Merge tag 'quota_for_v5.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / s390 / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9
10 #include <linux/moduleloader.h>
11 #include <linux/kprobes.h>
12 #include <linux/ptrace.h>
13 #include <linux/preempt.h>
14 #include <linux/stop_machine.h>
15 #include <linux/kdebug.h>
16 #include <linux/uaccess.h>
17 #include <linux/extable.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/hardirq.h>
21 #include <linux/ftrace.h>
22 #include <asm/set_memory.h>
23 #include <asm/sections.h>
24 #include <asm/dis.h>
25 #include "entry.h"
26
27 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
28 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
29
30 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
31
32 DEFINE_INSN_CACHE_OPS(s390_insn);
33
34 static int insn_page_in_use;
35
36 void *alloc_insn_page(void)
37 {
38         void *page;
39
40         page = module_alloc(PAGE_SIZE);
41         if (!page)
42                 return NULL;
43         __set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X);
44         return page;
45 }
46
47 void free_insn_page(void *page)
48 {
49         module_memfree(page);
50 }
51
52 static void *alloc_s390_insn_page(void)
53 {
54         if (xchg(&insn_page_in_use, 1) == 1)
55                 return NULL;
56         return &kprobes_insn_page;
57 }
58
59 static void free_s390_insn_page(void *page)
60 {
61         xchg(&insn_page_in_use, 0);
62 }
63
64 struct kprobe_insn_cache kprobe_s390_insn_slots = {
65         .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
66         .alloc = alloc_s390_insn_page,
67         .free = free_s390_insn_page,
68         .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
69         .insn_size = MAX_INSN_SIZE,
70 };
71
72 static void copy_instruction(struct kprobe *p)
73 {
74         kprobe_opcode_t insn[MAX_INSN_SIZE];
75         s64 disp, new_disp;
76         u64 addr, new_addr;
77         unsigned int len;
78
79         len = insn_length(*p->addr >> 8);
80         memcpy(&insn, p->addr, len);
81         p->opcode = insn[0];
82         if (probe_is_insn_relative_long(&insn[0])) {
83                 /*
84                  * For pc-relative instructions in RIL-b or RIL-c format patch
85                  * the RI2 displacement field. We have already made sure that
86                  * the insn slot for the patched instruction is within the same
87                  * 2GB area as the original instruction (either kernel image or
88                  * module area). Therefore the new displacement will always fit.
89                  */
90                 disp = *(s32 *)&insn[1];
91                 addr = (u64)(unsigned long)p->addr;
92                 new_addr = (u64)(unsigned long)p->ainsn.insn;
93                 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
94                 *(s32 *)&insn[1] = new_disp;
95         }
96         s390_kernel_write(p->ainsn.insn, &insn, len);
97 }
98 NOKPROBE_SYMBOL(copy_instruction);
99
100 static inline int is_kernel_addr(void *addr)
101 {
102         return addr < (void *)_end;
103 }
104
105 static int s390_get_insn_slot(struct kprobe *p)
106 {
107         /*
108          * Get an insn slot that is within the same 2GB area like the original
109          * instruction. That way instructions with a 32bit signed displacement
110          * field can be patched and executed within the insn slot.
