Merge tag 'backlight-next-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/memblock.h>
39 #include <linux/kprobes.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/vdso.h>
52 #include <asm/debug.h>
53 #include <asm/os_info.h>
54 #include <asm/sigp.h>
55 #include <asm/idle.h>
56 #include <asm/nmi.h>
57 #include <asm/topology.h>
58 #include "entry.h"
59
60 enum {
61         ec_schedule = 0,
62         ec_call_function_single,
63         ec_stop_cpu,
64 };
65
66 enum {
67         CPU_STATE_STANDBY,
68         CPU_STATE_CONFIGURED,
69 };
70
71 static DEFINE_PER_CPU(struct cpu *, cpu_device);
72
73 struct pcpu {
74         struct lowcore *lowcore;        /* lowcore page(s) for the cpu */
75         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
76         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
77         signed char state;              /* physical cpu state */
78         signed char polarization;       /* physical polarization */
79         u16 address;                    /* physical cpu address */
80 };
81
82 static u8 boot_core_type;
83 static struct pcpu pcpu_devices[NR_CPUS];
84
85 unsigned int smp_cpu_mt_shift;
86 EXPORT_SYMBOL(smp_cpu_mt_shift);
87
88 unsigned int smp_cpu_mtid;
89 EXPORT_SYMBOL(smp_cpu_mtid);
90
91 #ifdef CONFIG_CRASH_DUMP
92 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
93 #endif
94
95 static unsigned int smp_max_threads __initdata = -1U;
96
97 static int __init early_nosmt(char *s)
98 {
99         smp_max_threads = 1;
100         return 0;
101 }
102 early_param("nosmt", early_nosmt);
103
104 static int __init early_smt(char *s)
105 {
106         get_option(&s, &smp_max_threads);
107         return 0;
108 }
109 early_param("smt", early_smt);
110
111 /*
112  * The smp_cpu_state_mutex must be held when changing the state or polarization
113  * member of a pcpu data structure within the pcpu_devices arreay.
114  */
115 DEFINE_MUTEX(smp_cpu_state_mutex);
116
117 /*
118  * Signal processor helper functions.
119  */
120 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
121 {
122         int cc;
123
124         while (1) {
125                 cc = __pcpu_sigp(addr, order, parm, NULL);
126                 if (cc != SIGP_CC_BUSY)
127                         return cc;
128                 cpu_relax();
129         }
130 }
131
132 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
133 {
134         int cc, retry;
135
136         for (retry = 0; ; retry++) {
137                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
138                 if (cc != SIGP_CC_BUSY)
139                         break;
140                 if (retry >= 3)
141                         udelay(10);
142         }
143         return cc;
144 }
145
146 static inline int pcpu_stopped(struct pcpu *pcpu)
147 {
148         u32 uninitialized_var(status);
149
150         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
151                         0, &status) != SIGP_CC_STATUS_STORED)
152                 return 0;
153         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
154 }
155
156 static inline int pcpu_running(struct pcpu *pcpu)
157 {
158         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
159                         0, NULL) != SIGP_CC_STATUS_STORED)
160                 return 1;
161         /* Status stored condition code is equivalent to cpu not running. */
162         return 0;
163 }
164
165 /*
166  * Find struct pcpu by cpu address.
