dt-bindings: soc: bcm: use absolute path to other schema
[linux-2.6-microblaze.git] / arch / riscv / kvm / vcpu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8
9 #include <linux/bitops.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kdebug.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sched/signal.h>
18 #include <linux/fs.h>
19 #include <linux/kvm_host.h>
20 #include <asm/csr.h>
21 #include <asm/hwcap.h>
22
23 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
24         KVM_GENERIC_VCPU_STATS(),
25         STATS_DESC_COUNTER(VCPU, ecall_exit_stat),
26         STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
27         STATS_DESC_COUNTER(VCPU, mmio_exit_user),
28         STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
29         STATS_DESC_COUNTER(VCPU, exits)
30 };
31
32 const struct kvm_stats_header kvm_vcpu_stats_header = {
33         .name_size = KVM_STATS_NAME_SIZE,
34         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
35         .id_offset = sizeof(struct kvm_stats_header),
36         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
37         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
38                        sizeof(kvm_vcpu_stats_desc),
39 };
40
41 #define KVM_RISCV_ISA_DISABLE_ALLOWED   (riscv_isa_extension_mask(d) | \
42                                         riscv_isa_extension_mask(f))
43
44 #define KVM_RISCV_ISA_DISABLE_NOT_ALLOWED       (riscv_isa_extension_mask(a) | \
45                                                 riscv_isa_extension_mask(c) | \
46                                                 riscv_isa_extension_mask(i) | \
47                                                 riscv_isa_extension_mask(m))
48
49 #define KVM_RISCV_ISA_ALLOWED (KVM_RISCV_ISA_DISABLE_ALLOWED | \
50                                KVM_RISCV_ISA_DISABLE_NOT_ALLOWED)
51
52 static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu)
53 {
54         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
55         struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
56         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
57         struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context;
58         bool loaded;
59
60         /**
61          * The preemption should be disabled here because it races with
62          * kvm_sched_out/kvm_sched_in(called from preempt notifiers) which
63          * also calls vcpu_load/put.
64          */
65         get_cpu();
66         loaded = (vcpu->cpu != -1);
67         if (loaded)
68                 kvm_arch_vcpu_put(vcpu);
69
70         vcpu->arch.last_exit_cpu = -1;
71
72         memcpy(csr, reset_csr, sizeof(*csr));
73
74         memcpy(cntx, reset_cntx, sizeof(*cntx));
75
76         kvm_riscv_vcpu_fp_reset(vcpu);
77
78         kvm_riscv_vcpu_timer_reset(vcpu);
79
80         WRITE_ONCE(vcpu->arch.irqs_pending, 0);
81         WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0);
82
83         vcpu->arch.hfence_head = 0;
84         vcpu->arch.hfence_tail = 0;
85         memset(vcpu->arch.hfence_queue, 0, sizeof(vcpu->arch.hfence_queue));
86
87         /* Reset the guest CSRs for hotplug usecase */
88         if (loaded)
89                 kvm_arch_vcpu_load(vcpu, smp_processor_id());
90         put_cpu();
91 }
92
93 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
94 {
95         return 0;
96 }
97
98 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
99 {
100         struct kvm_cpu_context *cntx;
101         struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
102
103         /* Mark this VCPU never ran */
104         vcpu->arch.ran_atleast_once = false;
105         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
106
107         /* Setup ISA features available to VCPU */
108         vcpu->arch.isa = riscv_isa_extension_base(NULL) & KVM_RISCV_ISA_ALLOWED;
109
110         /* Setup VCPU hfence queue */
111         spin_lock_init(&vcpu->arch.hfence_lock);
112
113         /* Setup reset state of shadow SSTATUS and HSTATUS CSRs */
114         cntx = &vcpu->arch.guest_reset_context;
115         cntx->sstatus = SR_SPP | SR_SPIE;
116         cntx->hstatus = 0;
117         cntx->hstatus |= HSTATUS_VTW;
118         cntx->hstatus |= HSTATUS_SPVP;
119         cntx->hstatus |= HSTATUS_SPV;
120
121         /* By default, make CY, TM, and IR counters accessible in VU mode */
122         reset_csr->scounteren = 0x7;
123
124         /* Setup VCPU timer */
125         kvm_riscv_vcpu_timer_init(vcpu);
126
127         /* Reset VCPU */
128         kvm_riscv_reset_vcpu(vcpu);
129
130         return 0;
131 }
132
133 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
134 {
135         /**
136          * vcpu with id 0 is the designated boot cpu.
