Merge tag 'ptrace-cleanups-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / arch / s390 / kernel / ptrace.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Ptrace user space interface.
4  *
5  *    Copyright IBM Corp. 1999, 2010
6  *    Author(s): Denis Joseph Barrow
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  */
9
10 #include "asm/ptrace.h"
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/audit.h>
21 #include <linux/signal.h>
22 #include <linux/elf.h>
23 #include <linux/regset.h>
24 #include <linux/seccomp.h>
25 #include <linux/compat.h>
26 #include <trace/syscall.h>
27 #include <asm/page.h>
28 #include <linux/uaccess.h>
29 #include <asm/unistd.h>
30 #include <asm/switch_to.h>
31 #include <asm/runtime_instr.h>
32 #include <asm/facility.h>
33
34 #include "entry.h"
35
36 #ifdef CONFIG_COMPAT
37 #include "compat_ptrace.h"
38 #endif
39
40 void update_cr_regs(struct task_struct *task)
41 {
42         struct pt_regs *regs = task_pt_regs(task);
43         struct thread_struct *thread = &task->thread;
44         struct per_regs old, new;
45         union ctlreg0 cr0_old, cr0_new;
46         union ctlreg2 cr2_old, cr2_new;
47         int cr0_changed, cr2_changed;
48
49         __ctl_store(cr0_old.val, 0, 0);
50         __ctl_store(cr2_old.val, 2, 2);
51         cr0_new = cr0_old;
52         cr2_new = cr2_old;
53         /* Take care of the enable/disable of transactional execution. */
54         if (MACHINE_HAS_TE) {
55                 /* Set or clear transaction execution TXC bit 8. */
56                 cr0_new.tcx = 1;
57                 if (task->thread.per_flags & PER_FLAG_NO_TE)
58                         cr0_new.tcx = 0;
59                 /* Set or clear transaction execution TDC bits 62 and 63. */
60                 cr2_new.tdc = 0;
61                 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
62                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
63                                 cr2_new.tdc = 1;
64                         else
65                                 cr2_new.tdc = 2;
66                 }
67         }
68         /* Take care of enable/disable of guarded storage. */
69         if (MACHINE_HAS_GS) {
70                 cr2_new.gse = 0;
71                 if (task->thread.gs_cb)
72                         cr2_new.gse = 1;
73         }
74         /* Load control register 0/2 iff changed */
75         cr0_changed = cr0_new.val != cr0_old.val;
76         cr2_changed = cr2_new.val != cr2_old.val;
77         if (cr0_changed)
78                 __ctl_load(cr0_new.val, 0, 0);
79         if (cr2_changed)
80                 __ctl_load(cr2_new.val, 2, 2);
81         /* Copy user specified PER registers */
82         new.control = thread->per_user.control;
83         new.start = thread->per_user.start;
84         new.end = thread->per_user.end;
85
86         /* merge TIF_SINGLE_STEP into user specified PER registers. */
87         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
88             test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
89                 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
90                         new.control |= PER_EVENT_BRANCH;
91                 else
92                         new.control |= PER_EVENT_IFETCH;
93                 new.control |= PER_CONTROL_SUSPENSION;
94                 new.control |= PER_EVENT_TRANSACTION_END;
95                 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
96                         new.control |= PER_EVENT_IFETCH;
97                 new.start = 0;
98                 new.end = -1UL;
99         }
100
101         /* Take care of the PER enablement bit in the PSW. */
102         if (!(new.control & PER_EVENT_MASK)) {
103                 regs->psw.mask &= ~PSW_MASK_PER;
104                 return;
105         }
106         regs->psw.mask |= PSW_MASK_PER;
107         __ctl_store(old, 9, 11);
108         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
109                 __ctl_load(new, 9, 11);
110 }
111
112 void user_enable_single_step(struct task_struct *task)
113 {
114         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
115         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
116 }
117
118 void user_disable_single_step(struct task_struct *task)
119 {
120         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
121         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
122 }
123
124 void user_enable_block_step(struct task_struct *task)
125 {
126         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
127         set_tsk_thread_flag(task, TIF_BLOCK_STEP);
128 }
129
130 /*
131  * Called by kernel/ptrace.c when detaching..
132  *
133  * Clear all debugging related fields.
134  */
135 void ptrace_disable(struct task_struct *task)
136 {
137         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
138         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
139         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
140         clear_tsk_thread_flag(task, TIF_PER_TRAP);
141         task->thread.per_flags = 0;
142 }
143
144 #define __ADDR_MASK 7
145
146 static inline unsigned long __peek_user_per(struct task_struct *child,
147                                             addr_t addr)
148 {
149         if (addr == offsetof(struct per_struct_kernel, cr9))
150                 /* Control bits of the active per set. */
151                 return test_thread_flag(TIF_SINGLE_STEP) ?
152                         PER_EVENT_IFETCH : child->thread.per_user.control;
153         else if (addr == offsetof(struct per_struct_kernel, cr10))
154                 /* Start address of the active per set. */
155                 return test_thread_flag(TIF_SINGLE_STEP) ?
156                         0 : child->thread.per_user.start;
157         else if (addr == offsetof(struct per_struct_kernel, cr11))
158                 /* End address of the active per set. */
159                 return test_thread_flag(TIF_SINGLE_STEP) ?
160                         -1UL : child->thread.per_user.end;
161         else if (addr == offsetof(struct per_struct_kernel, bits))
162                 /* Single-step bit. */
163                 return test_thread_flag(TIF_SINGLE_STEP) ?
164                         (1UL << (BITS_PER_LONG - 1)) : 0;
165         else if (addr == offsetof(struct per_struct_kernel, starting_addr))
166                 /* Start address of the user specified per set. */
167                 return child->thread.per_user.start;
168         else if (addr == offsetof(struct per_struct_kernel, ending_addr))
169                 /* End address of the user specified per set. */
170                 return child->thread.per_user.end;
171         else if (addr == offsetof(struct per_struct_kernel, perc_atmid))
172                 /* PER code, ATMID and AI of the last PER trap */
173                 return (unsigned long)
174                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
175         else if (addr == offsetof(struct per_struct_kernel, address))
176                 /* Address of the last PER trap */
177                 return child->thread.per_event.address;
178         else if (addr == offsetof(struct per_struct_kernel, access_id))
179                 /* Access id of the last PER trap */
180                 return (unsigned long)
181                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
182         return 0;
183 }
184
185 /*
186  * Read the word at offset addr from the user area of a process. The
187  * trouble here is that the information is littered over different
188  * locations. The process registers are found on the kernel stack,
189  * the floating point stuff and the trace settings are stored in
190  * the task structure. In addition the different structures in
191  * struct user contain pad bytes that should be read as zeroes.
