ff42d3aa0f002384a3884a1f17a6d4dca2b172ec
[linux-2.6-microblaze.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/stacktrace.h>
57 #include <asm/topology.h>
58 #include <asm/vdso.h>
59 #include "entry.h"
60
61 enum {
62         ec_schedule = 0,
63         ec_call_function_single,
64         ec_stop_cpu,
65         ec_mcck_pending,
66         ec_irq_work,
67 };
68
69 enum {
70         CPU_STATE_STANDBY,
71         CPU_STATE_CONFIGURED,
72 };
73
74 static DEFINE_PER_CPU(struct cpu *, cpu_device);
75
76 struct pcpu {
77         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
78         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
79         signed char state;              /* physical cpu state */
80         signed char polarization;       /* physical polarization */
81         u16 address;                    /* physical cpu address */
82 };
83
84 static u8 boot_core_type;
85 static struct pcpu pcpu_devices[NR_CPUS];
86
87 unsigned int smp_cpu_mt_shift;
88 EXPORT_SYMBOL(smp_cpu_mt_shift);
89
90 unsigned int smp_cpu_mtid;
91 EXPORT_SYMBOL(smp_cpu_mtid);
92
93 #ifdef CONFIG_CRASH_DUMP
94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95 #endif
96
97 static unsigned int smp_max_threads __initdata = -1U;
98
99 static int __init early_nosmt(char *s)
100 {
101         smp_max_threads = 1;
102         return 0;
103 }
104 early_param("nosmt", early_nosmt);
105
106 static int __init early_smt(char *s)
107 {
108         get_option(&s, &smp_max_threads);
109         return 0;
110 }
111 early_param("smt", early_smt);
112
113 /*
114  * The smp_cpu_state_mutex must be held when changing the state or polarization
115  * member of a pcpu data structure within the pcpu_devices arreay.
116  */
117 DEFINE_MUTEX(smp_cpu_state_mutex);
118
119 /*
120  * Signal processor helper functions.
121  */
122 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
123 {
124         int cc;
125
126         while (1) {
127                 cc = __pcpu_sigp(addr, order, parm, NULL);
128                 if (cc != SIGP_CC_BUSY)
129                         return cc;
130                 cpu_relax();
131         }
132 }
133
134 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 {
136         int cc, retry;
137
138         for (retry = 0; ; retry++) {
139                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
140                 if (cc != SIGP_CC_BUSY)
141                         break;
142                 if (retry >= 3)
143                         udelay(10);
144         }
145         return cc;
146 }
147
148 static inline int pcpu_stopped(struct pcpu *pcpu)
149 {
150         u32 status;
151
152         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
153                         0, &status) != SIGP_CC_STATUS_STORED)
154                 return 0;
155         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
156 }
157
158 static inline int pcpu_running(struct pcpu *pcpu)
159 {
160         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
161                         0, NULL) != SIGP_CC_STATUS_STORED)
162                 return 1;
163         /* Status stored condition code is equivalent to cpu not running. */
164         return 0;
165 }
166
167 /*
168  * Find struct pcpu by cpu address.
169  */
170 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
171 {
172         int cpu;
173
174         for_each_cpu(cpu, mask)
175                 if (pcpu_devices[cpu].address == address)
176                         return pcpu_devices + cpu;
177         return NULL;
178 }
179
180 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
181 {
182         int order;
183
184         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
185                 return;
186         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
187         pcpu->ec_clk = get_tod_clock_fast();
188         pcpu_sigp_retry(pcpu, order, 0);
189 }
190
191 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
192 {
193         unsigned long async_stack, nodat_stack, mcck_stack;
194         struct lowcore *lc;
195
196         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
197         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
198         async_stack = stack_alloc();
199         mcck_stack = stack_alloc();
200         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
201                 goto out;
202         memcpy(lc, &S390_lowcore, 512);
203         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204         lc->async_stack = async_stack + STACK_INIT_OFFSET;
205         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
206         lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
207         lc->cpu_nr = cpu;
208         lc->spinlock_lockval = arch_spin_lockval(cpu);
209         lc->spinlock_index = 0;
210         lc->br_r1_trampoline = 0x07f1;  /* br %r1 */
211         lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
212         lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
213         if (nmi_alloc_per_cpu(lc))
214                 goto out;
215         lowcore_ptr[cpu] = lc;
216         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
217         return 0;
218
219 out:
220         stack_free(mcck_stack);
221         stack_free(async_stack);
222         free_pages(nodat_stack, THREAD_SIZE_ORDER);
223         free_pages((unsigned long) lc, LC_ORDER);
224         return -ENOMEM;
225 }
226
