Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / arch / s390 / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9
10 #include <linux/kprobes.h>
11 #include <linux/ptrace.h>
12 #include <linux/preempt.h>
13 #include <linux/stop_machine.h>
14 #include <linux/kdebug.h>
15 #include <linux/uaccess.h>
16 #include <linux/extable.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/hardirq.h>
20 #include <linux/ftrace.h>
21 #include <asm/set_memory.h>
22 #include <asm/sections.h>
23 #include <asm/dis.h>
24
25 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27
28 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
29
30 DEFINE_INSN_CACHE_OPS(s390_insn);
31
32 static int insn_page_in_use;
33 static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
34
35 static void *alloc_s390_insn_page(void)
36 {
37         if (xchg(&insn_page_in_use, 1) == 1)
38                 return NULL;
39         set_memory_x((unsigned long) &insn_page, 1);
40         return &insn_page;
41 }
42
43 static void free_s390_insn_page(void *page)
44 {
45         set_memory_nx((unsigned long) page, 1);
46         xchg(&insn_page_in_use, 0);
47 }
48
49 struct kprobe_insn_cache kprobe_s390_insn_slots = {
50         .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
51         .alloc = alloc_s390_insn_page,
52         .free = free_s390_insn_page,
53         .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
54         .insn_size = MAX_INSN_SIZE,
55 };
56
57 static void copy_instruction(struct kprobe *p)
58 {
59         s64 disp, new_disp;
60         u64 addr, new_addr;
61
62         memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
63         p->opcode = p->ainsn.insn[0];
64         if (!probe_is_insn_relative_long(p->ainsn.insn))
65                 return;
66         /*
67          * For pc-relative instructions in RIL-b or RIL-c format patch the
68          * RI2 displacement field. We have already made sure that the insn
69          * slot for the patched instruction is within the same 2GB area
70          * as the original instruction (either kernel image or module area).
71          * Therefore the new displacement will always fit.
72          */
73         disp = *(s32 *)&p->ainsn.insn[1];
74         addr = (u64)(unsigned long)p->addr;
75         new_addr = (u64)(unsigned long)p->ainsn.insn;
76         new_disp = ((addr + (disp * 2)) - new_addr) / 2;
77         *(s32 *)&p->ainsn.insn[1] = new_disp;
78 }
79 NOKPROBE_SYMBOL(copy_instruction);
80
81 static inline int is_kernel_addr(void *addr)
82 {
83         return addr < (void *)_end;
84 }
85
86 static int s390_get_insn_slot(struct kprobe *p)
87 {
88         /*
89          * Get an insn slot that is within the same 2GB area like the original
90          * instruction. That way instructions with a 32bit signed displacement
91          * field can be patched and executed within the insn slot.
92          */
93         p->ainsn.insn = NULL;
94         if (is_kernel_addr(p->addr))
95                 p->ainsn.insn = get_s390_insn_slot();
96         else if (is_module_addr(p->addr))
97                 p->ainsn.insn = get_insn_slot();
98         return p->ainsn.insn ? 0 : -ENOMEM;
99 }
100 NOKPROBE_SYMBOL(s390_get_insn_slot);
101
102 static void s390_free_insn_slot(struct kprobe *p)
103 {
104         if (!p->ainsn.insn)
105                 return;
106         if (is_kernel_addr(p->addr))
107                 free_s390_insn_slot(p->ainsn.insn, 0);
108         else
109                 free_insn_slot(p->ainsn.insn, 0);
110         p->ainsn.insn = NULL;
111 }
112 NOKPROBE_SYMBOL(s390_free_insn_slot);
113
114 int arch_prepare_kprobe(struct kprobe *p)
115 {
116         if ((unsigned long) p->addr & 0x01)
117                 return -EINVAL;
118         /* Make sure the probe isn't going on a difficult instruction */
119         if (probe_is_prohibited_opcode(p->addr))
120                 return -EINVAL;
121         if (s390_get_insn_slot(p))
122                 return -ENOMEM;
123         copy_instruction(p);
124         return 0;
125 }
126 NOKPROBE_SYMBOL(arch_prepare_kprobe);
127
128 struct swap_insn_args {
129         struct kprobe *p;
130         unsigned int arm_kprobe : 1;
131 };
132
133 static int swap_instruction(void *data)
134 {
135         struct swap_insn_args *args = data;
136         struct kprobe *p = args->p;
137         u16 opc;
138
139         opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
140         s390_kernel_write(p->addr, &opc, sizeof(opc));
141         return 0;
142 }
143 NOKPROBE_SYMBOL(swap_instruction);
144
145 void arch_arm_kprobe(struct kprobe *p)
146 {
147         struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
148
149         stop_machine_cpuslocked(swap_instruction, &args, NULL);
150 }
151 NOKPROBE_SYMBOL(arch_arm_kprobe);
152
153 void arch_disarm_kprobe(struct kprobe *p)
154 {
155         struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
156
157         stop_machine_cpuslocked(swap_instruction, &args, NULL);
158 }
159 NOKPROBE_SYMBOL(arch_disarm_kprobe);
160
161 void arch_remove_kprobe(struct kprobe *p)
162 {
163         s390_free_insn_slot(p);
164 }
165 NOKPROBE_SYMBOL(arch_remove_kprobe);
166
167 static void enable_singlestep(struct kprobe_ctlblk *kcb,
