFA_offset:
428                         reg = DW_CFA_operand(insn);
429                         count = dwarf_read_uleb128(current_insn, &offset);
430                         current_insn += count;
431                         offset *= cie->data_alignment_factor;
432                         regp = dwarf_frame_alloc_reg(frame, reg);
433                         regp->addr = offset;
434                         regp->flags |= DWARF_REG_OFFSET;
435                         continue;
436                         /* NOTREACHED */
437                 case DW_CFA_restore:
438                         reg = DW_CFA_operand(insn);
439                         continue;
440                         /* NOTREACHED */
441                 }
442
443                 /*
444                  * Secondly, handle the opcodes that don't embed their
445                  * operands in the instruction.
446                  */
447                 switch (insn) {
448                 case DW_CFA_nop:
449                         continue;
450                 case DW_CFA_advance_loc1:
451                         delta = *current_insn++;
452                         frame->pc += delta * cie->code_alignment_factor;
453                         break;
454                 case DW_CFA_advance_loc2:
455                         delta = get_unaligned((u16 *)current_insn);
456                         current_insn += 2;
457                         frame->pc += delta * cie->code_alignment_factor;
458                         break;
459                 case DW_CFA_advance_loc4:
460                         delta = get_unaligned((u32 *)current_insn);
461                         current_insn += 4;
462                         frame->pc += delta * cie->code_alignment_factor;
463                         break;
464                 case DW_CFA_offset_extended:
465                         count = dwarf_read_uleb128(current_insn, &reg);
466                         current_insn += count;
467                         count = dwarf_read_uleb128(current_insn, &offset);
468                         current_insn += count;
469                         offset *= cie->data_alignment_factor;
470                         break;
471                 case DW_CFA_restore_extended:
472                         count = dwarf_read_uleb128(current_insn, &reg);
473                         current_insn += count;
474                         break;
475                 case DW_CFA_undefined:
476                         count = dwarf_read_uleb128(current_insn, &reg);
477                         current_insn += count;
478                         regp = dwarf_frame_alloc_reg(frame, reg);
479                         regp->flags |= DWARF_UNDEFINED;
480                         break;
481                 case DW_CFA_def_cfa:
482                         count = dwarf_read_uleb128(current_insn,
483                                                    &frame->cfa_register);
484                         current_insn += count;
485                         count = dwarf_read_uleb128(current_insn,
486                                                    &frame->cfa_offset);
487                         current_insn += count;
488
489                         frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
490                         break;
491                 case DW_CFA_def_cfa_register:
492                         count = dwarf_read_uleb128(current_insn,
493                                                    &frame->cfa_register);
494                         current_insn += count;
495                         frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
496                         break;
497                 case DW_CFA_def_cfa_offset:
498                         count = dwarf_read_uleb128(current_insn, &offset);
499                         current_insn += count;
500                         frame->cfa_offset = offset;
501                         break;
502                 case DW_CFA_def_cfa_expression:
503                         count = dwarf_read_uleb128(current_insn, &expr_len);
504                         current_insn += count;
505
506                         frame->cfa_expr = current_insn;
507                         frame->cfa_expr_len = expr_len;
508                         current_insn += expr_len;
509
510                         frame->flags |= DWARF_FRAME_CFA_REG_EXP;
511                         break;
512                 case DW_CFA_offset_extended_sf:
513                         count = dwarf_read_uleb128(current_insn, &reg);
514                         current_insn += count;
515                         count = dwarf_read_leb128(current_insn, &offset);
516                         current_insn += count;
517                         offset *= cie->data_alignment_factor;
518                         regp = dwarf_frame_alloc_reg(frame, reg);
519                         regp->flags |= DWARF_REG_OFFSET;
520                         regp->addr = offset;
521                         break;
522                 case DW_CFA_val_offset:
523                         count = dwarf_read_uleb128(current_insn, &reg);
524                         current_insn += count;
525                         count = dwarf_read_leb128(current_insn, &offset);