167  */
168 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
169 {
170         int cpu;
171
172         for_each_cpu(cpu, mask)
173                 if (pcpu_devices[cpu].address == address)
174                         return pcpu_devices + cpu;
175         return NULL;
176 }
177
178 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
179 {
180         int order;
181
182         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
183                 return;
184         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
185         pcpu->ec_clk = get_tod_clock_fast();
186         pcpu_sigp_retry(pcpu, order, 0);
187 }
188
189 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
190 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
191
192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
193 {
194         unsigned long async_stack, panic_stack;
195         struct lowcore *lc;
196
197         if (pcpu != &pcpu_devices[0]) {
198                 pcpu->lowcore = (struct lowcore *)
199                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
200                 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
201                 panic_stack = __get_free_page(GFP_KERNEL);
202                 if (!pcpu->lowcore || !panic_stack || !async_stack)
203                         goto out;
204         } else {
205                 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
206                 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
207         }
208         lc = pcpu->lowcore;
209         memcpy(lc, &S390_lowcore, 512);
210         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
211         lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
212         lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
213         lc->cpu_nr = cpu;
214         lc->spinlock_lockval = arch_spin_lockval(cpu);
215         lc->spinlock_index = 0;
216         lc->br_r1_trampoline = 0x07f1;  /* br %r1 */
217         if (nmi_alloc_per_cpu(lc))
218                 goto out;
219         if (vdso_alloc_per_cpu(lc))
220                 goto out_mcesa;
221         lowcore_ptr[cpu] = lc;
222         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
223         return 0;
224
225 out_mcesa:
226         nmi_free_per_cpu(lc);
227 out:
228         if (pcpu != &pcpu_devices[0]) {
229                 free_page(panic_stack);
230                 free_pages(async_stack, ASYNC_ORDER);
231                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
232         }
233         return -ENOMEM;
234 }
235
236 #ifdef CONFIG_HOTPLUG_CPU
237
238 static void pcpu_free_lowcore(struct pcpu *pcpu)
239 {
240         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
241         lowcore_ptr[pcpu - pcpu_devices] = NULL;
242         vdso_free_per_cpu(pcpu->lowcore);
243         nmi_free_per_cpu(pcpu->lowcore);
244         if (pcpu == &pcpu_devices[0])
245                 return;
246         free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
247         free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
248         free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
249 }
250
251 #endif /* CONFIG_HOTPLUG_CPU */
252
253 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
254 {
255         struct lowcore *lc = pcpu->lowcore;
256
257         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
258         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
259         lc->cpu_nr = cpu;
260         lc->spinlock_lockval = arch_spin_lockval(cpu);
261         lc->spinlock_index = 0;
262         lc->percpu_offset = __per_cpu_offset[cpu];
263         lc->kernel_asce = S390_lowcore.kernel_asce;
264         lc->machine_flags = S390_lowcore.machine_flags;
265         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
266         __ctl_store(lc->cregs_save_area, 0, 15);
267         save_access_regs((unsigned int *) lc->access_regs_save_area);
268         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
269                sizeof(lc->stfle_fac_list));
270         memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
271                sizeof(lc->alt_stfle_fac_list));
272         arch_spin_lock_setup(cpu);
273 }
274
275 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
276 {
277         struct lowcore *lc = pcpu->lowcore;
278
279         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
280                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
281         lc->current_task = (unsigned long) tsk;
282         lc->lpp = LPP_MAGIC;
283         lc->current_pid = tsk->pid;
284         lc->user_timer = tsk->thread.user_timer;
285         lc->guest_timer = tsk->thread.guest_timer;
286         lc->system_timer = tsk->thread.system_timer;
287         lc->hardirq_timer = tsk->thread.hardirq_timer;
288         lc->softirq_timer = tsk->thread.softirq_timer;
289         lc->steal_timer = 0;
290 }
291
292 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
293 {
294         struct lowcore *lc = pcpu->lowcore;
295
296         lc->restart_stack = lc->kernel_stack;
297         lc->restart_fn = (unsigned long) func;
298         lc->restart_data = (unsigned long) data;
299         lc->restart_source = -1UL;
300         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
301 }
302
303 /*
304  * Call function via PSW restart on pcpu and stop the current cpu.
305  */
306 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
307                           void *data, unsigned long stack)
308 {
309         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
310         unsigned long source_cpu = stap();
311
312         __load_psw_mask(PSW_KERNEL_BITS);
313         if (pcpu->address == source_cpu)
314                 func(data);     /* should not return */
315         /* Stop target cpu (if func returns this stops the current cpu). */
316         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
317         /* Restart func on the target cpu and stop the current cpu. */
318         mem_assign_absolute(lc->restart_stack, stack);
319         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
320         mem_assign_absolute(lc->restart_data, (unsigned long) data);
321         mem_assign_absolute(lc->restart_source, source_cpu);
322         __bpon();
323         asm volatile(
324                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
325                 "       brc     2,0b    # busy, try again\n"
326                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
327                 "       brc     2,1b    # busy, try again\n"
328                 : : "d" (pcpu->address), "d" (source_cpu),
329                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
330                 : "0", "1", "cc");
331         for (;;) ;
332 }
333
334 /*
335  * Enable additional logical cpus for multi-threading.
