Merge tag 'acpi-5.15-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / arch / s390 / kernel / ptrace.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Ptrace user space interface.
4  *
5  *    Copyright IBM Corp. 1999, 2010
6  *    Author(s): Denis Joseph Barrow
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  */
9
10 #include "asm/ptrace.h"
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/audit.h>
21 #include <linux/signal.h>
22 #include <linux/elf.h>
23 #include <linux/regset.h>
24 #include <linux/tracehook.h>
25 #include <linux/seccomp.h>
26 #include <linux/compat.h>
27 #include <trace/syscall.h>
28 #include <asm/page.h>
29 #include <linux/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include <asm/runtime_instr.h>
33 #include <asm/facility.h>
34
35 #include "entry.h"
36
37 #ifdef CONFIG_COMPAT
38 #include "compat_ptrace.h"
39 #endif
40
41 void update_cr_regs(struct task_struct *task)
42 {
43         struct pt_regs *regs = task_pt_regs(task);
44         struct thread_struct *thread = &task->thread;
45         struct per_regs old, new;
46         union ctlreg0 cr0_old, cr0_new;
47         union ctlreg2 cr2_old, cr2_new;
48         int cr0_changed, cr2_changed;
49
50         __ctl_store(cr0_old.val, 0, 0);
51         __ctl_store(cr2_old.val, 2, 2);
52         cr0_new = cr0_old;
53         cr2_new = cr2_old;
54         /* Take care of the enable/disable of transactional execution. */
55         if (MACHINE_HAS_TE) {
56                 /* Set or clear transaction execution TXC bit 8. */
57                 cr0_new.tcx = 1;
58                 if (task->thread.per_flags & PER_FLAG_NO_TE)
59                         cr0_new.tcx = 0;
60                 /* Set or clear transaction execution TDC bits 62 and 63. */
61                 cr2_new.tdc = 0;
62                 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
63                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
64                                 cr2_new.tdc = 1;
65                         else
66                                 cr2_new.tdc = 2;
67                 }
68         }
69         /* Take care of enable/disable of guarded storage. */
70         if (MACHINE_HAS_GS) {
71                 cr2_new.gse = 0;
72                 if (task->thread.gs_cb)
73                         cr2_new.gse = 1;
74         }
75         /* Load control register 0/2 iff changed */
76         cr0_changed = cr0_new.val != cr0_old.val;
77         cr2_changed = cr2_new.val != cr2_old.val;
78         if (cr0_changed)
79                 __ctl_load(cr0_new.val, 0, 0);
80         if (cr2_changed)
81                 __ctl_load(cr2_new.val, 2, 2);
82         /* Copy user specified PER registers */
83         new.control = thread->per_user.control;
84         new.start = thread->per_user.start;
85         new.end = thread->per_user.end;
86
87         /* merge TIF_SINGLE_STEP into user specified PER registers. */
88         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
89             test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
90                 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
91                         new.control |= PER_EVENT_BRANCH;
92                 else
93                         new.control |= PER_EVENT_IFETCH;
94                 new.control |= PER_CONTROL_SUSPENSION;
95                 new.control |= PER_EVENT_TRANSACTION_END;
96                 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
97                         new.control |= PER_EVENT_IFETCH;
98                 new.start = 0;
99                 new.end = -1UL;
100         }
101
102         /* Take care of the PER enablement bit in the PSW. */
103         if (!(new.control & PER_EVENT_MASK)) {
104                 regs->psw.mask &= ~PSW_MASK_PER;
105                 return;
106         }
107         regs->psw.mask |= PSW_MASK_PER;
108         __ctl_store(old, 9, 11);
109         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
110                 __ctl_load(new, 9, 11);
111 }
112
113 void user_enable_single_step(struct task_struct *task)
114 {
115         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
116         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
117 }
118
119 void user_disable_single_step(struct task_struct *task)
120 {
121         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
122         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
123 }
124
125 void user_enable_block_step(struct task_struct *task)
126 {
127         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
128         set_tsk_thread_flag(task, TIF_BLOCK_STEP);
129 }
130
131 /*
132  * Called by kernel/ptrace.c when detaching..
133  *
134  * Clear all debugging related fields.
135  */
136 void ptrace_disable(struct task_struct *task)
137 {
138         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
139         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
140         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
141         clear_tsk_thread_flag(task, TIF_PER_TRAP);
142         task->thread.per_flags = 0;
143 }
144
145 #define __ADDR_MASK 7
146
147 static inline unsigned long __peek_user_per(struct task_struct *child,
148                                             addr_t addr)
149 {
150         struct per_struct_kernel *dummy = NULL;
151
152         if (addr == (addr_t) &dummy->cr9)
153                 /* Control bits of the active per set. */
154                 return test_thread_flag(TIF_SINGLE_STEP) ?
155                         PER_EVENT_IFETCH : child->thread.per_user.control;
156         else if (addr == (addr_t) &dummy->cr10)
157                 /* Start address of the active per set. */
158                 return test_thread_flag(TIF_SINGLE_STEP) ?
159                         0 : child->thread.per_user.start;
160         else if (addr == (addr_t) &dummy->cr11)
161                 /* End address of the active per set. */
162                 return test_thread_flag(TIF_SINGLE_STEP) ?
163                         -1UL : child->thread.per_user.end;
164         else if (addr == (addr_t) &dummy->bits)
165                 /* Single-step bit. */
166                 return test_thread_flag(TIF_SINGLE_STEP) ?
167                         (1UL << (BITS_PER_LONG - 1)) : 0;
168         else if (addr == (addr_t) &dummy->starting_addr)
169                 /* Start address of the user specified per set. */
170                 return child->thread.per_user.start;
171         else if (addr == (addr_t) &dummy->ending_addr)
172                 /* End address of the user specified per set. */
173                 return child->thread.per_user.end;
174         else if (addr == (addr_t) &dummy->perc_atmid)
175                 /* PER code, ATMID and AI of the last PER trap */
176                 return (unsigned long)
177                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
178         else if (addr == (addr_t) &dummy->address)
179                 /* Address of the last PER trap */
180                 return child->thread.per_event.address;
181         else if (addr == (addr_t) &dummy->access_id)
182                 /* Access id of the last PER trap */
183                 return (unsigned long)
184                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
185         return 0;
186 }
187
188 /*
189  * Read the word at offset addr from the user area of a process. The
190  * trouble here is that the information is littered over different
191  * locations. The process registers are found on the kernel stack,
192  * the floating point stuff and the trace settings are stored in
193  * the task structure. In addition the different structures in
194  * struct user contain pad bytes that should be read as zeroes.