526                         offset *= cie->data_alignment_factor;
527                         regp = dwarf_frame_alloc_reg(frame, reg);
528                         regp->flags |= DWARF_VAL_OFFSET;
529                         regp->addr = offset;
530                         break;
531                 case DW_CFA_GNU_args_size:
532                         count = dwarf_read_uleb128(current_insn, &offset);
533                         current_insn += count;
534                         break;
535                 case DW_CFA_GNU_negative_offset_extended:
536                         count = dwarf_read_uleb128(current_insn, &reg);
537                         current_insn += count;
538                         count = dwarf_read_uleb128(current_insn, &offset);
539                         offset *= cie->data_alignment_factor;
540
541                         regp = dwarf_frame_alloc_reg(frame, reg);
542                         regp->flags |= DWARF_REG_OFFSET;
543                         regp->addr = -offset;
544                         break;
545                 default:
546                         pr_debug("unhandled DWARF instruction 0x%x\n", insn);
547                         UNWINDER_BUG();
548                         break;
549                 }
550         }
551
552         return 0;
553 }
554
555 /**
556  *      dwarf_free_frame - free the memory allocated for @frame
557  *      @frame: the frame to free
558  */
559 void dwarf_free_frame(struct dwarf_frame *frame)
560 {
561         dwarf_frame_free_regs(frame);
562         mempool_free(frame, dwarf_frame_pool);
563 }
564
565 extern void ret_from_irq(void);
566
567 /**
568  *      dwarf_unwind_stack - unwind the stack
569  *
570  *      @pc: address of the function to unwind
571  *      @prev: struct dwarf_frame of the previous stackframe on the callstack
572  *
573  *      Return a struct dwarf_frame representing the most recent frame
574  *      on the callstack. Each of the lower (older) stack frames are
575  *      linked via the "prev" member.
576  */
577 struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
578                                        struct dwarf_frame *prev)
579 {
580         struct dwarf_frame *frame;
581         struct dwarf_cie *cie;
582         struct dwarf_fde *fde;
583         struct dwarf_reg *reg;
584         unsigned long addr;
585
586         /*
587          * If we've been called in to before initialization has
588          * completed, bail out immediately.
589          */
590         if (!dwarf_unwinder_ready)
591                 return NULL;
592
593         /*
594          * If we're starting at the top of the stack we need get the
595          * contents of a physical register to get the CFA in order to
596          * begin the virtual unwinding of the stack.
597          *
598          * NOTE: the return address is guaranteed to be setup by the
599          * time this function makes its first function call.
600          */
601         if (!pc || !prev)
602                 pc = _THIS_IP_;
603
604 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
605         /*
606          * If our stack has been patched by the function graph tracer
607          * then we might see the address of return_to_handler() where we
608          * expected to find the real return address.
609          */
610         if (pc == (unsigned long)&return_to_handler) {
611                 struct ftrace_ret_stack *ret_stack;
612
613                 ret_stack = ftrace_graph_get_ret_stack(current, 0);
614                 if (ret_stack)
615                         pc = ret_stack->ret;
616                 /*
617                  * We currently have no way of tracking how many
618                  * return_to_handler()'s we've seen. If there is more
619                  * than one patched return address on our stack,
620                  * complain loudly.
621                  */
622                 WARN_ON(ftrace_graph_get_ret_stack(current, 1));
623         }
624 #endif
625
626         frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
627         if (!frame) {
628                 printk(KERN_ERR "Unable to allocate a dwarf frame\n");
629                 UNWINDER_BUG();
630         }
631
632         INIT_LIST_HEAD(&frame->reg_list);
633         frame->flags = 0;
634         frame->prev = prev;
635         frame->return_addr = 0;
636
637         fde = dwarf_lookup_fde(pc);
638         if (!fde) {
639                 /*
640                  * This is our normal exit path. There are two reasons
641                  * why we might exit here,
642                  *
643                  *      a) pc has no asscociated DWARF frame info and so
644                  *      we don't know how to unwind this frame. This is
645                  *      usually the case when we're trying to unwind a
646                  *      frame that was called from some assembly code
647                  *      that has no DWARF info, e.g. syscalls.
648                  *
649                  *      b) the DEBUG info for pc is bogus. There's
650                  *      really no way to distinguish this case from the
651                  *      case above, which sucks because we could print a
652                  *      warning here.