336  */
337 static int pcpu_set_smt(unsigned int mtid)
338 {
339         int cc;
340
341         if (smp_cpu_mtid == mtid)
342                 return 0;
343         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
344         if (cc == 0) {
345                 smp_cpu_mtid = mtid;
346                 smp_cpu_mt_shift = 0;
347                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
348                         smp_cpu_mt_shift++;
349                 pcpu_devices[0].address = stap();
350         }
351         return cc;
352 }
353
354 /*
355  * Call function on an online CPU.
356  */
357 void smp_call_online_cpu(void (*func)(void *), void *data)
358 {
359         struct pcpu *pcpu;
360
361         /* Use the current cpu if it is online. */
362         pcpu = pcpu_find_address(cpu_online_mask, stap());
363         if (!pcpu)
364                 /* Use the first online cpu. */
365                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
366         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
367 }
368
369 /*
370  * Call function on the ipl CPU.
371  */
372 void smp_call_ipl_cpu(void (*func)(void *), void *data)
373 {
374         pcpu_delegate(&pcpu_devices[0], func, data,
375                       pcpu_devices->lowcore->panic_stack -
376                       PANIC_FRAME_OFFSET + PAGE_SIZE);
377 }
378
379 int smp_find_processor_id(u16 address)
380 {
381         int cpu;
382
383         for_each_present_cpu(cpu)
384                 if (pcpu_devices[cpu].address == address)
385                         return cpu;
386         return -1;
387 }
388
389 bool arch_vcpu_is_preempted(int cpu)
390 {
391         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
392                 return false;
393         if (pcpu_running(pcpu_devices + cpu))
394                 return false;
395         return true;
396 }
397 EXPORT_SYMBOL(arch_vcpu_is_preempted);
398
399 void smp_yield_cpu(int cpu)
400 {
401         if (MACHINE_HAS_DIAG9C) {
402                 diag_stat_inc_norecursion(DIAG_STAT_X09C);
403                 asm volatile("diag %0,0,0x9c"
404                              : : "d" (pcpu_devices[cpu].address));
405         } else if (MACHINE_HAS_DIAG44) {
406                 diag_stat_inc_norecursion(DIAG_STAT_X044);
407                 asm volatile("diag 0,0,0x44");
408         }
409 }
410
411 /*
412  * Send cpus emergency shutdown signal. This gives the cpus the
413  * opportunity to complete outstanding interrupts.
414  */
415 void notrace smp_emergency_stop(void)
416 {
417         cpumask_t cpumask;
418         u64 end;
419         int cpu;
420
421         cpumask_copy(&cpumask, cpu_online_mask);
422         cpumask_clear_cpu(smp_processor_id(), &cpumask);
423
424         end = get_tod_clock() + (1000000UL << 12);
425         for_each_cpu(cpu, &cpumask) {
426                 struct pcpu *pcpu = pcpu_devices + cpu;
427                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
428                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
429                                    0, NULL) == SIGP_CC_BUSY &&
430                        get_tod_clock() < end)
431                         cpu_relax();
432         }
433         while (get_tod_clock() < end) {
434                 for_each_cpu(cpu, &cpumask)
435                         if (pcpu_stopped(pcpu_devices + cpu))
436                                 cpumask_clear_cpu(cpu, &cpumask);
437                 if (cpumask_empty(&cpumask))
438                         break;
439                 cpu_relax();
440         }
441 }
442 NOKPROBE_SYMBOL(smp_emergency_stop);
443
444 /*
445  * Stop all cpus but the current one.
446  */
447 void smp_send_stop(void)
448 {
449         int cpu;
450
451         /* Disable all interrupts/machine checks */
452         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
453         trace_hardirqs_off();
454
455         debug_set_critical();
456
457         if (oops_in_progress)
458                 smp_emergency_stop();
459
460         /* stop all processors */
461         for_each_online_cpu(cpu) {
462                 if (cpu == smp_processor_id())
463                         continue;
464                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
465                 while (!pcpu_stopped(pcpu_devices + cpu))
466                         cpu_relax();
467         }
468 }
469
470 /*
471  * This is the main routine where commands issued by other
472  * cpus are handled.