192  * Lovely...
193  */
194 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
195 {
196         addr_t offset, tmp;
197
198         if (addr < offsetof(struct user, regs.acrs)) {
199                 /*
200                  * psw and gprs are stored on the stack
201                  */
202                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
203                 if (addr == offsetof(struct user, regs.psw.mask)) {
204                         /* Return a clean psw mask. */
205                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
206                         tmp |= PSW_USER_BITS;
207                 }
208
209         } else if (addr < offsetof(struct user, regs.orig_gpr2)) {
210                 /*
211                  * access registers are stored in the thread structure
212                  */
213                 offset = addr - offsetof(struct user, regs.acrs);
214                 /*
215                  * Very special case: old & broken 64 bit gdb reading
216                  * from acrs[15]. Result is a 64 bit value. Read the
217                  * 32 bit acrs[15] value and shift it by 32. Sick...
218                  */
219                 if (addr == offsetof(struct user, regs.acrs[15]))
220                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
221                 else
222                         tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
223
224         } else if (addr == offsetof(struct user, regs.orig_gpr2)) {
225                 /*
226                  * orig_gpr2 is stored on the kernel stack
227                  */
228                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
229
230         } else if (addr < offsetof(struct user, regs.fp_regs)) {
231                 /*
232                  * prevent reads of padding hole between
233                  * orig_gpr2 and fp_regs on s390.
234                  */
235                 tmp = 0;
236
237         } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
238                 /*
239                  * floating point control reg. is in the thread structure
240                  */
241                 tmp = child->thread.fpu.fpc;
242                 tmp <<= BITS_PER_LONG - 32;
243
244         } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
245                 /*
246                  * floating point regs. are either in child->thread.fpu
247                  * or the child->thread.fpu.vxrs array
248                  */
249                 offset = addr - offsetof(struct user, regs.fp_regs.fprs);
250                 if (MACHINE_HAS_VX)
251                         tmp = *(addr_t *)
252                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
253                 else
254                         tmp = *(addr_t *)
255                                ((addr_t) child->thread.fpu.fprs + offset);
256
257         } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
258                 /*
259                  * Handle access to the per_info structure.
260                  */
261                 addr -= offsetof(struct user, regs.per_info);
262                 tmp = __peek_user_per(child, addr);
263
264         } else
265                 tmp = 0;
266
267         return tmp;
268 }
269
270 static int
271 peek_user(struct task_struct *child, addr_t addr, addr_t data)
272 {
273         addr_t tmp, mask;
274
275         /*
276          * Stupid gdb peeks/pokes the access registers in 64 bit with
277          * an alignment of 4. Programmers from hell...
278          */
279         mask = __ADDR_MASK;
280         if (addr >= offsetof(struct user, regs.acrs) &&
281             addr < offsetof(struct user, regs.orig_gpr2))
282                 mask = 3;
283         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
284                 return -EIO;
285
286         tmp = __peek_user(child, addr);
287         return put_user(tmp, (addr_t __user *) data);
288 }
289
290 static inline void __poke_user_per(struct task_struct *child,
291                                    addr_t addr, addr_t data)
292 {
293         /*
294          * There are only three fields in the per_info struct that the
295          * debugger user can write to.
296          * 1) cr9: the debugger wants to set a new PER event mask
297          * 2) starting_addr: the debugger wants to set a new starting
298          *    address to use with the PER event mask.
299          * 3) ending_addr: the debugger wants to set a new ending
300          *    address to use with the PER event mask.
301          * The user specified PER event mask and the start and end
302          * addresses are used only if single stepping is not in effect.
303          * Writes to any other field in per_info are ignored.
304          */
305         if (addr == offsetof(struct per_struct_kernel, cr9))
306                 /* PER event mask of the user specified per set. */
307                 child->thread.per_user.control =
308                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
309         else if (addr == offsetof(struct per_struct_kernel, starting_addr))
310                 /* Starting address of the user specified per set. */
311                 child->thread.per_user.start = data;
312         else if (addr == offsetof(struct per_struct_kernel, ending_addr))
313                 /* Ending address of the user specified per set. */
314                 child->thread.per_user.end = data;
315 }
316
317 /*
318  * Write a word to the user area of a process at location addr. This
319  * operation does have an additional problem compared to peek_user.
320  * Stores to the program status word and on the floating point
321  * control register needs to get checked for validity.
322  */
323 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
324 {
325         addr_t offset;
326
327
328         if (addr < offsetof(struct user, regs.acrs)) {
329                 struct pt_regs *regs = task_pt_regs(child);
330                 /*
331                  * psw and gprs are stored on the stack
332                  */
333                 if (addr == offsetof(struct user, regs.psw.mask)) {
334                         unsigned long mask = PSW_MASK_USER;
335
336                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
337                         if ((data ^ PSW_USER_BITS) & ~mask)
338                                 /* Invalid psw mask. */
339                                 return -EINVAL;
340                         if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
341                                 /* Invalid address-space-control bits */
342                                 return -EINVAL;
343                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
344                                 /* Invalid addressing mode bits */
345                                 return -EINVAL;
346                 }
347
348                 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
349                         addr == offsetof(struct user, regs.gprs[2])) {
350                         struct pt_regs *regs = task_pt_regs(child);
351
352                         regs->int_code = 0x20000 | (data & 0xffff);
353                 }
354                 *(addr_t *)((addr_t) &regs->psw + addr) = data;
355         } else if (addr < offsetof(struct user, regs.orig_gpr2)) {
356                 /*
357                  * access registers are stored in the thread structure
358                  */
359                 offset = addr - offsetof(struct user, regs.acrs);
360                 /*
361                  * Very special case: old & broken 64 bit gdb writing
362                  * to acrs[15] with a 64 bit value. Ignore the lower
363                  * half of the value and write the upper 32 bit to
364                  * acrs[15]. Sick...
365                  */
366                 if (addr == offsetof(struct user, regs.acrs[15]))
367                         child->thread.acrs[15] = (unsigned int) (data >> 32);
368                 else
369                         *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
370
371         } else if (addr == offsetof(struct user, regs.orig_gpr2)) {
372                 /*
373                  * orig_gpr2 is stored on the kernel stack
374                  */
375                 task_pt_regs(child)->orig_gpr2 = data;
376
377         } else if (addr < offsetof(struct user, regs.fp_regs)) {
378                 /*
379                  * prevent writes of padding hole between
380                  * orig_gpr2 and fp_regs on s390.