195  * Lovely...
196  */
197 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
198 {
199         struct user *dummy = NULL;
200         addr_t offset, tmp;
201
202         if (addr < (addr_t) &dummy->regs.acrs) {
203                 /*
204                  * psw and gprs are stored on the stack
205                  */
206                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
207                 if (addr == (addr_t) &dummy->regs.psw.mask) {
208                         /* Return a clean psw mask. */
209                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
210                         tmp |= PSW_USER_BITS;
211                 }
212
213         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
214                 /*
215                  * access registers are stored in the thread structure
216                  */
217                 offset = addr - (addr_t) &dummy->regs.acrs;
218                 /*
219                  * Very special case: old & broken 64 bit gdb reading
220                  * from acrs[15]. Result is a 64 bit value. Read the
221                  * 32 bit acrs[15] value and shift it by 32. Sick...
222                  */
223                 if (addr == (addr_t) &dummy->regs.acrs[15])
224                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
225                 else
226                         tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
227
228         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
229                 /*
230                  * orig_gpr2 is stored on the kernel stack
231                  */
232                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
233
234         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
235                 /*
236                  * prevent reads of padding hole between
237                  * orig_gpr2 and fp_regs on s390.
238                  */
239                 tmp = 0;
240
241         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
242                 /*
243                  * floating point control reg. is in the thread structure
244                  */
245                 tmp = child->thread.fpu.fpc;
246                 tmp <<= BITS_PER_LONG - 32;
247
248         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
249                 /*
250                  * floating point regs. are either in child->thread.fpu
251                  * or the child->thread.fpu.vxrs array
252                  */
253                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
254                 if (MACHINE_HAS_VX)
255                         tmp = *(addr_t *)
256                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
257                 else
258                         tmp = *(addr_t *)
259                                ((addr_t) child->thread.fpu.fprs + offset);
260
261         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
262                 /*
263                  * Handle access to the per_info structure.
264                  */
265                 addr -= (addr_t) &dummy->regs.per_info;
266                 tmp = __peek_user_per(child, addr);
267
268         } else
269                 tmp = 0;
270
271         return tmp;
272 }
273
274 static int
275 peek_user(struct task_struct *child, addr_t addr, addr_t data)
276 {
277         addr_t tmp, mask;
278
279         /*
280          * Stupid gdb peeks/pokes the access registers in 64 bit with
281          * an alignment of 4. Programmers from hell...
282          */
283         mask = __ADDR_MASK;
284         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
285             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
286                 mask = 3;
287         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
288                 return -EIO;
289
290         tmp = __peek_user(child, addr);
291         return put_user(tmp, (addr_t __user *) data);
292 }
293
294 static inline void __poke_user_per(struct task_struct *child,
295                                    addr_t addr, addr_t data)
296 {
297         struct per_struct_kernel *dummy = NULL;
298
299         /*
300          * There are only three fields in the per_info struct that the
301          * debugger user can write to.
302          * 1) cr9: the debugger wants to set a new PER event mask
303          * 2) starting_addr: the debugger wants to set a new starting
304          *    address to use with the PER event mask.
305          * 3) ending_addr: the debugger wants to set a new ending
306          *    address to use with the PER event mask.
307          * The user specified PER event mask and the start and end
308          * addresses are used only if single stepping is not in effect.
309          * Writes to any other field in per_info are ignored.
310          */
311         if (addr == (addr_t) &dummy->cr9)
312                 /* PER event mask of the user specified per set. */
313                 child->thread.per_user.control =
314                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
315         else if (addr == (addr_t) &dummy->starting_addr)
316                 /* Starting address of the user specified per set. */
317                 child->thread.per_user.start = data;
318         else if (addr == (addr_t) &dummy->ending_addr)
319                 /* Ending address of the user specified per set. */
320                 child->thread.per_user.end = data;
321 }
322
323 /*
324  * Write a word to the user area of a process at location addr. This
325  * operation does have an additional problem compared to peek_user.
326  * Stores to the program status word and on the floating point
327  * control register needs to get checked for validity.
328  */
329 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
330 {
331         struct user *dummy = NULL;
332         addr_t offset;
333
334
335         if (addr < (addr_t) &dummy->regs.acrs) {
336                 struct pt_regs *regs = task_pt_regs(child);
337                 /*
338                  * psw and gprs are stored on the stack
339                  */
340                 if (addr == (addr_t) &dummy->regs.psw.mask) {
341                         unsigned long mask = PSW_MASK_USER;
342
343                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
344                         if ((data ^ PSW_USER_BITS) & ~mask)
345                                 /* Invalid psw mask. */
346                                 return -EINVAL;
347                         if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
348                                 /* Invalid address-space-control bits */
349                                 return -EINVAL;
350                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
351                                 /* Invalid addressing mode bits */
352                                 return -EINVAL;
353                 }
354
355                 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
356                         addr == offsetof(struct user, regs.gprs[2])) {
357                         struct pt_regs *regs = task_pt_regs(child);
358
359                         regs->int_code = 0x20000 | (data & 0xffff);
360                 }
361                 *(addr_t *)((addr_t) &regs->psw + addr) = data;
362         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
363                 /*
364                  * access registers are stored in the thread structure
365                  */
366                 offset = addr - (addr_t) &dummy->regs.acrs;
367                 /*
368                  * Very special case: old & broken 64 bit gdb writing
369                  * to acrs[15] with a 64 bit value. Ignore the lower
370                  * half of the value and write the upper 32 bit to
371                  * acrs[15]. Sick...
372                  */
373                 if (addr == (addr_t) &dummy->regs.acrs[15])
374                         child->thread.acrs[15] = (unsigned int) (data >> 32);
375                 else
376                         *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
377
378         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
379                 /*
380                  * orig_gpr2 is stored on the kernel stack
381                  */
382                 task_pt_regs(child)->orig_gpr2 = data;
383
384         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
385                 /*
386                  * prevent writes of padding hole between
387                  * orig_gpr2 and fp_regs on s390.
388                  */
389                 return 0;
390
391         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
392                 /*
393                  * floating point control reg. is in the thread structure
394                  */
395                 if ((unsigned int) data != 0 ||
396                     test_fp_ctl(data >> (BITS_PER_LONG - 32)))
397                         return -EINVAL;
398                 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
399
400         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
401                 /*
402                  * floating point regs. are either in child->thread.fpu
403                  * or the child->thread.fpu.vxrs array
404                  */
405                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
406                 if (MACHINE_HAS_VX)
407                         *(addr_t *)((addr_t)
408                                 child->thread.fpu.vxrs + 2*offset) = data;
409                 else
410                         *(addr_t *)((addr_t)
411                                 child->thread.fpu.fprs + offset) = data;
412
413         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
414                 /*
415                  * Handle access to the per_info structure.