473  */
474 static void smp_handle_ext_call(void)
475 {
476         unsigned long bits;
477
478         /* handle bit signal external calls */
479         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
480         if (test_bit(ec_stop_cpu, &bits))
481                 smp_stop_cpu();
482         if (test_bit(ec_schedule, &bits))
483                 scheduler_ipi();
484         if (test_bit(ec_call_function_single, &bits))
485                 generic_smp_call_function_single_interrupt();
486 }
487
488 static void do_ext_call_interrupt(struct ext_code ext_code,
489                                   unsigned int param32, unsigned long param64)
490 {
491         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
492         smp_handle_ext_call();
493 }
494
495 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
496 {
497         int cpu;
498
499         for_each_cpu(cpu, mask)
500                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
501 }
502
503 void arch_send_call_function_single_ipi(int cpu)
504 {
505         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
506 }
507
508 /*
509  * this function sends a 'reschedule' IPI to another CPU.
510  * it goes straight through and wastes no time serializing
511  * anything. Worst case is that we lose a reschedule ...
512  */
513 void smp_send_reschedule(int cpu)
514 {
515         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
516 }
517
518 /*
519  * parameter area for the set/clear control bit callbacks
520  */
521 struct ec_creg_mask_parms {
522         unsigned long orval;
523         unsigned long andval;
524         int cr;
525 };
526
527 /*
528  * callback for setting/clearing control bits
529  */
530 static void smp_ctl_bit_callback(void *info)
531 {
532         struct ec_creg_mask_parms *pp = info;
533         unsigned long cregs[16];
534
535         __ctl_store(cregs, 0, 15);
536         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
537         __ctl_load(cregs, 0, 15);
538 }
539
540 /*
541  * Set a bit in a control register of all cpus
542  */
543 void smp_ctl_set_bit(int cr, int bit)
544 {
545         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
546
547         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
548 }
549 EXPORT_SYMBOL(smp_ctl_set_bit);
550
551 /*
552  * Clear a bit in a control register of all cpus
553  */
554 void smp_ctl_clear_bit(int cr, int bit)
555 {
556         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
557
558         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
559 }
560 EXPORT_SYMBOL(smp_ctl_clear_bit);
561
562 #ifdef CONFIG_CRASH_DUMP
563
564 int smp_store_status(int cpu)
565 {
566         struct pcpu *pcpu = pcpu_devices + cpu;
567         unsigned long pa;
568
569         pa = __pa(&pcpu->lowcore->floating_pt_save_area);
570         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
571                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
572                 return -EIO;
573         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
574                 return 0;
575         pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
576         if (MACHINE_HAS_GS)
577                 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
578         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
579                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
580                 return -EIO;
581         return 0;
582 }
583
584 /*
585  * Collect CPU state of the previous, crashed system.
586  * There are four cases:
587  * 1) standard zfcp dump
588  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
589  *    The state for all CPUs except the boot CPU needs to be collected
590  *    with sigp stop-and-store-status. The boot CPU state is located in
591  *    the absolute lowcore of the memory stored in the HSA. The zcore code
592  *    will copy the boot CPU state from the HSA.
593  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
594  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
595  *    The state for all CPUs except the boot CPU needs to be collected
596  *    with sigp stop-and-store-status. The firmware or the boot-loader
597  *    stored the registers of the boot CPU in the absolute lowcore in the
598  *    memory of the old system.
599  * 3) kdump and the old kernel did not store the CPU state,
600  *    or stand-alone kdump for DASD
601  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
602  *    The state for all CPUs except the boot CPU needs to be collected
603  *    with sigp stop-and-store-status. The kexec code or the boot-loader
604  *    stored the registers of the boot CPU in the memory of the old system.