137          * Keep all vcpus with non-zero id in power-off state so that
138          * they can be brought up using SBI HSM extension.
139          */
140         if (vcpu->vcpu_idx != 0)
141                 kvm_riscv_vcpu_power_off(vcpu);
142 }
143
144 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
145 {
146         /* Cleanup VCPU timer */
147         kvm_riscv_vcpu_timer_deinit(vcpu);
148
149         /* Free unused pages pre-allocated for G-stage page table mappings */
150         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
151 }
152
153 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
154 {
155         return kvm_riscv_vcpu_has_interrupts(vcpu, 1UL << IRQ_VS_TIMER);
156 }
157
158 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
159 {
160 }
161
162 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
163 {
164 }
165
166 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
167 {
168         return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) &&
169                 !vcpu->arch.power_off && !vcpu->arch.pause);
170 }
171
172 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
173 {
174         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
175 }
176
177 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
178 {
179         return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false;
180 }
181
182 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
183 {
184         return VM_FAULT_SIGBUS;
185 }
186
187 static int kvm_riscv_vcpu_get_reg_config(struct kvm_vcpu *vcpu,
188                                          const struct kvm_one_reg *reg)
189 {
190         unsigned long __user *uaddr =
191                         (unsigned long __user *)(unsigned long)reg->addr;
192         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
193                                             KVM_REG_SIZE_MASK |
194                                             KVM_REG_RISCV_CONFIG);
195         unsigned long reg_val;
196
197         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
198                 return -EINVAL;
199
200         switch (reg_num) {
201         case KVM_REG_RISCV_CONFIG_REG(isa):
202                 reg_val = vcpu->arch.isa;
203                 break;
204         default:
205                 return -EINVAL;
206         }
207
208         if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
209                 return -EFAULT;
210
211         return 0;
212 }
213
214 static int kvm_riscv_vcpu_set_reg_config(struct kvm_vcpu *vcpu,
215                                          const struct kvm_one_reg *reg)
216 {
217         unsigned long __user *uaddr =
218                         (unsigned long __user *)(unsigned long)reg->addr;
219         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
220                                             KVM_REG_SIZE_MASK |
221                                             KVM_REG_RISCV_CONFIG);
222         unsigned long reg_val;
223
224         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
225                 return -EINVAL;
226
227         if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
228                 return -EFAULT;
229
230         switch (reg_num) {
231         case KVM_REG_RISCV_CONFIG_REG(isa):
232                 if (!vcpu->arch.ran_atleast_once) {
233                         /* Ignore the disable request for these extensions */
234                         vcpu->arch.isa = reg_val | KVM_RISCV_ISA_DISABLE_NOT_ALLOWED;
235                         vcpu->arch.isa &= riscv_isa_extension_base(NULL);
236                         vcpu->arch.isa &= KVM_RISCV_ISA_ALLOWED;
237                         kvm_riscv_vcpu_fp_reset(vcpu);
238                 } else {
239                         return -EOPNOTSUPP;
240                 }
241                 break;
242         default:
243                 return -EINVAL;
244         }
245
246         return 0;
247 }
248
249 static int kvm_riscv_vcpu_get_reg_core(struct kvm_vcpu *vcpu,
250                                        const struct kvm_one_reg *reg)
251 {
252         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
253         unsigned long __user *uaddr =
254                         (unsigned long __user *)(unsigned long)reg->addr;
255         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
256                                             KVM_REG_SIZE_MASK |
257                                             KVM_REG_RISCV_CORE);
258         unsigned long reg_val;
259
260         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
261                 return -EINVAL;
262         if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long))
263                 return -EINVAL;
264
265         if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc))
266                 reg_val = cntx->sepc;
267         else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num &&
268                  reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6))
269                 reg_val = ((unsigned long *)cntx)[reg_num];
270         else if (reg_num == KVM_REG_RISCV_CORE_REG(mode))
271                 reg_val = (cntx->sstatus & SR_SPP) ?