416                  */
417                 addr -= (addr_t) &dummy->regs.per_info;
418                 __poke_user_per(child, addr, data);
419
420         }
421
422         return 0;
423 }
424
425 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
426 {
427         addr_t mask;
428
429         /*
430          * Stupid gdb peeks/pokes the access registers in 64 bit with
431          * an alignment of 4. Programmers from hell indeed...
432          */
433         mask = __ADDR_MASK;
434         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
435             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
436                 mask = 3;
437         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
438                 return -EIO;
439
440         return __poke_user(child, addr, data);
441 }
442
443 long arch_ptrace(struct task_struct *child, long request,
444                  unsigned long addr, unsigned long data)
445 {
446         ptrace_area parea; 
447         int copied, ret;
448
449         switch (request) {
450         case PTRACE_PEEKUSR:
451                 /* read the word at location addr in the USER area. */
452                 return peek_user(child, addr, data);
453
454         case PTRACE_POKEUSR:
455                 /* write the word at location addr in the USER area */
456                 return poke_user(child, addr, data);
457
458         case PTRACE_PEEKUSR_AREA:
459         case PTRACE_POKEUSR_AREA:
460                 if (copy_from_user(&parea, (void __force __user *) addr,
461                                                         sizeof(parea)))
462                         return -EFAULT;
463                 addr = parea.kernel_addr;
464                 data = parea.process_addr;
465                 copied = 0;
466                 while (copied < parea.len) {
467                         if (request == PTRACE_PEEKUSR_AREA)
468                                 ret = peek_user(child, addr, data);
469                         else {
470                                 addr_t utmp;
471                                 if (get_user(utmp,
472                                              (addr_t __force __user *) data))
473                                         return -EFAULT;
474                                 ret = poke_user(child, addr, utmp);
475                         }
476                         if (ret)
477                                 return ret;
478                         addr += sizeof(unsigned long);
479                         data += sizeof(unsigned long);
480                         copied += sizeof(unsigned long);
481                 }
482                 return 0;
483         case PTRACE_GET_LAST_BREAK:
484                 put_user(child->thread.last_break,
485                          (unsigned long __user *) data);
486                 return 0;
487         case PTRACE_ENABLE_TE:
488                 if (!MACHINE_HAS_TE)
489                         return -EIO;
490                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
491                 return 0;
492         case PTRACE_DISABLE_TE:
493                 if (!MACHINE_HAS_TE)
494                         return -EIO;
495                 child->thread.per_flags |= PER_FLAG_NO_TE;
496                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
497                 return 0;
498         case PTRACE_TE_ABORT_RAND:
499                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
500                         return -EIO;
501                 switch (data) {
502                 case 0UL:
503                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
504                         break;
505                 case 1UL:
506                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
507                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
508                         break;
509                 case 2UL:
510                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
511                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
512                         break;
513                 default:
514                         return -EINVAL;
515                 }
516                 return 0;
517         default:
518                 return ptrace_request(child, request, addr, data);
519         }
520 }
521
522 #ifdef CONFIG_COMPAT
523 /*
524  * Now the fun part starts... a 31 bit program running in the
525  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
526  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
527  * to handle, the difference to the 64 bit versions of the requests
528  * is that the access is done in multiples of 4 byte instead of
529  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
530  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
531  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
532  * is a 31 bit program too, the content of struct user can be
533  * emulated. A 31 bit program peeking into the struct user of
534  * a 64 bit program is a no-no.
535  */
536
537 /*
538  * Same as peek_user_per but for a 31 bit program.
539  */
540 static inline __u32 __peek_user_per_compat(struct task_struct *child,
541                                            addr_t addr)
542 {
543         struct compat_per_struct_kernel *dummy32 = NULL;
544
545         if (addr == (addr_t) &dummy32->cr9)
546                 /* Control bits of the active per set. */
547                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
548                         PER_EVENT_IFETCH : child->thread.per_user.control;
549         else if (addr == (addr_t) &dummy32->cr10)
550                 /* Start address of the active per set. */
551                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
552                         0 : child->thread.per_user.start;
553         else if (addr == (addr_t) &dummy32->cr11)
554                 /* End address of the active per set. */
555                 return test_thread_flag(TIF_SINGLE_STEP) ?
556                         PSW32_ADDR_INSN : child->thread.per_user.end;
557         else if (addr == (addr_t) &dummy32->bits)
558                 /* Single-step bit. */
559                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
560                         0x80000000 : 0;
561         else if (addr == (addr_t) &dummy32->starting_addr)
562                 /* Start address of the user specified per set. */
563                 return (__u32) child->thread.per_user.start;
564         else if (addr == (addr_t) &dummy32->ending_addr)
565                 /* End address of the user specified per set. */
566                 return (__u32) child->thread.per_user.end;
567         else if (addr == (addr_t) &dummy32->perc_atmid)
568                 /* PER code, ATMID and AI of the last PER trap */
569                 return (__u32) child->thread.per_event.cause << 16;
570         else if (addr == (addr_t) &dummy32->address)
571                 /* Address of the last PER trap */
572                 return (__u32) child->thread.per_event.address;
573         else if (addr == (addr_t) &dummy32->access_id)
574                 /* Access id of the last PER trap */
575                 return (__u32) child->thread.per_event.paid << 24;
576         return 0;
577 }
578
579 /*
580  * Same as peek_user but for a 31 bit program.
581  */
582 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
583 {
584         struct compat_user *dummy32 = NULL;
585         addr_t offset;
586         __u32 tmp;
587
588         if (addr < (addr_t) &dummy32->regs.acrs) {
589                 struct pt_regs *regs = task_pt_regs(child);
590                 /*
591                  * psw and gprs are stored on the stack
592                  */
593                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
594                         /* Fake a 31 bit psw mask. */
595                         tmp = (__u32)(regs->psw.mask >> 32);
596                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
597                         tmp |= PSW32_USER_BITS;
598                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
599                         /* Fake a 31 bit psw address. */
600                         tmp = (__u32) regs->psw.addr |
601                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
602                 } else {
603                         /* gpr 0-15 */
604                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
605                 }
606         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
607                 /*
608                  * access registers are stored in the thread structure
609                  */
610                 offset = addr - (addr_t) &dummy32->regs.acrs;
611                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
612
613         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
614                 /*
615                  * orig_gpr2 is stored on the kernel stack
616                  */
617                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
618
619         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
620                 /*
621                  * prevent reads of padding hole between
622                  * orig_gpr2 and fp_regs on s390.