605  * 4) kdump and the old kernel stored the CPU state
606  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
607  *    This case does not exist for s390 anymore, setup_arch explicitly
608  *    deactivates the elfcorehdr= kernel parameter
609  */
610 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
611                                      bool is_boot_cpu, unsigned long page)
612 {
613         __vector128 *vxrs = (__vector128 *) page;
614
615         if (is_boot_cpu)
616                 vxrs = boot_cpu_vector_save_area;
617         else
618                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
619         save_area_add_vxrs(sa, vxrs);
620 }
621
622 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
623                                      bool is_boot_cpu, unsigned long page)
624 {
625         void *regs = (void *) page;
626
627         if (is_boot_cpu)
628                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
629         else
630                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
631         save_area_add_regs(sa, regs);
632 }
633
634 void __init smp_save_dump_cpus(void)
635 {
636         int addr, boot_cpu_addr, max_cpu_addr;
637         struct save_area *sa;
638         unsigned long page;
639         bool is_boot_cpu;
640
641         if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
642                 /* No previous system present, normal boot. */
643                 return;
644         /* Allocate a page as dumping area for the store status sigps */
645         page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
646         /* Set multi-threading state to the previous system. */
647         pcpu_set_smt(sclp.mtid_prev);
648         boot_cpu_addr = stap();
649         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
650         for (addr = 0; addr <= max_cpu_addr; addr++) {
651                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
652                     SIGP_CC_NOT_OPERATIONAL)
653                         continue;
654                 is_boot_cpu = (addr == boot_cpu_addr);
655                 /* Allocate save area */
656                 sa = save_area_alloc(is_boot_cpu);
657                 if (!sa)
658                         panic("could not allocate memory for save area\n");
659                 if (MACHINE_HAS_VX)
660                         /* Get the vector registers */
661                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
662                 /*
663                  * For a zfcp dump OLDMEM_BASE == NULL and the registers
664                  * of the boot CPU are stored in the HSA. To retrieve
665                  * these registers an SCLP request is required which is
666                  * done by drivers/s390/char/zcore.c:init_cpu_info()
667                  */
668                 if (!is_boot_cpu || OLDMEM_BASE)
669                         /* Get the CPU registers */
670                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
671         }
672         memblock_free(page, PAGE_SIZE);
673         diag308_reset();
674         pcpu_set_smt(0);
675 }
676 #endif /* CONFIG_CRASH_DUMP */
677
678 void smp_cpu_set_polarization(int cpu, int val)
679 {
680         pcpu_devices[cpu].polarization = val;
681 }
682
683 int smp_cpu_get_polarization(int cpu)
684 {
685         return pcpu_devices[cpu].polarization;
686 }
687
688 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
689 {
690         static int use_sigp_detection;
691         int address;
692
693         if (use_sigp_detection || sclp_get_core_info(info, early)) {
694                 use_sigp_detection = 1;
695                 for (address = 0;
696                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
697                      address += (1U << smp_cpu_mt_shift)) {
698                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
699                             SIGP_CC_NOT_OPERATIONAL)
700                                 continue;
701                         info->core[info->configured].core_id =
702                                 address >> smp_cpu_mt_shift;
703                         info->configured++;
704                 }
705                 info->combined = info->configured;
706         }
707 }
708
709 static int smp_add_present_cpu(int cpu);
710
711 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
712 {
713         struct pcpu *pcpu;
714         cpumask_t avail;
715         int cpu, nr, i, j;
716         u16 address;
717
718         nr = 0;
719         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
720         cpu = cpumask_first(&avail);
721         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
722                 if (sclp.has_core_type && info->core[i].type != boot_core_type)
723                         continue;
724                 address = info->core[i].core_id << smp_cpu_mt_shift;
725                 for (j = 0; j <= smp_cpu_mtid; j++) {
726                         if (pcpu_find_address(cpu_present_mask, address + j))
727                                 continue;
728                         pcpu = pcpu_devices + cpu;
729                         pcpu->address = address + j;
730                         pcpu->state =
731                                 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
732                                 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
733                         smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
734                         set_cpu_present(cpu, true);
735                         if (sysfs_add && smp_add_present_cpu(cpu) != 0)
736                                 set_cpu_present(cpu, false);
737                         else
738                                 nr++;
739                         cpu = cpumask_next(cpu, &avail);
740                         if (cpu >= nr_cpu_ids)
741                                 break;
742                 }
743         }
744         return nr;
745 }
746
747 void __init smp_detect_cpus(void)
748 {
749         unsigned int cpu, mtid, c_cpus, s_cpus;
750         struct sclp_core_info *info;
751         u16 address;
752
753         /* Get CPU information */
754         info = memblock_virt_alloc(sizeof(*info), 8);
755         smp_get_core_info(info, 1);
756         /* Find boot CPU type */
757         if (sclp.has_core_type) {
758                 address = stap();
759                 for (cpu = 0; cpu < info->combined; cpu++)
760                         if (info->core[cpu].core_id == address) {
761                                 /* The boot cpu dictates the cpu type. */
762                                 boot_core_type = info->core[cpu].type;
763                                 break;
764                         }
765                 if (cpu >= info->combined)
766                         panic("Could not find boot CPU type");
767         }
768
769         /* Set multi-threading state for the current system */
770         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
771         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
772         pcpu_set_smt(mtid);
773
774         /* Print number of CPUs */
775         c_cpus = s_cpus = 0;
776         for (cpu = 0; cpu < info->combined; cpu++) {
777                 if (sclp.has_core_type &&
778                     info->core[cpu].type != boot_core_type)
779                         continue;
780                 if (cpu < info->configured)
781                         c_cpus += smp_cpu_mtid + 1;
782                 else
783                         s_cpus += smp_cpu_mtid + 1;
784         }
785         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
786
787         /* Add CPUs present at boot */
788         get_online_cpus();
789         __smp_rescan_cpus(info, 0);
790         put_online_cpus();
791         memblock_free_early((unsigned long)info, sizeof(*info));
792 }
793
794 /*
795  *      Activate a secondary processor.
