Merge tag 'ntb-5.15' of git://github.com/jonmason/ntb
[linux-2.6-microblaze.git] / arch / s390 / kernel / vtime.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Virtual cpu timer based timer functions.
4  *
5  *    Copyright IBM Corp. 2004, 2012
6  *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
7  */
8
9 #include <linux/kernel_stat.h>
10 #include <linux/sched/cputime.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/timex.h>
14 #include <linux/types.h>
15 #include <linux/time.h>
16 #include <asm/alternative.h>
17 #include <asm/vtimer.h>
18 #include <asm/vtime.h>
19 #include <asm/cpu_mf.h>
20 #include <asm/smp.h>
21
22 #include "entry.h"
23
24 static void virt_timer_expire(void);
25
26 static LIST_HEAD(virt_timer_list);
27 static DEFINE_SPINLOCK(virt_timer_lock);
28 static atomic64_t virt_timer_current;
29 static atomic64_t virt_timer_elapsed;
30
31 DEFINE_PER_CPU(u64, mt_cycles[8]);
32 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
33 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
34 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
35
36 static inline u64 get_vtimer(void)
37 {
38         u64 timer;
39
40         asm volatile("stpt %0" : "=Q" (timer));
41         return timer;
42 }
43
44 static inline void set_vtimer(u64 expires)
45 {
46         u64 timer;
47
48         asm volatile(
49                 "       stpt    %0\n"   /* Store current cpu timer value */
50                 "       spt     %1"     /* Set new value imm. afterwards */
51                 : "=Q" (timer) : "Q" (expires));
52         S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
53         S390_lowcore.last_update_timer = expires;
54 }
55
56 static inline int virt_timer_forward(u64 elapsed)
57 {
58         BUG_ON(!irqs_disabled());
59
60         if (list_empty(&virt_timer_list))
61                 return 0;
62         elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
63         return elapsed >= atomic64_read(&virt_timer_current);
64 }
65
66 static void update_mt_scaling(void)
67 {
68         u64 cycles_new[8], *cycles_old;
69         u64 delta, fac, mult, div;
70         int i;
71
72         stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new);
73         cycles_old = this_cpu_ptr(mt_cycles);
74         fac = 1;
75         mult = div = 0;
76         for (i = 0; i <= smp_cpu_mtid; i++) {
77                 delta = cycles_new[i] - cycles_old[i];
78                 div += delta;
79                 mult *= i + 1;
80                 mult += delta * fac;
81                 fac *= i + 1;
82         }
83         div *= fac;
84         if (div > 0) {
85                 /* Update scaling factor */
86                 __this_cpu_write(mt_scaling_mult, mult);
87                 __this_cpu_write(mt_scaling_div, div);
88                 memcpy(cycles_old, cycles_new,
89                        sizeof(u64) * (smp_cpu_mtid + 1));
90         }
91         __this_cpu_write(mt_scaling_jiffies, jiffies_64);
92 }
93
94 static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
95 {
96         u64 delta;
97
98         delta = new - *tsk_vtime;
99         *tsk_vtime = new;
100         return delta;
101 }
102
103
104 static inline u64 scale_vtime(u64 vtime)
105 {
106         u64 mult = __this_cpu_read(mt_scaling_mult);
107         u64 div = __this_cpu_read(mt_scaling_div);
108
109         if (smp_cpu_mtid)
110                 return vtime * mult / div;
111         return vtime;
112 }
113
114 static void account_system_index_scaled(struct task_struct *p, u64 cputime,
115                                         enum cpu_usage_stat index)
116 {
117         p->stimescaled += cputime_to_nsecs(scale_vtime(cputime));
118         account_system_index_time(p, cputime_to_nsecs(cputime), index);
119 }
120
121 /*
122  * Update process times based on virtual cpu times stored by entry.S
123  * to the lowcore fields user_timer, system_timer & steal_clock.