272                                 KVM_RISCV_MODE_S : KVM_RISCV_MODE_U;
273         else
274                 return -EINVAL;
275
276         if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
277                 return -EFAULT;
278
279         return 0;
280 }
281
282 static int kvm_riscv_vcpu_set_reg_core(struct kvm_vcpu *vcpu,
283                                        const struct kvm_one_reg *reg)
284 {
285         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
286         unsigned long __user *uaddr =
287                         (unsigned long __user *)(unsigned long)reg->addr;
288         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
289                                             KVM_REG_SIZE_MASK |
290                                             KVM_REG_RISCV_CORE);
291         unsigned long reg_val;
292
293         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
294                 return -EINVAL;
295         if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long))
296                 return -EINVAL;
297
298         if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
299                 return -EFAULT;
300
301         if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc))
302                 cntx->sepc = reg_val;
303         else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num &&
304                  reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6))
305                 ((unsigned long *)cntx)[reg_num] = reg_val;
306         else if (reg_num == KVM_REG_RISCV_CORE_REG(mode)) {
307                 if (reg_val == KVM_RISCV_MODE_S)
308                         cntx->sstatus |= SR_SPP;
309                 else
310                         cntx->sstatus &= ~SR_SPP;
311         } else
312                 return -EINVAL;
313
314         return 0;
315 }
316
317 static int kvm_riscv_vcpu_get_reg_csr(struct kvm_vcpu *vcpu,
318                                       const struct kvm_one_reg *reg)
319 {
320         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
321         unsigned long __user *uaddr =
322                         (unsigned long __user *)(unsigned long)reg->addr;
323         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
324                                             KVM_REG_SIZE_MASK |
325                                             KVM_REG_RISCV_CSR);
326         unsigned long reg_val;
327
328         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
329                 return -EINVAL;
330         if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long))
331                 return -EINVAL;
332
333         if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) {
334                 kvm_riscv_vcpu_flush_interrupts(vcpu);
335                 reg_val = (csr->hvip >> VSIP_TO_HVIP_SHIFT) & VSIP_VALID_MASK;
336         } else
337                 reg_val = ((unsigned long *)csr)[reg_num];
338
339         if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
340                 return -EFAULT;
341
342         return 0;
343 }
344
345 static int kvm_riscv_vcpu_set_reg_csr(struct kvm_vcpu *vcpu,
346                                       const struct kvm_one_reg *reg)
347 {
348         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
349         unsigned long __user *uaddr =
350                         (unsigned long __user *)(unsigned long)reg->addr;
351         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
352                                             KVM_REG_SIZE_MASK |
353                                             KVM_REG_RISCV_CSR);
354         unsigned long reg_val;
355
356         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
357                 return -EINVAL;
358         if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long))
359                 return -EINVAL;
360
361         if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
362                 return -EFAULT;
363
364         if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) {
365                 reg_val &= VSIP_VALID_MASK;
366                 reg_val <<= VSIP_TO_HVIP_SHIFT;
367         }
368
369         ((unsigned long *)csr)[reg_num] = reg_val;
370
371         if (reg_num == KVM_REG_RISCV_CSR_REG(sip))
372                 WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0);
373
374         return 0;
375 }
376
377 /* Mapping between KVM ISA Extension ID & Host ISA extension ID */
378 static unsigned long kvm_isa_ext_arr[] = {
379         RISCV_ISA_EXT_a,
380         RISCV_ISA_EXT_c,
381         RISCV_ISA_EXT_d,
382         RISCV_ISA_EXT_f,
383         RISCV_ISA_EXT_h,
384         RISCV_ISA_EXT_i,
385         RISCV_ISA_EXT_m,
386 };
387
388 static int kvm_riscv_vcpu_get_reg_isa_ext(struct kvm_vcpu *vcpu,
389                                           const struct kvm_one_reg *reg)
390 {
391         unsigned long __user *uaddr =
392                         (unsigned long __user *)(unsigned long)reg->addr;
393         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