796  */
797 static void smp_start_secondary(void *cpuvoid)
798 {
799         int cpu = smp_processor_id();
800
801         S390_lowcore.last_update_clock = get_tod_clock();
802         S390_lowcore.restart_stack = (unsigned long) restart_stack;
803         S390_lowcore.restart_fn = (unsigned long) do_restart;
804         S390_lowcore.restart_data = 0;
805         S390_lowcore.restart_source = -1UL;
806         restore_access_regs(S390_lowcore.access_regs_save_area);
807         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
808         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
809         cpu_init();
810         preempt_disable();
811         init_cpu_timer();
812         vtime_init();
813         pfault_init();
814         notify_cpu_starting(cpu);
815         if (topology_cpu_dedicated(cpu))
816                 set_cpu_flag(CIF_DEDICATED_CPU);
817         else
818                 clear_cpu_flag(CIF_DEDICATED_CPU);
819         set_cpu_online(cpu, true);
820         inc_irq_stat(CPU_RST);
821         local_irq_enable();
822         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
823 }
824
825 /* Upping and downing of CPUs */
826 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
827 {
828         struct pcpu *pcpu;
829         int base, i, rc;
830
831         pcpu = pcpu_devices + cpu;
832         if (pcpu->state != CPU_STATE_CONFIGURED)
833                 return -EIO;
834         base = smp_get_base_cpu(cpu);
835         for (i = 0; i <= smp_cpu_mtid; i++) {
836                 if (base + i < nr_cpu_ids)
837                         if (cpu_online(base + i))
838                                 break;
839         }
840         /*
841          * If this is the first CPU of the core to get online
842          * do an initial CPU reset.
843          */
844         if (i > smp_cpu_mtid &&
845             pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
846             SIGP_CC_ORDER_CODE_ACCEPTED)
847                 return -EIO;
848
849         rc = pcpu_alloc_lowcore(pcpu, cpu);
850         if (rc)
851                 return rc;
852         pcpu_prepare_secondary(pcpu, cpu);
853         pcpu_attach_task(pcpu, tidle);
854         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
855         /* Wait until cpu puts itself in the online & active maps */
856         while (!cpu_online(cpu))
857                 cpu_relax();
858         return 0;
859 }
860
861 static unsigned int setup_possible_cpus __initdata;
862
863 static int __init _setup_possible_cpus(char *s)
864 {
865         get_option(&s, &setup_possible_cpus);
866         return 0;
867 }
868 early_param("possible_cpus", _setup_possible_cpus);
869
870 #ifdef CONFIG_HOTPLUG_CPU
871
872 int __cpu_disable(void)
873 {
874         unsigned long cregs[16];
875
876         /* Handle possible pending IPIs */
877         smp_handle_ext_call();
878         set_cpu_online(smp_processor_id(), false);
879         /* Disable pseudo page faults on this cpu. */
880         pfault_fini();
881         /* Disable interrupt sources via control register. */
882         __ctl_store(cregs, 0, 15);
883         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
884         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
885         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
886         __ctl_load(cregs, 0, 15);
887         clear_cpu_flag(CIF_NOHZ_DELAY);
888         return 0;
889 }
890
891 void __cpu_die(unsigned int cpu)
892 {
893         struct pcpu *pcpu;
894
895         /* Wait until target cpu is down */
896         pcpu = pcpu_devices + cpu;
897         while (!pcpu_stopped(pcpu))
898                 cpu_relax();
899         pcpu_free_lowcore(pcpu);
900         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
901         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
902 }
903
904 void __noreturn cpu_die(void)
905 {
906         idle_task_exit();
907         __bpon();
908         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
909         for (;;) ;
910 }
911
912 #endif /* CONFIG_HOTPLUG_CPU */
913
914 void __init smp_fill_possible_mask(void)
915 {
916         unsigned int possible, sclp_max, cpu;
917
918         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
919         sclp_max = min(smp_max_threads, sclp_max);
920         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
921         possible = setup_possible_cpus ?: nr_cpu_ids;