653                  */
654                 goto bail;
655         }
656
657         cie = dwarf_lookup_cie(fde->cie_pointer);
658
659         frame->pc = fde->initial_location;
660
661         /* CIE initial instructions */
662         dwarf_cfa_execute_insns(cie->initial_instructions,
663                                 cie->instructions_end, cie, fde,
664                                 frame, pc);
665
666         /* FDE instructions */
667         dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
668                                 fde, frame, pc);
669
670         /* Calculate the CFA */
671         switch (frame->flags) {
672         case DWARF_FRAME_CFA_REG_OFFSET:
673                 if (prev) {
674                         reg = dwarf_frame_reg(prev, frame->cfa_register);
675                         UNWINDER_BUG_ON(!reg);
676                         UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
677
678                         addr = prev->cfa + reg->addr;
679                         frame->cfa = __raw_readl(addr);
680
681                 } else {
682                         /*
683                          * Again, we're starting from the top of the
684                          * stack. We need to physically read
685                          * the contents of a register in order to get
686                          * the Canonical Frame Address for this
687                          * function.
688                          */
689                         frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
690                 }
691
692                 frame->cfa += frame->cfa_offset;
693                 break;
694         default:
695                 UNWINDER_BUG();
696         }
697
698         reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);
699
700         /*
701          * If we haven't seen the return address register or the return
702          * address column is undefined then we must assume that this is
703          * the end of the callstack.
704          */
705         if (!reg || reg->flags == DWARF_UNDEFINED)
706                 goto bail;
707
708         UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
709
710         addr = frame->cfa + reg->addr;
711         frame->return_addr = __raw_readl(addr);
712
713         /*
714          * Ah, the joys of unwinding through interrupts.
715          *
716          * Interrupts are tricky - the DWARF info needs to be _really_
717          * accurate and unfortunately I'm seeing a lot of bogus DWARF
718          * info. For example, I've seen interrupts occur in epilogues
719          * just after the frame pointer (r14) had been restored. The
720          * problem was that the DWARF info claimed that the CFA could be
721          * reached by using the value of the frame pointer before it was
722          * restored.
723          *
724          * So until the compiler can be trusted to produce reliable
725          * DWARF info when it really matters, let's stop unwinding once
726          * we've calculated the function that was interrupted.
727          */
728         if (prev && prev->pc == (unsigned long)ret_from_irq)
729                 frame->return_addr = 0;
730
731         return frame;
732
733 bail:
734         dwarf_free_frame(frame);
735         return NULL;
736 }
737
738 static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
739                            unsigned char *end, struct module *mod)
740 {
741         struct rb_node **rb_node = &cie_root.rb_node;
742         struct rb_node *parent = *rb_node;
743         struct dwarf_cie *cie;
744         unsigned long flags;
745         int count;
746
747         cie = kzalloc(sizeof(*cie), GFP_KERNEL);
748         if (!cie)
749                 return -ENOMEM;
750
751         cie->length = len;
752
753         /*
754          * Record the offset into the .eh_frame section
755          * for this CIE. It allows this CIE to be
756          * quickly and easily looked up from the
757          * corresponding FDE.
758          */
759         cie->cie_pointer = (unsigned long)entry;
760
761         cie->version = *(char *)p++;
762         UNWINDER_BUG_ON(cie->version != 1);
763
764         cie->augmentation = p;
765         p += strlen(cie->augmentation) + 1;
766
767         count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
768         p += count;
769
770         count = dwarf_read_leb128(p, &cie->data_alignment_factor);
771         p += count;
772
773         /*
774          * Which column in the rule table contains the
775          * return address?
776          */
777         if (cie->version == 1) {
778                 cie->return_address_reg = __raw_readb(p);
779                 p++;
780         } else {
781                 count = dwarf_read_uleb128(p, &cie->return_address_reg);
782                 p += count;
783         }
784
785         if (cie->augmentation[0] == 'z') {
786                 unsigned int length, count;
787                 cie->flags |= DWARF_CIE_Z_AUGMENTATION;
788
789                 count = dwarf_read_uleb128(p, &length);
790                 p += count;
791
792                 UNWINDER_BUG_ON((unsigned char *)p > end);
793
794                 cie->initial_instructions = p + length;
795                 cie->augmentation++;
796         }
797
798         while (*cie->augmentation) {
799                 /*
800                  * "L" indicates a byte showing how the
801                  * LSDA pointer is encoded. Skip it.
802                  */
803                 if (*cie->augmentation == 'L') {
804                         p++;
805                         cie->augmentation++;
806                 } else if (*cie->augmentation == 'R') {
807                         /*
808                          * "R" indicates a byte showing
809                          * how FDE addresses are
810                          * encoded.