623                  */
624                 tmp = 0;
625
626         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
627                 /*
628                  * floating point control reg. is in the thread structure
629                  */
630                 tmp = child->thread.fpu.fpc;
631
632         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
633                 /*
634                  * floating point regs. are either in child->thread.fpu
635                  * or the child->thread.fpu.vxrs array
636                  */
637                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
638                 if (MACHINE_HAS_VX)
639                         tmp = *(__u32 *)
640                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
641                 else
642                         tmp = *(__u32 *)
643                                ((addr_t) child->thread.fpu.fprs + offset);
644
645         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
646                 /*
647                  * Handle access to the per_info structure.
648                  */
649                 addr -= (addr_t) &dummy32->regs.per_info;
650                 tmp = __peek_user_per_compat(child, addr);
651
652         } else
653                 tmp = 0;
654
655         return tmp;
656 }
657
658 static int peek_user_compat(struct task_struct *child,
659                             addr_t addr, addr_t data)
660 {
661         __u32 tmp;
662
663         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
664                 return -EIO;
665
666         tmp = __peek_user_compat(child, addr);
667         return put_user(tmp, (__u32 __user *) data);
668 }
669
670 /*
671  * Same as poke_user_per but for a 31 bit program.
672  */
673 static inline void __poke_user_per_compat(struct task_struct *child,
674                                           addr_t addr, __u32 data)
675 {
676         struct compat_per_struct_kernel *dummy32 = NULL;
677
678         if (addr == (addr_t) &dummy32->cr9)
679                 /* PER event mask of the user specified per set. */
680                 child->thread.per_user.control =
681                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
682         else if (addr == (addr_t) &dummy32->starting_addr)
683                 /* Starting address of the user specified per set. */
684                 child->thread.per_user.start = data;
685         else if (addr == (addr_t) &dummy32->ending_addr)
686                 /* Ending address of the user specified per set. */
687                 child->thread.per_user.end = data;
688 }
689
690 /*
691  * Same as poke_user but for a 31 bit program.
692  */
693 static int __poke_user_compat(struct task_struct *child,
694                               addr_t addr, addr_t data)
695 {
696         struct compat_user *dummy32 = NULL;
697         __u32 tmp = (__u32) data;
698         addr_t offset;
699
700         if (addr < (addr_t) &dummy32->regs.acrs) {
701                 struct pt_regs *regs = task_pt_regs(child);
702                 /*
703                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
704                  */
705                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
706                         __u32 mask = PSW32_MASK_USER;
707
708                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
709                         /* Build a 64 bit psw mask from 31 bit mask. */
710                         if ((tmp ^ PSW32_USER_BITS) & ~mask)
711                                 /* Invalid psw mask. */
712                                 return -EINVAL;
713                         if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
714                                 /* Invalid address-space-control bits */
715                                 return -EINVAL;
716                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
717                                 (regs->psw.mask & PSW_MASK_BA) |
718                                 (__u64)(tmp & mask) << 32;
719                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
720                         /* Build a 64 bit psw address from 31 bit address. */
721                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
722                         /* Transfer 31 bit amode bit to psw mask. */
723                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
724                                 (__u64)(tmp & PSW32_ADDR_AMODE);
725                 } else {
726                         if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
727                                 addr == offsetof(struct compat_user, regs.gprs[2])) {
728                                 struct pt_regs *regs = task_pt_regs(child);
729
730                                 regs->int_code = 0x20000 | (data & 0xffff);
731                         }
732                         /* gpr 0-15 */
733                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
734                 }
735         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
736                 /*
737                  * access registers are stored in the thread structure
738                  */
739                 offset = addr - (addr_t) &dummy32->regs.acrs;
740                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
741
742         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
743                 /*
744                  * orig_gpr2 is stored on the kernel stack
745                  */
746                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
747
748         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
749                 /*
750                  * prevent writess of padding hole between
751                  * orig_gpr2 and fp_regs on s390.
752                  */
753                 return 0;
754
755         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
756                 /*
757                  * floating point control reg. is in the thread structure
758                  */
759                 if (test_fp_ctl(tmp))
760                         return -EINVAL;
761                 child->thread.fpu.fpc = data;
762
763         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
764                 /*
765                  * floating point regs. are either in child->thread.fpu
766                  * or the child->thread.fpu.vxrs array
767                  */
768                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
769                 if (MACHINE_HAS_VX)
770                         *(__u32 *)((addr_t)
771                                 child->thread.fpu.vxrs + 2*offset) = tmp;
772                 else
773                         *(__u32 *)((addr_t)
774                                 child->thread.fpu.fprs + offset) = tmp;
775
776         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
777                 /*
778                  * Handle access to the per_info structure.
779                  */
780                 addr -= (addr_t) &dummy32->regs.per_info;
781                 __poke_user_per_compat(child, addr, data);
782         }
783
784         return 0;
785 }
786
787 static int poke_user_compat(struct task_struct *child,
788                             addr_t addr, addr_t data)
789 {
790         if (!is_compat_task() || (addr & 3) ||
791             addr > sizeof(struct compat_user) - 3)
792                 return -EIO;
793
794         return __poke_user_compat(child, addr, data);
795 }
796
797 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
798                         compat_ulong_t caddr, compat_ulong_t cdata)
799 {
800         unsigned long addr = caddr;
801         unsigned long data = cdata;
802         compat_ptrace_area parea;
803         int copied, ret;
804
805         switch (request) {
806         case PTRACE_PEEKUSR:
807                 /* read the word at location addr in the USER area. */
808                 return peek_user_compat(child, addr, data);
809
810         case PTRACE_POKEUSR:
811                 /* write the word at location addr in the USER area */
812                 return poke_user_compat(child, addr, data);
813
814         case PTRACE_PEEKUSR_AREA:
815         case PTRACE_POKEUSR_AREA:
816                 if (copy_from_user(&parea, (void __force __user *) addr,
817                                                         sizeof(parea)))
818                         return -EFAULT;
819                 addr = parea.kernel_addr;
820                 data = parea.process_addr;
821                 copied = 0;
822                 while (copied < parea.len) {
823                         if (request == PTRACE_PEEKUSR_AREA)
824                                 ret = peek_user_compat(child, addr, data);
825                         else {
826                                 __u32 utmp;
827                                 if (get_user(utmp,
828                                              (__u32 __force __user *) data))
829                                         return -EFAULT;
830                                 ret = poke_user_compat(child, addr, utmp);
831                         }
832                         if (ret)
833                                 return ret;
834                         addr += sizeof(unsigned int);
835                         data += sizeof(unsigned int);
836                         copied += sizeof(unsigned int);
837                 }
838                 return 0;
839         case PTRACE_GET_LAST_BREAK:
840                 put_user(child->thread.last_break,
841                          (unsigned int __user *) data);
842                 return 0;
843         }
844         return compat_ptrace_request(child, request, addr, data);
845 }
846 #endif
847
848 /*
849  * user_regset definitions.