922         possible = min(possible, sclp_max);
923         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
924                 set_cpu_possible(cpu, true);
925 }
926
927 void __init smp_prepare_cpus(unsigned int max_cpus)
928 {
929         /* request the 0x1201 emergency signal external interrupt */
930         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
931                 panic("Couldn't request external interrupt 0x1201");
932         /* request the 0x1202 external call external interrupt */
933         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
934                 panic("Couldn't request external interrupt 0x1202");
935 }
936
937 void __init smp_prepare_boot_cpu(void)
938 {
939         struct pcpu *pcpu = pcpu_devices;
940
941         WARN_ON(!cpu_present(0) || !cpu_online(0));
942         pcpu->state = CPU_STATE_CONFIGURED;
943         pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
944         S390_lowcore.percpu_offset = __per_cpu_offset[0];
945         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
946 }
947
948 void __init smp_cpus_done(unsigned int max_cpus)
949 {
950 }
951
952 void __init smp_setup_processor_id(void)
953 {
954         pcpu_devices[0].address = stap();
955         S390_lowcore.cpu_nr = 0;
956         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
957         S390_lowcore.spinlock_index = 0;
958 }
959
960 /*
961  * the frequency of the profiling timer can be changed
962  * by writing a multiplier value into /proc/profile.
963  *
964  * usually you want to run this on all CPUs ;)
965  */
966 int setup_profiling_timer(unsigned int multiplier)
967 {
968         return 0;
969 }
970
971 #ifdef CONFIG_HOTPLUG_CPU
972 static ssize_t cpu_configure_show(struct device *dev,
973                                   struct device_attribute *attr, char *buf)
974 {
975         ssize_t count;
976
977         mutex_lock(&smp_cpu_state_mutex);
978         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
979         mutex_unlock(&smp_cpu_state_mutex);
980         return count;
981 }
982
983 static ssize_t cpu_configure_store(struct device *dev,
984                                    struct device_attribute *attr,
985                                    const char *buf, size_t count)
986 {
987         struct pcpu *pcpu;
988         int cpu, val, rc, i;
989         char delim;
990
991         if (sscanf(buf, "%d %c", &val, &delim) != 1)
992                 return -EINVAL;
993         if (val != 0 && val != 1)
994                 return -EINVAL;
995         get_online_cpus();
996         mutex_lock(&smp_cpu_state_mutex);
997         rc = -EBUSY;
998         /* disallow configuration changes of online cpus and cpu 0 */
999         cpu = dev->id;
1000         cpu = smp_get_base_cpu(cpu);
1001         if (cpu == 0)
1002                 goto out;
1003         for (i = 0; i <= smp_cpu_mtid; i++)
1004                 if (cpu_online(cpu + i))
1005                         goto out;
1006         pcpu = pcpu_devices + cpu;
1007         rc = 0;
1008         switch (val) {
1009         case 0:
1010                 if (pcpu->state != CPU_STATE_CONFIGURED)
1011                         break;
1012                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1013                 if (rc)
1014                         break;
1015                 for (i = 0; i <= smp_cpu_mtid; i++) {
1016                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1017                                 continue;
1018                         pcpu[i].state = CPU_STATE_STANDBY;
1019                         smp_cpu_set_polarization(cpu + i,
1020                                                  POLARIZATION_UNKNOWN);
1021                 }
1022                 topology_expect_change();
1023                 break;
1024         case 1:
1025                 if (pcpu->state != CPU_STATE_STANDBY)
1026                         break;
1027                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1028                 if (rc)
1029                         break;
1030                 for (i = 0; i <= smp_cpu_mtid; i++) {
1031                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1032                                 continue;
1033                         pcpu[i].state = CPU_STATE_CONFIGURED;
1034                         smp_cpu_set_polarization(cpu + i,