811                          */
812                         cie->encoding = *(char *)p++;
813                         cie->augmentation++;
814                 } else if (*cie->augmentation == 'P') {
815                         /*
816                          * "R" indicates a personality
817                          * routine in the CIE
818                          * augmentation.
819                          */
820                         UNWINDER_BUG();
821                 } else if (*cie->augmentation == 'S') {
822                         UNWINDER_BUG();
823                 } else {
824                         /*
825                          * Unknown augmentation. Assume
826                          * 'z' augmentation.
827                          */
828                         p = cie->initial_instructions;
829                         UNWINDER_BUG_ON(!p);
830                         break;
831                 }
832         }
833
834         cie->initial_instructions = p;
835         cie->instructions_end = end;
836
837         /* Add to list */
838         spin_lock_irqsave(&dwarf_cie_lock, flags);
839
840         while (*rb_node) {
841                 struct dwarf_cie *cie_tmp;
842
843                 cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
844
845                 parent = *rb_node;
846
847                 if (cie->cie_pointer < cie_tmp->cie_pointer)
848                         rb_node = &parent->rb_left;
849                 else if (cie->cie_pointer >= cie_tmp->cie_pointer)
850                         rb_node = &parent->rb_right;
851                 else
852                         WARN_ON(1);
853         }
854
855         rb_link_node(&cie->node, parent, rb_node);
856         rb_insert_color(&cie->node, &cie_root);
857
858 #ifdef CONFIG_MODULES
859         if (mod != NULL)
860                 list_add_tail(&cie->link, &mod->arch.cie_list);
861 #endif
862
863         spin_unlock_irqrestore(&dwarf_cie_lock, flags);
864
865         return 0;
866 }
867
868 static int dwarf_parse_fde(void *entry, u32 entry_type,
869                            void *start, unsigned long len,
870                            unsigned char *end, struct module *mod)
871 {
872         struct rb_node **rb_node = &fde_root.rb_node;
873         struct rb_node *parent = *rb_node;
874         struct dwarf_fde *fde;
875         struct dwarf_cie *cie;
876         unsigned long flags;
877         int count;
878         void *p = start;
879
880         fde = kzalloc(sizeof(*fde), GFP_KERNEL);
881         if (!fde)
882                 return -ENOMEM;
883
884         fde->length = len;
885
886         /*
887          * In a .eh_frame section the CIE pointer is the
888          * delta between the address within the FDE
889          */
890         fde->cie_pointer = (unsigned long)(p - entry_type - 4);
891
892         cie = dwarf_lookup_cie(fde->cie_pointer);
893         fde->cie = cie;
894
895         if (cie->encoding)
896                 count = dwarf_read_encoded_value(p, &fde->initial_location,
897                                                  cie->encoding);
898         else
899                 count = dwarf_read_addr(p, &fde->initial_location);
900
901         p += count;
902
903         if (cie->encoding)
904                 count = dwarf_read_encoded_value(p, &fde->address_range,
905                                                  cie->encoding & 0x0f);
906         else
907                 count = dwarf_read_addr(p, &fde->address_range);
908
909         p += count;
910
911         if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
912                 unsigned int length;
913                 count = dwarf_read_uleb128(p, &length);
914                 p += count + length;
915         }
916
917         /* Call frame instructions. */
918         fde->instructions = p;
919         fde->end = end;
920
921         /* Add to list. */
922         spin_lock_irqsave(&dwarf_fde_lock, flags);
923
924         while (*rb_node) {
925                 struct dwarf_fde *fde_tmp;
926                 unsigned long tmp_start, tmp_end;
927                 unsigned long start, end;
928
929                 fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
930
931                 start = fde->initial_location;