227 static void pcpu_free_lowcore(struct pcpu *pcpu)
228 {
229         unsigned long async_stack, nodat_stack, mcck_stack;
230         struct lowcore *lc;
231         int cpu;
232
233         cpu = pcpu - pcpu_devices;
234         lc = lowcore_ptr[cpu];
235         nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
236         async_stack = lc->async_stack - STACK_INIT_OFFSET;
237         mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
238         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
239         lowcore_ptr[cpu] = NULL;
240         nmi_free_per_cpu(lc);
241         stack_free(async_stack);
242         stack_free(mcck_stack);
243         free_pages(nodat_stack, THREAD_SIZE_ORDER);
244         free_pages((unsigned long) lc, LC_ORDER);
245 }
246
247 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
248 {
249         struct lowcore *lc = lowcore_ptr[cpu];
250
251         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
252         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
253         lc->cpu_nr = cpu;
254         lc->spinlock_lockval = arch_spin_lockval(cpu);
255         lc->spinlock_index = 0;
256         lc->percpu_offset = __per_cpu_offset[cpu];
257         lc->kernel_asce = S390_lowcore.kernel_asce;
258         lc->user_asce = s390_invalid_asce;
259         lc->machine_flags = S390_lowcore.machine_flags;
260         lc->user_timer = lc->system_timer =
261                 lc->steal_timer = lc->avg_steal_timer = 0;
262         __ctl_store(lc->cregs_save_area, 0, 15);
263         lc->cregs_save_area[1] = lc->kernel_asce;
264         lc->cregs_save_area[7] = lc->user_asce;
265         save_access_regs((unsigned int *) lc->access_regs_save_area);
266         arch_spin_lock_setup(cpu);
267 }
268
269 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
270 {
271         struct lowcore *lc;
272         int cpu;
273
274         cpu = pcpu - pcpu_devices;
275         lc = lowcore_ptr[cpu];
276         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
277                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
278         lc->current_task = (unsigned long) tsk;
279         lc->lpp = LPP_MAGIC;
280         lc->current_pid = tsk->pid;
281         lc->user_timer = tsk->thread.user_timer;
282         lc->guest_timer = tsk->thread.guest_timer;
283         lc->system_timer = tsk->thread.system_timer;
284         lc->hardirq_timer = tsk->thread.hardirq_timer;
285         lc->softirq_timer = tsk->thread.softirq_timer;
286         lc->steal_timer = 0;
287 }
288
289 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
290 {
291         struct lowcore *lc;
292         int cpu;
293
294         cpu = pcpu - pcpu_devices;
295         lc = lowcore_ptr[cpu];
296         lc->restart_stack = lc->nodat_stack;
297         lc->restart_fn = (unsigned long) func;
298         lc->restart_data = (unsigned long) data;
299         lc->restart_source = -1UL;
300         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
301 }
302
303 /*
304  * Call function via PSW restart on pcpu and stop the current cpu.
305  */
306 static void __pcpu_delegate(void (*func)(void*), void *data)
307 {
308         func(data);     /* should not return */
309 }
310
311 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
312                                                 void (*func)(void *),
313                                                 void *data, unsigned long stack)
314 {
315         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
316         unsigned long source_cpu = stap();
317
318         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
319         if (pcpu->address == source_cpu)
320                 CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
321         /* Stop target cpu (if func returns this stops the current cpu). */
322         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
323         /* Restart func on the target cpu and stop the current cpu. */
324         mem_assign_absolute(lc->restart_stack, stack);
325         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
326         mem_assign_absolute(lc->restart_data, (unsigned long) data);
327         mem_assign_absolute(lc->restart_source, source_cpu);
328         __bpon();
329         asm volatile(
330                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
331                 "       brc     2,0b    # busy, try again\n"
332                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
333                 "       brc     2,1b    # busy, try again\n"
334                 : : "d" (pcpu->address), "d" (source_cpu),
335                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
336                 : "0", "1", "cc");
337         for (;;) ;
338 }
339
340 /*
341  * Enable additional logical cpus for multi-threading.
342  */
343 static int pcpu_set_smt(unsigned int mtid)
344 {
345         int cc;
346
347         if (smp_cpu_mtid == mtid)
348                 return 0;
349         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
350         if (cc == 0) {
351                 smp_cpu_mtid = mtid;
352                 smp_cpu_mt_shift = 0;
353                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
354                         smp_cpu_mt_shift++;
355                 pcpu_devices[0].address = stap();
356         }
357         return cc;
358 }
359
360 /*
361  * Call function on an online CPU.