124  */
125 static int do_account_vtime(struct task_struct *tsk)
126 {
127         u64 timer, clock, user, guest, system, hardirq, softirq;
128
129         timer = S390_lowcore.last_update_timer;
130         clock = S390_lowcore.last_update_clock;
131         /* Use STORE CLOCK by default, STORE CLOCK FAST if available. */
132         alternative_io("stpt %0\n .insn s,0xb2050000,%1\n",
133                        "stpt %0\n .insn s,0xb27c0000,%1\n",
134                        25,
135                        ASM_OUTPUT2("=Q" (S390_lowcore.last_update_timer),
136                                    "=Q" (S390_lowcore.last_update_clock)),
137                        ASM_NO_INPUT_CLOBBER("cc"));
138         clock = S390_lowcore.last_update_clock - clock;
139         timer -= S390_lowcore.last_update_timer;
140
141         if (hardirq_count())
142                 S390_lowcore.hardirq_timer += timer;
143         else
144                 S390_lowcore.system_timer += timer;
145
146         /* Update MT utilization calculation */
147         if (smp_cpu_mtid &&
148             time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
149                 update_mt_scaling();
150
151         /* Calculate cputime delta */
152         user = update_tsk_timer(&tsk->thread.user_timer,
153                                 READ_ONCE(S390_lowcore.user_timer));
154         guest = update_tsk_timer(&tsk->thread.guest_timer,
155                                  READ_ONCE(S390_lowcore.guest_timer));
156         system = update_tsk_timer(&tsk->thread.system_timer,
157                                   READ_ONCE(S390_lowcore.system_timer));
158         hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
159                                    READ_ONCE(S390_lowcore.hardirq_timer));
160         softirq = update_tsk_timer(&tsk->thread.softirq_timer,
161                                    READ_ONCE(S390_lowcore.softirq_timer));
162         S390_lowcore.steal_timer +=
163                 clock - user - guest - system - hardirq - softirq;
164
165         /* Push account value */
166         if (user) {
167                 account_user_time(tsk, cputime_to_nsecs(user));
168                 tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
169         }
170
171         if (guest) {
172                 account_guest_time(tsk, cputime_to_nsecs(guest));
173                 tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
174         }
175
176         if (system)
177                 account_system_index_scaled(tsk, system, CPUTIME_SYSTEM);
178         if (hardirq)
179                 account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ);
180         if (softirq)
181                 account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ);
182
183         return virt_timer_forward(user + guest + system + hardirq + softirq);
184 }
185
186 void vtime_task_switch(struct task_struct *prev)
187 {
188         do_account_vtime(prev);
189         prev->thread.user_timer = S390_lowcore.user_timer;
190         prev->thread.guest_timer = S390_lowcore.guest_timer;
191         prev->thread.system_timer = S390_lowcore.system_timer;
192         prev->thread.hardirq_timer = S390_lowcore.hardirq_timer;
193         prev->thread.softirq_timer = S390_lowcore.softirq_timer;
194         S390_lowcore.user_timer = current->thread.user_timer;
195         S390_lowcore.guest_timer = current->thread.guest_timer;
196         S390_lowcore.system_timer = current->thread.system_timer;
197         S390_lowcore.hardirq_timer = current->thread.hardirq_timer;
198         S390_lowcore.softirq_timer = current->thread.softirq_timer;
199 }
200
201 /*
202  * In s390, accounting pending user time also implies
203  * accounting system time in order to correctly compute
204  * the stolen time accounting.