394                                             KVM_REG_SIZE_MASK |
395                                             KVM_REG_RISCV_ISA_EXT);
396         unsigned long reg_val = 0;
397         unsigned long host_isa_ext;
398
399         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
400                 return -EINVAL;
401
402         if (reg_num >= KVM_RISCV_ISA_EXT_MAX || reg_num >= ARRAY_SIZE(kvm_isa_ext_arr))
403                 return -EINVAL;
404
405         host_isa_ext = kvm_isa_ext_arr[reg_num];
406         if (__riscv_isa_extension_available(&vcpu->arch.isa, host_isa_ext))
407                 reg_val = 1; /* Mark the given extension as available */
408
409         if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
410                 return -EFAULT;
411
412         return 0;
413 }
414
415 static int kvm_riscv_vcpu_set_reg_isa_ext(struct kvm_vcpu *vcpu,
416                                           const struct kvm_one_reg *reg)
417 {
418         unsigned long __user *uaddr =
419                         (unsigned long __user *)(unsigned long)reg->addr;
420         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
421                                             KVM_REG_SIZE_MASK |
422                                             KVM_REG_RISCV_ISA_EXT);
423         unsigned long reg_val;
424         unsigned long host_isa_ext;
425         unsigned long host_isa_ext_mask;
426
427         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
428                 return -EINVAL;
429
430         if (reg_num >= KVM_RISCV_ISA_EXT_MAX || reg_num >= ARRAY_SIZE(kvm_isa_ext_arr))
431                 return -EINVAL;
432
433         if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
434                 return -EFAULT;
435
436         host_isa_ext = kvm_isa_ext_arr[reg_num];
437         if (!__riscv_isa_extension_available(NULL, host_isa_ext))
438                 return  -EOPNOTSUPP;
439
440         if (host_isa_ext >= RISCV_ISA_EXT_BASE &&
441             host_isa_ext < RISCV_ISA_EXT_MAX) {
442                 /*
443                  * Multi-letter ISA extension. Currently there is no provision
444                  * to enable/disable the multi-letter ISA extensions for guests.
445                  * Return success if the request is to enable any ISA extension
446                  * that is available in the hardware.
447                  * Return -EOPNOTSUPP otherwise.
448                  */
449                 if (!reg_val)
450                         return -EOPNOTSUPP;
451                 else
452                         return 0;
453         }
454
455         /* Single letter base ISA extension */
456         if (!vcpu->arch.ran_atleast_once) {
457                 host_isa_ext_mask = BIT_MASK(host_isa_ext);
458                 if (!reg_val && (host_isa_ext_mask & KVM_RISCV_ISA_DISABLE_ALLOWED))
459                         vcpu->arch.isa &= ~host_isa_ext_mask;
460                 else
461                         vcpu->arch.isa |= host_isa_ext_mask;
462                 vcpu->arch.isa &= riscv_isa_extension_base(NULL);
463                 vcpu->arch.isa &= KVM_RISCV_ISA_ALLOWED;
464                 kvm_riscv_vcpu_fp_reset(vcpu);
465         } else {
466                 return -EOPNOTSUPP;
467         }
468
469         return 0;
470 }
471
472 static int kvm_riscv_vcpu_set_reg(struct kvm_vcpu *vcpu,
473                                   const struct kvm_one_reg *reg)
474 {
475         if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG)
476                 return kvm_riscv_vcpu_set_reg_config(vcpu, reg);
477         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE)
478                 return kvm_riscv_vcpu_set_reg_core(vcpu, reg);
479         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR)
480                 return kvm_riscv_vcpu_set_reg_csr(vcpu, reg);
481         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER)
482                 return kvm_riscv_vcpu_set_reg_timer(vcpu, reg);
483         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F)
484                 return kvm_riscv_vcpu_set_reg_fp(vcpu, reg,
485                                                  KVM_REG_RISCV_FP_F);
486         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D)
487                 return kvm_riscv_vcpu_set_reg_fp(vcpu, reg,
488                                                  KVM_REG_RISCV_FP_D);
489         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_ISA_EXT)
490                 return kvm_riscv_vcpu_set_reg_isa_ext(vcpu, reg);
491
492         return -EINVAL;
493 }
494
495 static int kvm_riscv_vcpu_get_reg(struct kvm_vcpu *vcpu,
496                                   const struct kvm_one_reg *reg)
497 {
498         if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG)
499                 return kvm_riscv_vcpu_get_reg_config(vcpu, reg);
500         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE)
501                 return kvm_riscv_vcpu_get_reg_core(vcpu, reg);