362  */
363 void smp_call_online_cpu(void (*func)(void *), void *data)
364 {
365         struct pcpu *pcpu;
366
367         /* Use the current cpu if it is online. */
368         pcpu = pcpu_find_address(cpu_online_mask, stap());
369         if (!pcpu)
370                 /* Use the first online cpu. */
371                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
372         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
373 }
374
375 /*
376  * Call function on the ipl CPU.
377  */
378 void smp_call_ipl_cpu(void (*func)(void *), void *data)
379 {
380         struct lowcore *lc = lowcore_ptr[0];
381
382         if (pcpu_devices[0].address == stap())
383                 lc = &S390_lowcore;
384
385         pcpu_delegate(&pcpu_devices[0], func, data,
386                       lc->nodat_stack);
387 }
388
389 int smp_find_processor_id(u16 address)
390 {
391         int cpu;
392
393         for_each_present_cpu(cpu)
394                 if (pcpu_devices[cpu].address == address)
395                         return cpu;
396         return -1;
397 }
398
399 void schedule_mcck_handler(void)
400 {
401         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
402 }
403
404 bool notrace arch_vcpu_is_preempted(int cpu)
405 {
406         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
407                 return false;
408         if (pcpu_running(pcpu_devices + cpu))
409                 return false;
410         return true;
411 }
412 EXPORT_SYMBOL(arch_vcpu_is_preempted);
413
414 void notrace smp_yield_cpu(int cpu)
415 {
416         if (!MACHINE_HAS_DIAG9C)
417                 return;
418         diag_stat_inc_norecursion(DIAG_STAT_X09C);
419         asm volatile("diag %0,0,0x9c"
420                      : : "d" (pcpu_devices[cpu].address));
421 }
422 EXPORT_SYMBOL_GPL(smp_yield_cpu);
423
424 /*
425  * Send cpus emergency shutdown signal. This gives the cpus the
426  * opportunity to complete outstanding interrupts.
427  */
428 void notrace smp_emergency_stop(void)
429 {
430         static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
431         static cpumask_t cpumask;
432         u64 end;
433         int cpu;
434
435         arch_spin_lock(&lock);
436         cpumask_copy(&cpumask, cpu_online_mask);
437         cpumask_clear_cpu(smp_processor_id(), &cpumask);
438
439         end = get_tod_clock() + (1000000UL << 12);
440         for_each_cpu(cpu, &cpumask) {
441                 struct pcpu *pcpu = pcpu_devices + cpu;
442                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
443                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
444                                    0, NULL) == SIGP_CC_BUSY &&
445                        get_tod_clock() < end)
446                         cpu_relax();
447         }
448         while (get_tod_clock() < end) {
449                 for_each_cpu(cpu, &cpumask)
450                         if (pcpu_stopped(pcpu_devices + cpu))
451                                 cpumask_clear_cpu(cpu, &cpumask);
452                 if (cpumask_empty(&cpumask))
453                         break;
454                 cpu_relax();
455         }
456         arch_spin_unlock(&lock);
457 }
458 NOKPROBE_SYMBOL(smp_emergency_stop);
459
460 /*
461  * Stop all cpus but the current one.
462  */
463 void smp_send_stop(void)
464 {
465         int cpu;
466
467         /* Disable all interrupts/machine checks */
468         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
469         trace_hardirqs_off();
470
471         debug_set_critical();
472
473         if (oops_in_progress)
474                 smp_emergency_stop();
475
476         /* stop all processors */
477         for_each_online_cpu(cpu) {
478                 if (cpu == smp_processor_id())
479                         continue;
480                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
481                 while (!pcpu_stopped(pcpu_devices + cpu))
482                         cpu_relax();
483         }
484 }
485
486 /*
487  * This is the main routine where commands issued by other
488  * cpus are handled.
489  */
490 static void smp_handle_ext_call(void)
491 {
492         unsigned long bits;
493
494         /* handle bit signal external calls */
495         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
496         if (test_bit(ec_stop_cpu, &bits))
497                 smp_stop_cpu();
498         if (test_bit(ec_schedule, &bits))
499                 scheduler_ipi();
500         if (test_bit(ec_call_function_single, &bits))
501                 generic_smp_call_function_single_interrupt();
502         if (test_bit(ec_mcck_pending, &bits))
503                 __s390_handle_mcck();
504         if (test_bit(ec_irq_work, &bits))
505                 irq_work_run();
506 }
507
508 static void do_ext_call_interrupt(struct ext_code ext_code,
509                                   unsigned int param32, unsigned long param64)
510 {
511         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
512         smp_handle_ext_call();
513 }
514
515 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
516 {
517         int cpu;
518
519         for_each_cpu(cpu, mask)
520                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
521 }
522
523 void arch_send_call_function_single_ipi(int cpu)
524 {
525         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
526 }
527
528 /*
529  * this function sends a 'reschedule' IPI to another CPU.