205  */
206 void vtime_flush(struct task_struct *tsk)
207 {
208         u64 steal, avg_steal;
209
210         if (do_account_vtime(tsk))
211                 virt_timer_expire();
212
213         steal = S390_lowcore.steal_timer;
214         avg_steal = S390_lowcore.avg_steal_timer / 2;
215         if ((s64) steal > 0) {
216                 S390_lowcore.steal_timer = 0;
217                 account_steal_time(cputime_to_nsecs(steal));
218                 avg_steal += steal;
219         }
220         S390_lowcore.avg_steal_timer = avg_steal;
221 }
222
223 static u64 vtime_delta(void)
224 {
225         u64 timer = S390_lowcore.last_update_timer;
226
227         S390_lowcore.last_update_timer = get_vtimer();
228
229         return timer - S390_lowcore.last_update_timer;
230 }
231
232 /*
233  * Update process times based on virtual cpu times stored by entry.S
234  * to the lowcore fields user_timer, system_timer & steal_clock.
235  */
236 void vtime_account_kernel(struct task_struct *tsk)
237 {
238         u64 delta = vtime_delta();
239
240         if (tsk->flags & PF_VCPU)
241                 S390_lowcore.guest_timer += delta;
242         else
243                 S390_lowcore.system_timer += delta;
244
245         virt_timer_forward(delta);
246 }
247 EXPORT_SYMBOL_GPL(vtime_account_kernel);
248
249 void vtime_account_softirq(struct task_struct *tsk)
250 {
251         u64 delta = vtime_delta();
252
253         S390_lowcore.softirq_timer += delta;
254
255         virt_timer_forward(delta);
256 }
257
258 void vtime_account_hardirq(struct task_struct *tsk)
259 {
260         u64 delta = vtime_delta();
261
262         S390_lowcore.hardirq_timer += delta;
263
264         virt_timer_forward(delta);
265 }
266
267 /*
268  * Sorted add to a list. List is linear searched until first bigger
269  * element is found.
270  */
271 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
272 {
273         struct vtimer_list *tmp;
274
275         list_for_each_entry(tmp, head, entry) {
276                 if (tmp->expires > timer->expires) {
277                         list_add_tail(&timer->entry, &tmp->entry);
278                         return;
279                 }
280         }
281         list_add_tail(&timer->entry, head);
282 }
283
284 /*
285  * Handler for expired virtual CPU timer.
286  */
287 static void virt_timer_expire(void)
288 {
289         struct vtimer_list *timer, *tmp;
290         unsigned long elapsed;
291         LIST_HEAD(cb_list);
292
293         /* walk timer list, fire all expired timers */
294         spin_lock(&virt_timer_lock);
295         elapsed = atomic64_read(&virt_timer_elapsed);
296         list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
297                 if (timer->expires < elapsed)
298                         /* move expired timer to the callback queue */
299                         list_move_tail(&timer->entry, &cb_list);
300                 else
301                         timer->expires -= elapsed;
302         }
303         if (!list_empty(&virt_timer_list)) {
304                 timer = list_first_entry(&virt_timer_list,
305                                          struct vtimer_list, entry);
306                 atomic64_set(&virt_timer_current, timer->expires);
307         }
308         atomic64_sub(elapsed, &virt_timer_elapsed);
309         spin_unlock(&virt_timer_lock);
310
311         /* Do callbacks and recharge periodic timers */
312         list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
313                 list_del_init(&timer->entry);
314                 timer->function(timer->data);
315                 if (timer->interval) {
316                         /* Recharge interval timer */
317                         timer->expires = timer->interval +
318                                 atomic64_read(&virt_timer_elapsed);
319                         spin_lock(&virt_timer_lock);
320                         list_add_sorted(timer, &virt_timer_list);
321                         spin_unlock(&virt_timer_lock);
322                 }
323         }
324 }
325
326 void init_virt_timer(struct vtimer_list *timer)
327 {
328         timer->function = NULL;