1035                                                  POLARIZATION_UNKNOWN);
1036                 }
1037                 topology_expect_change();
1038                 break;
1039         default:
1040                 break;
1041         }
1042 out:
1043         mutex_unlock(&smp_cpu_state_mutex);
1044         put_online_cpus();
1045         return rc ? rc : count;
1046 }
1047 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1048 #endif /* CONFIG_HOTPLUG_CPU */
1049
1050 static ssize_t show_cpu_address(struct device *dev,
1051                                 struct device_attribute *attr, char *buf)
1052 {
1053         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1054 }
1055 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1056
1057 static struct attribute *cpu_common_attrs[] = {
1058 #ifdef CONFIG_HOTPLUG_CPU
1059         &dev_attr_configure.attr,
1060 #endif
1061         &dev_attr_address.attr,
1062         NULL,
1063 };
1064
1065 static struct attribute_group cpu_common_attr_group = {
1066         .attrs = cpu_common_attrs,
1067 };
1068
1069 static struct attribute *cpu_online_attrs[] = {
1070         &dev_attr_idle_count.attr,
1071         &dev_attr_idle_time_us.attr,
1072         NULL,
1073 };
1074
1075 static struct attribute_group cpu_online_attr_group = {
1076         .attrs = cpu_online_attrs,
1077 };
1078
1079 static int smp_cpu_online(unsigned int cpu)
1080 {
1081         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1082
1083         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1084 }
1085 static int smp_cpu_pre_down(unsigned int cpu)
1086 {
1087         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1088
1089         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1090         return 0;
1091 }
1092
1093 static int smp_add_present_cpu(int cpu)
1094 {
1095         struct device *s;
1096         struct cpu *c;
1097         int rc;
1098
1099         c = kzalloc(sizeof(*c), GFP_KERNEL);
1100         if (!c)
1101                 return -ENOMEM;
1102         per_cpu(cpu_device, cpu) = c;
1103         s = &c->dev;
1104         c->hotpluggable = 1;
1105         rc = register_cpu(c, cpu);
1106         if (rc)
1107                 goto out;
1108         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1109         if (rc)
1110                 goto out_cpu;
1111         rc = topology_cpu_init(c);
1112         if (rc)
1113                 goto out_topology;
1114         return 0;
1115
1116 out_topology:
1117         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1118 out_cpu:
1119 #ifdef CONFIG_HOTPLUG_CPU
1120         unregister_cpu(c);
1121 #endif
1122 out:
1123         return rc;
1124 }
1125
1126 #ifdef CONFIG_HOTPLUG_CPU
1127
1128 int __ref smp_rescan_cpus(void)
1129 {
1130         struct sclp_core_info *info;
1131         int nr;
1132
1133         info = kzalloc(sizeof(*info), GFP_KERNEL);
1134         if (!info)
1135                 return -ENOMEM;
1136         smp_get_core_info(info, 0);
1137         get_online_cpus();
1138         mutex_lock(&smp_cpu_state_mutex);
1139         nr = __smp_rescan_cpus(info, 1);
1140         mutex_unlock(&smp_cpu_state_mutex);
1141         put_online_cpus();
1142         kfree(info);
1143         if (nr)
1144                 topology_schedule_update();
1145         return 0;
1146 }
1147
1148 static ssize_t __ref rescan_store(struct device *dev,
1149                                   struct device_attribute *attr,
1150                                   const char *buf,
1151                                   size_t count)
1152 {
1153         int rc;
1154
1155         rc = smp_rescan_cpus();
1156         return rc ? rc : count;
1157 }
1158 static DEVICE_ATTR_WO(rescan);
1159 #endif /* CONFIG_HOTPLUG_CPU */
1160
1161 static int __init s390_smp_init(void)
1162 {
1163         int cpu, rc = 0;
1164
1165 #ifdef CONFIG_HOTPLUG_CPU
1166         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1167         if (rc)
1168                 return rc;
1169 #endif
1170         for_each_present_cpu(cpu) {
1171                 rc = smp_add_present_cpu(cpu);
1172                 if (rc)
1173                         goto out;
1174         }
1175
1176         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1177                                smp_cpu_online, smp_cpu_pre_down);
1178         rc = rc <= 0 ? rc : 0;
1179 out:
1180         return rc;
1181 }
1182 subsys_initcall(s390_smp_init);