111          */
112         p->ainsn.insn = NULL;
113         if (is_kernel_addr(p->addr))
114                 p->ainsn.insn = get_s390_insn_slot();
115         else if (is_module_addr(p->addr))
116                 p->ainsn.insn = get_insn_slot();
117         return p->ainsn.insn ? 0 : -ENOMEM;
118 }
119 NOKPROBE_SYMBOL(s390_get_insn_slot);
120
121 static void s390_free_insn_slot(struct kprobe *p)
122 {
123         if (!p->ainsn.insn)
124                 return;
125         if (is_kernel_addr(p->addr))
126                 free_s390_insn_slot(p->ainsn.insn, 0);
127         else
128                 free_insn_slot(p->ainsn.insn, 0);
129         p->ainsn.insn = NULL;
130 }
131 NOKPROBE_SYMBOL(s390_free_insn_slot);
132
133 int arch_prepare_kprobe(struct kprobe *p)
134 {
135         if ((unsigned long) p->addr & 0x01)
136                 return -EINVAL;
137         /* Make sure the probe isn't going on a difficult instruction */
138         if (probe_is_prohibited_opcode(p->addr))
139                 return -EINVAL;
140         if (s390_get_insn_slot(p))
141                 return -ENOMEM;
142         copy_instruction(p);
143         return 0;
144 }
145 NOKPROBE_SYMBOL(arch_prepare_kprobe);
146
147 struct swap_insn_args {
148         struct kprobe *p;
149         unsigned int arm_kprobe : 1;
150 };
151
152 static int swap_instruction(void *data)
153 {
154         struct swap_insn_args *args = data;
155         struct kprobe *p = args->p;
156         u16 opc;
157
158         opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
159         s390_kernel_write(p->addr, &opc, sizeof(opc));
160         return 0;
161 }
162 NOKPROBE_SYMBOL(swap_instruction);
163
164 void arch_arm_kprobe(struct kprobe *p)
165 {
166         struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
167
168         stop_machine_cpuslocked(swap_instruction, &args, NULL);
169 }
170 NOKPROBE_SYMBOL(arch_arm_kprobe);
171
172 void arch_disarm_kprobe(struct kprobe *p)
173 {
174         struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
175
176         stop_machine_cpuslocked(swap_instruction, &args, NULL);
177 }
178 NOKPROBE_SYMBOL(arch_disarm_kprobe);
179
180 void arch_remove_kprobe(struct kprobe *p)
181 {
182         s390_free_insn_slot(p);
183 }
184 NOKPROBE_SYMBOL(arch_remove_kprobe);
185
186 static void enable_singlestep(struct kprobe_ctlblk *kcb,
187                               struct pt_regs *regs,
188                               unsigned long ip)
189 {
190         struct per_regs per_kprobe;
191
192         /* Set up the PER control registers %cr9-%cr11 */
193         per_kprobe.control = PER_EVENT_IFETCH;
194         per_kprobe.start = ip;
195         per_kprobe.end = ip;
196
197         /* Save control regs and psw mask */
198         __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
199         kcb->kprobe_saved_imask = regs->psw.mask &
200                 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
201
202         /* Set PER control regs, turns on single step for the given address */
203         __ctl_load(per_kprobe, 9, 11);
204         regs->psw.mask |= PSW_MASK_PER;
205         regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
206         regs->psw.addr = ip;
207 }
208 NOKPROBE_SYMBOL(enable_singlestep);
209
210 static void disable_singlestep(struct kprobe_ctlblk *kcb,
211                                struct pt_regs *regs,
212                                unsigned long ip)
213 {
214         /* Restore control regs and psw mask, set new psw address */
215         __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
216         regs->psw.mask &= ~PSW_MASK_PER;
217         regs->psw.mask |= kcb->kprobe_saved_imask;
218         regs->psw.addr = ip;
219 }
220 NOKPROBE_SYMBOL(disable_singlestep);
221
222 /*
223  * Activate a kprobe by storing its pointer to current_kprobe. The
224  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
225  * two kprobes can be active, see KPROBE_REENTER.
226  */
227 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
228 {
229         kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
230         kcb->prev_kprobe.status = kcb->kprobe_status;
231         __this_cpu_write(current_kprobe, p);
232 }
233 NOKPROBE_SYMBOL(push_kprobe);
234
235 /*
236  * Deactivate a kprobe by backing up to the previous state. If the
237  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
238  * for any other state prev_kprobe.kp will be NULL.
239  */
240 static void pop_kprobe(struct kprobe_ctlblk *kcb)
241 {
242         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
243         kcb->kprobe_status = kcb->prev_kprobe.status;
244 }
245 NOKPROBE_SYMBOL(pop_kprobe);
246
247 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
248 {
249         ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
250         ri->fp = NULL;
251
252         /* Replace the return addr with trampoline addr */
253         regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
254 }
255 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
256
257 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
258 {
259         switch (kcb->kprobe_status) {
260         case KPROBE_HIT_SSDONE:
261         case KPROBE_HIT_ACTIVE:
262                 kprobes_inc_nmissed_count(p);
263                 break;
264         case KPROBE_HIT_SS:
265         case KPROBE_REENTER:
266         default:
267                 /*
268                  * A kprobe on the code path to single step an instruction
269                  * is a BUG. The code path resides in the .kprobes.text
270                  * section and is executed with interrupts disabled.