381                  */
382                 return 0;
383
384         } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
385                 /*
386                  * floating point control reg. is in the thread structure
387                  */
388                 if ((unsigned int) data != 0 ||
389                     test_fp_ctl(data >> (BITS_PER_LONG - 32)))
390                         return -EINVAL;
391                 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
392
393         } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
394                 /*
395                  * floating point regs. are either in child->thread.fpu
396                  * or the child->thread.fpu.vxrs array
397                  */
398                 offset = addr - offsetof(struct user, regs.fp_regs.fprs);
399                 if (MACHINE_HAS_VX)
400                         *(addr_t *)((addr_t)
401                                 child->thread.fpu.vxrs + 2*offset) = data;
402                 else
403                         *(addr_t *)((addr_t)
404                                 child->thread.fpu.fprs + offset) = data;
405
406         } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
407                 /*
408                  * Handle access to the per_info structure.
409                  */
410                 addr -= offsetof(struct user, regs.per_info);
411                 __poke_user_per(child, addr, data);
412
413         }
414
415         return 0;
416 }
417
418 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
419 {
420         addr_t mask;
421
422         /*
423          * Stupid gdb peeks/pokes the access registers in 64 bit with
424          * an alignment of 4. Programmers from hell indeed...
425          */
426         mask = __ADDR_MASK;
427         if (addr >= offsetof(struct user, regs.acrs) &&
428             addr < offsetof(struct user, regs.orig_gpr2))
429                 mask = 3;
430         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
431                 return -EIO;
432
433         return __poke_user(child, addr, data);
434 }
435
436 long arch_ptrace(struct task_struct *child, long request,
437                  unsigned long addr, unsigned long data)
438 {
439         ptrace_area parea; 
440         int copied, ret;
441
442         switch (request) {
443         case PTRACE_PEEKUSR:
444                 /* read the word at location addr in the USER area. */
445                 return peek_user(child, addr, data);
446
447         case PTRACE_POKEUSR:
448                 /* write the word at location addr in the USER area */
449                 return poke_user(child, addr, data);
450
451         case PTRACE_PEEKUSR_AREA:
452         case PTRACE_POKEUSR_AREA:
453                 if (copy_from_user(&parea, (void __force __user *) addr,
454                                                         sizeof(parea)))
455                         return -EFAULT;
456                 addr = parea.kernel_addr;
457                 data = parea.process_addr;
458                 copied = 0;
459                 while (copied < parea.len) {
460                         if (request == PTRACE_PEEKUSR_AREA)
461                                 ret = peek_user(child, addr, data);
462                         else {
463                                 addr_t utmp;
464                                 if (get_user(utmp,
465                                              (addr_t __force __user *) data))
466                                         return -EFAULT;
467                                 ret = poke_user(child, addr, utmp);
468                         }
469                         if (ret)
470                                 return ret;
471                         addr += sizeof(unsigned long);
472                         data += sizeof(unsigned long);
473                         copied += sizeof(unsigned long);
474                 }
475                 return 0;
476         case PTRACE_GET_LAST_BREAK:
477                 put_user(child->thread.last_break,
478                          (unsigned long __user *) data);
479                 return 0;
480         case PTRACE_ENABLE_TE:
481                 if (!MACHINE_HAS_TE)
482                         return -EIO;
483                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
484                 return 0;
485         case PTRACE_DISABLE_TE:
486                 if (!MACHINE_HAS_TE)
487                         return -EIO;
488                 child->thread.per_flags |= PER_FLAG_NO_TE;
489                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
490                 return 0;
491         case PTRACE_TE_ABORT_RAND:
492                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
493                         return -EIO;
494                 switch (data) {
495                 case 0UL:
496                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
497                         break;
498                 case 1UL:
499                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
500                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
501                         break;
502                 case 2UL:
503                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
504                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
505                         break;
506                 default:
507                         return -EINVAL;
508                 }
509                 return 0;
510         default:
511                 return ptrace_request(child, request, addr, data);
512         }
513 }
514
515 #ifdef CONFIG_COMPAT
516 /*
517  * Now the fun part starts... a 31 bit program running in the
518  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
519  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
520  * to handle, the difference to the 64 bit versions of the requests
521  * is that the access is done in multiples of 4 byte instead of
522  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
523  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
524  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
525  * is a 31 bit program too, the content of struct user can be
526  * emulated. A 31 bit program peeking into the struct user of
527  * a 64 bit program is a no-no.
528  */
529
530 /*
531  * Same as peek_user_per but for a 31 bit program.
532  */
533 static inline __u32 __peek_user_per_compat(struct task_struct *child,
534                                            addr_t addr)
535 {
536         if (addr == offsetof(struct compat_per_struct_kernel, cr9))
537                 /* Control bits of the active per set. */
538                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
539                         PER_EVENT_IFETCH : child->thread.per_user.control;
540         else if (addr == offsetof(struct compat_per_struct_kernel, cr10))
541                 /* Start address of the active per set. */
542                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
543                         0 : child->thread.per_user.start;
544         else if (addr == offsetof(struct compat_per_struct_kernel, cr11))
545                 /* End address of the active per set. */
546                 return test_thread_flag(TIF_SINGLE_STEP) ?
547                         PSW32_ADDR_INSN : child->thread.per_user.end;
548         else if (addr == offsetof(struct compat_per_struct_kernel, bits))
549                 /* Single-step bit. */
550                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
551                         0x80000000 : 0;
552         else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
553                 /* Start address of the user specified per set. */
554                 return (__u32) child->thread.per_user.start;
555         else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
556                 /* End address of the user specified per set. */
557                 return (__u32) child->thread.per_user.end;
558         else if (addr == offsetof(struct compat_per_struct_kernel, perc_atmid))
559                 /* PER code, ATMID and AI of the last PER trap */
560                 return (__u32) child->thread.per_event.cause << 16;
561         else if (addr == offsetof(struct compat_per_struct_kernel, address))
562                 /* Address of the last PER trap */
563                 return (__u32) child->thread.per_event.address;
564         else if (addr == offsetof(struct compat_per_struct_kernel, access_id))
565                 /* Access id of the last PER trap */
566                 return (__u32) child->thread.per_event.paid << 24;
567         return 0;
568 }
569
570 /*
571  * Same as peek_user but for a 31 bit program.