932                 end = fde->initial_location + fde->address_range;
933
934                 tmp_start = fde_tmp->initial_location;
935                 tmp_end = fde_tmp->initial_location + fde_tmp->address_range;
936
937                 parent = *rb_node;
938
939                 if (start < tmp_start)
940                         rb_node = &parent->rb_left;
941                 else if (start >= tmp_end)
942                         rb_node = &parent->rb_right;
943                 else
944                         WARN_ON(1);
945         }
946
947         rb_link_node(&fde->node, parent, rb_node);
948         rb_insert_color(&fde->node, &fde_root);
949
950 #ifdef CONFIG_MODULES
951         if (mod != NULL)
952                 list_add_tail(&fde->link, &mod->arch.fde_list);
953 #endif
954
955         spin_unlock_irqrestore(&dwarf_fde_lock, flags);
956
957         return 0;
958 }
959
960 static void dwarf_unwinder_dump(struct task_struct *task,
961                                 struct pt_regs *regs,
962                                 unsigned long *sp,
963                                 const struct stacktrace_ops *ops,
964                                 void *data)
965 {
966         struct dwarf_frame *frame, *_frame;
967         unsigned long return_addr;
968
969         _frame = NULL;
970         return_addr = 0;
971
972         while (1) {
973                 frame = dwarf_unwind_stack(return_addr, _frame);
974
975                 if (_frame)
976                         dwarf_free_frame(_frame);
977
978                 _frame = frame;
979
980                 if (!frame || !frame->return_addr)
981                         break;
982
983                 return_addr = frame->return_addr;
984                 ops->address(data, return_addr, 1);
985         }
986
987         if (frame)
988                 dwarf_free_frame(frame);
989 }
990
991 static struct unwinder dwarf_unwinder = {
992         .name = "dwarf-unwinder",
993         .dump = dwarf_unwinder_dump,
994         .rating = 150,
995 };
996
997 static void __init dwarf_unwinder_cleanup(void)
998 {
999         struct dwarf_fde *fde, *next_fde;
1000         struct dwarf_cie *cie, *next_cie;
1001
1002         /*
1003          * Deallocate all the memory allocated for the DWARF unwinder.
1004          * Traverse all the FDE/CIE lists and remove and free all the
1005          * memory associated with those data structures.
1006          */
1007         rbtree_postorder_for_each_entry_safe(fde, next_fde, &fde_root, node)
1008                 kfree(fde);
1009
1010         rbtree_postorder_for_each_entry_safe(cie, next_cie, &cie_root, node)
1011                 kfree(cie);
1012
1013         mempool_destroy(dwarf_reg_pool);
1014         mempool_destroy(dwarf_frame_pool);
1015         kmem_cache_destroy(dwarf_reg_cachep);
1016         kmem_cache_destroy(dwarf_frame_cachep);
1017 }
1018
1019 /**
1020  *      dwarf_parse_section - parse DWARF section
1021  *      @eh_frame_start: start address of the .eh_frame section
1022  *      @eh_frame_end: end address of the .eh_frame section
1023  *      @mod: the kernel module containing the .eh_frame section
1024  *
1025  *      Parse the information in a .eh_frame section.
1026  */
1027 static int dwarf_parse_section(char *eh_frame_start, char *eh_frame_end,
1028                                struct module *mod)
1029 {
1030         u32 entry_type;
1031         void *p, *entry;
1032         int count, err = 0;
1033         unsigned long len = 0;
1034         unsigned int c_entries, f_entries;
1035         unsigned char *end;
1036
1037         c_entries = 0;
1038         f_entries = 0;
1039         entry = eh_frame_start;
1040
1041         while ((char *)entry < eh_frame_end) {
1042                 p = entry;
1043
1044                 count = dwarf_entry_len(p, &len);
1045                 if (count == 0) {
1046                         /*
1047                          * We read a bogus length field value. There is
1048                          * nothing we can do here apart from disabling
1049                          * the DWARF unwinder. We can't even skip this
1050                          * entry and move to the next one because 'len'
1051                          * tells us where our next entry is.