271                  */
272                 pr_err("Invalid kprobe detected.\n");
273                 dump_kprobe(p);
274                 BUG();
275         }
276 }
277 NOKPROBE_SYMBOL(kprobe_reenter_check);
278
279 static int kprobe_handler(struct pt_regs *regs)
280 {
281         struct kprobe_ctlblk *kcb;
282         struct kprobe *p;
283
284         /*
285          * We want to disable preemption for the entire duration of kprobe
286          * processing. That includes the calls to the pre/post handlers
287          * and single stepping the kprobe instruction.
288          */
289         preempt_disable();
290         kcb = get_kprobe_ctlblk();
291         p = get_kprobe((void *)(regs->psw.addr - 2));
292
293         if (p) {
294                 if (kprobe_running()) {
295                         /*
296                          * We have hit a kprobe while another is still
297                          * active. This can happen in the pre and post
298                          * handler. Single step the instruction of the
299                          * new probe but do not call any handler function
300                          * of this secondary kprobe.
301                          * push_kprobe and pop_kprobe saves and restores
302                          * the currently active kprobe.
303                          */
304                         kprobe_reenter_check(kcb, p);
305                         push_kprobe(kcb, p);
306                         kcb->kprobe_status = KPROBE_REENTER;
307                 } else {
308                         /*
309                          * If we have no pre-handler or it returned 0, we
310                          * continue with single stepping. If we have a
311                          * pre-handler and it returned non-zero, it prepped
312                          * for changing execution path, so get out doing
313                          * nothing more here.
314                          */
315                         push_kprobe(kcb, p);
316                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
317                         if (p->pre_handler && p->pre_handler(p, regs)) {
318                                 pop_kprobe(kcb);
319                                 preempt_enable_no_resched();
320                                 return 1;
321                         }
322                         kcb->kprobe_status = KPROBE_HIT_SS;
323                 }
324                 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
325                 return 1;
326         } /* else:
327            * No kprobe at this address and no active kprobe. The trap has
328            * not been caused by a kprobe breakpoint. The race of breakpoint
329            * vs. kprobe remove does not exist because on s390 as we use
330            * stop_machine to arm/disarm the breakpoints.
331            */
332         preempt_enable_no_resched();
333         return 0;
334 }
335 NOKPROBE_SYMBOL(kprobe_handler);
336
337 /*
338  * Function return probe trampoline:
339  *      - init_kprobes() establishes a probepoint here
340  *      - When the probed function returns, this probe
341  *              causes the handlers to fire
342  */
343 static void __used kretprobe_trampoline_holder(void)
344 {
345         asm volatile(".global kretprobe_trampoline\n"
346                      "kretprobe_trampoline: bcr 0,0\n");
347 }
348
349 /*
350  * Called when the probe at kretprobe trampoline is hit
351  */
352 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
353 {
354         regs->psw.addr = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
355         /*
356          * By returning a non-zero value, we are telling
357          * kprobe_handler() that we don't want the post_handler
358          * to run (and have re-enabled preemption)
359          */
360         return 1;
361 }
362 NOKPROBE_SYMBOL(trampoline_probe_handler);
363
364 /*
365  * Called after single-stepping.  p->addr is the address of the
366  * instruction whose first byte has been replaced by the "breakpoint"
367  * instruction.  To avoid the SMP problems that can occur when we
368  * temporarily put back the original opcode to single-step, we
369  * single-stepped a copy of the instruction.  The address of this
370  * copy is p->ainsn.insn.
371  */
372 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
373 {
374         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
375         unsigned long ip = regs->psw.addr;
376         int fixup = probe_get_fixup_type(p->ainsn.insn);
377
378         if (fixup & FIXUP_PSW_NORMAL)
379                 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
380
381         if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
382                 int ilen = insn_length(p->ainsn.insn[0] >> 8);
383                 if (ip - (unsigned long) p->ainsn.insn == ilen)
384                         ip = (unsigned long) p->addr + ilen;
385         }
386
387         if (fixup & FIXUP_RETURN_REGISTER) {
388                 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
389                 regs->gprs[reg] += (unsigned long) p->addr -
390                                    (unsigned long) p->ainsn.insn;
391         }
392
393         disable_singlestep(kcb, regs, ip);
394 }
395 NOKPROBE_SYMBOL(resume_execution);
396
397 static int post_kprobe_handler(struct pt_regs *regs)
398 {
399         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
400         struct kprobe *p = kprobe_running();
401
402         if (!p)
403                 return 0;
404
405         if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
406                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
407                 p->post_handler(p, regs, 0);
408         }
409
410         resume_execution(p, regs);
411         pop_kprobe(kcb);
412         preempt_enable_no_resched();
413
414         /*
415          * if somebody else is singlestepping across a probe point, psw mask
416          * will have PER set, in which case, continue the remaining processing
417          * of do_single_step, as if this is not a probe hit.