572  */
573 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
574 {
575         addr_t offset;
576         __u32 tmp;
577
578         if (addr < offsetof(struct compat_user, regs.acrs)) {
579                 struct pt_regs *regs = task_pt_regs(child);
580                 /*
581                  * psw and gprs are stored on the stack
582                  */
583                 if (addr == offsetof(struct compat_user, regs.psw.mask)) {
584                         /* Fake a 31 bit psw mask. */
585                         tmp = (__u32)(regs->psw.mask >> 32);
586                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
587                         tmp |= PSW32_USER_BITS;
588                 } else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
589                         /* Fake a 31 bit psw address. */
590                         tmp = (__u32) regs->psw.addr |
591                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
592                 } else {
593                         /* gpr 0-15 */
594                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
595                 }
596         } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
597                 /*
598                  * access registers are stored in the thread structure
599                  */
600                 offset = addr - offsetof(struct compat_user, regs.acrs);
601                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
602
603         } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
604                 /*
605                  * orig_gpr2 is stored on the kernel stack
606                  */
607                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
608
609         } else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
610                 /*
611                  * prevent reads of padding hole between
612                  * orig_gpr2 and fp_regs on s390.
613                  */
614                 tmp = 0;
615
616         } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
617                 /*
618                  * floating point control reg. is in the thread structure
619                  */
620                 tmp = child->thread.fpu.fpc;
621
622         } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
623                 /*
624                  * floating point regs. are either in child->thread.fpu
625                  * or the child->thread.fpu.vxrs array
626                  */
627                 offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
628                 if (MACHINE_HAS_VX)
629                         tmp = *(__u32 *)
630                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
631                 else
632                         tmp = *(__u32 *)
633                                ((addr_t) child->thread.fpu.fprs + offset);
634
635         } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
636                 /*
637                  * Handle access to the per_info structure.
638                  */
639                 addr -= offsetof(struct compat_user, regs.per_info);
640                 tmp = __peek_user_per_compat(child, addr);
641
642         } else
643                 tmp = 0;
644
645         return tmp;
646 }
647
648 static int peek_user_compat(struct task_struct *child,
649                             addr_t addr, addr_t data)
650 {
651         __u32 tmp;
652
653         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
654                 return -EIO;
655
656         tmp = __peek_user_compat(child, addr);
657         return put_user(tmp, (__u32 __user *) data);
658 }
659
660 /*
661  * Same as poke_user_per but for a 31 bit program.
662  */
663 static inline void __poke_user_per_compat(struct task_struct *child,
664                                           addr_t addr, __u32 data)
665 {
666         if (addr == offsetof(struct compat_per_struct_kernel, cr9))
667                 /* PER event mask of the user specified per set. */
668                 child->thread.per_user.control =
669                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
670         else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
671                 /* Starting address of the user specified per set. */
672                 child->thread.per_user.start = data;
673         else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
674                 /* Ending address of the user specified per set. */
675                 child->thread.per_user.end = data;
676 }
677
678 /*
679  * Same as poke_user but for a 31 bit program.
680  */
681 static int __poke_user_compat(struct task_struct *child,
682                               addr_t addr, addr_t data)
683 {
684         __u32 tmp = (__u32) data;
685         addr_t offset;
686
687         if (addr < offsetof(struct compat_user, regs.acrs)) {
688                 struct pt_regs *regs = task_pt_regs(child);
689                 /*
690                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
691                  */
692                 if (addr == offsetof(struct compat_user, regs.psw.mask)) {
693                         __u32 mask = PSW32_MASK_USER;
694
695                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
696                         /* Build a 64 bit psw mask from 31 bit mask. */
697                         if ((tmp ^ PSW32_USER_BITS) & ~mask)
698                                 /* Invalid psw mask. */
699                                 return -EINVAL;
700                         if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
701                                 /* Invalid address-space-control bits */
702                                 return -EINVAL;
703                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
704                                 (regs->psw.mask & PSW_MASK_BA) |
705                                 (__u64)(tmp & mask) << 32;
706                 } else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
707                         /* Build a 64 bit psw address from 31 bit address. */
708                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
709                         /* Transfer 31 bit amode bit to psw mask. */
710                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
711                                 (__u64)(tmp & PSW32_ADDR_AMODE);
712                 } else {
713                         if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
714                                 addr == offsetof(struct compat_user, regs.gprs[2])) {
715                                 struct pt_regs *regs = task_pt_regs(child);
716
717                                 regs->int_code = 0x20000 | (data & 0xffff);
718                         }
719                         /* gpr 0-15 */
720                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
721                 }
722         } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
723                 /*
724                  * access registers are stored in the thread structure
725                  */
726                 offset = addr - offsetof(struct compat_user, regs.acrs);
727                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
728
729         } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
730                 /*
731                  * orig_gpr2 is stored on the kernel stack
732                  */
733                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
734
735         } else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
736                 /*
737                  * prevent writess of padding hole between
738                  * orig_gpr2 and fp_regs on s390.
739                  */
740                 return 0;
741
742         } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
743                 /*
744                  * floating point control reg. is in the thread structure
745                  */
746                 if (test_fp_ctl(tmp))
747                         return -EINVAL;
748                 child->thread.fpu.fpc = data;
749
750         } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
751                 /*
752                  * floating point regs. are either in child->thread.fpu
753                  * or the child->thread.fpu.vxrs array
754                  */
755                 offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
756                 if (MACHINE_HAS_VX)
757                         *(__u32 *)((addr_t)
758                                 child->thread.fpu.vxrs + 2*offset) = tmp;
759                 else
760                         *(__u32 *)((addr_t)
761                                 child->thread.fpu.fprs + offset) = tmp;
762
763         } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
764                 /*
765                  * Handle access to the per_info structure.