329         INIT_LIST_HEAD(&timer->entry);
330 }
331 EXPORT_SYMBOL(init_virt_timer);
332
333 static inline int vtimer_pending(struct vtimer_list *timer)
334 {
335         return !list_empty(&timer->entry);
336 }
337
338 static void internal_add_vtimer(struct vtimer_list *timer)
339 {
340         if (list_empty(&virt_timer_list)) {
341                 /* First timer, just program it. */
342                 atomic64_set(&virt_timer_current, timer->expires);
343                 atomic64_set(&virt_timer_elapsed, 0);
344                 list_add(&timer->entry, &virt_timer_list);
345         } else {
346                 /* Update timer against current base. */
347                 timer->expires += atomic64_read(&virt_timer_elapsed);
348                 if (likely((s64) timer->expires <
349                            (s64) atomic64_read(&virt_timer_current)))
350                         /* The new timer expires before the current timer. */
351                         atomic64_set(&virt_timer_current, timer->expires);
352                 /* Insert new timer into the list. */
353                 list_add_sorted(timer, &virt_timer_list);
354         }
355 }
356
357 static void __add_vtimer(struct vtimer_list *timer, int periodic)
358 {
359         unsigned long flags;
360
361         timer->interval = periodic ? timer->expires : 0;
362         spin_lock_irqsave(&virt_timer_lock, flags);
363         internal_add_vtimer(timer);
364         spin_unlock_irqrestore(&virt_timer_lock, flags);
365 }
366
367 /*
368  * add_virt_timer - add a oneshot virtual CPU timer
369  */
370 void add_virt_timer(struct vtimer_list *timer)
371 {
372         __add_vtimer(timer, 0);
373 }
374 EXPORT_SYMBOL(add_virt_timer);
375
376 /*
377  * add_virt_timer_int - add an interval virtual CPU timer
378  */
379 void add_virt_timer_periodic(struct vtimer_list *timer)
380 {
381         __add_vtimer(timer, 1);
382 }
383 EXPORT_SYMBOL(add_virt_timer_periodic);
384
385 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
386 {
387         unsigned long flags;
388         int rc;
389
390         BUG_ON(!timer->function);
391
392         if (timer->expires == expires && vtimer_pending(timer))
393                 return 1;
394         spin_lock_irqsave(&virt_timer_lock, flags);
395         rc = vtimer_pending(timer);
396         if (rc)
397                 list_del_init(&timer->entry);
398         timer->interval = periodic ? expires : 0;
399         timer->expires = expires;
400         internal_add_vtimer(timer);
401         spin_unlock_irqrestore(&virt_timer_lock, flags);
402         return rc;
403 }
404
405 /*
406  * returns whether it has modified a pending timer (1) or not (0)
407  */
408 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
409 {
410         return __mod_vtimer(timer, expires, 0);
411 }
412 EXPORT_SYMBOL(mod_virt_timer);
413
414 /*
415  * returns whether it has modified a pending timer (1) or not (0)
416  */
417 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
418 {
419         return __mod_vtimer(timer, expires, 1);
420 }
421 EXPORT_SYMBOL(mod_virt_timer_periodic);
422
423 /*
424  * Delete a virtual timer.
425  *
426  * returns whether the deleted timer was pending (1) or not (0)
427  */
428 int del_virt_timer(struct vtimer_list *timer)
429 {
430         unsigned long flags;
431
432         if (!vtimer_pending(timer))
433                 return 0;
434         spin_lock_irqsave(&virt_timer_lock, flags);
435         list_del_init(&timer->entry);
436         spin_unlock_irqrestore(&virt_timer_lock, flags);
437         return 1;
438 }
439 EXPORT_SYMBOL(del_virt_timer);
440
441 /*
442  * Start the virtual CPU timer on the current CPU.
443  */
444 void vtime_init(void)
445 {
446         /* set initial cpu timer */
447         set_vtimer(VTIMER_MAX_SLICE);
448         /* Setup initial MT scaling values */
449         if (smp_cpu_mtid) {
450                 __this_cpu_write(mt_scaling_jiffies, jiffies);
451                 __this_cpu_write(mt_scaling_mult, 1);
452                 __this_cpu_write(mt_scaling_div, 1);
453                 stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
454         }
455 }