502         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR)
503                 return kvm_riscv_vcpu_get_reg_csr(vcpu, reg);
504         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER)
505                 return kvm_riscv_vcpu_get_reg_timer(vcpu, reg);
506         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F)
507                 return kvm_riscv_vcpu_get_reg_fp(vcpu, reg,
508                                                  KVM_REG_RISCV_FP_F);
509         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D)
510                 return kvm_riscv_vcpu_get_reg_fp(vcpu, reg,
511                                                  KVM_REG_RISCV_FP_D);
512         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_ISA_EXT)
513                 return kvm_riscv_vcpu_get_reg_isa_ext(vcpu, reg);
514
515         return -EINVAL;
516 }
517
518 long kvm_arch_vcpu_async_ioctl(struct file *filp,
519                                unsigned int ioctl, unsigned long arg)
520 {
521         struct kvm_vcpu *vcpu = filp->private_data;
522         void __user *argp = (void __user *)arg;
523
524         if (ioctl == KVM_INTERRUPT) {
525                 struct kvm_interrupt irq;
526
527                 if (copy_from_user(&irq, argp, sizeof(irq)))
528                         return -EFAULT;
529
530                 if (irq.irq == KVM_INTERRUPT_SET)
531                         return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT);
532                 else
533                         return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT);
534         }
535
536         return -ENOIOCTLCMD;
537 }
538
539 long kvm_arch_vcpu_ioctl(struct file *filp,
540                          unsigned int ioctl, unsigned long arg)
541 {
542         struct kvm_vcpu *vcpu = filp->private_data;
543         void __user *argp = (void __user *)arg;
544         long r = -EINVAL;
545
546         switch (ioctl) {
547         case KVM_SET_ONE_REG:
548         case KVM_GET_ONE_REG: {
549                 struct kvm_one_reg reg;
550
551                 r = -EFAULT;
552                 if (copy_from_user(&reg, argp, sizeof(reg)))
553                         break;
554
555                 if (ioctl == KVM_SET_ONE_REG)
556                         r = kvm_riscv_vcpu_set_reg(vcpu, &reg);
557                 else
558                         r = kvm_riscv_vcpu_get_reg(vcpu, &reg);
559                 break;
560         }
561         default:
562                 break;
563         }
564
565         return r;
566 }
567
568 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
569                                   struct kvm_sregs *sregs)
570 {
571         return -EINVAL;
572 }
573
574 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
575                                   struct kvm_sregs *sregs)
576 {
577         return -EINVAL;
578 }
579
580 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
581 {
582         return -EINVAL;
583 }
584
585 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
586 {
587         return -EINVAL;
588 }
589
590 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
591                                   struct kvm_translation *tr)
592 {
593         return -EINVAL;
594 }
595
596 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
597 {
598         return -EINVAL;
599 }
600
601 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
602 {
603         return -EINVAL;
604 }
605
606 void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu)
607 {
608         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
609         unsigned long mask, val;
610
611         if (READ_ONCE(vcpu->arch.irqs_pending_mask)) {
612                 mask = xchg_acquire(&vcpu->arch.irqs_pending_mask, 0);
613                 val = READ_ONCE(vcpu->arch.irqs_pending) & mask;
614
615                 csr->hvip &= ~mask;
616                 csr->hvip |= val;
617         }
618 }
619
620 void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu)
621 {
622         unsigned long hvip;
623         struct kvm_vcpu_arch *v = &vcpu->arch;
624         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
625
626         /* Read current HVIP and VSIE CSRs */
627         csr->vsie = csr_read(CSR_VSIE);
628
629         /* Sync-up HVIP.VSSIP bit changes does by Guest */
630         hvip = csr_read(CSR_HVIP);
631         if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) {
632                 if (hvip & (1UL << IRQ_VS_SOFT)) {
633                         if (!test_and_set_bit(IRQ_VS_SOFT,
634                                               &v->irqs_pending_mask))
635                                 set_bit(IRQ_VS_SOFT, &v->irqs_pending);
636                 } else {
637                         if (!test_and_set_bit(IRQ_VS_SOFT,
638                                               &v->irqs_pending_mask))
639                                 clear_bit(IRQ_VS_SOFT, &v->irqs_pending);
640                 }
641         }
642 }
643
644 int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
645 {
646         if (irq != IRQ_VS_SOFT &&