766                  */
767                 addr -= offsetof(struct compat_user, regs.per_info);
768                 __poke_user_per_compat(child, addr, data);
769         }
770
771         return 0;
772 }
773
774 static int poke_user_compat(struct task_struct *child,
775                             addr_t addr, addr_t data)
776 {
777         if (!is_compat_task() || (addr & 3) ||
778             addr > sizeof(struct compat_user) - 3)
779                 return -EIO;
780
781         return __poke_user_compat(child, addr, data);
782 }
783
784 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
785                         compat_ulong_t caddr, compat_ulong_t cdata)
786 {
787         unsigned long addr = caddr;
788         unsigned long data = cdata;
789         compat_ptrace_area parea;
790         int copied, ret;
791
792         switch (request) {
793         case PTRACE_PEEKUSR:
794                 /* read the word at location addr in the USER area. */
795                 return peek_user_compat(child, addr, data);
796
797         case PTRACE_POKEUSR:
798                 /* write the word at location addr in the USER area */
799                 return poke_user_compat(child, addr, data);
800
801         case PTRACE_PEEKUSR_AREA:
802         case PTRACE_POKEUSR_AREA:
803                 if (copy_from_user(&parea, (void __force __user *) addr,
804                                                         sizeof(parea)))
805                         return -EFAULT;
806                 addr = parea.kernel_addr;
807                 data = parea.process_addr;
808                 copied = 0;
809                 while (copied < parea.len) {
810                         if (request == PTRACE_PEEKUSR_AREA)
811                                 ret = peek_user_compat(child, addr, data);
812                         else {
813                                 __u32 utmp;
814                                 if (get_user(utmp,
815                                              (__u32 __force __user *) data))
816                                         return -EFAULT;
817                                 ret = poke_user_compat(child, addr, utmp);
818                         }
819                         if (ret)
820                                 return ret;
821                         addr += sizeof(unsigned int);
822                         data += sizeof(unsigned int);
823                         copied += sizeof(unsigned int);
824                 }
825                 return 0;
826         case PTRACE_GET_LAST_BREAK:
827                 put_user(child->thread.last_break,
828                          (unsigned int __user *) data);
829                 return 0;
830         }
831         return compat_ptrace_request(child, request, addr, data);
832 }
833 #endif
834
835 /*
836  * user_regset definitions.
837  */
838
839 static int s390_regs_get(struct task_struct *target,
840                          const struct user_regset *regset,
841                          struct membuf to)
842 {
843         unsigned pos;
844         if (target == current)
845                 save_access_regs(target->thread.acrs);
846
847         for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
848                 membuf_store(&to, __peek_user(target, pos));
849         return 0;
850 }
851
852 static int s390_regs_set(struct task_struct *target,
853                          const struct user_regset *regset,
854                          unsigned int pos, unsigned int count,
855                          const void *kbuf, const void __user *ubuf)
856 {
857         int rc = 0;
858
859         if (target == current)
860                 save_access_regs(target->thread.acrs);
861
862         if (kbuf) {
863                 const unsigned long *k = kbuf;
864                 while (count > 0 && !rc) {
865                         rc = __poke_user(target, pos, *k++);
866                         count -= sizeof(*k);
867                         pos += sizeof(*k);
868                 }
869         } else {
870                 const unsigned long  __user *u = ubuf;
871                 while (count > 0 && !rc) {
872                         unsigned long word;
873                         rc = __get_user(word, u++);
874                         if (rc)
875                                 break;
876                         rc = __poke_user(target, pos, word);
877                         count -= sizeof(*u);
878                         pos += sizeof(*u);
879                 }
880         }
881
882         if (rc == 0 && target == current)
883                 restore_access_regs(target->thread.acrs);
884
885         return rc;
886 }
887
888 static int s390_fpregs_get(struct task_struct *target,
889                            const struct user_regset *regset,
890                            struct membuf to)
891 {
892         _s390_fp_regs fp_regs;
893
894         if (target == current)
895                 save_fpu_regs();
896
897         fp_regs.fpc = target->thread.fpu.fpc;
898         fpregs_store(&fp_regs, &target->thread.fpu);
899
900         return membuf_write(&to, &fp_regs, sizeof(fp_regs));
901 }
902
903 static int s390_fpregs_set(struct task_struct *target,
904                            const struct user_regset *regset, unsigned int pos,
905                            unsigned int count, const void *kbuf,
906                            const void __user *ubuf)
907 {
908         int rc = 0;
909         freg_t fprs[__NUM_FPRS];
910
911         if (target == current)
912                 save_fpu_regs();
913
914         if (MACHINE_HAS_VX)
915                 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
916         else
917                 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
918
919         /* If setting FPC, must validate it first. */
920         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
921                 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
922                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
923                                         0, offsetof(s390_fp_regs, fprs));
924                 if (rc)
925                         return rc;
926                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
927                         return -EINVAL;
928                 target->thread.fpu.fpc = ufpc[0];
929         }
930
931         if (rc == 0 && count > 0)
932                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
933                                         fprs, offsetof(s390_fp_regs, fprs), -1);
934         if (rc)
935                 return rc;
936
937         if (MACHINE_HAS_VX)
938                 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
939         else
940                 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
941
942         return rc;
943 }
944
945 static int s390_last_break_get(struct task_struct *target,
946                                const struct user_regset *regset,
947                                struct membuf to)
948 {
949         return membuf_store(&to, target->thread.last_break);
950 }
951
952 static int s390_last_break_set(struct task_struct *target,
953                                const struct user_regset *regset,
954                                unsigned int pos, unsigned int count,
955                                const void *kbuf, const void __user *ubuf)
956 {
957         return 0;
958 }
959
960 static int s390_tdb_get(struct task_struct *target,
961                         const struct user_regset *regset,
962                         struct membuf to)
963 {
964         struct pt_regs *regs = task_pt_regs(target);
965         size_t size;
966
967         if (!(regs->int_code & 0x200))
968                 return -ENODATA;
969         size = sizeof(target->thread.trap_tdb.data);
970         return membuf_write(&to, target->thread.trap_tdb.data, size);
971 }
972
973 static int s390_tdb_set(struct task_struct *target,
974                         const struct user_regset *regset,
975                         unsigned int pos, unsigned int count,
976                         const void *kbuf, const void __user *ubuf)
977 {
978         return 0;
979 }
980
981 static int s390_vxrs_low_get(struct task_struct *target,
982                              const struct user_regset *regset,
983                              struct membuf to)
984 {
985         __u64 vxrs[__NUM_VXRS_LOW];
986         int i;
987
988         if (!MACHINE_HAS_VX)
989                 return -ENODEV;
990         if (target == current)
991                 save_fpu_regs();
992         for (i = 0; i < __NUM_VXRS_LOW; i++)
993                 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
994         return membuf_write(&to, vxrs, sizeof(vxrs));
995 }
996
997 static int s390_vxrs_low_set(struct task_struct *target,
998                              const struct user_regset *regset,