850  */
851
852 static int s390_regs_get(struct task_struct *target,
853                          const struct user_regset *regset,
854                          struct membuf to)
855 {
856         unsigned pos;
857         if (target == current)
858                 save_access_regs(target->thread.acrs);
859
860         for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
861                 membuf_store(&to, __peek_user(target, pos));
862         return 0;
863 }
864
865 static int s390_regs_set(struct task_struct *target,
866                          const struct user_regset *regset,
867                          unsigned int pos, unsigned int count,
868                          const void *kbuf, const void __user *ubuf)
869 {
870         int rc = 0;
871
872         if (target == current)
873                 save_access_regs(target->thread.acrs);
874
875         if (kbuf) {
876                 const unsigned long *k = kbuf;
877                 while (count > 0 && !rc) {
878                         rc = __poke_user(target, pos, *k++);
879                         count -= sizeof(*k);
880                         pos += sizeof(*k);
881                 }
882         } else {
883                 const unsigned long  __user *u = ubuf;
884                 while (count > 0 && !rc) {
885                         unsigned long word;
886                         rc = __get_user(word, u++);
887                         if (rc)
888                                 break;
889                         rc = __poke_user(target, pos, word);
890                         count -= sizeof(*u);
891                         pos += sizeof(*u);
892                 }
893         }
894
895         if (rc == 0 && target == current)
896                 restore_access_regs(target->thread.acrs);
897
898         return rc;
899 }
900
901 static int s390_fpregs_get(struct task_struct *target,
902                            const struct user_regset *regset,
903                            struct membuf to)
904 {
905         _s390_fp_regs fp_regs;
906
907         if (target == current)
908                 save_fpu_regs();
909
910         fp_regs.fpc = target->thread.fpu.fpc;
911         fpregs_store(&fp_regs, &target->thread.fpu);
912
913         return membuf_write(&to, &fp_regs, sizeof(fp_regs));
914 }
915
916 static int s390_fpregs_set(struct task_struct *target,
917                            const struct user_regset *regset, unsigned int pos,
918                            unsigned int count, const void *kbuf,
919                            const void __user *ubuf)
920 {
921         int rc = 0;
922         freg_t fprs[__NUM_FPRS];
923
924         if (target == current)
925                 save_fpu_regs();
926
927         if (MACHINE_HAS_VX)
928                 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
929         else
930                 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
931
932         /* If setting FPC, must validate it first. */
933         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
934                 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
935                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
936                                         0, offsetof(s390_fp_regs, fprs));
937                 if (rc)
938                         return rc;
939                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
940                         return -EINVAL;
941                 target->thread.fpu.fpc = ufpc[0];
942         }
943
944         if (rc == 0 && count > 0)
945                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
946                                         fprs, offsetof(s390_fp_regs, fprs), -1);
947         if (rc)
948                 return rc;
949
950         if (MACHINE_HAS_VX)
951                 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
952         else
953                 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
954
955         return rc;
956 }
957
958 static int s390_last_break_get(struct task_struct *target,
959                                const struct user_regset *regset,
960                                struct membuf to)
961 {
962         return membuf_store(&to, target->thread.last_break);
963 }
964
965 static int s390_last_break_set(struct task_struct *target,
966                                const struct user_regset *regset,
967                                unsigned int pos, unsigned int count,
968                                const void *kbuf, const void __user *ubuf)
969 {
970         return 0;
971 }
972
973 static int s390_tdb_get(struct task_struct *target,
974                         const struct user_regset *regset,
975                         struct membuf to)
976 {
977         struct pt_regs *regs = task_pt_regs(target);
978         size_t size;
979
980         if (!(regs->int_code & 0x200))
981                 return -ENODATA;
982         size = sizeof(target->thread.trap_tdb.data);
983         return membuf_write(&to, target->thread.trap_tdb.data, size);
984 }
985
986 static int s390_tdb_set(struct task_struct *target,
987                         const struct user_regset *regset,
988                         unsigned int pos, unsigned int count,
989                         const void *kbuf, const void __user *ubuf)
990 {
991         return 0;
992 }
993
994 static int s390_vxrs_low_get(struct task_struct *target,
995                              const struct user_regset *regset,
996                              struct membuf to)
997 {
998         __u64 vxrs[__NUM_VXRS_LOW];
999         int i;
1000
1001         if (!MACHINE_HAS_VX)
1002                 return -ENODEV;
1003         if (target == current)
1004                 save_fpu_regs();
1005         for (i = 0; i < __NUM_VXRS_LOW; i++)
1006                 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1007         return membuf_write(&to, vxrs, sizeof(vxrs));
1008 }
1009
1010 static int s390_vxrs_low_set(struct task_struct *target,
1011                              const struct user_regset *regset,
1012                              unsigned int pos, unsigned int count,
1013                              const void *kbuf, const void __user *ubuf)
1014 {
1015         __u64 vxrs[__NUM_VXRS_LOW];
1016         int i, rc;
1017
1018         if (!MACHINE_HAS_VX)
1019                 return -ENODEV;
1020         if (target == current)
1021                 save_fpu_regs();
1022
1023         for (i = 0; i < __NUM_VXRS_LOW; i++)
1024                 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1025
1026         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1027         if (rc == 0)
1028                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1029                         *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1030
1031         return rc;
1032 }
1033
1034 static int s390_vxrs_high_get(struct task_struct *target,
1035                               const struct user_regset *regset,
1036                               struct membuf to)
1037 {
1038         if (!MACHINE_HAS_VX)
1039                 return -ENODEV;
1040         if (target == current)
1041                 save_fpu_regs();
1042         return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1043                             __NUM_VXRS_HIGH * sizeof(__vector128));
1044 }
1045
1046 static int s390_vxrs_high_set(struct task_struct *target,
1047                               const struct user_regset *regset,