647             irq != IRQ_VS_TIMER &&
648             irq != IRQ_VS_EXT)
649                 return -EINVAL;
650
651         set_bit(irq, &vcpu->arch.irqs_pending);
652         smp_mb__before_atomic();
653         set_bit(irq, &vcpu->arch.irqs_pending_mask);
654
655         kvm_vcpu_kick(vcpu);
656
657         return 0;
658 }
659
660 int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
661 {
662         if (irq != IRQ_VS_SOFT &&
663             irq != IRQ_VS_TIMER &&
664             irq != IRQ_VS_EXT)
665                 return -EINVAL;
666
667         clear_bit(irq, &vcpu->arch.irqs_pending);
668         smp_mb__before_atomic();
669         set_bit(irq, &vcpu->arch.irqs_pending_mask);
670
671         return 0;
672 }
673
674 bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, unsigned long mask)
675 {
676         unsigned long ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK)
677                             << VSIP_TO_HVIP_SHIFT) & mask;
678
679         return (READ_ONCE(vcpu->arch.irqs_pending) & ie) ? true : false;
680 }
681
682 void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
683 {
684         vcpu->arch.power_off = true;
685         kvm_make_request(KVM_REQ_SLEEP, vcpu);
686         kvm_vcpu_kick(vcpu);
687 }
688
689 void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
690 {
691         vcpu->arch.power_off = false;
692         kvm_vcpu_wake_up(vcpu);
693 }
694
695 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
696                                     struct kvm_mp_state *mp_state)
697 {
698         if (vcpu->arch.power_off)
699                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
700         else
701                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
702
703         return 0;
704 }
705
706 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
707                                     struct kvm_mp_state *mp_state)
708 {
709         int ret = 0;
710
711         switch (mp_state->mp_state) {
712         case KVM_MP_STATE_RUNNABLE:
713                 vcpu->arch.power_off = false;
714                 break;
715         case KVM_MP_STATE_STOPPED:
716                 kvm_riscv_vcpu_power_off(vcpu);
717                 break;
718         default:
719                 ret = -EINVAL;
720         }
721
722         return ret;
723 }
724
725 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
726                                         struct kvm_guest_debug *dbg)
727 {
728         /* TODO; To be implemented later. */
729         return -EINVAL;
730 }
731
732 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
733 {
734         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
735
736         csr_write(CSR_VSSTATUS, csr->vsstatus);
737         csr_write(CSR_VSIE, csr->vsie);
738         csr_write(CSR_VSTVEC, csr->vstvec);
739         csr_write(CSR_VSSCRATCH, csr->vsscratch);
740         csr_write(CSR_VSEPC, csr->vsepc);
741         csr_write(CSR_VSCAUSE, csr->vscause);
742         csr_write(CSR_VSTVAL, csr->vstval);
743         csr_write(CSR_HVIP, csr->hvip);
744         csr_write(CSR_VSATP, csr->vsatp);
745
746         kvm_riscv_gstage_update_hgatp(vcpu);
747
748         kvm_riscv_vcpu_timer_restore(vcpu);
749
750         kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context);
751         kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context,
752                                         vcpu->arch.isa);
753
754         vcpu->cpu = cpu;
755 }
756
757 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
758 {
759         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
760
761         vcpu->cpu = -1;
762
763         kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context,
764                                      vcpu->arch.isa);
765         kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context);
766
767         csr->vsstatus = csr_read(CSR_VSSTATUS);
768         csr->vsie = csr_read(CSR_VSIE);
769         csr->vstvec = csr_read(CSR_VSTVEC);
770         csr->vsscratch = csr_read(CSR_VSSCRATCH);
771         csr->vsepc = csr_read(CSR_VSEPC);
772         csr->vscause = csr_read(CSR_VSCAUSE);
773         csr->vstval = csr_read(CSR_VSTVAL);
774         csr->hvip = csr_read(CSR_HVIP);
775         csr->vsatp = csr_read(CSR_VSATP);
776 }
777
778 static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu)
779 {
780         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
781
782         if (kvm_request_pending(vcpu)) {
783                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) {
784                         rcuwait_wait_event(wait,
785                                 (!vcpu->arch.power_off) && (!vcpu->arch.pause),
786                                 TASK_INTERRUPTIBLE);
787
788                         if (vcpu->arch.power_off || vcpu->arch.pause) {
789                                 /*
790                                  * Awaken to handle a signal, request to
791                                  * sleep again later.