530  * it goes straight through and wastes no time serializing
531  * anything. Worst case is that we lose a reschedule ...
532  */
533 void smp_send_reschedule(int cpu)
534 {
535         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
536 }
537
538 #ifdef CONFIG_IRQ_WORK
539 void arch_irq_work_raise(void)
540 {
541         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
542 }
543 #endif
544
545 /*
546  * parameter area for the set/clear control bit callbacks
547  */
548 struct ec_creg_mask_parms {
549         unsigned long orval;
550         unsigned long andval;
551         int cr;
552 };
553
554 /*
555  * callback for setting/clearing control bits
556  */
557 static void smp_ctl_bit_callback(void *info)
558 {
559         struct ec_creg_mask_parms *pp = info;
560         unsigned long cregs[16];
561
562         __ctl_store(cregs, 0, 15);
563         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
564         __ctl_load(cregs, 0, 15);
565 }
566
567 /*
568  * Set a bit in a control register of all cpus
569  */
570 void smp_ctl_set_bit(int cr, int bit)
571 {
572         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
573
574         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
575 }
576 EXPORT_SYMBOL(smp_ctl_set_bit);
577
578 /*
579  * Clear a bit in a control register of all cpus
580  */
581 void smp_ctl_clear_bit(int cr, int bit)
582 {
583         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
584
585         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
586 }
587 EXPORT_SYMBOL(smp_ctl_clear_bit);
588
589 #ifdef CONFIG_CRASH_DUMP
590
591 int smp_store_status(int cpu)
592 {
593         struct lowcore *lc;
594         struct pcpu *pcpu;
595         unsigned long pa;
596
597         pcpu = pcpu_devices + cpu;
598         lc = lowcore_ptr[cpu];
599         pa = __pa(&lc->floating_pt_save_area);
600         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
601                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
602                 return -EIO;
603         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
604                 return 0;
605         pa = __pa(lc->mcesad & MCESA_ORIGIN_MASK);
606         if (MACHINE_HAS_GS)
607                 pa |= lc->mcesad & MCESA_LC_MASK;
608         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
609                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
610                 return -EIO;
611         return 0;
612 }
613
614 /*
615  * Collect CPU state of the previous, crashed system.
616  * There are four cases:
617  * 1) standard zfcp/nvme dump
618  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
619  *    The state for all CPUs except the boot CPU needs to be collected
620  *    with sigp stop-and-store-status. The boot CPU state is located in
621  *    the absolute lowcore of the memory stored in the HSA. The zcore code
622  *    will copy the boot CPU state from the HSA.
623  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
624  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
625  *    The state for all CPUs except the boot CPU needs to be collected
626  *    with sigp stop-and-store-status. The firmware or the boot-loader
627  *    stored the registers of the boot CPU in the absolute lowcore in the
628  *    memory of the old system.
629  * 3) kdump and the old kernel did not store the CPU state,
630  *    or stand-alone kdump for DASD
631  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
632  *    The state for all CPUs except the boot CPU needs to be collected
633  *    with sigp stop-and-store-status. The kexec code or the boot-loader
634  *    stored the registers of the boot CPU in the memory of the old system.
635  * 4) kdump and the old kernel stored the CPU state
636  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
637  *    This case does not exist for s390 anymore, setup_arch explicitly
638  *    deactivates the elfcorehdr= kernel parameter
639  */
640 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
641                                      bool is_boot_cpu, unsigned long page)
642 {
643         __vector128 *vxrs = (__vector128 *) page;
644
645         if (is_boot_cpu)
646                 vxrs = boot_cpu_vector_save_area;
647         else
648                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
649         save_area_add_vxrs(sa, vxrs);
650 }
651
652 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
653                                      bool is_boot_cpu, unsigned long page)
654 {
655         void *regs = (void *) page;
656
657         if (is_boot_cpu)
658                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
659         else
660                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
661         save_area_add_regs(sa, regs);
662 }
663
664 void __init smp_save_dump_cpus(void)
665 {
666         int addr, boot_cpu_addr, max_cpu_addr;
667         struct save_area *sa;
668         unsigned long page;
669         bool is_boot_cpu;
670
671         if (!(OLDMEM_BASE || is_ipl_type_dump()))