999                              unsigned int pos, unsigned int count,
1000                              const void *kbuf, const void __user *ubuf)
1001 {
1002         __u64 vxrs[__NUM_VXRS_LOW];
1003         int i, rc;
1004
1005         if (!MACHINE_HAS_VX)
1006                 return -ENODEV;
1007         if (target == current)
1008                 save_fpu_regs();
1009
1010         for (i = 0; i < __NUM_VXRS_LOW; i++)
1011                 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1012
1013         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1014         if (rc == 0)
1015                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1016                         *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1017
1018         return rc;
1019 }
1020
1021 static int s390_vxrs_high_get(struct task_struct *target,
1022                               const struct user_regset *regset,
1023                               struct membuf to)
1024 {
1025         if (!MACHINE_HAS_VX)
1026                 return -ENODEV;
1027         if (target == current)
1028                 save_fpu_regs();
1029         return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1030                             __NUM_VXRS_HIGH * sizeof(__vector128));
1031 }
1032
1033 static int s390_vxrs_high_set(struct task_struct *target,
1034                               const struct user_regset *regset,
1035                               unsigned int pos, unsigned int count,
1036                               const void *kbuf, const void __user *ubuf)
1037 {
1038         int rc;
1039
1040         if (!MACHINE_HAS_VX)
1041                 return -ENODEV;
1042         if (target == current)
1043                 save_fpu_regs();
1044
1045         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1046                                 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1047         return rc;
1048 }
1049
1050 static int s390_system_call_get(struct task_struct *target,
1051                                 const struct user_regset *regset,
1052                                 struct membuf to)
1053 {
1054         return membuf_store(&to, target->thread.system_call);
1055 }
1056
1057 static int s390_system_call_set(struct task_struct *target,
1058                                 const struct user_regset *regset,
1059                                 unsigned int pos, unsigned int count,
1060                                 const void *kbuf, const void __user *ubuf)
1061 {
1062         unsigned int *data = &target->thread.system_call;
1063         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1064                                   data, 0, sizeof(unsigned int));
1065 }
1066
1067 static int s390_gs_cb_get(struct task_struct *target,
1068                           const struct user_regset *regset,
1069                           struct membuf to)
1070 {
1071         struct gs_cb *data = target->thread.gs_cb;
1072
1073         if (!MACHINE_HAS_GS)
1074                 return -ENODEV;
1075         if (!data)
1076                 return -ENODATA;
1077         if (target == current)
1078                 save_gs_cb(data);
1079         return membuf_write(&to, data, sizeof(struct gs_cb));
1080 }
1081
1082 static int s390_gs_cb_set(struct task_struct *target,
1083                           const struct user_regset *regset,
1084                           unsigned int pos, unsigned int count,
1085                           const void *kbuf, const void __user *ubuf)
1086 {
1087         struct gs_cb gs_cb = { }, *data = NULL;
1088         int rc;
1089
1090         if (!MACHINE_HAS_GS)
1091                 return -ENODEV;
1092         if (!target->thread.gs_cb) {
1093                 data = kzalloc(sizeof(*data), GFP_KERNEL);
1094                 if (!data)
1095                         return -ENOMEM;
1096         }
1097         if (!target->thread.gs_cb)
1098                 gs_cb.gsd = 25;
1099         else if (target == current)
1100                 save_gs_cb(&gs_cb);
1101         else
1102                 gs_cb = *target->thread.gs_cb;
1103         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1104                                 &gs_cb, 0, sizeof(gs_cb));
1105         if (rc) {
1106                 kfree(data);
1107                 return -EFAULT;
1108         }
1109         preempt_disable();
1110         if (!target->thread.gs_cb)
1111                 target->thread.gs_cb = data;
1112         *target->thread.gs_cb = gs_cb;
1113         if (target == current) {
1114                 __ctl_set_bit(2, 4);
1115                 restore_gs_cb(target->thread.gs_cb);
1116         }
1117         preempt_enable();
1118         return rc;
1119 }
1120
1121 static int s390_gs_bc_get(struct task_struct *target,
1122                           const struct user_regset *regset,
1123                           struct membuf to)
1124 {
1125         struct gs_cb *data = target->thread.gs_bc_cb;
1126
1127         if (!MACHINE_HAS_GS)
1128                 return -ENODEV;
1129         if (!data)
1130                 return -ENODATA;
1131         return membuf_write(&to, data, sizeof(struct gs_cb));
1132 }
1133
1134 static int s390_gs_bc_set(struct task_struct *target,
1135                           const struct user_regset *regset,
1136                           unsigned int pos, unsigned int count,
1137                           const void *kbuf, const void __user *ubuf)
1138 {
1139         struct gs_cb *data = target->thread.gs_bc_cb;
1140
1141         if (!MACHINE_HAS_GS)
1142                 return -ENODEV;
1143         if (!data) {
1144                 data = kzalloc(sizeof(*data), GFP_KERNEL);
1145                 if (!data)
1146                         return -ENOMEM;
1147                 target->thread.gs_bc_cb = data;
1148         }
1149         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1150                                   data, 0, sizeof(struct gs_cb));
1151 }
1152
1153 static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1154 {
1155         return (cb->rca & 0x1f) == 0 &&
1156                 (cb->roa & 0xfff) == 0 &&
1157                 (cb->rla & 0xfff) == 0xfff &&
1158                 cb->s == 1 &&
1159                 cb->k == 1 &&
1160                 cb->h == 0 &&
1161                 cb->reserved1 == 0 &&
1162                 cb->ps == 1 &&
1163                 cb->qs == 0 &&
1164                 cb->pc == 1 &&
1165                 cb->qc == 0 &&
1166                 cb->reserved2 == 0 &&
1167                 cb->reserved3 == 0 &&
1168                 cb->reserved4 == 0 &&
1169                 cb->reserved5 == 0 &&
1170                 cb->reserved6 == 0 &&
1171                 cb->reserved7 == 0 &&
1172                 cb->reserved8 == 0 &&
1173                 cb->rla >= cb->roa &&
1174                 cb->rca >= cb->roa &&
1175                 cb->rca <= cb->rla+1 &&
1176                 cb->m < 3;
1177 }
1178
1179 static int s390_runtime_instr_get(struct task_struct *target,
1180                                 const struct user_regset *regset,
1181                                 struct membuf to)
1182 {
1183         struct runtime_instr_cb *data = target->thread.ri_cb;
1184
1185         if (!test_facility(64))
1186                 return -ENODEV;
1187         if (!data)
1188                 return -ENODATA;
1189
1190         return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1191 }
1192
1193 static int s390_runtime_instr_set(struct task_struct *target,
1194                                   const struct user_regset *regset,
1195                                   unsigned int pos, unsigned int count,
1196                                   const void *kbuf, const void __user *ubuf)
1197 {
1198         struct runtime_instr_cb ri_cb = { }, *data = NULL;
1199         int rc;
1200
1201         if (!test_facility(64))
1202                 return -ENODEV;
1203
1204         if (!target->thread.ri_cb) {
1205                 data = kzalloc(sizeof(*data), GFP_KERNEL);
1206                 if (!data)
1207                         return -ENOMEM;
1208         }
1209
1210         if (target->thread.ri_cb) {
1211                 if (target == current)
1212                         store_runtime_instr_cb(&ri_cb);
1213                 else
1214                         ri_cb = *target->thread.ri_cb;
1215         }
1216
1217         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1218                                 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1219         if (rc) {
1220                 kfree(data);
1221                 return -EFAULT;
1222         }
1223
1224         if (!is_ri_cb_valid(&ri_cb)) {
1225                 kfree(data);
1226                 return -EINVAL;
1227         }
1228         /*
1229          * Override access key in any case, since user space should
1230          * not be able to set it, nor should it care about it.