792                                  */
793                                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
794                         }
795                 }
796
797                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
798                         kvm_riscv_reset_vcpu(vcpu);
799
800                 if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu))
801                         kvm_riscv_gstage_update_hgatp(vcpu);
802
803                 if (kvm_check_request(KVM_REQ_FENCE_I, vcpu))
804                         kvm_riscv_fence_i_process(vcpu);
805
806                 /*
807                  * The generic KVM_REQ_TLB_FLUSH is same as
808                  * KVM_REQ_HFENCE_GVMA_VMID_ALL
809                  */
810                 if (kvm_check_request(KVM_REQ_HFENCE_GVMA_VMID_ALL, vcpu))
811                         kvm_riscv_hfence_gvma_vmid_all_process(vcpu);
812
813                 if (kvm_check_request(KVM_REQ_HFENCE_VVMA_ALL, vcpu))
814                         kvm_riscv_hfence_vvma_all_process(vcpu);
815
816                 if (kvm_check_request(KVM_REQ_HFENCE, vcpu))
817                         kvm_riscv_hfence_process(vcpu);
818         }
819 }
820
821 static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu)
822 {
823         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
824
825         csr_write(CSR_HVIP, csr->hvip);
826 }
827
828 /*
829  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
830  * the vCPU is running.
831  *
832  * This must be noinstr as instrumentation may make use of RCU, and this is not
833  * safe during the EQS.
834  */
835 static void noinstr kvm_riscv_vcpu_enter_exit(struct kvm_vcpu *vcpu)
836 {
837         guest_state_enter_irqoff();
838         __kvm_riscv_switch_to(&vcpu->arch);
839         vcpu->arch.last_exit_cpu = vcpu->cpu;
840         guest_state_exit_irqoff();
841 }
842
843 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
844 {
845         int ret;
846         struct kvm_cpu_trap trap;
847         struct kvm_run *run = vcpu->run;
848
849         /* Mark this VCPU ran at least once */
850         vcpu->arch.ran_atleast_once = true;
851
852         kvm_vcpu_srcu_read_lock(vcpu);
853
854         /* Process MMIO value returned from user-space */
855         if (run->exit_reason == KVM_EXIT_MMIO) {
856                 ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run);
857                 if (ret) {
858                         kvm_vcpu_srcu_read_unlock(vcpu);
859                         return ret;
860                 }
861         }
862
863         /* Process SBI value returned from user-space */
864         if (run->exit_reason == KVM_EXIT_RISCV_SBI) {
865                 ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run);
866                 if (ret) {
867                         kvm_vcpu_srcu_read_unlock(vcpu);
868                         return ret;
869                 }
870         }
871
872         if (run->immediate_exit) {
873                 kvm_vcpu_srcu_read_unlock(vcpu);
874                 return -EINTR;
875         }
876
877         vcpu_load(vcpu);
878
879         kvm_sigset_activate(vcpu);
880
881         ret = 1;
882         run->exit_reason = KVM_EXIT_UNKNOWN;
883         while (ret > 0) {
884                 /* Check conditions before entering the guest */
885                 cond_resched();
886
887                 kvm_riscv_gstage_vmid_update(vcpu);
888
889                 kvm_riscv_check_vcpu_requests(vcpu);
890
891                 preempt_disable();
892
893                 local_irq_disable();
894
895                 /*
896                  * Exit if we have a signal pending so that we can deliver
897                  * the signal to user space.