672                 /* No previous system present, normal boot. */
673                 return;
674         /* Allocate a page as dumping area for the store status sigps */
675         page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
676         if (!page)
677                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
678                       PAGE_SIZE, 1UL << 31);
679
680         /* Set multi-threading state to the previous system. */
681         pcpu_set_smt(sclp.mtid_prev);
682         boot_cpu_addr = stap();
683         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
684         for (addr = 0; addr <= max_cpu_addr; addr++) {
685                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
686                     SIGP_CC_NOT_OPERATIONAL)
687                         continue;
688                 is_boot_cpu = (addr == boot_cpu_addr);
689                 /* Allocate save area */
690                 sa = save_area_alloc(is_boot_cpu);
691                 if (!sa)
692                         panic("could not allocate memory for save area\n");
693                 if (MACHINE_HAS_VX)
694                         /* Get the vector registers */
695                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
696                 /*
697                  * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
698                  * of the boot CPU are stored in the HSA. To retrieve
699                  * these registers an SCLP request is required which is
700                  * done by drivers/s390/char/zcore.c:init_cpu_info()
701                  */
702                 if (!is_boot_cpu || OLDMEM_BASE)
703                         /* Get the CPU registers */
704                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
705         }
706         memblock_free(page, PAGE_SIZE);
707         diag_dma_ops.diag308_reset();
708         pcpu_set_smt(0);
709 }
710 #endif /* CONFIG_CRASH_DUMP */
711
712 void smp_cpu_set_polarization(int cpu, int val)
713 {
714         pcpu_devices[cpu].polarization = val;
715 }
716
717 int smp_cpu_get_polarization(int cpu)
718 {
719         return pcpu_devices[cpu].polarization;
720 }
721
722 int smp_cpu_get_cpu_address(int cpu)
723 {
724         return pcpu_devices[cpu].address;
725 }
726
727 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
728 {
729         static int use_sigp_detection;
730         int address;
731
732         if (use_sigp_detection || sclp_get_core_info(info, early)) {
733                 use_sigp_detection = 1;
734                 for (address = 0;
735                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
736                      address += (1U << smp_cpu_mt_shift)) {
737                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
738                             SIGP_CC_NOT_OPERATIONAL)
739                                 continue;
740                         info->core[info->configured].core_id =
741                                 address >> smp_cpu_mt_shift;
742                         info->configured++;
743                 }
744                 info->combined = info->configured;
745         }
746 }
747
748 static int smp_add_present_cpu(int cpu);
749
750 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
751                         bool configured, bool early)
752 {
753         struct pcpu *pcpu;
754         int cpu, nr, i;
755         u16 address;
756
757         nr = 0;
758         if (sclp.has_core_type && core->type != boot_core_type)
759                 return nr;
760         cpu = cpumask_first(avail);
761         address = core->core_id << smp_cpu_mt_shift;
762         for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
763                 if (pcpu_find_address(cpu_present_mask, address + i))
764                         continue;
765                 pcpu = pcpu_devices + cpu;
766                 pcpu->address = address + i;
767                 if (configured)
768                         pcpu->state = CPU_STATE_CONFIGURED;
769                 else
770                         pcpu->state = CPU_STATE_STANDBY;
771                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
772                 set_cpu_present(cpu, true);
773                 if (!early && smp_add_present_cpu(cpu) != 0)
774                         set_cpu_present(cpu, false);
775                 else
776                         nr++;
777                 cpumask_clear_cpu(cpu, avail);
778                 cpu = cpumask_next(cpu, avail);
779         }
780         return nr;
781 }
782
783 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
784 {
785         struct sclp_core_entry *core;
786         static cpumask_t avail;
787         bool configured;
788         u16 core_id;
789         int nr, i;
790
791         get_online_cpus();
792         mutex_lock(&smp_cpu_state_mutex);
793         nr = 0;
794         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
795         /*
796          * Add IPL core first (which got logical CPU number 0) to make sure
797          * that all SMT threads get subsequent logical CPU numbers.