1231          */
1232         ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1233         preempt_disable();
1234         if (!target->thread.ri_cb)
1235                 target->thread.ri_cb = data;
1236         *target->thread.ri_cb = ri_cb;
1237         if (target == current)
1238                 load_runtime_instr_cb(target->thread.ri_cb);
1239         preempt_enable();
1240
1241         return 0;
1242 }
1243
1244 static const struct user_regset s390_regsets[] = {
1245         {
1246                 .core_note_type = NT_PRSTATUS,
1247                 .n = sizeof(s390_regs) / sizeof(long),
1248                 .size = sizeof(long),
1249                 .align = sizeof(long),
1250                 .regset_get = s390_regs_get,
1251                 .set = s390_regs_set,
1252         },
1253         {
1254                 .core_note_type = NT_PRFPREG,
1255                 .n = sizeof(s390_fp_regs) / sizeof(long),
1256                 .size = sizeof(long),
1257                 .align = sizeof(long),
1258                 .regset_get = s390_fpregs_get,
1259                 .set = s390_fpregs_set,
1260         },
1261         {
1262                 .core_note_type = NT_S390_SYSTEM_CALL,
1263                 .n = 1,
1264                 .size = sizeof(unsigned int),
1265                 .align = sizeof(unsigned int),
1266                 .regset_get = s390_system_call_get,
1267                 .set = s390_system_call_set,
1268         },
1269         {
1270                 .core_note_type = NT_S390_LAST_BREAK,
1271                 .n = 1,
1272                 .size = sizeof(long),
1273                 .align = sizeof(long),
1274                 .regset_get = s390_last_break_get,
1275                 .set = s390_last_break_set,
1276         },
1277         {
1278                 .core_note_type = NT_S390_TDB,
1279                 .n = 1,
1280                 .size = 256,
1281                 .align = 1,
1282                 .regset_get = s390_tdb_get,
1283                 .set = s390_tdb_set,
1284         },
1285         {
1286                 .core_note_type = NT_S390_VXRS_LOW,
1287                 .n = __NUM_VXRS_LOW,
1288                 .size = sizeof(__u64),
1289                 .align = sizeof(__u64),
1290                 .regset_get = s390_vxrs_low_get,
1291                 .set = s390_vxrs_low_set,
1292         },
1293         {
1294                 .core_note_type = NT_S390_VXRS_HIGH,
1295                 .n = __NUM_VXRS_HIGH,
1296                 .size = sizeof(__vector128),
1297                 .align = sizeof(__vector128),
1298                 .regset_get = s390_vxrs_high_get,
1299                 .set = s390_vxrs_high_set,
1300         },
1301         {
1302                 .core_note_type = NT_S390_GS_CB,
1303                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1304                 .size = sizeof(__u64),
1305                 .align = sizeof(__u64),
1306                 .regset_get = s390_gs_cb_get,
1307                 .set = s390_gs_cb_set,
1308         },
1309         {
1310                 .core_note_type = NT_S390_GS_BC,
1311                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1312                 .size = sizeof(__u64),
1313                 .align = sizeof(__u64),
1314                 .regset_get = s390_gs_bc_get,
1315                 .set = s390_gs_bc_set,
1316         },
1317         {
1318                 .core_note_type = NT_S390_RI_CB,
1319                 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1320                 .size = sizeof(__u64),
1321                 .align = sizeof(__u64),
1322                 .regset_get = s390_runtime_instr_get,
1323                 .set = s390_runtime_instr_set,
1324         },
1325 };
1326
1327 static const struct user_regset_view user_s390_view = {
1328         .name = "s390x",
1329         .e_machine = EM_S390,
1330         .regsets = s390_regsets,
1331         .n = ARRAY_SIZE(s390_regsets)
1332 };
1333
1334 #ifdef CONFIG_COMPAT
1335 static int s390_compat_regs_get(struct task_struct *target,
1336                                 const struct user_regset *regset,
1337                                 struct membuf to)
1338 {
1339         unsigned n;
1340
1341         if (target == current)
1342                 save_access_regs(target->thread.acrs);
1343
1344         for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1345                 membuf_store(&to, __peek_user_compat(target, n));
1346         return 0;
1347 }
1348
1349 static int s390_compat_regs_set(struct task_struct *target,
1350                                 const struct user_regset *regset,
1351                                 unsigned int pos, unsigned int count,
1352                                 const void *kbuf, const void __user *ubuf)
1353 {
1354         int rc = 0;
1355
1356         if (target == current)
1357                 save_access_regs(target->thread.acrs);
1358
1359         if (kbuf) {
1360                 const compat_ulong_t *k = kbuf;
1361                 while (count > 0 && !rc) {
1362                         rc = __poke_user_compat(target, pos, *k++);
1363                         count -= sizeof(*k);
1364                         pos += sizeof(*k);
1365                 }
1366         } else {
1367                 const compat_ulong_t  __user *u = ubuf;
1368                 while (count > 0 && !rc) {
1369                         compat_ulong_t word;
1370                         rc = __get_user(word, u++);
1371                         if (rc)
1372                                 break;
1373                         rc = __poke_user_compat(target, pos, word);
1374                         count -= sizeof(*u);
1375                         pos += sizeof(*u);
1376                 }
1377         }
1378
1379         if (rc == 0 && target == current)
1380                 restore_access_regs(target->thread.acrs);
1381
1382         return rc;
1383 }
1384
1385 static int s390_compat_regs_high_get(struct task_struct *target,
1386                                      const struct user_regset *regset,
1387                                      struct membuf to)
1388 {
1389         compat_ulong_t *gprs_high;
1390         int i;
1391
1392         gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1393         for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1394                 membuf_store(&to, *gprs_high);
1395         return 0;
1396 }
1397
1398 static int s390_compat_regs_high_set(struct task_struct *target,
1399                                      const struct user_regset *regset,
1400                                      unsigned int pos, unsigned int count,
1401                                      const void *kbuf, const void __user *ubuf)
1402 {
1403         compat_ulong_t *gprs_high;
1404         int rc = 0;
1405
1406         gprs_high = (compat_ulong_t *)
1407                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1408         if (kbuf) {
1409                 const compat_ulong_t *k = kbuf;
1410                 while (count > 0) {
1411                         *gprs_high = *k++;
1412                         *gprs_high += 2;
1413                         count -= sizeof(*k);
1414                 }
1415         } else {
1416                 const compat_ulong_t  __user *u = ubuf;