898                  */
899                 if (signal_pending(current)) {
900                         ret = -EINTR;
901                         run->exit_reason = KVM_EXIT_INTR;
902                 }
903
904                 /*
905                  * Ensure we set mode to IN_GUEST_MODE after we disable
906                  * interrupts and before the final VCPU requests check.
907                  * See the comment in kvm_vcpu_exiting_guest_mode() and
908                  * Documentation/virt/kvm/vcpu-requests.rst
909                  */
910                 vcpu->mode = IN_GUEST_MODE;
911
912                 kvm_vcpu_srcu_read_unlock(vcpu);
913                 smp_mb__after_srcu_read_unlock();
914
915                 /*
916                  * We might have got VCPU interrupts updated asynchronously
917                  * so update it in HW.
918                  */
919                 kvm_riscv_vcpu_flush_interrupts(vcpu);
920
921                 /* Update HVIP CSR for current CPU */
922                 kvm_riscv_update_hvip(vcpu);
923
924                 if (ret <= 0 ||
925                     kvm_riscv_gstage_vmid_ver_changed(&vcpu->kvm->arch.vmid) ||
926                     kvm_request_pending(vcpu)) {
927                         vcpu->mode = OUTSIDE_GUEST_MODE;
928                         local_irq_enable();
929                         preempt_enable();
930                         kvm_vcpu_srcu_read_lock(vcpu);
931                         continue;
932                 }
933
934                 /*
935                  * Cleanup stale TLB enteries
936                  *
937                  * Note: This should be done after G-stage VMID has been
938                  * updated using kvm_riscv_gstage_vmid_ver_changed()
939                  */
940                 kvm_riscv_local_tlb_sanitize(vcpu);
941
942                 guest_timing_enter_irqoff();
943
944                 kvm_riscv_vcpu_enter_exit(vcpu);
945
946                 vcpu->mode = OUTSIDE_GUEST_MODE;
947                 vcpu->stat.exits++;
948
949                 /*
950                  * Save SCAUSE, STVAL, HTVAL, and HTINST because we might
951                  * get an interrupt between __kvm_riscv_switch_to() and
952                  * local_irq_enable() which can potentially change CSRs.
953                  */
954                 trap.sepc = vcpu->arch.guest_context.sepc;
955                 trap.scause = csr_read(CSR_SCAUSE);
956                 trap.stval = csr_read(CSR_STVAL);
957                 trap.htval = csr_read(CSR_HTVAL);
958                 trap.htinst = csr_read(CSR_HTINST);
959
960                 /* Syncup interrupts state with HW */
961                 kvm_riscv_vcpu_sync_interrupts(vcpu);
962
963                 /*
964                  * We must ensure that any pending interrupts are taken before
965                  * we exit guest timing so that timer ticks are accounted as
966                  * guest time. Transiently unmask interrupts so that any
967                  * pending interrupts are taken.
968                  *
969                  * There's no barrier which ensures that pending interrupts are
970                  * recognised, so we just hope that the CPU takes any pending
971                  * interrupts between the enable and disable.
972                  */
973                 local_irq_enable();
974                 local_irq_disable();
975
976                 guest_timing_exit_irqoff();
977
978                 local_irq_enable();
979
980                 preempt_enable();
981
982                 kvm_vcpu_srcu_read_lock(vcpu);
983
984                 ret = kvm_riscv_vcpu_exit(vcpu, run, &trap);
985         }
986
987         kvm_sigset_deactivate(vcpu);
988
989         vcpu_put(vcpu);
990
991         kvm_vcpu_srcu_read_unlock(vcpu);
992
993         return ret;
994 }