798          */
799         if (early) {
800                 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
801                 for (i = 0; i < info->configured; i++) {
802                         core = &info->core[i];
803                         if (core->core_id == core_id) {
804                                 nr += smp_add_core(core, &avail, true, early);
805                                 break;
806                         }
807                 }
808         }
809         for (i = 0; i < info->combined; i++) {
810                 configured = i < info->configured;
811                 nr += smp_add_core(&info->core[i], &avail, configured, early);
812         }
813         mutex_unlock(&smp_cpu_state_mutex);
814         put_online_cpus();
815         return nr;
816 }
817
818 void __init smp_detect_cpus(void)
819 {
820         unsigned int cpu, mtid, c_cpus, s_cpus;
821         struct sclp_core_info *info;
822         u16 address;
823
824         /* Get CPU information */
825         info = memblock_alloc(sizeof(*info), 8);
826         if (!info)
827                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
828                       __func__, sizeof(*info), 8);
829         smp_get_core_info(info, 1);
830         /* Find boot CPU type */
831         if (sclp.has_core_type) {
832                 address = stap();
833                 for (cpu = 0; cpu < info->combined; cpu++)
834                         if (info->core[cpu].core_id == address) {
835                                 /* The boot cpu dictates the cpu type. */
836                                 boot_core_type = info->core[cpu].type;
837                                 break;
838                         }
839                 if (cpu >= info->combined)
840                         panic("Could not find boot CPU type");
841         }
842
843         /* Set multi-threading state for the current system */
844         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
845         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
846         pcpu_set_smt(mtid);
847
848         /* Print number of CPUs */
849         c_cpus = s_cpus = 0;
850         for (cpu = 0; cpu < info->combined; cpu++) {
851                 if (sclp.has_core_type &&
852                     info->core[cpu].type != boot_core_type)
853                         continue;
854                 if (cpu < info->configured)
855                         c_cpus += smp_cpu_mtid + 1;
856                 else
857                         s_cpus += smp_cpu_mtid + 1;
858         }
859         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
860
861         /* Add CPUs present at boot */
862         __smp_rescan_cpus(info, true);
863         memblock_free_early((unsigned long)info, sizeof(*info));
864 }
865
866 static void smp_init_secondary(void)
867 {
868         int cpu = raw_smp_processor_id();
869
870         S390_lowcore.last_update_clock = get_tod_clock();
871         restore_access_regs(S390_lowcore.access_regs_save_area);
872         cpu_init();
873         rcu_cpu_starting(cpu);
874         init_cpu_timer();
875         vtime_init();
876         vdso_getcpu_init();
877         pfault_init();
878         notify_cpu_starting(cpu);
879         if (topology_cpu_dedicated(cpu))
880                 set_cpu_flag(CIF_DEDICATED_CPU);
881         else
882                 clear_cpu_flag(CIF_DEDICATED_CPU);
883         set_cpu_online(cpu, true);
884         update_cpu_masks();
885         inc_irq_stat(CPU_RST);
886         local_irq_enable();
887         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
888 }
889
890 /*
891  *      Activate a secondary processor.
892  */
893 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
894 {
895         S390_lowcore.restart_stack = (unsigned long) restart_stack;
896         S390_lowcore.restart_fn = (unsigned long) do_restart;
897         S390_lowcore.restart_data = 0;
898         S390_lowcore.restart_source = -1UL;
899         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
900         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
901         CALL_ON_STACK_NORETURN(smp_init_secondary, S390_lowcore.kernel_stack);
902 }
903
904 /* Upping and downing of CPUs */
905 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
906 {
907         struct pcpu *pcpu = pcpu_devices + cpu;
908         int rc;
909
910         if (pcpu->state != CPU_STATE_CONFIGURED)
911                 return -EIO;
912         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
913             SIGP_CC_ORDER_CODE_ACCEPTED)
914                 return -EIO;
915
916         rc = pcpu_alloc_lowcore(pcpu, cpu);
917         if (rc)
918                 return rc;
919         pcpu_prepare_secondary(pcpu, cpu);
920         pcpu_attach_task(pcpu, tidle);
921         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
922         /* Wait until cpu puts itself in the online & active maps */
923         while (!cpu_online(cpu))
924                 cpu_relax();
925         return 0;
926 }
927
928 static unsigned int setup_possible_cpus __initdata;
929
930 static int __init _setup_possible_cpus(char *s)
931 {
932         get_option(&s, &setup_possible_cpus);
933         return 0;
934 }
935 early_param("possible_cpus", _setup_possible_cpus);
936
937 int __cpu_disable(void)
938 {
939         unsigned long cregs[16];
940
941         /* Handle possible pending IPIs */
942         smp_handle_ext_call();
943         set_cpu_online(smp_processor_id(), false);
944         update_cpu_masks();
945         /* Disable pseudo page faults on this cpu. */
946         pfault_fini();
947         /* Disable interrupt sources via control register. */
948         __ctl_store(cregs, 0, 15);
949         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
950         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
951         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
952         __ctl_load(cregs, 0, 15);
953         clear_cpu_flag(CIF_NOHZ_DELAY);
954         return 0;
955 }
956
957 void __cpu_die(unsigned int cpu)
958 {
959         struct pcpu *pcpu;
960
961         /* Wait until target cpu is down */
962         pcpu = pcpu_devices + cpu;
963         while (!pcpu_stopped(pcpu))
964                 cpu_relax();
965         pcpu_free_lowcore(pcpu);
966         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
967         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
968 }
969
970 void __noreturn cpu_die(void)
971 {
972         idle_task_exit();
973         __bpon();
974         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
975         for (;;) ;
976 }
977
978 void __init smp_fill_possible_mask(void)
979 {
980         unsigned int possible, sclp_max, cpu;
981
982         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
983         sclp_max = min(smp_max_threads, sclp_max);
984         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
985         possible = setup_possible_cpus ?: nr_cpu_ids;
986         possible = min(possible, sclp_max);
987         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
988                 set_cpu_possible(cpu, true);
989 }
990
991 void __init smp_prepare_cpus(unsigned int max_cpus)
992 {
993         /* request the 0x1201 emergency signal external interrupt */
994         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
995                 panic("Couldn't request external interrupt 0x1201");
996         /* request the 0x1202 external call external interrupt */
997         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
998                 panic("Couldn't request external interrupt 0x1202");
999 }
1000
1001 void __init smp_prepare_boot_cpu(void)
1002 {
1003         struct pcpu *pcpu = pcpu_devices;
1004
1005         WARN_ON(!cpu_present(0) || !cpu_online(0));
1006         pcpu->state = CPU_STATE_CONFIGURED;
1007         S390_lowcore.percpu_offset = __per_cpu_offset[0];
1008         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1009 }
1010
1011 void __init smp_setup_processor_id(void)
1012 {
1013         pcpu_devices[0].address = stap();
1014         S390_lowcore.cpu_nr = 0;
1015         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1016         S390_lowcore.spinlock_index = 0;
1017 }
1018
1019 /*
1020  * the frequency of the profiling timer can be changed
1021  * by writing a multiplier value into /proc/profile.