1048                               unsigned int pos, unsigned int count,
1049                               const void *kbuf, const void __user *ubuf)
1050 {
1051         int rc;
1052
1053         if (!MACHINE_HAS_VX)
1054                 return -ENODEV;
1055         if (target == current)
1056                 save_fpu_regs();
1057
1058         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1059                                 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1060         return rc;
1061 }
1062
1063 static int s390_system_call_get(struct task_struct *target,
1064                                 const struct user_regset *regset,
1065                                 struct membuf to)
1066 {
1067         return membuf_store(&to, target->thread.system_call);
1068 }
1069
1070 static int s390_system_call_set(struct task_struct *target,
1071                                 const struct user_regset *regset,
1072                                 unsigned int pos, unsigned int count,
1073                                 const void *kbuf, const void __user *ubuf)
1074 {
1075         unsigned int *data = &target->thread.system_call;
1076         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1077                                   data, 0, sizeof(unsigned int));
1078 }
1079
1080 static int s390_gs_cb_get(struct task_struct *target,
1081                           const struct user_regset *regset,
1082                           struct membuf to)
1083 {
1084         struct gs_cb *data = target->thread.gs_cb;
1085
1086         if (!MACHINE_HAS_GS)
1087                 return -ENODEV;
1088         if (!data)
1089                 return -ENODATA;
1090         if (target == current)
1091                 save_gs_cb(data);
1092         return membuf_write(&to, data, sizeof(struct gs_cb));
1093 }
1094
1095 static int s390_gs_cb_set(struct task_struct *target,
1096                           const struct user_regset *regset,
1097                           unsigned int pos, unsigned int count,
1098                           const void *kbuf, const void __user *ubuf)
1099 {
1100         struct gs_cb gs_cb = { }, *data = NULL;
1101         int rc;
1102
1103         if (!MACHINE_HAS_GS)
1104                 return -ENODEV;
1105         if (!target->thread.gs_cb) {
1106                 data = kzalloc(sizeof(*data), GFP_KERNEL);
1107                 if (!data)
1108                         return -ENOMEM;
1109         }
1110         if (!target->thread.gs_cb)
1111                 gs_cb.gsd = 25;
1112         else if (target == current)
1113                 save_gs_cb(&gs_cb);
1114         else
1115                 gs_cb = *target->thread.gs_cb;
1116         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1117                                 &gs_cb, 0, sizeof(gs_cb));
1118         if (rc) {
1119                 kfree(data);
1120                 return -EFAULT;
1121         }
1122         preempt_disable();
1123         if (!target->thread.gs_cb)
1124                 target->thread.gs_cb = data;
1125         *target->thread.gs_cb = gs_cb;
1126         if (target == current) {
1127                 __ctl_set_bit(2, 4);
1128                 restore_gs_cb(target->thread.gs_cb);
1129         }
1130         preempt_enable();
1131         return rc;
1132 }
1133
1134 static int s390_gs_bc_get(struct task_struct *target,
1135                           const struct user_regset *regset,
1136                           struct membuf to)
1137 {
1138         struct gs_cb *data = target->thread.gs_bc_cb;
1139
1140         if (!MACHINE_HAS_GS)
1141                 return -ENODEV;
1142         if (!data)
1143                 return -ENODATA;
1144         return membuf_write(&to, data, sizeof(struct gs_cb));
1145 }
1146
1147 static int s390_gs_bc_set(struct task_struct *target,
1148                           const struct user_regset *regset,
1149                           unsigned int pos, unsigned int count,
1150                           const void *kbuf, const void __user *ubuf)
1151 {
1152         struct gs_cb *data = target->thread.gs_bc_cb;
1153
1154         if (!MACHINE_HAS_GS)
1155                 return -ENODEV;
1156         if (!data) {
1157                 data = kzalloc(sizeof(*data), GFP_KERNEL);
1158                 if (!data)
1159                         return -ENOMEM;
1160                 target->thread.gs_bc_cb = data;
1161         }
1162         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1163                                   data, 0, sizeof(struct gs_cb));
1164 }
1165
1166 static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1167 {
1168         return (cb->rca & 0x1f) == 0 &&
1169                 (cb->roa & 0xfff) == 0 &&
1170                 (cb->rla & 0xfff) == 0xfff &&
1171                 cb->s == 1 &&
1172                 cb->k == 1 &&
1173                 cb->h == 0 &&
1174                 cb->reserved1 == 0 &&
1175                 cb->ps == 1 &&
1176                 cb->qs == 0 &&
1177                 cb->pc == 1 &&
1178                 cb->qc == 0 &&
1179                 cb->reserved2 == 0 &&
1180                 cb->reserved3 == 0 &&
1181                 cb->reserved4 == 0 &&
1182                 cb->reserved5 == 0 &&
1183                 cb->reserved6 == 0 &&
1184                 cb->reserved7 == 0 &&
1185                 cb->reserved8 == 0 &&
1186                 cb->rla >= cb->roa &&
1187                 cb->rca >= cb->roa &&
1188                 cb->rca <= cb->rla+1 &&
1189                 cb->m < 3;
1190 }
1191
1192 static int s390_runtime_instr_get(struct task_struct *target,
1193                                 const struct user_regset *regset,
1194                                 struct membuf to)
1195 {
1196         struct runtime_instr_cb *data = target->thread.ri_cb;
1197
1198         if (!test_facility(64))
1199                 return -ENODEV;
1200         if (!data)
1201                 return -ENODATA;
1202
1203         return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1204 }
1205
1206 static int s390_runtime_instr_set(struct task_struct *target,
1207                                   const struct user_regset *regset,
1208                                   unsigned int pos, unsigned int count,
1209                                   const void *kbuf, const void __user *ubuf)
1210 {
1211         struct runtime_instr_cb ri_cb = { }, *data = NULL;
1212         int rc;
1213
1214         if (!test_facility(64))
1215                 return -ENODEV;
1216
1217         if (!target->thread.ri_cb) {
1218                 data = kzalloc(sizeof(*data), GFP_KERNEL);
1219                 if (!data)
1220                         return -ENOMEM;
1221         }
1222
1223         if (target->thread.ri_cb) {
1224                 if (target == current)
1225                         store_runtime_instr_cb(&ri_cb);
1226                 else
1227                         ri_cb = *target->thread.ri_cb;
1228         }
1229
1230         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1231                                 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1232         if (rc) {
1233                 kfree(data);
1234                 return -EFAULT;
1235         }
1236
1237         if (!is_ri_cb_valid(&ri_cb)) {
1238                 kfree(data);
1239                 return -EINVAL;
1240         }
1241         /*
1242          * Override access key in any case, since user space should
1243          * not be able to set it, nor should it care about it.