168                               struct pt_regs *regs,
169                               unsigned long ip)
170 {
171         struct per_regs per_kprobe;
172
173         /* Set up the PER control registers %cr9-%cr11 */
174         per_kprobe.control = PER_EVENT_IFETCH;
175         per_kprobe.start = ip;
176         per_kprobe.end = ip;
177
178         /* Save control regs and psw mask */
179         __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
180         kcb->kprobe_saved_imask = regs->psw.mask &
181                 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
182
183         /* Set PER control regs, turns on single step for the given address */
184         __ctl_load(per_kprobe, 9, 11);
185         regs->psw.mask |= PSW_MASK_PER;
186         regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
187         regs->psw.addr = ip;
188 }
189 NOKPROBE_SYMBOL(enable_singlestep);
190
191 static void disable_singlestep(struct kprobe_ctlblk *kcb,
192                                struct pt_regs *regs,
193                                unsigned long ip)
194 {
195         /* Restore control regs and psw mask, set new psw address */
196         __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
197         regs->psw.mask &= ~PSW_MASK_PER;
198         regs->psw.mask |= kcb->kprobe_saved_imask;
199         regs->psw.addr = ip;
200 }
201 NOKPROBE_SYMBOL(disable_singlestep);
202
203 /*
204  * Activate a kprobe by storing its pointer to current_kprobe. The
205  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
206  * two kprobes can be active, see KPROBE_REENTER.
207  */
208 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
209 {
210         kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
211         kcb->prev_kprobe.status = kcb->kprobe_status;
212         __this_cpu_write(current_kprobe, p);
213 }
214 NOKPROBE_SYMBOL(push_kprobe);
215
216 /*
217  * Deactivate a kprobe by backing up to the previous state. If the
218  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
219  * for any other state prev_kprobe.kp will be NULL.
220  */
221 static void pop_kprobe(struct kprobe_ctlblk *kcb)
222 {
223         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
224         kcb->kprobe_status = kcb->prev_kprobe.status;
225 }
226 NOKPROBE_SYMBOL(pop_kprobe);
227
228 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
229 {
230         ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
231
232         /* Replace the return addr with trampoline addr */
233         regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
234 }
235 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
236
237 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
238 {
239         switch (kcb->kprobe_status) {
240         case KPROBE_HIT_SSDONE:
241         case KPROBE_HIT_ACTIVE:
242                 kprobes_inc_nmissed_count(p);
243                 break;
244         case KPROBE_HIT_SS:
245         case KPROBE_REENTER:
246         default:
247                 /*
248                  * A kprobe on the code path to single step an instruction
249                  * is a BUG. The code path resides in the .kprobes.text
250                  * section and is executed with interrupts disabled.
251                  */
252                 pr_err("Invalid kprobe detected.\n");
253                 dump_kprobe(p);
254                 BUG();
255         }
256 }
257 NOKPROBE_SYMBOL(kprobe_reenter_check);
258
259 static int kprobe_handler(struct pt_regs *regs)
260 {
261         struct kprobe_ctlblk *kcb;
262         struct kprobe *p;
263
264         /*
265          * We want to disable preemption for the entire duration of kprobe
266          * processing. That includes the calls to the pre/post handlers
267          * and single stepping the kprobe instruction.
268          */
269         preempt_disable();
270         kcb = get_kprobe_ctlblk();
271         p = get_kprobe((void *)(regs->psw.addr - 2));
272
273         if (p) {
274                 if (kprobe_running()) {
275                         /*
276                          * We have hit a kprobe while another is still
277                          * active. This can happen in the pre and post
278                          * handler. Single step the instruction of the
279                          * new probe but do not call any handler function
280                          * of this secondary kprobe.
281                          * push_kprobe and pop_kprobe saves and restores
282                          * the currently active kprobe.
283                          */
284                         kprobe_reenter_check(kcb, p);
285                         push_kprobe(kcb, p);
286                         kcb->kprobe_status = KPROBE_REENTER;
287                 } else {
288                         /*
289                          * If we have no pre-handler or it returned 0, we
290                          * continue with single stepping. If we have a
291                          * pre-handler and it returned non-zero, it prepped
292                          * for changing execution path, so get out doing
293                          * nothing more here.