1022  *
1023  * usually you want to run this on all CPUs ;)
1024  */
1025 int setup_profiling_timer(unsigned int multiplier)
1026 {
1027         return 0;
1028 }
1029
1030 static ssize_t cpu_configure_show(struct device *dev,
1031                                   struct device_attribute *attr, char *buf)
1032 {
1033         ssize_t count;
1034
1035         mutex_lock(&smp_cpu_state_mutex);
1036         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1037         mutex_unlock(&smp_cpu_state_mutex);
1038         return count;
1039 }
1040
1041 static ssize_t cpu_configure_store(struct device *dev,
1042                                    struct device_attribute *attr,
1043                                    const char *buf, size_t count)
1044 {
1045         struct pcpu *pcpu;
1046         int cpu, val, rc, i;
1047         char delim;
1048
1049         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1050                 return -EINVAL;
1051         if (val != 0 && val != 1)
1052                 return -EINVAL;
1053         get_online_cpus();
1054         mutex_lock(&smp_cpu_state_mutex);
1055         rc = -EBUSY;
1056         /* disallow configuration changes of online cpus and cpu 0 */
1057         cpu = dev->id;
1058         cpu = smp_get_base_cpu(cpu);
1059         if (cpu == 0)
1060                 goto out;
1061         for (i = 0; i <= smp_cpu_mtid; i++)
1062                 if (cpu_online(cpu + i))
1063                         goto out;
1064         pcpu = pcpu_devices + cpu;
1065         rc = 0;
1066         switch (val) {
1067         case 0:
1068                 if (pcpu->state != CPU_STATE_CONFIGURED)
1069                         break;
1070                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1071                 if (rc)
1072                         break;
1073                 for (i = 0; i <= smp_cpu_mtid; i++) {
1074                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1075                                 continue;
1076                         pcpu[i].state = CPU_STATE_STANDBY;
1077                         smp_cpu_set_polarization(cpu + i,
1078                                                  POLARIZATION_UNKNOWN);
1079                 }
1080                 topology_expect_change();
1081                 break;
1082         case 1:
1083                 if (pcpu->state != CPU_STATE_STANDBY)
1084                         break;
1085                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1086                 if (rc)
1087                         break;
1088                 for (i = 0; i <= smp_cpu_mtid; i++) {
1089                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1090                                 continue;
1091                         pcpu[i].state = CPU_STATE_CONFIGURED;
1092                         smp_cpu_set_polarization(cpu + i,
1093                                                  POLARIZATION_UNKNOWN);
1094                 }
1095                 topology_expect_change();
1096                 break;
1097         default:
1098                 break;
1099         }
1100 out:
1101         mutex_unlock(&smp_cpu_state_mutex);
1102         put_online_cpus();
1103         return rc ? rc : count;
1104 }
1105 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1106
1107 static ssize_t show_cpu_address(struct device *dev,
1108                                 struct device_attribute *attr, char *buf)
1109 {
1110         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1111 }
1112 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1113
1114 static struct attribute *cpu_common_attrs[] = {
1115         &dev_attr_configure.attr,
1116         &dev_attr_address.attr,
1117         NULL,
1118 };
1119
1120 static struct attribute_group cpu_common_attr_group = {
1121         .attrs = cpu_common_attrs,
1122 };
1123
1124 static struct attribute *cpu_online_attrs[] = {
1125         &dev_attr_idle_count.attr,
1126         &dev_attr_idle_time_us.attr,
1127         NULL,
1128 };
1129
1130 static struct attribute_group cpu_online_attr_group = {
1131         .attrs = cpu_online_attrs,
1132 };
1133
1134 static int smp_cpu_online(unsigned int cpu)
1135 {
1136         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1137
1138         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1139 }
1140
1141 static int smp_cpu_pre_down(unsigned int cpu)
1142 {
1143         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1144
1145         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1146         return 0;