1244          */
1245         ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1246         preempt_disable();
1247         if (!target->thread.ri_cb)
1248                 target->thread.ri_cb = data;
1249         *target->thread.ri_cb = ri_cb;
1250         if (target == current)
1251                 load_runtime_instr_cb(target->thread.ri_cb);
1252         preempt_enable();
1253
1254         return 0;
1255 }
1256
1257 static const struct user_regset s390_regsets[] = {
1258         {
1259                 .core_note_type = NT_PRSTATUS,
1260                 .n = sizeof(s390_regs) / sizeof(long),
1261                 .size = sizeof(long),
1262                 .align = sizeof(long),
1263                 .regset_get = s390_regs_get,
1264                 .set = s390_regs_set,
1265         },
1266         {
1267                 .core_note_type = NT_PRFPREG,
1268                 .n = sizeof(s390_fp_regs) / sizeof(long),
1269                 .size = sizeof(long),
1270                 .align = sizeof(long),
1271                 .regset_get = s390_fpregs_get,
1272                 .set = s390_fpregs_set,
1273         },
1274         {
1275                 .core_note_type = NT_S390_SYSTEM_CALL,
1276                 .n = 1,
1277                 .size = sizeof(unsigned int),
1278                 .align = sizeof(unsigned int),
1279                 .regset_get = s390_system_call_get,
1280                 .set = s390_system_call_set,
1281         },
1282         {
1283                 .core_note_type = NT_S390_LAST_BREAK,
1284                 .n = 1,
1285                 .size = sizeof(long),
1286                 .align = sizeof(long),
1287                 .regset_get = s390_last_break_get,
1288                 .set = s390_last_break_set,
1289         },
1290         {
1291                 .core_note_type = NT_S390_TDB,
1292                 .n = 1,
1293                 .size = 256,
1294                 .align = 1,
1295                 .regset_get = s390_tdb_get,
1296                 .set = s390_tdb_set,
1297         },
1298         {
1299                 .core_note_type = NT_S390_VXRS_LOW,
1300                 .n = __NUM_VXRS_LOW,
1301                 .size = sizeof(__u64),
1302                 .align = sizeof(__u64),
1303                 .regset_get = s390_vxrs_low_get,
1304                 .set = s390_vxrs_low_set,
1305         },
1306         {
1307                 .core_note_type = NT_S390_VXRS_HIGH,
1308                 .n = __NUM_VXRS_HIGH,
1309                 .size = sizeof(__vector128),
1310                 .align = sizeof(__vector128),
1311                 .regset_get = s390_vxrs_high_get,
1312                 .set = s390_vxrs_high_set,
1313         },
1314         {
1315                 .core_note_type = NT_S390_GS_CB,
1316                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1317                 .size = sizeof(__u64),
1318                 .align = sizeof(__u64),
1319                 .regset_get = s390_gs_cb_get,
1320                 .set = s390_gs_cb_set,
1321         },
1322         {
1323                 .core_note_type = NT_S390_GS_BC,
1324                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1325                 .size = sizeof(__u64),
1326                 .align = sizeof(__u64),
1327                 .regset_get = s390_gs_bc_get,
1328                 .set = s390_gs_bc_set,
1329         },
1330         {
1331                 .core_note_type = NT_S390_RI_CB,
1332                 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1333                 .size = sizeof(__u64),
1334                 .align = sizeof(__u64),
1335                 .regset_get = s390_runtime_instr_get,
1336                 .set = s390_runtime_instr_set,
1337         },
1338 };
1339
1340 static const struct user_regset_view user_s390_view = {
1341         .name = "s390x",
1342         .e_machine = EM_S390,
1343         .regsets = s390_regsets,
1344         .n = ARRAY_SIZE(s390_regsets)
1345 };
1346
1347 #ifdef CONFIG_COMPAT
1348 static int s390_compat_regs_get(struct task_struct *target,
1349                                 const struct user_regset *regset,
1350                                 struct membuf to)
1351 {
1352         unsigned n;
1353
1354         if (target == current)
1355                 save_access_regs(target->thread.acrs);
1356
1357         for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1358                 membuf_store(&to, __peek_user_compat(target, n));
1359         return 0;
1360 }
1361
1362 static int s390_compat_regs_set(struct task_struct *target,
1363                                 const struct user_regset *regset,
1364                                 unsigned int pos, unsigned int count,
1365                                 const void *kbuf, const void __user *ubuf)
1366 {
1367         int rc = 0;
1368
1369         if (target == current)
1370                 save_access_regs(target->thread.acrs);
1371
1372         if (kbuf) {
1373                 const compat_ulong_t *k = kbuf;
1374                 while (count > 0 && !rc) {
1375                         rc = __poke_user_compat(target, pos, *k++);
1376                         count -= sizeof(*k);
1377                         pos += sizeof(*k);
1378                 }
1379         } else {
1380                 const compat_ulong_t  __user *u = ubuf;
1381                 while (count > 0 && !rc) {
1382                         compat_ulong_t word;
1383                         rc = __get_user(word, u++);
1384                         if (rc)
1385                                 break;
1386                         rc = __poke_user_compat(target, pos, word);
1387                         count -= sizeof(*u);
1388                         pos += sizeof(*u);
1389                 }
1390         }
1391
1392         if (rc == 0 && target == current)
1393                 restore_access_regs(target->thread.acrs);
1394
1395         return rc;
1396 }
1397
1398 static int s390_compat_regs_high_get(struct task_struct *target,
1399                                      const struct user_regset *regset,
1400                                      struct membuf to)
1401 {
1402         compat_ulong_t *gprs_high;
1403         int i;
1404
1405         gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1406         for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1407                 membuf_store(&to, *gprs_high);
1408         return 0;
1409 }
1410
1411 static int s390_compat_regs_high_set(struct task_struct *target,
1412                                      const struct user_regset *regset,
1413                                      unsigned int pos, unsigned int count,
1414                                      const void *kbuf, const void __user *ubuf)
1415 {
1416         compat_ulong_t *gprs_high;
1417         int rc = 0;
1418
1419         gprs_high = (compat_ulong_t *)
1420                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1421         if (kbuf) {
1422                 const compat_ulong_t *k = kbuf;
1423                 while (count > 0) {
1424                         *gprs_high = *k++;
1425                         *gprs_high += 2;
1426                         count -= sizeof(*k);
1427                 }
1428         } else {
1429                 const compat_ulong_t  __user *u = ubuf;