294                          */
295                         push_kprobe(kcb, p);
296                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
297                         if (p->pre_handler && p->pre_handler(p, regs)) {
298                                 pop_kprobe(kcb);
299                                 preempt_enable_no_resched();
300                                 return 1;
301                         }
302                         kcb->kprobe_status = KPROBE_HIT_SS;
303                 }
304                 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
305                 return 1;
306         } /* else:
307            * No kprobe at this address and no active kprobe. The trap has
308            * not been caused by a kprobe breakpoint. The race of breakpoint
309            * vs. kprobe remove does not exist because on s390 as we use
310            * stop_machine to arm/disarm the breakpoints.
311            */
312         preempt_enable_no_resched();
313         return 0;
314 }
315 NOKPROBE_SYMBOL(kprobe_handler);
316
317 /*
318  * Function return probe trampoline:
319  *      - init_kprobes() establishes a probepoint here
320  *      - When the probed function returns, this probe
321  *              causes the handlers to fire
322  */
323 static void __used kretprobe_trampoline_holder(void)
324 {
325         asm volatile(".global kretprobe_trampoline\n"
326                      "kretprobe_trampoline: bcr 0,0\n");
327 }
328
329 /*
330  * Called when the probe at kretprobe trampoline is hit
331  */
332 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
333 {
334         struct kretprobe_instance *ri;
335         struct hlist_head *head, empty_rp;
336         struct hlist_node *tmp;
337         unsigned long flags, orig_ret_address;
338         unsigned long trampoline_address;
339         kprobe_opcode_t *correct_ret_addr;
340
341         INIT_HLIST_HEAD(&empty_rp);
342         kretprobe_hash_lock(current, &head, &flags);
343
344         /*
345          * It is possible to have multiple instances associated with a given
346          * task either because an multiple functions in the call path
347          * have a return probe installed on them, and/or more than one return
348          * return probe was registered for a target function.
349          *
350          * We can handle this because:
351          *     - instances are always inserted at the head of the list
352          *     - when multiple return probes are registered for the same
353          *       function, the first instance's ret_addr will point to the
354          *       real return address, and all the rest will point to
355          *       kretprobe_trampoline
356          */
357         ri = NULL;
358         orig_ret_address = 0;
359         correct_ret_addr = NULL;
360         trampoline_address = (unsigned long) &kretprobe_trampoline;
361         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
362                 if (ri->task != current)
363                         /* another task is sharing our hash bucket */
364                         continue;
365
366                 orig_ret_address = (unsigned long) ri->ret_addr;
367
368                 if (orig_ret_address != trampoline_address)
369                         /*
370                          * This is the real return address. Any other
371                          * instances associated with this task are for
372                          * other calls deeper on the call stack
373                          */
374                         break;
375         }
376
377         kretprobe_assert(ri, orig_ret_address, trampoline_address);
378
379         correct_ret_addr = ri->ret_addr;
380         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
381                 if (ri->task != current)
382                         /* another task is sharing our hash bucket */
383                         continue;
384
385                 orig_ret_address = (unsigned long) ri->ret_addr;
386
387                 if (ri->rp && ri->rp->handler) {
388                         ri->ret_addr = correct_ret_addr;
389                         ri->rp->handler(ri, regs);
390                 }
391
392                 recycle_rp_inst(ri, &empty_rp);
393
394                 if (orig_ret_address != trampoline_address)
395                         /*
396                          * This is the real return address. Any other
397                          * instances associated with this task are for
398                          * other calls deeper on the call stack
399                          */
400                         break;
401         }
402
403         regs->psw.addr = orig_ret_address;
404
405         kretprobe_hash_unlock(current, &flags);
406
407         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
408                 hlist_del(&ri->hlist);
409                 kfree(ri);
410         }
411         /*
412          * By returning a non-zero value, we are telling
413          * kprobe_handler() that we don't want the post_handler
414          * to run (and have re-enabled preemption)
415          */
416         return 1;
417 }
418 NOKPROBE_SYMBOL(trampoline_probe_handler);
419
420 /*
421  * Called after single-stepping.  p->addr is the address of the
422  * instruction whose first byte has been replaced by the "breakpoint"
423  * instruction.  To avoid the SMP problems that can occur when we
424  * temporarily put back the original opcode to single-step, we
425  * single-stepped a copy of the instruction.  The address of this
426  * copy is p->ainsn.insn.