1417                 while (count > 0 && !rc) {
1418                         unsigned long word;
1419                         rc = __get_user(word, u++);
1420                         if (rc)
1421                                 break;
1422                         *gprs_high = word;
1423                         *gprs_high += 2;
1424                         count -= sizeof(*u);
1425                 }
1426         }
1427
1428         return rc;
1429 }
1430
1431 static int s390_compat_last_break_get(struct task_struct *target,
1432                                       const struct user_regset *regset,
1433                                       struct membuf to)
1434 {
1435         compat_ulong_t last_break = target->thread.last_break;
1436
1437         return membuf_store(&to, (unsigned long)last_break);
1438 }
1439
1440 static int s390_compat_last_break_set(struct task_struct *target,
1441                                       const struct user_regset *regset,
1442                                       unsigned int pos, unsigned int count,
1443                                       const void *kbuf, const void __user *ubuf)
1444 {
1445         return 0;
1446 }
1447
1448 static const struct user_regset s390_compat_regsets[] = {
1449         {
1450                 .core_note_type = NT_PRSTATUS,
1451                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1452                 .size = sizeof(compat_long_t),
1453                 .align = sizeof(compat_long_t),
1454                 .regset_get = s390_compat_regs_get,
1455                 .set = s390_compat_regs_set,
1456         },
1457         {
1458                 .core_note_type = NT_PRFPREG,
1459                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1460                 .size = sizeof(compat_long_t),
1461                 .align = sizeof(compat_long_t),
1462                 .regset_get = s390_fpregs_get,
1463                 .set = s390_fpregs_set,
1464         },
1465         {
1466                 .core_note_type = NT_S390_SYSTEM_CALL,
1467                 .n = 1,
1468                 .size = sizeof(compat_uint_t),
1469                 .align = sizeof(compat_uint_t),
1470                 .regset_get = s390_system_call_get,
1471                 .set = s390_system_call_set,
1472         },
1473         {
1474                 .core_note_type = NT_S390_LAST_BREAK,
1475                 .n = 1,
1476                 .size = sizeof(long),
1477                 .align = sizeof(long),
1478                 .regset_get = s390_compat_last_break_get,
1479                 .set = s390_compat_last_break_set,
1480         },
1481         {
1482                 .core_note_type = NT_S390_TDB,
1483                 .n = 1,
1484                 .size = 256,
1485                 .align = 1,
1486                 .regset_get = s390_tdb_get,
1487                 .set = s390_tdb_set,
1488         },
1489         {
1490                 .core_note_type = NT_S390_VXRS_LOW,
1491                 .n = __NUM_VXRS_LOW,
1492                 .size = sizeof(__u64),
1493                 .align = sizeof(__u64),
1494                 .regset_get = s390_vxrs_low_get,
1495                 .set = s390_vxrs_low_set,
1496         },
1497         {
1498                 .core_note_type = NT_S390_VXRS_HIGH,
1499                 .n = __NUM_VXRS_HIGH,
1500                 .size = sizeof(__vector128),
1501                 .align = sizeof(__vector128),
1502                 .regset_get = s390_vxrs_high_get,
1503                 .set = s390_vxrs_high_set,
1504         },
1505         {
1506                 .core_note_type = NT_S390_HIGH_GPRS,
1507                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1508                 .size = sizeof(compat_long_t),
1509                 .align = sizeof(compat_long_t),
1510                 .regset_get = s390_compat_regs_high_get,
1511                 .set = s390_compat_regs_high_set,
1512         },
1513         {
1514                 .core_note_type = NT_S390_GS_CB,
1515                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1516                 .size = sizeof(__u64),
1517                 .align = sizeof(__u64),
1518                 .regset_get = s390_gs_cb_get,
1519                 .set = s390_gs_cb_set,
1520         },
1521         {
1522                 .core_note_type = NT_S390_GS_BC,
1523                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1524                 .size = sizeof(__u64),
1525                 .align = sizeof(__u64),
1526                 .regset_get = s390_gs_bc_get,
1527                 .set = s390_gs_bc_set,
1528         },
1529         {
1530                 .core_note_type = NT_S390_RI_CB,
1531                 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1532                 .size = sizeof(__u64),
1533                 .align = sizeof(__u64),
1534                 .regset_get = s390_runtime_instr_get,
1535                 .set = s390_runtime_instr_set,
1536         },
1537 };
1538
1539 static const struct user_regset_view user_s390_compat_view = {
1540         .name = "s390",
1541         .e_machine = EM_S390,
1542         .regsets = s390_compat_regsets,
1543         .n = ARRAY_SIZE(s390_compat_regsets)
1544 };
1545 #endif
1546
1547 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1548 {
1549 #ifdef CONFIG_COMPAT
1550         if (test_tsk_thread_flag(task, TIF_31BIT))
1551                 return &user_s390_compat_view;
1552 #endif
1553         return &user_s390_view;
1554 }
1555
1556 static const char *gpr_names[NUM_GPRS] = {
1557         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1558         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1559 };
1560
1561 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1562 {
1563         if (offset >= NUM_GPRS)
1564                 return 0;
1565         return regs->gprs[offset];
1566 }
1567
1568 int regs_query_register_offset(const char *name)
1569 {
1570         unsigned long offset;
1571
1572         if (!name || *name != 'r')
1573                 return -EINVAL;
1574         if (kstrtoul(name + 1, 10, &offset))
1575                 return -EINVAL;
1576         if (offset >= NUM_GPRS)
1577                 return -EINVAL;
1578         return offset;
1579 }
1580
1581 const char *regs_query_register_name(unsigned int offset)
1582 {
1583         if (offset >= NUM_GPRS)
1584                 return NULL;
1585         return gpr_names[offset];
1586 }
1587
1588 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1589 {
1590         unsigned long ksp = kernel_stack_pointer(regs);
1591
1592         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1593 }
1594
1595 /**
1596  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1597  * @regs:pt_regs which contains kernel stack pointer.
1598  * @n:stack entry number.
1599  *
1600  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1601  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1602  * this returns 0.
1603  */
1604 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1605 {
1606         unsigned long addr;
1607
1608         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1609         if (!regs_within_kernel_stack(regs, addr))
1610                 return 0;
1611         return *(unsigned long *)addr;
1612 }