1430                 while (count > 0 && !rc) {
1431                         unsigned long word;
1432                         rc = __get_user(word, u++);
1433                         if (rc)
1434                                 break;
1435                         *gprs_high = word;
1436                         *gprs_high += 2;
1437                         count -= sizeof(*u);
1438                 }
1439         }
1440
1441         return rc;
1442 }
1443
1444 static int s390_compat_last_break_get(struct task_struct *target,
1445                                       const struct user_regset *regset,
1446                                       struct membuf to)
1447 {
1448         compat_ulong_t last_break = target->thread.last_break;
1449
1450         return membuf_store(&to, (unsigned long)last_break);
1451 }
1452
1453 static int s390_compat_last_break_set(struct task_struct *target,
1454                                       const struct user_regset *regset,
1455                                       unsigned int pos, unsigned int count,
1456                                       const void *kbuf, const void __user *ubuf)
1457 {
1458         return 0;
1459 }
1460
1461 static const struct user_regset s390_compat_regsets[] = {
1462         {
1463                 .core_note_type = NT_PRSTATUS,
1464                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1465                 .size = sizeof(compat_long_t),
1466                 .align = sizeof(compat_long_t),
1467                 .regset_get = s390_compat_regs_get,
1468                 .set = s390_compat_regs_set,
1469         },
1470         {
1471                 .core_note_type = NT_PRFPREG,
1472                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1473                 .size = sizeof(compat_long_t),
1474                 .align = sizeof(compat_long_t),
1475                 .regset_get = s390_fpregs_get,
1476                 .set = s390_fpregs_set,
1477         },
1478         {
1479                 .core_note_type = NT_S390_SYSTEM_CALL,
1480                 .n = 1,
1481                 .size = sizeof(compat_uint_t),
1482                 .align = sizeof(compat_uint_t),
1483                 .regset_get = s390_system_call_get,
1484                 .set = s390_system_call_set,
1485         },
1486         {
1487                 .core_note_type = NT_S390_LAST_BREAK,
1488                 .n = 1,
1489                 .size = sizeof(long),
1490                 .align = sizeof(long),
1491                 .regset_get = s390_compat_last_break_get,
1492                 .set = s390_compat_last_break_set,
1493         },
1494         {
1495                 .core_note_type = NT_S390_TDB,
1496                 .n = 1,
1497                 .size = 256,
1498                 .align = 1,
1499                 .regset_get = s390_tdb_get,
1500                 .set = s390_tdb_set,
1501         },
1502         {
1503                 .core_note_type = NT_S390_VXRS_LOW,
1504                 .n = __NUM_VXRS_LOW,
1505                 .size = sizeof(__u64),
1506                 .align = sizeof(__u64),
1507                 .regset_get = s390_vxrs_low_get,
1508                 .set = s390_vxrs_low_set,
1509         },
1510         {
1511                 .core_note_type = NT_S390_VXRS_HIGH,
1512                 .n = __NUM_VXRS_HIGH,
1513                 .size = sizeof(__vector128),
1514                 .align = sizeof(__vector128),
1515                 .regset_get = s390_vxrs_high_get,
1516                 .set = s390_vxrs_high_set,
1517         },
1518         {
1519                 .core_note_type = NT_S390_HIGH_GPRS,
1520                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1521                 .size = sizeof(compat_long_t),
1522                 .align = sizeof(compat_long_t),
1523                 .regset_get = s390_compat_regs_high_get,
1524                 .set = s390_compat_regs_high_set,
1525         },
1526         {
1527                 .core_note_type = NT_S390_GS_CB,
1528                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1529                 .size = sizeof(__u64),
1530                 .align = sizeof(__u64),
1531                 .regset_get = s390_gs_cb_get,
1532                 .set = s390_gs_cb_set,
1533         },
1534         {
1535                 .core_note_type = NT_S390_GS_BC,
1536                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1537                 .size = sizeof(__u64),
1538                 .align = sizeof(__u64),
1539                 .regset_get = s390_gs_bc_get,
1540                 .set = s390_gs_bc_set,
1541         },
1542         {
1543                 .core_note_type = NT_S390_RI_CB,
1544                 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1545                 .size = sizeof(__u64),
1546                 .align = sizeof(__u64),
1547                 .regset_get = s390_runtime_instr_get,
1548                 .set = s390_runtime_instr_set,
1549         },
1550 };
1551
1552 static const struct user_regset_view user_s390_compat_view = {
1553         .name = "s390",
1554         .e_machine = EM_S390,
1555         .regsets = s390_compat_regsets,
1556         .n = ARRAY_SIZE(s390_compat_regsets)
1557 };
1558 #endif
1559
1560 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1561 {
1562 #ifdef CONFIG_COMPAT
1563         if (test_tsk_thread_flag(task, TIF_31BIT))
1564                 return &user_s390_compat_view;
1565 #endif
1566         return &user_s390_view;
1567 }
1568
1569 static const char *gpr_names[NUM_GPRS] = {
1570         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1571         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1572 };
1573
1574 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1575 {
1576         if (offset >= NUM_GPRS)
1577                 return 0;
1578         return regs->gprs[offset];
1579 }
1580
1581 int regs_query_register_offset(const char *name)
1582 {
1583         unsigned long offset;
1584
1585         if (!name || *name != 'r')
1586                 return -EINVAL;
1587         if (kstrtoul(name + 1, 10, &offset))
1588                 return -EINVAL;
1589         if (offset >= NUM_GPRS)
1590                 return -EINVAL;
1591         return offset;
1592 }
1593
1594 const char *regs_query_register_name(unsigned int offset)
1595 {
1596         if (offset >= NUM_GPRS)
1597                 return NULL;
1598         return gpr_names[offset];
1599 }
1600
1601 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1602 {
1603         unsigned long ksp = kernel_stack_pointer(regs);
1604
1605         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1606 }
1607
1608 /**
1609  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1610  * @regs:pt_regs which contains kernel stack pointer.
1611  * @n:stack entry number.
1612  *
1613  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1614  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1615  * this returns 0.
1616  */
1617 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1618 {
1619         unsigned long addr;
1620
1621         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1622         if (!regs_within_kernel_stack(regs, addr))
1623                 return 0;
1624         return *(unsigned long *)addr;
1625 }