1052                          */
1053                         err = -EINVAL;
1054                         goto out;
1055                 } else
1056                         p += count;
1057
1058                 /* initial length does not include itself */
1059                 end = p + len;
1060
1061                 entry_type = get_unaligned((u32 *)p);
1062                 p += 4;
1063
1064                 if (entry_type == DW_EH_FRAME_CIE) {
1065                         err = dwarf_parse_cie(entry, p, len, end, mod);
1066                         if (err < 0)
1067                                 goto out;
1068                         else
1069                                 c_entries++;
1070                 } else {
1071                         err = dwarf_parse_fde(entry, entry_type, p, len,
1072                                               end, mod);
1073                         if (err < 0)
1074                                 goto out;
1075                         else
1076                                 f_entries++;
1077                 }
1078
1079                 entry = (char *)entry + len + 4;
1080         }
1081
1082         printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
1083                c_entries, f_entries);
1084
1085         return 0;
1086
1087 out:
1088         return err;
1089 }
1090
1091 #ifdef CONFIG_MODULES
1092 int module_dwarf_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs,
1093                           struct module *me)
1094 {
1095         unsigned int i, err;
1096         unsigned long start, end;
1097         char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
1098
1099         start = end = 0;
1100
1101         for (i = 1; i < hdr->e_shnum; i++) {
1102                 /* Alloc bit cleared means "ignore it." */
1103                 if ((sechdrs[i].sh_flags & SHF_ALLOC)
1104                     && !strcmp(secstrings+sechdrs[i].sh_name, ".eh_frame")) {
1105                         start = sechdrs[i].sh_addr;
1106                         end = start + sechdrs[i].sh_size;
1107                         break;
1108                 }
1109         }
1110
1111         /* Did we find the .eh_frame section? */
1112         if (i != hdr->e_shnum) {
1113                 INIT_LIST_HEAD(&me->arch.cie_list);
1114                 INIT_LIST_HEAD(&me->arch.fde_list);
1115                 err = dwarf_parse_section((char *)start, (char *)end, me);
1116                 if (err) {
1117                         printk(KERN_WARNING "%s: failed to parse DWARF info\n",
1118                                me->name);
1119                         return err;
1120                 }
1121         }
1122
1123         return 0;
1124 }
1125
1126 /**
1127  *      module_dwarf_cleanup - remove FDE/CIEs associated with @mod
1128  *      @mod: the module that is being unloaded
1129  *
1130  *      Remove any FDEs and CIEs from the global lists that came from
1131  *      @mod's .eh_frame section because @mod is being unloaded.
1132  */
1133 void module_dwarf_cleanup(struct module *mod)
1134 {
1135         struct dwarf_fde *fde, *ftmp;
1136         struct dwarf_cie *cie, *ctmp;
1137         unsigned long flags;
1138
1139         spin_lock_irqsave(&dwarf_cie_lock, flags);
1140
1141         list_for_each_entry_safe(cie, ctmp, &mod->arch.cie_list, link) {
1142                 list_del(&cie->link);
1143                 rb_erase(&cie->node, &cie_root);
1144                 kfree(cie);
1145         }
1146
1147         spin_unlock_irqrestore(&dwarf_cie_lock, flags);
1148
1149         spin_lock_irqsave(&dwarf_fde_lock, flags);
1150
1151         list_for_each_entry_safe(fde, ftmp, &mod->arch.fde_list, link) {
1152                 list_del(&fde->link);
1153                 rb_erase(&fde->node, &fde_root);
1154                 kfree(fde);
1155         }
1156
1157         spin_unlock_irqrestore(&dwarf_fde_lock, flags);
1158 }
1159 #endif /* CONFIG_MODULES */
1160
1161 /**
1162  *      dwarf_unwinder_init - initialise the dwarf unwinder
1163  *
1164  *      Build the data structures describing the .dwarf_frame section to
1165  *      make it easier to lookup CIE and FDE entries. Because the
1166  *      .eh_frame section is packed as tightly as possible it is not
1167  *      easy to lookup the FDE for a given PC, so we build a list of FDE
1168  *      and CIE entries that make it easier.
1169  */
1170 static int __init dwarf_unwinder_init(void)
1171 {
1172         int err = -ENOMEM;
1173
1174         dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
1175                         sizeof(struct dwarf_frame), 0,
1176                         SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
1177
1178         dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
1179                         sizeof(struct dwarf_reg), 0,
1180                         SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
1181
1182         dwarf_frame_pool = mempool_create_slab_pool(DWARF_FRAME_MIN_REQ,
1183                                                     dwarf_frame_cachep);
1184         if (!dwarf_frame_pool)
1185                 goto out;
1186
1187         dwarf_reg_pool = mempool_create_slab_pool(DWARF_REG_MIN_REQ,
1188                                                   dwarf_reg_cachep);
1189         if (!dwarf_reg_pool)
1190                 goto out;
1191
1192         err = dwarf_parse_section(__start_eh_frame, __stop_eh_frame, NULL);
1193         if (err)
1194                 goto out;
1195
1196         err = unwinder_register(&dwarf_unwinder);
1197         if (err)
1198                 goto out;
1199
1200         dwarf_unwinder_ready = 1;
1201
1202         return 0;
1203
1204 out:
1205         printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
1206         dwarf_unwinder_cleanup();
1207         return err;
1208 }
1209 early_initcall(dwarf_unwinder_init);