418          */
419         if (regs->psw.mask & PSW_MASK_PER)
420                 return 0;
421
422         return 1;
423 }
424 NOKPROBE_SYMBOL(post_kprobe_handler);
425
426 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
427 {
428         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
429         struct kprobe *p = kprobe_running();
430         const struct exception_table_entry *entry;
431
432         switch(kcb->kprobe_status) {
433         case KPROBE_HIT_SS:
434         case KPROBE_REENTER:
435                 /*
436                  * We are here because the instruction being single
437                  * stepped caused a page fault. We reset the current
438                  * kprobe and the nip points back to the probe address
439                  * and allow the page fault handler to continue as a
440                  * normal page fault.
441                  */
442                 disable_singlestep(kcb, regs, (unsigned long) p->addr);
443                 pop_kprobe(kcb);
444                 preempt_enable_no_resched();
445                 break;
446         case KPROBE_HIT_ACTIVE:
447         case KPROBE_HIT_SSDONE:
448                 /*
449                  * We increment the nmissed count for accounting,
450                  * we can also use npre/npostfault count for accounting
451                  * these specific fault cases.
452                  */
453                 kprobes_inc_nmissed_count(p);
454
455                 /*
456                  * We come here because instructions in the pre/post
457                  * handler caused the page_fault, this could happen
458                  * if handler tries to access user space by
459                  * copy_from_user(), get_user() etc. Let the
460                  * user-specified handler try to fix it first.
461                  */
462                 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
463                         return 1;
464
465                 /*
466                  * In case the user-specified fault handler returned
467                  * zero, try to fix up.
468                  */
469                 entry = s390_search_extables(regs->psw.addr);
470                 if (entry && ex_handle(entry, regs))
471                         return 1;
472
473                 /*
474                  * fixup_exception() could not handle it,
475                  * Let do_page_fault() fix it.
476                  */
477                 break;
478         default:
479                 break;
480         }
481         return 0;
482 }
483 NOKPROBE_SYMBOL(kprobe_trap_handler);
484
485 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
486 {
487         int ret;
488
489         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
490                 local_irq_disable();
491         ret = kprobe_trap_handler(regs, trapnr);
492         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
493                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
494         return ret;
495 }
496 NOKPROBE_SYMBOL(kprobe_fault_handler);
497
498 /*
499  * Wrapper routine to for handling exceptions.
500  */
501 int kprobe_exceptions_notify(struct notifier_block *self,
502                              unsigned long val, void *data)
503 {
504         struct die_args *args = (struct die_args *) data;
505         struct pt_regs *regs = args->regs;
506         int ret = NOTIFY_DONE;
507
508         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
509                 local_irq_disable();
510
511         switch (val) {
512         case DIE_BPT:
513                 if (kprobe_handler(regs))
514                         ret = NOTIFY_STOP;
515                 break;
516         case DIE_SSTEP:
517                 if (post_kprobe_handler(regs))
518                         ret = NOTIFY_STOP;
519                 break;
520         case DIE_TRAP:
521                 if (!preemptible() && kprobe_running() &&
522                     kprobe_trap_handler(regs, args->trapnr))
523                         ret = NOTIFY_STOP;
524                 break;
525         default:
526                 break;
527         }
528
529         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
530                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
531
532         return ret;
533 }
534 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
535
536 static struct kprobe trampoline = {
537         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
538         .pre_handler = trampoline_probe_handler
539 };
540
541 int __init arch_init_kprobes(void)
542 {
543         return register_kprobe(&trampoline);
544 }
545
546 int arch_trampoline_kprobe(struct kprobe *p)
547 {
548         return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
549 }
550 NOKPROBE_SYMBOL(arch_trampoline_kprobe);