1147 }
1148
1149 static int smp_add_present_cpu(int cpu)
1150 {
1151         struct device *s;
1152         struct cpu *c;
1153         int rc;
1154
1155         c = kzalloc(sizeof(*c), GFP_KERNEL);
1156         if (!c)
1157                 return -ENOMEM;
1158         per_cpu(cpu_device, cpu) = c;
1159         s = &c->dev;
1160         c->hotpluggable = 1;
1161         rc = register_cpu(c, cpu);
1162         if (rc)
1163                 goto out;
1164         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1165         if (rc)
1166                 goto out_cpu;
1167         rc = topology_cpu_init(c);
1168         if (rc)
1169                 goto out_topology;
1170         return 0;
1171
1172 out_topology:
1173         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1174 out_cpu:
1175         unregister_cpu(c);
1176 out:
1177         return rc;
1178 }
1179
1180 int __ref smp_rescan_cpus(void)
1181 {
1182         struct sclp_core_info *info;
1183         int nr;
1184
1185         info = kzalloc(sizeof(*info), GFP_KERNEL);
1186         if (!info)
1187                 return -ENOMEM;
1188         smp_get_core_info(info, 0);
1189         nr = __smp_rescan_cpus(info, false);
1190         kfree(info);
1191         if (nr)
1192                 topology_schedule_update();
1193         return 0;
1194 }
1195
1196 static ssize_t __ref rescan_store(struct device *dev,
1197                                   struct device_attribute *attr,
1198                                   const char *buf,
1199                                   size_t count)
1200 {
1201         int rc;
1202
1203         rc = lock_device_hotplug_sysfs();
1204         if (rc)
1205                 return rc;
1206         rc = smp_rescan_cpus();
1207         unlock_device_hotplug();
1208         return rc ? rc : count;
1209 }
1210 static DEVICE_ATTR_WO(rescan);
1211
1212 static int __init s390_smp_init(void)
1213 {
1214         int cpu, rc = 0;
1215
1216         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1217         if (rc)
1218                 return rc;
1219         for_each_present_cpu(cpu) {
1220                 rc = smp_add_present_cpu(cpu);
1221                 if (rc)
1222                         goto out;
1223         }
1224
1225         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1226                                smp_cpu_online, smp_cpu_pre_down);
1227         rc = rc <= 0 ? rc : 0;
1228 out:
1229         return rc;
1230 }
1231 subsys_initcall(s390_smp_init);
1232
1233 static __always_inline void set_new_lowcore(struct lowcore *lc)
1234 {
1235         union register_pair dst, src;
1236         u32 pfx;
1237
1238         src.even = (unsigned long) &S390_lowcore;
1239         src.odd  = sizeof(S390_lowcore);
1240         dst.even = (unsigned long) lc;
1241         dst.odd  = sizeof(*lc);
1242         pfx = (unsigned long) lc;
1243
1244         asm volatile(
1245                 "       mvcl    %[dst],%[src]\n"
1246                 "       spx     %[pfx]\n"
1247                 : [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1248                 : [pfx] "Q" (pfx)
1249                 : "memory", "cc");
1250 }
1251
1252 static int __init smp_reinit_ipl_cpu(void)
1253 {
1254         unsigned long async_stack, nodat_stack, mcck_stack;
1255         struct lowcore *lc, *lc_ipl;
1256         unsigned long flags;
1257
1258         lc_ipl = lowcore_ptr[0];
1259         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1260         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1261         async_stack = stack_alloc();
1262         mcck_stack = stack_alloc();
1263         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
1264                 panic("Couldn't allocate memory");
1265
1266         local_irq_save(flags);
1267         local_mcck_disable();
1268         set_new_lowcore(lc);
1269         S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1270         S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1271         S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1272         lowcore_ptr[0] = lc;
1273         local_mcck_enable();
1274         local_irq_restore(flags);
1275
1276         free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1277         memblock_free_late(lc_ipl->mcck_stack - STACK_INIT_OFFSET, THREAD_SIZE);
1278         memblock_free_late((unsigned long) lc_ipl, sizeof(*lc_ipl));
1279
1280         return 0;
1281 }
1282 early_initcall(smp_reinit_ipl_cpu);