427  */
428 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
429 {
430         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
431         unsigned long ip = regs->psw.addr;
432         int fixup = probe_get_fixup_type(p->ainsn.insn);
433
434         if (fixup & FIXUP_PSW_NORMAL)
435                 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
436
437         if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
438                 int ilen = insn_length(p->ainsn.insn[0] >> 8);
439                 if (ip - (unsigned long) p->ainsn.insn == ilen)
440                         ip = (unsigned long) p->addr + ilen;
441         }
442
443         if (fixup & FIXUP_RETURN_REGISTER) {
444                 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
445                 regs->gprs[reg] += (unsigned long) p->addr -
446                                    (unsigned long) p->ainsn.insn;
447         }
448
449         disable_singlestep(kcb, regs, ip);
450 }
451 NOKPROBE_SYMBOL(resume_execution);
452
453 static int post_kprobe_handler(struct pt_regs *regs)
454 {
455         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
456         struct kprobe *p = kprobe_running();
457
458         if (!p)
459                 return 0;
460
461         if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
462                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
463                 p->post_handler(p, regs, 0);
464         }
465
466         resume_execution(p, regs);
467         pop_kprobe(kcb);
468         preempt_enable_no_resched();
469
470         /*
471          * if somebody else is singlestepping across a probe point, psw mask
472          * will have PER set, in which case, continue the remaining processing
473          * of do_single_step, as if this is not a probe hit.
474          */
475         if (regs->psw.mask & PSW_MASK_PER)
476                 return 0;
477
478         return 1;
479 }
480 NOKPROBE_SYMBOL(post_kprobe_handler);
481
482 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
483 {
484         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
485         struct kprobe *p = kprobe_running();
486         const struct exception_table_entry *entry;
487
488         switch(kcb->kprobe_status) {
489         case KPROBE_HIT_SS:
490         case KPROBE_REENTER:
491                 /*
492                  * We are here because the instruction being single
493                  * stepped caused a page fault. We reset the current
494                  * kprobe and the nip points back to the probe address
495                  * and allow the page fault handler to continue as a
496                  * normal page fault.
497                  */
498                 disable_singlestep(kcb, regs, (unsigned long) p->addr);
499                 pop_kprobe(kcb);
500                 preempt_enable_no_resched();
501                 break;
502         case KPROBE_HIT_ACTIVE:
503         case KPROBE_HIT_SSDONE:
504                 /*
505                  * We increment the nmissed count for accounting,
506                  * we can also use npre/npostfault count for accounting
507                  * these specific fault cases.
508                  */
509                 kprobes_inc_nmissed_count(p);
510
511                 /*
512                  * We come here because instructions in the pre/post
513                  * handler caused the page_fault, this could happen
514                  * if handler tries to access user space by
515                  * copy_from_user(), get_user() etc. Let the
516                  * user-specified handler try to fix it first.
517                  */
518                 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
519                         return 1;
520
521                 /*
522                  * In case the user-specified fault handler returned
523                  * zero, try to fix up.
524                  */
525                 entry = s390_search_extables(regs->psw.addr);
526                 if (entry) {
527                         regs->psw.addr = extable_fixup(entry);
528                         return 1;
529                 }
530
531                 /*
532                  * fixup_exception() could not handle it,
533                  * Let do_page_fault() fix it.
534                  */
535                 break;
536         default:
537                 break;
538         }
539         return 0;
540 }
541 NOKPROBE_SYMBOL(kprobe_trap_handler);
542
543 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
544 {
545         int ret;
546
547         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
548                 local_irq_disable();
549         ret = kprobe_trap_handler(regs, trapnr);
550         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
551                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
552         return ret;
553 }
554 NOKPROBE_SYMBOL(kprobe_fault_handler);
555
556 /*
557  * Wrapper routine to for handling exceptions.
558  */
559 int kprobe_exceptions_notify(struct notifier_block *self,
560                              unsigned long val, void *data)
561 {
562         struct die_args *args = (struct die_args *) data;
563         struct pt_regs *regs = args->regs;
564         int ret = NOTIFY_DONE;
565
566         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
567                 local_irq_disable();
568
569         switch (val) {
570         case DIE_BPT:
571                 if (kprobe_handler(regs))
572                         ret = NOTIFY_STOP;
573                 break;
574         case DIE_SSTEP:
575                 if (post_kprobe_handler(regs))
576                         ret = NOTIFY_STOP;
577                 break;
578         case DIE_TRAP:
579                 if (!preemptible() && kprobe_running() &&
580                     kprobe_trap_handler(regs, args->trapnr))
581                         ret = NOTIFY_STOP;
582                 break;
583         default:
584                 break;
585         }
586
587         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
588                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
589
590         return ret;
591 }
592 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
593
594 static struct kprobe trampoline = {
595         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
596         .pre_handler = trampoline_probe_handler
597 };
598
599 int __init arch_init_kprobes(void)
600 {
601         return register_kprobe(&trampoline);
602 }
603
604 int arch_trampoline_kprobe(struct kprobe *p)
605 {
606         return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
607 }
608 NOKPROBE_SYMBOL(arch_trampoline_kprobe);